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1 Introduction

In this paper, we study the local one-sided exact boundary null controllability for n × n

hyperbolic system of conservation laws in one space dimension:

∂tH(u) + ∂xG(u) = 0, t > 0, 0 < x < L, (1.1)

where u is an n-vector valued unknown function of (t, x), G and H are smooth n-vector valued

functions of u, defined on a ball Br(0) centered at the origin in R
n with suitable small radius

r.

For system (1.1), we require the following assumptions:

(H1) System (1.1) is hyperbolic, that is, for any given u ∈ Br(0), the matrix DH(u) is

non-singular and the matrix (DH(u))−1DG(u) has n real eigenvalues λi(u) (i = 1, · · · , n) and

a complete set of left (resp. right) eigenvectors {l1(u), · · · , ln(u)} (resp. {r1(u), · · · , rn(u)}).

(H2) For any given u ∈ Br(0), each eigenvalue of (DH(u))−1DG(u) has a constant

multiplicity. To fix the idea and without loss of generality, we suppose that

λ1(u) < · · · < λk(u) < λk+1(u) ≡ · · · ≡ λk+p(u) < λk+p+1(u) < · · · < λn(u), (1.2)
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where λ(u) := λk+1(u) ≡ · · · ≡ λk+p(u) is an eigenvalue with constant multiplicity p ≥ 1.

When p = 1, system (1.1) is strictly hyperbolic.

(H3) There are no zero eigenvalues, that is, there exists an m ∈ {1, · · · , n} and a constant

c > 0, such that

λm(u) < −c < 0 < c < λm+1(u), ∀u ∈ Br(0). (1.3)

Under this assumption, DG(u) is also a non-singular matrix. Without loss of generality, we

assume that 1 ≤ k < · · · < k+ p ≤ m, i.e., the eigenvalue λ(u) is negative. The other situation

is similar.

(H4) All negative characteristics are linear degenerate and all positive characteristics are

either genuinely nonlinear or linear degenerate in the sense of Lax (see [7, 10]). Recall that the

i-th characteristic is linearly degenerate if

Dλi(u) · ri(u) ≡ 0, ∀u ∈ Br(0), (1.4)

while, the i-th characteristic is genuinely nonlinear if

Dλi(u) · ri(u) 6= 0, ∀u ∈ Br(0). (1.5)

In fact, the characteristic λ(u) with constant multiplicity p ≥ 2 must be linearly degenerate

(see Lemma 2.1).

By (H3), the boundary x = 0 and x = L are non-characteristic. We prescribe the following

general nonlinear boundary conditions:

x = 0 : b1(u) = g1(t),

x = L : b2(u) = g2(t),

where g1 : R+ → R
n−m, g2 : R+ → R

m are given boundary functions and b1 ∈ C1(Br(0);

R
n−m), b2 ∈ C1(Br(0);R

m). In order to guarantee the well-posedness for the forward mixed

initial-boundary value problem of system (1.1), we assume the following we assume the following

(H5).

(H5) b1 and b2 satisfy the following conditions, respectively (see [10]):

det[Db1(u) · rm+1(u) | · · · | Db1(u) · rn(u)] 6= 0,

det[Db2(u) · r1(u) | · · · | Db2(u) · rm(u)] 6= 0,
∀u ∈ Br(0). (1.6)

Without loss of generality, we may assume that bi(0) = 0 (i = 1, 2). Here the value of u(t, 0)

and u(t, L) should be understood as the inner trace of the function u(t, x) on the boundary

x = 0 and x = L, respectively.

Thus, the mixed initial-boundary value problem can be written as





∂tH(u) + ∂xG(u) = 0, t > 0, 0 < x < L,

t = 0 : u = u(x), 0 < x < L,

x = 0 : b1(u) = g1(t), t > 0,

x = L : b2(u) = g2(t), t > 0.

