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1 Introduction

The nodal sets are zero level sets. We want to study the measure estimates of nodal sets of

polyharmonic functions in this paper. In 1979, Almgren [1] introduced the frequency concept of

harmonic functions. Then in 1986 and 1987, Garofalo and Lin [4–5] established the monotonicity

formula of the frequency and the doubling conditions for solutions of the uniformly second order

elliptic equations, and showed the unique continuation of such solutions by using the doubling

conditions. In 2000, Han [6] studied the structure of the nodal sets of solutions of a class

of uniformly high order elliptic equations. In 2003, Han, Hardt and Lin in [7] investigated

structures and measure estimates of singular sets of solutions of high order uniformly elliptic

equations. In 2014, the author and Yang in [13] gave the measure estimates of nodal sets for

bi-harmonic functions.

The classical frequency of a harmonic function is defined as follows.

Definition 1.1 If u is a harmonic function in B1, then for any r ≤ 1, one can define the

frequency function of u centered at the origin with radius r as follows:

N(r) = r
D(r)

H(r)
= r

∫

Br
|∇u|2dx

∫

∂Br
u2dσ

, (1.1)

where dσ means the (n − 1)-Hausdorff measure on the sphere ∂Br. Similarly, one can define

the frequency centered at other point.

Based on this idea, we define the frequency of a polyharmonic function as follows. We first

show some notations in this paper as follows:

u1 = u, u2 = △u, · · ·, uk = △k−1u, uk+1 = △ku = 0.
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Definition 1.2 Suppose that u satisfies that △ku = 0, where k is a positive integer more

than or equal to 2. Such a function u is called a k-polyharmonic function in the rest of this

paper. Then we define

N(r) = r
D(r) + E(r)

H(r)
, (1.2)

where

D(r) =

k
∑

i=1

Di(r), E(r) =

k
∑

i=1

Ei(r), H(r) =

k
∑

i=1

Hi(r),

Di(r) =

∫

Br

|∇ui|
2dx, Ei(r) =

∫

Br

uiui+1dx, Hi(r) =

∫

∂Br

u2idσ.

The function N(r) is called the frequency of u centered at the origin with radius r. Similarly,

we can define the frequency centered at other point.

Remark 1.1 Noting that for any j = 1, 2, · · · , k, uj is a (k− j+1)-polyharmonic function,

and uk is a harmonic function. Thus one can also define the frequency for uj as above. We

denote such frequency as Nj(r). It is easy to see that N1(r) = N(r), and Nk(r) is just the

classical frequency of a harmonic function as in Definition 1.1.

Remark 1.2 This frequency is in fact the following form

N(r) = r

k
∑

i=1

∫

∂Br
uiuiνdσ

k
∑

i=1

∫

∂Br
u2idσ

. (1.3)

Here uiν is ∇u · ν and ν is the outer unit normal on ∂Br.

Now we state the main results of this paper.

Theorem 1.1 Let u be a polyharmonic function in B1 ⊆ Rn, i.e., △ku = 0 in B1. Then

Hn−1({x ∈ B 1
16

: u(x) = 0}) ≤ C

k
∑

i=1

Ni(1) + C, (1.4)

where C is a positive constant depending only on n and k.

Theorem 1.2 Let u be a k-polyharmonic function in the whole space Rn.

(1) If the frequency of u centered at the origin is bounded in Rn, then u is a polynomial.

Moreover, if N(r) < N0 for any r > 0, then it holds that

deg(u) ≤ CN0 + C, (1.5)

where deg(u) means the order of degree of u and C is a positive constant depending only on n

and k. In this case, for any i = 2, ·, k, the functions ui are also polynomials.

(2) If u is a polynomial, then the frequency of u is bounded by the order of degree of u in

the whole space Rn.

The rest of this paper is organized as follows. In the second section we introduce some

interesting properties of the frequency and prove the monotonicity formula of the frequency. In

the third section, the doubling conditions of the polyharmonic functions are proved. The forth

section gives the measure estimates of nodal sets of polyharmonic functions, i.e., the proof of

Theorem 1.1. The last section shows the growth property of polyharmonic functions.
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2 Monotonicity Formula of Frequency

In this section, we will give some interesting properties for the frequency of polyharmonic

functions, and then prove the monotonicity formula for this frequency function.