(1.7)
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The entropy condition can be defined the same as in [9]. We recall that a continuously

differentiable convex function η(u) : Rn → R is called a convex entropy of system (1.1), with

an entropy flux ζ(u) : Rn → R, if we have

Dη(u)(DH(u))−1DG(u) = Dζ(u). (1.8)

Definition 1.1 For any given T > 0, u = u(t, x) ∈ L
1((0, T )×(0, L)) is an entropy solution

to system (1.1) on the domain D := { 0 < t < T, 0 < x < L} if

(1) u is a weak solution to (1.1) on the domain D in the sense of distributions, that is, for

every φ ∈ C1
c (D), we have

ˆ T

0

ˆ L

0

[∂tφ(t, x)H(u(t, x)) + ∂xφ(t, x)G(u(t, x))]dxdt = 0. (1.9)

(2) u is entropy admissible in the sense that there exists a convex entropy η(u) with entropy

flux ζ(u) for system (1.1), such that for every non-negative function φ ∈ C1
c (D), we have

ˆ T

0

ˆ L

0

[∂tφ(t, x)η(u(t, x)) + ∂xφ(t, x)q(u(t, x))]dxdt ≥ 0. (1.10)

Moreover, if u also satisfies the following initial-boundary conditions:

(3) for a.e. x ∈ (0, L), lim
t→0+

u(t, x) = u(x) and

lim
x→0+

b1(u(t, x)) = g1(t), lim
x→L−

b2(u(t, x)) = g2(t), a.e. t ∈ (0, T ),

then we say that u is an entropy solution to the mixed initial-boundary value problem (1.7) on

the domain D.

For a class of strictly hyperbolic systems of conservation laws which satisfy assumption

(H3)–(H5), we obtained in [9] the local one-sided exact boundary null controllability of entropy

solutions, by means of a similar constructive method (with essential modifications) proposed in

[11] in the framework of classical solutions. Since there are also physical models of conservation

laws which are not strictly hyperbolic but with characteristics with constant multiplicity (see

[5]), it is worthwhile to study the boundary controllability problem for this kind of systems.

Following a similar strategy, we can generalize the corresponding controllability results to a

class of non-strictly hyperbolic systems of conservation laws with characteristics with constant

multiplicity. More precisely, we have the following theorem.

Theorem 1.1 Let system (1.1) and bi(u) (i = 1, 2) satisfy assumptions (H1)–(H5). Assume

that system (1.1) possesses a convex entropy η(u) together with an entropy flux ζ(u). Let

T > L
{ 1

|λm(0)|
+

1

λm+1(0)

}
. (1.11)

Then, for any given initial data u ∈ BV (0, L) with Tot.Var.
0<x<L

(u) + |u(0+)| sufficiently small,

there exists a boundary control g2 ∈ BV (0, T ) with Tot.Var.
0<t<T

(g2) + |g2(0+)| sufficiently small,

acting on the boundary x = L, such that system (1.1) together with the initial condition

t = 0 : u = u, x ∈ (0, L) (1.12)
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and the boundary conditions

{
x = 0 : b1(u) = 0,

x = L : b2(u) = g2(t),
t ∈ (0, T ) (1.13)

admits an entropy solution u = u(t, x) on the domain {0 < t < T, 0 < x < L}, that satisfies

t = T : u ≡ 0, ∀x ∈ (0, L). (1.14)

As in [9], throughout this paper, the solution to the mixed initial-boundary value problem

(1.7) means the limit of a convergent sequence of corresponding ε-approximate front tracking

solutions. This kind of solution is actually an entropy solution, provided that the system

possesses a convex entropy.

The proof of Theorem 1.1 is mainly based on the following three basic ingredients: The

well-posedness of semi-global solutions as the limits of ε-approximate solutions to the mixed

initial-boundary value problem; the solution to the forward mixed problem of system (1.1) is

also a solution to the corresponding rightward mixed problem of the system; the determinate

domain of solutions to the one-sided rightward mixed initial-boundary value problem of the

system. We will show that all these facts are also valid for a class of non-strictly hyperbolic

systems considered in this paper.