Lemma 2.1 If u satisfies △ku = 0, where k ∈ N and the vanishing order of u at the origin

is l ≥ 2(k − 1), then

lim
r→0

N(r) ≥ l− 2(k − 1). (2.1)

Proof Note that u is k-polyharmonic. So each ui is analytic near the origin, thus we may

assume that for each i = 1, 2, · · · , k, ui(x) = Pi(x) + Ri(x), where Pi(x) is a homogeneous

polynomial. Assume that the order of degree of Pi(x) is li, and then Ri(x) = o(|x|li ) as

|x| → 0. Because the vanishing order of u at the origin is l, it is known that l1 = l, and for

each i = 2, 3, · · · , k, li ≥ l − 2(i − 1). Let l0 = inf{l1, l2, · · · , lk}. Because each Pi(x) is a

homogeneous polynomial of degree li, Pi(x) can be written as Pi(x) = rliφi(θ), where (r, θ) is

the polar coordinate system. Then

N(r) = r

k
∑

i=1

∫

Br
|∇ui|

2dx+
k
∑

i=1

∫

Br
uiui+1dσ

k
∑

i=1

∫

∂Br
u2idσ

= r

k
∑

i=1

∫

∂Br
uiuiνdσ

k
∑

i=1

∫

∂Br
u2idσ

=

k
∑

i=1

lir
2li

∫

∂Br
φ2i (θ)dσ +

k
∑

i=1

o(r2li)

k
∑

i=1

r2li
∫

∂Br
φ2i (θ)dσ +

k
∑

i=1

o(r2li )

=

l0
k
∑

i=1

r2l0
∫

∂Br
φ2i (θ)dσ + o(r2l0 )

k
∑

i=1

r2l0
∑

∂Br

φ2i (θ)dσ + o(r2l0 )

,

where dσ = rn−1dω, dω is the (n− 1)-Hausdorff measure on the unit sphere Sn−1. Let r → 0

in the above form, one can get lim
r→0

N(r) = l0 ≥ l − 2(k − 1). That is the desired result.

In order to prove some properties of the proposed frequency, we need the following two

lemmas which can be seen in [9, 13].

Lemma 2.2 If u is a harmonic function in Br, then
∫

Br

u2dx ≤
r

n

∫

∂Br

u2dσ. (2.2)

Lemma 2.3 For any u ∈W
1,2
0 (Br), it holds that
∫

Br

u2dx ≤
4r2

n2

∫

Br

|∇u|2dx. (2.3)

Now we show some properties of such frequency.

Lemma 2.4 If n ≥ 2, r ≤ 1, and u is a k-polyharmonic function as above, then the

frequency of u satisfies that

N(r) ≥ −Cr,

where C is a positive constant depending only on n.
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Proof For any fixed i and r, define the function uri1 and uri2 as follows:

△uri1 = ui+1 in Br, uri1 = 0 on ∂Br,

△uri2 = 0 in Br, uri2 = ui on ∂Br.

So ui = uri1 + uri2. Note that for any i = 1, 2, · · · , k, uri2 are harmonic functions, we have

∫

Br

|uri2|
2dσ ≤

r

n

∫

∂Br

|uri2|
2dσ =

r

n

∫

∂Br

|ui|
2dσ, (2.4)

which is presented in [8, Chapter 2]. On the other hand, the functions uri1 are all in W 1,p
0 (Br),

so from the Poincaré’s inequality, we have

∫

Br

|uri1|
2dσ ≤

4r2

n2

∫

Br

|∇uri1|
2dσ.

Because
∫

Br

|∇ui|
2dσ =

∫

Br

|∇uri1|
2dσ + |∇uri2|

2 + 2∇uri1u
r
i2

and
∫

Br

∇uri1∇u
2
i2dσ = 0,

we have

∫

Br

|uri1|
2dσ ≤

4r2

n2

∫

Br

|∇uri1|
2dσ ≤

∫

Br

|∇ui|
2dσ. (2.5)

We write the term
∫

Br
uiui+1dσ as

∫

Br

uiui+1dσ =

∫

Br

uri1u
r
i+1,1dσ +

∫

Br

uri1u
r
i+1,2dσ +

∫

Br

uri2u
r
i+1,1dσ +

∫

Br

uri2u
r
i+1,2dσ

= I + II + III + IV.

Now we will give the estimates of |I|, |II|, |III| and |IV| separately. First consider the term |I|.

By using the form (2.5), we have

|I| ≤
1

2

(

∫

Br

|uri1|
2dσ +

∫

Br

|uri+1,1|
2dσ

)

≤
4r2

n2

(

∫

Br

|∇ui|
2dσ +

∫

Br

|∇ui+1|
2dσ

)

.

For |IV|, by using (2.4), we have

|IV| ≤
r

2n

(

∫

∂Br

u2idσ +

∫

∂Br

u2i+1dσ
)

.

Now we focus on |II|. Also from the forms (2.4)–(2.5), we have for any ǫ > 0, it holds that

|II| ≤
ǫ

2

∫

Br

|uri1|
2dσ +

1

2ǫ

∫

Br

|uri+1,2|
2dσ ≤

2ǫr2

n2

∫

Br

|∇ui|
2dσ +

r

2ǫn

∫

∂Br

u2i+1dσ.
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Similarly, for |III|, we have

|III| ≤
Cǫr2

2

∫

Br

|∇ui+1|
2dσ +

r

2ǫn

∫

∂Br

u2idσ.

So

|E(r)| ≤
(4r2ǫ

n2
+

2r2

n2

)

D(r) +
( r

n
+

2r

ǫn

)

H(r).

Choose ǫ = 1
4 . Then from Lemmas 2.2–2.3 and the fact that n ≥ 2, r ≤ 1, we have

4r2ǫ

n2
+

2r2

n2
=

3r2

n2
< 1.

So

|E(r)| ≤ CrH(r) +D(r).

Thus

N(r) = r
D(r) + E(r)

H(r)
≥ r

D(r) − |E(r)|

H(r)
≥ −Cr,

which is the desired result.

Remark 2.1 It is obvious that the result of the above lemmas also hold for the frequency

centered at other points.

Remark 2.2 The frequency of a harmonic function is obviously nonnegative. For a poly-

harmonic function, the frequency may not be nonnegative, but from Lemma 2.4, one knows

that it also has a lower bound.

Next we will show the monotonicity formula for this frequency.

Theorem 2.1 Let u be a k-polyharmonic function. Then there exists two positive constants

C0 and C depending only on n and k such that if N(r) ≥ C0, then it holds that

N ′(r)

N(r)
≥ −C. (2.6)

Proof It is easy to check that

N ′(r)

N(r)
=

1

r
+
D′(r) + E′(r)

D(r) + E(r)
−
H ′(r)

H(r)
. (2.7)

We calculate D′(r), E′(r) and H ′(r) separately. We write H(r) as follows:

H(r) =

∫

|x=r|

u2(x)dσx = rn−1

∫

|y|=1

u2(ry)dσy ,

where dσx and dσy are the (n − 1)-Hausdorff measures on the corresponding spheres. This

implies that

H ′
i(r) = (n− 1)rn−2

∫

|y|=1

u2i (ry)dσy + 2rn−1

∫

|y|=1

ui(ry)uiν (ry)dσy
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=
n− 1

r
Hi(r) + 2

∫

∂Br

uiuiνdσ.

So

H ′(r) = 2

k
∑

i=1

∫

∂Br

uiuiνdσ +
n− 1

r
H(r). (2.8)

Now consider D′(r) and E′(r). First note that

D′(r) =
k

∑

i=1

D′
i(r),

E′(r) =

k
∑

i=1

E′
i(r),

where

D′
i(r) =

∫

∂Br

|∇ui|
2dσ

and

E′
i(r) =

∫

∂Br

uiui+1dσ.

For D′
i(r), it holds that

D′
i(r) =

∫

∂Br

|∇ui|
2dx =

1

r

∫

∂Br

|∇ui|
2 · x ·

x

r
dx =

1

r

∫

Br

div(|∇ui|
2 · x)dx

=
n

r

∫

Br

|∇ui|
2dx+

2

r

∫

Br

∂ui

∂xj
·
∂2ui

∂xj∂xl
· xldx

=
n

r
Di(r) +

2

r

∫

Br

∂

∂xj

(∂ui

∂xl

)( ∂ui

∂xj
· xl

)

dx

=
n

r
Di(r) +

2

r

∫

∂Br

∂ui

∂xl

∂ui

∂xj

xj

r
· xldσ −

2

r

∫

Br

∂ui

∂xl
·
∂

∂xj

( ∂ui

∂xj
· xl

)

dx

=
n− 2

r
Di(r) + 2

∫

∂Br

u2iνdσ −
2

r

∫

Br

∇ui · x · ui+1dx.

For E′
i(r), we have

E′
i(r) =

∫

∂Br

uiui+1dσ =
1

r

∫

∂Br

uiui+1x ·
x

r
dx =

1

r

∫

Br

div(uiui+1x)dx

=
n

r

∫

Br

uiui+1dx+
1

r

∫

Br

ui+1∇ui · xdx +
1

r

∫

Br

ui∇ui+1 · xdx

=
n

r
Ei(r) +

1

r

∫

Br

ui+1∇ui · xdx+
1

r

∫

Br

ui∇ui+1 · xdx.