The paper is organized as follows. In Section 2, we give all the results about semi-global

solutions to the mixed problem (1.7), which are needed for proving Theorem 1.1. Since these

results were proved for the strictly hyperbolic case in [9], we only need to add a supplementary

discussion associated with the characteristic with constant multiplicity p ≥ 2. In Section 3, we

give the proof of Theorem 1.1, following the main strategy in [9].

2 Semi-global Solutions

Consider the general hyperbolic system of conservation laws

∂tH(u) + ∂xG(u) = 0, t > 0, 0 < x < L (2.1)

with the following initial and boundary conditions:





t = 0 : u = u(x), 0 < x < L,

x = 0 : b1(u) = g1(t), t > 0,

x = L : b2(u) = g2(t), t > 0.

(2.2)

Throughout this paper, in order to avoid abusively using constants, we denote by the

notation C a positive constant which depends only on system (2.1), constant L and functions

b1, b2, but is independent of the special choice of initial data u, boundary data g1, g2 and time

T . Moreover, we denote by C(T ) a positive constant which depends also on time T .

All results in this section (except those in Subsection 2.3) hold for more general systems

whose characteristic families are either genuinely nonlinear or linearly degenerate.
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2.1 Riemann problem

The basic building block for constructing solutions to system (2.1) is the solution to Riemann

problems, i.e., the initial value problem and the one-sided mixed problem with piecewise

constant data with a single jump. First we consider the Riemann initial value problem at

a point (τ, ξ):





∂tH(u) + ∂xG(u) = 0,

t = τ : u =

{
uL, if x < ξ,

uR, if x > ξ,

(2.3)

where uL, uR ∈ Br(0).

We normalize the left and right eigenvectors li(u) and ri(u) (i = 1, · · · , n) of (DH)−1DG(u),

so that

li(u) · rj(u) ≡ δij , i, j = 1, · · · , n,

where δij is the Kronecker symbol.

For two states ω, ω′ ∈ R
n, let

A(ω, ω′) =

ˆ 1

0

[DH ](θω + (1− θ)ω′)dθ (2.4)

and

B(ω, ω′) =

ˆ 1

0

[DG](θω + (1− θ)ω′)dθ. (2.5)

We have

H(ω′)−H(ω) = A(ω, ω′)(ω′ − ω), G(ω′)−G(ω) = B(ω, ω′)(ω′ − ω).

By hyperbolicity, for two ω and ω′ sufficiently close to the origin, we denote by λi(ω, ω
′) the

i-th real eigenvalue of the matrix A−1(ω, ω′)B(ω, ω′) (see [10]).

For any simple eigenvalue λi(u) and for any given u ∈ Br(0), let σ 7→ Ri(σ)[u] denote

the i-rarefaction curve passing through u for σ ∈ [−σ0, σ0] with σ0 sufficiently small and let

σ 7→ Si(σ)[u] denote the i-shock curve passing through u for σ ∈ [−σ0, σ0] with σ0 sufficiently

small (see [9]).

If the i-th characteristic is linearly degenerate, we choose ri(u) to have the unit length, and

we let the coinciding i-rarefaction curve and i-shock curve be parameterized by the arc-length.

If the i-th characteristic is genuinely nonlinear, we choose ri(u) such that ∇λi(u) · ri(u) ≡ 1,

and we let the i-rarefaction curve and the i-shock curve be parameterized in such a way that

λi(Ri(σ)[u]) − λi(u) = σ and λi(Si(σ)[u])− λi(u) = σ,

respectively. This parametrization leads to a useful property:

u = Si(−σ)Si(σ)[u] for all σ ∈ [−σ0, σ0], u ∈ Br(0), i ∈ {1, · · · , n}. (2.6)
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With this parametrization, a straightforward computation shows that the composite

function

Ψi(σ)[u] =

{
Ri(σ)[u], if σ > 0,

Si(σ)[u], if σ < 0,

which is smooth for σ 6= 0 and of class C2 at σ = 0, is called the i-th elementary wave curve.