Thus

D′
i(r) + E′

i(r) =
n− 2

r
(Di(r) + Ei(r)) + 2

∫

∂Br

u2iνdσ

+
1

r

∫

Br

∇ui+1 · x · uidx−
1

r

∫

Br

ui · x · ui+1dx
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+
2

r

∫

Br

uiui+1dx.

So

D′(r) + E′(r)

D(r) + E(r)
=
n− 2

r
+ 2

k
∑

i=1

∫

∂Br
u2iνdσ

k
∑

i=1

∫

∂Br
uiuiνdσ

+
1

r

k
∑

i=1

(
∫

Br
∇ui+1 · x · uidx−

∫

Br
∇ui · x · ui+1dx+ 2

∫

Br
uiui+1dx)

k
∑

i=1

(
∫

Br
|∇ui|2dx+

∫

Br
uiui+1dx)

=
n− 2

r
+ 2

k
∑

i=1

∫

∂Br
u2iνdσ

k
∑

i=1

∫

∂Br
uiuiνdσ

+
1

r

R1 − R2 + 2R3

D(r) + E(r)
.

Then we will estimate |R1|, |R2| and |R3| separately.

|R1| ≤

k
∑

i=1

∣

∣

∣

∫

Br

∇ui+1 · x · uidx
∣

∣

∣
≤
r

2

(

k
∑

i=1

∫

Br

|∇ui+1|
2dx+

k
∑

i=1

∫

Br

u2idx
)

≤ Cr

k
∑

i=1

(

∫

Br

|∇ui|
2dx+

∫

∂Br

u2idσ
)

.

From the similar arguments, we have

|R2| ≤

k
∑

i=1

∣

∣

∣

∫

Br

∇ui · x · ui+1dx
∣

∣

∣
≤
r

2

k
∑

i=1

(

∫

Br

|∇ui|
2dx+

∫

Br

|ui+1|
2dx

)

≤ Cr

k
∑

i=1

(

∫

Br

|∇ui|
2dx+

∫

∂Br

u2idσ
)

and

|R3| ≤

k
∑

i=1

∣

∣

∣

∫

Br

uiui+1dx
∣

∣

∣
≤

1

2

k
∑

i=1

(

∫

Br

u2idx+

∫

Br

u2i+1dx
)

≤ Cr
(

∫

Br

|∇ui|
2dx+

∫

∂Br

u2idσ
)

.

From the assumption that N(r) ≥ C0 and the proof of Lemma 2.4, we have

|E(r)| ≤ CH(r) +
3

4
D(r) ≤

C

C0
(D(r) + |E(r)|) +

3

4
D(r),

where C is the constant in Lemma 2.4. Choose C0 large enough such that

( C

C0 +
3
4

) C0

C0 − C
=

7

8
.
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Then

D(r) + E(r) ≥
1

8
D(r).

So

|R1 − R2 + 2R3|

D(r) + E(r)
≤
CD(r) + CH(r)

D(r) + E(r)
≤ C.

Thus

D′(r) + E′(r)

D(r) + E(r)
≥ −C +

n− 2

r
+ 2

n
∑

i=1

∫

∂Br
u2iνdσ

k
∑

i=1

∫

∂Br
uiuiνdσ

.

From (2.8), we have

H ′(r)

H(r)
=
n− 1

r
+ 2

k
∑

i=1

∫

∂Br
uiuiνdσ

k
∑

i=1

∫

∂Br
u2idσ

.

So we finally get

N ′(r)

N(r)
≥ 2

(

k
∑

i=1

∫

∂Br
u2iνdσ

k
∑

i=1

∫

∂Br
uiuiνdσ

−

k
∑

i=1

∫

∂Br
uiuiνdσ

k
∑

i=1

∫

∂Br
u2idσ

)

− C ≥ −C.

This ends the proof.

Remark 2.3 The above theorem also holds for the frequency centered at other point, i.e.,

if u is a polyharmonic function and N(p, r) is the frequency of u centered at the point p with

radius r, then it holds that

dN(p, r)

dr
·

1

N(p, r)
≥ −C, (2.9)

if N(p, r) ≥ C0, where C0 and C are two positive constants depending only on n and k.

Lemma 2.5 For any p ∈ B 1
4
, we have

N
(

p,
1

2
(1 − |p|)

)

≤ C1N(1) + C2, (2.10)

where C1 and C2 are positive constants depending only on n and k.

Proof We only prove the case that |p| = 1
4 . Other cases are similar. Note that B 3

4
(p) ⊆ B1

and B 1
4
⊆ B 1

2
(p). From Theorem 2.1, we have

k
∑

i=1

∫

B 3
4
(p)

u2idx ≤ 4CN(1)+C

k
∑

i=1

∫

B 1
2
(p)

u2idσ. (2.11)
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Now we claim that

k
∑

i=1

1

|∂B 5
8
(p)|

∫

∂B 5
8
(p)

u2idσ ≤ 4CN(1)+C

k
∑

i=1

1

|∂B 1
2
(p)|

∫

∂B 1
2
(p)

u2idσ. (2.12)

In fact, from (1.3), (2.8), Lemma 2.4 and some direct calculation, we know that

d

dr
log

(

k
∑

i=1

1

|∂Br(p)|

∫

∂Br(p)

u2idσ
)

=
1− n

r
+

d

dr
log(H(p, r))

=
1− n

r
+
H ′(p, r)

H(p, r)

=
n− 1

r
+
n− 1

r
+ 2

k
∑

i=1

∫

∂Br(p)
uiuiνdσ

H(p, r)

=
2

r
N(p, r) ≥ −C. (2.13)

Thus

k
∑

i=1

∫

B 3
4
(p)

u2idx ≥

k
∑

i=1

∫

B 3
4
(p)−B 5

8
(p)

u2idσ

=
k

∑

i=1

∫ 3
4

5
8

rn−1 1

|∂Br(p)|

∫

∂Br(p)

u2idσ

≥ C

k
∑

i=1

1

|∂B 5
8
(p)|

∫

∂B 5
8
(p)

u2idσ,

and

k
∑

i=1

∫

B 1
2
(p)

u2idx =

k
∑

i=1

∫ 1
2

0

rn−1 1

|∂Br(p)|

∫

∂Br(p)

u2idσ

≤ C

k
∑

i=1

1

|∂B 1
2
(p)|

∫

∂B 1
2
(p)

u2idσ.

So the claim (2.12) holds. Integrating (2.13) from 1
2 to 5

8 , we obtain

log
(

k
∑

i=1

1

|∂B 5
8
(p)|

∫

∂B 5
8
(p)

u2idσ
)

− log
(

k
∑

i=1

1

|∂B 1
2
(p)|

∫

∂B 1
2
(p)

u2idσ
)

=

∫ 5
8

1
2

2N(p, r)

r
dr.

From Theorem 2.1, we know that

∫ 5
8

1
2

2N(p, r)

r
dr ≥ CN

(

p,
1

2

)

− C.

So

N
(

p,
1

2

)

≤ CN(1) + C.

Then from Theorem 2.1 again, we get

N(p, r) ≤ CN(1) + C

for any r ≤ 1
2 , and that is the desired result.
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3 Doubling Conditions

In this section, we will show the doubling condition of a polyharmonic function u. In fact,

from the proof of Lemma 2.5, it is easy to see that the following doubling condition holds.

Lemma 3.1 Let u be a k-polyharmonic function, and assume that 2r < 1. Then it holds

that

k
∑

i=1

1

|∂B2r|

∫

∂B2r

u2idσ ≤ 2CN(1)+C

k
∑

i=1

1

|∂Br|

∫

∂Br

u2idσ (3.1)

and

k
∑

i=1

1

|B2r|

∫

B2r

u2idx ≤ 2C
′N(1)+C′

k
∑

i=1

1

|Br|

∫

Br

u2idx, (3.2)

where C and C′ are two positive constants depending only on n and k.

Proof We only need to prove the form (3.1). Because one can simply integrate (3.1) from

0 to r to get (3.2).

Integrating (2.13) from r to 2r, we know that

log
( H(2r)

(2r)n−1

)

− log
(H(r)

rn−1

)

= 2

∫ 2r

r

N(t)

t
dt,

and thus

H(2r) ≤ 2nH(r)e2
∫ 2r
r

N(t)
t

dt.

From Theorem 2.1, we know that N(t) ≤ max{CN(2r), C0} ≤ CN(2r) +C for any t ∈ (r, 2r).

Here C is some positive constant depending only on n and k, and C0 is the same constant as

in Theorem 2.1. So

H(2r) ≤ 2nH(r)eCN(2r)+C = 2CN(2r)+CH(r),

which is the desired result.

It is known that the doubling condition for harmonic functions and bi-harmonic functions

as follows.

Lemma 3.2 Let u be a harmonic function and 2r < 1. Then

1

|B2r|

∫

B2r

u2dx ≤ 2CN(1)+C 1

|Br|

∫

Br

u2dx, (3.3)

where N(r) is the frequency of u and C is a positive constant depending only on n.

Lemma 3.3 Let u be a bi-harmonic function and 2r < 1. Then

1

|B2r|

∫

B2r

u2dx ≤
1

r4
2C(N1(1)+N2(1))+C 1

|Br|

∫

Br

u2dx, (3.4)

where N1(r) is the frequency of u, N2(r) is the frequency of △u, and C is a positive constant

depending only on n.
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Lemmas 3.2–3.3 can be seen in [9] and [13], respectively.

Now we will show the doubling condition for a polyharmonic function.

Theorem 3.1 Let u be a k-polyharmonic function, i.e., u satisfies that △ku = 0 in B1 ⊆ Rn

and assume that 2r < 1, n ≥ 2. Then it holds that

1

|B2r|

∫

B2r

u2dx ≤
1

rC
2
C

( k∑

i=1
Ni(1)

)

+C 1

|Br|

∫

Br

u2dx, (3.5)

where C is a positive constant depending only on n and k.

Proof We prove this lemma by the inductions.

Assume that we have already known that for any j satisfies k ≥ j ≥ l, form (3.5) and the

following inequality

∫

Br

u2j+1dx ≤
1

rC
2
C

k∑

i=j+1

Ni(1)+C
∫

Br

u2jdx (3.6)

holds for uj . From the above two lemmas, we know that for j = k and j = k − 1, these two

inequalities hold. Now we will prove that the inequalities (3.5) and (3.6) hold for u replaced by

ul−1 and thus the theorem is proved.

Noting that

△2ul−1 = ul+1,

it holds that for any text function ψ ∈ C∞
0 (B1),

∫

B1

△ul−1△ψdx =

∫

B1

ul+1ψdx. (3.7)

Choose ψ = ul−1φ
2, where φ satisfies

φ = 1 in Br, φ = 0 outside B2r,

and

|∇φ| <
C

r
, |∇2φ| <

C

r2
.

Put this Ψ into (3.7), we have

∫

B1

ul+1ul−1φ
2dx =

∫

B1

△ul−1△(ul−1φ
2)dx

=

∫

B1

u2l φ
2dx+ 4

∫

B1

ulφ∇ul−1∇φdx + 2

∫

B1

ulul−1(|∇φ|
2 + φ△φ)dx

=

∫

B1

u2l φ
2dx− 4

∫

B1

ul−1φ∇ul∇φdx − 2

∫

B1

ulul−1(|∇φ|
2 + φ△φ)dx.

Thus
∫

B1

u2l φ
2dx =

∫

B1

ul−1ul+1φ
2dx+ 4

∫

B1

ul−1φ∇ul∇φdx + 2

∫

B1

ulul−1(|∇φ|
2 + φ△φ)dx

≤
(

∫

B1

u2l+1φ
2dx

)
1
2
(

∫

B1

u2l−1φ
2dx

)
1
2

+4
(

∫

B1

u2l−1|∇φ|
2dx

)
1
2
(

∫

B1

|∇ul|
2φ2dx

)
1
2
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+ 2
(

∫

B1

u2l (|∇φ|
2 + |φ△φ|)dx

)
1
2
(

∫

B1

u2l−1(|∇φ|
2 + |φ△φ|)dx

)
1
2

.

Now we consider the estimate of the term
∫

B1
|∇ul|

2φ2dx.

∫

B1

|∇ul|
2φ2dx

= −

∫

B1

ulul+1φ
2dx− 2

∫

B1

ulφ∇ul∇φdx

≤
(

∫

B1

u2l φ
2dx

)
1
2
(

∫

B1

u2l+1φ
2dx

)
1
2

+
(

∫

B1

u2l |∇φ|
2dx

)
1
2
(

∫

B1

|∇ul|
2φ2dx

)
1
2

≤
(

∫

B1

u2l φ
2dx

)
1
2
(

∫

B1

u2l+1φ
2dx

)
1
2

+ 2

∫

B1

u2l |∇φ|
2dx+

1

2

∫

B1

|∇ul|
2φ2dx.

Thus we have
∫

B1

|∇ul|
2φ2dx ≤ 2

(

∫

B1

u2l φ
2dx

)
1
2
(

∫

B1

u2l+1φ
2dx

)
1
2

+ 4

∫

B1

u2l |∇φ|
2dx.

From
∫

Br

u2l+1dx ≤
1

rC
2
C

k∑

i=l+1

Ni(1)+C
∫

Br

u2l dx

and the doubling condition for ul, we have

∫

Br

u2l dx ≤
1

rC
2
C

k∑

i=l

Ni(1)+C
∫

B2r

u2l−1dx. (3.8)

This shows that (3.6) holds for j = l−1. Then from Lemma 3.1 and the induction assumptions,

we have

∫

Br

u2l−1dx ≤
1

rC
2
C

k∑

i=l−1

Ni(1)+C
∫

B2r

u2l−1dx, (3.9)

and thus the desired result holds by inductions.

4 Measure Estimates of Nodal Sets

In this section, we will show the upper bound of the measure of the nodal set for a polyhar-

monic function u, i.e., we will give the proof of Theorem 1.1.

To estimate the measure of the nodal set, we need an estimate for the number of zero points

of analytic functions which was first proved in [2].

Lemma 4.1 Suppose that f : B1 ⊆ C → C is analytic with

|f(0)| = 1 and sup
B1

|f | ≤ 2N

for some positive constant N . Then for any r ∈ (0, 1), there holds

H0({z ∈ Br : f(z) = 0}) ≤ CN, (4.1)

where C is a positive constant depending only on r.
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We also need the following priori estimate.

Lemma 4.2 Let u be a polyharmonic function. Then if 2r < 1, we have

|u|L∞(Br) ≤
1

rC
2
C

k∑

i=1

Ni(1)+C
k

∑

i=1

( 1

|BR|

∫

Br

u2idx
)

1
2

, (4.2)

where C is a positive constant depending only on n and k.

Proof Let

wi,r(x) =

∫

Br

Γ(x− y)ui+1(y)dy, i = 1, 2, · · ·, k − 1,

where Γ(x− y) = c|x− y|2−n is the fundamental solution of the Laplace operator. Then

|wi,r(x)| =
∣

∣

∣

∫

Br

Γ(x− y)ui+1(y)dy
∣

∣

∣
≤ Cr2 sup

Br

|ui+1(y)|.

It also holds that

△wi,r = ui+1 in Br.

So

△(ui − wi,r) = 0 in Br.

Because uk is a harmonic function, it is known that for any y ∈ Br,

|uk(y)| =
∣

∣

∣

1

|Br(y)|

∫

Br(y)

uk(z)dz
∣

∣

∣
≤

( 1

|Br(y)|

∫

Br(y)

u2k(z)dz
)

1
2

≤ C
( 1

|B2r|

∫

B2r

u2k(z)dz
)

1
2

≤ 2CNk(1)+C
( 1

|Br|

∫

Br

u2k(z)dz
)

1
2

.

Thus for any x ∈ Br,

|wk−1,r(x)| ≤ 2CNk(1)+Cr2
( 1

|Br|

∫

Br

u2k(z)dz
)

1
2

.

On the other hand, from the fact that uk−1−wk−1,2r is harmonic in B2r, we know that for any

x ∈ Br,

|uk−1(x)− wk−1,2r(x)|

=
∣

∣

∣

1

|Br(x)|

∫

Br(x)

(uk−1(z)− wk−1,2r(z))dz
∣

∣

∣

≤
( 1

|Br(x)|

∫

Br(x)

u2k−1(z)dz
)

1
2

+
( 1

|Br(x)|

∫

Br(x)

|wk−1,2r(z)|dz
)

≤ C
( 1

|B2r|

∫

B2r

u2k−1(z)dz
)

1
2

+ Cr2 sup
y∈B2r

|uk(y)|

≤
1

rC
2C(Nk(1)+Nk−1(1))+C

( 1

|Br|

∫

Br

u2k−1(z)dz
)

1
2

+ 2CNk(1)+C
( 1

|Br|

∫

Br

u2k(z)dz
)

1
2
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≤
1

rC
2C(Nk(1)+Nk−1(1))+C

(( 1

|Br|

∫

Br

u2k−1(z)dz
)

1
2

+
( 1

|Br|

∫

Br

u2k(z)dz
))

.

Then for x ∈ Br,

|uk−1(x)| ≤ |uk−1(x) − wk−1,2r(x)| + |wk−1,2r(x)|

≤
1

rC
2C(Nk(1)+Nk−1(1))+C

(( 1

|Br|

∫

Br

u2k−1(z)dz
)

1
2

+
( 1

|Br|

∫

Br

u2k(z)dz
)

1
2
)

.

That is the desired result for uk−1. Repeat this argument k times, the desired result can be

proved.

Now we show the measure estimate of the nodal set {x : u(x) = 0}.

Proof of Theorem 1.1 Without loss of generality, we may assume

1

|B1|

∫

B1

u2dx = 1.

Then from Theorem 3.1 and Lemma 2.5, it holds that

1

|B 1
16
(p)|

∫

B 1
16

(p)

u2dx ≥ 4
−C

k∑

i=1

Ni(1)−C

for any p ∈ ∂B 1
4
. Then there exists a point xp ∈ B 1

16
(p) such that

|u(xp)| ≥ 2
−C

k∑

i=1

Ni(1)−C

.

On the other hand, from Lemma 4.2 and (3.6), one knows that for any x ∈ B 1
4
,

|u(x)| ≤ 2
C

k∑

i=1

Ni(1)+C

.

Choose pj ∈ ∂B 1
4
to be the point on the j-axis and take fj(ω; t) = u(xpj

+tω) for t ∈
(

− 5
8 ,

5
8

)

,

where ω ∈ Sn−1. Then fj is an analytic function with respect to t. Extend it to a complex

analytic function fj(ω; z), and keep the upper bound. Then we have

|fj(ω; 0)| ≥ 2
−C

k∑

i=1

Ni(1)−C

(4.3)

and

|fj(ω; z)| ≤ 2
C

k∑

i=1

Ni(1)+C

. (4.4)

Using Lemma 4.1, we have

H0
({

|t| <
5

8
: u(xpj

+ tω) = 0
})

≤ C

k
∑

i=1

Ni(1) + C.

That means

H0({t : u(xpj
+ tω) = 0, xpj

+ tω ∈ B 1
16
}) ≤ C

k
∑

i=1

Ni(1) + C.
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Then from the integral geometric formula, which can be seen in [3, 10], we have

Hn−1({x ∈ B 1
16

: u(x) = 0}) ≤ C

k
∑

i=1

Ni(1) + C, (4.5)

and this is the desired result.

5 Growth Property of Polyharmonic Functions

In this section, we will derive a growth behavior of the polyharmonic functions in the whole

space Rn. The result is written in Theorem 1.2.

Proof of Theorem 1.2 First assume that N(r) is bounded, i.e., N(r) ≤ N0 on R
n. Then

we need to show that u is a polynomial.

Without loss of generality, assume

k
∑

i=1

1

|∂B1|

∫

∂B1

u2idσ = 1. (5.1)

From the mean value formula and the fact that uk is a harmonic function, we have that

sup
Br

|uk| ≤ Cr
( 1

|∂B2r|

∫

∂B2r

u2kdσ
)

1
2

holds for any r > 1. For each i = 1, 2, · · · , k − 1, write ui as ui = u2ri1 + u2ri2 as in the proof of

Lemma 2.4, i.e.,

△u2ri1 = ui+1 in B2r,

u2ri1 = 0 on ∂B2r

and

△u2ri2 = 0 in B2r,

u2ri2 = ui on ∂B2r.

Then from the priori estimate of u2ri1 and the mean value property of u2ri2 , we have

sup
Br

|ui| ≤ sup
Br

|u2ri1 |+ sup
Br

|u2ri2 |

≤ Cr2 sup
B2r

|ui+1|+ Cr
( 1

|∂B2r|

∫

∂B2r

u2idσ
)

1
2

.

Thus for uk−1, it holds that

sup
Br

|uk−1| ≤ Cr2 sup
B2r

|uk|+ Cr
( 1

|∂B2r|

∫

∂B2r

u2idσ
)

1
2

≤ Cr2
(( 1

|∂B4r|

∫

∂B4r

u2kdσ
)

1
2

+
( 1

|∂B4r|

∫

∂B4r

u2k−1dσ
)

1
2
)

.

Continue these arguments for k times, we get

sup
Br

|u| ≤ Cr2k−2
k

∑

i=1

( 1

|∂B2kr|

∫

∂B
2kr

u2idσ
)

1
2

. (5.2)
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Thus from Lemma 3.1 and the assumption (5.1), we have that

sup
Br

|u| ≤ CrCN0+C (5.3)

holds for any r > 1. Thus u must be a polynomial and the order of degree of u is less than or

equal to CN0 + C, where C is a positive constant depending only on n and k.

If a k-polyharmonic function u is a polynomial, then from the fact that

N(r) = r

k
∑

i=1

∫

∂Br
uiuiνdσ

∑

∂Br

u2i
,

it is easy to check that N(r) is bounded by the order of degree of u. Of course, for any i = 2, ·, k,

the functions ui are all polynomials.
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