Suppose that uR = Ψi(σ)[u
L] for some σ ∈ [−σ0, σ] with i ∈ {1, · · · , k, k+p+1, · · · , n}, i.e.

the i-th eigenvalue is simple. In this case, when the i-th characteristic is genuinely nonlinear

with σ > 0, the solution ui is an i-rarefaction wave; when the i-th characteristic is genuinely

nonlinear with σ < 0 or the i-th characteristic is linearly degenerate, the solution ui is an

i-shock wave or an i-contact discontinuity, respectively.

For the characteristic with constant multiplicity p ≥ 2, one has the following lemma.

Lemma 2.1 (see [5]) The characteristic with constant multiplicity p ≥ 2 must be linearly

degenerate, that is,

∇λ(u) · rj(u) ≡ 0, j = k + 1, · · · , k + p, ∀u ∈ Br(0).

Moreover, for any u− ∈ Br(0), there exists a p-dimensional connected smooth manifold Σ(u−)

in a neighborhood of u− with u− ∈ Σ(u−), where Σ(u−) can be expressed by the following

smooth parametric representation:

u = Ψk+1(σk+p, · · · , σk+1)[u
−], σj ∈ [−σ0, σ0], j = k + 1, · · · , k + p

for some small σ0, such that

∂

∂σj

u(0, · · · , 0)[u−] = rj , j = k + 1, · · · , k + p.

In other words, for any u+ ∈ Σ(u−), there exist uniquely small numbers σk+1, · · · , σk+p such

that u+ = Ψk+1(σk+p, · · · , σk+1)[u
−], and the entropy solution uk+1 to the Riemann problem

(2.3) with initial data [uL = u−, uR = u+] is always a contact discontinuity, that is,

uk+1 =

{
u+, x > st,

u−, x < st,

where s = λ(u−) = λ(u+).

The following lemma gives the existence of entropy solutions to Riemann initial value

problem (see [8]).

Lemma 2.2 For the Riemann initial value problem (2.3) with general initial data uL, uR ∈

Br(0), under assumptions (H1)–(H3), there exist n uniquely determined small numbers

σ1, · · · , σn such that

uR = Ψn(σn) ◦ · · · ◦Ψk+p+1(σk+p+1)

◦Ψk+1(σk+p, · · · , σk+1) ◦Ψk(σk) ◦ · · · ◦Ψ1(σ1)[u
L].
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Let

ω0 = uL, ωk+1 = Ψk+1[ωk],

ωi = Ψi(σi)[ωi−1], i ∈ {1, · · · , k, k + p+ 1, · · · , n}.

One can choose intermediate speeds

−∞ = λ̂0 < λ̂1 < · · · < λ̂k < λ̂k+1 = · · · = λ̂k+p < λ̂k+p+1 < · · · < λ̂n−1 < λ̂n = ∞,

such that for each i ∈ {1, · · · , k + 1, k+ p+ 1, · · · , n}, the speed of waves for the solution ui to

the elementary Riemann initial value problem with the initial data

u(τ, x) =

{
ωi−1, if x < ξ,

ωi, if x > ξ

is contained in the interval (λ̂i−1, λ̂i). Then the solution u = u(t, x) to the Riemann initial

value problem (2.3) can be constructed by piecing together these solutions {ui}, that is,

u(t, x) = ui(t, x) for λ̂i−1 <
x

t
< λ̂i, i = 1, · · · , k + 1, k + p+ 1, · · · , n.

Consider now the left-sided Riemann mixed problem at a point (τ, 0), viz.,





∂tH(u) + ∂xG(u) = 0, t > τ, x > 0,

t = τ : u = u, x > 0,

x = 0 : b1(u) = g1, t > τ

(2.7)

and the right-sided Riemann mixed problem at a point (τ, L), viz.,





∂tH(u) + ∂xG(u) = 0, t > τ, x < L,

t = τ : u = u, x < L,

x = L : b2(u) = g2, t > τ,

(2.8)

respectively, where u and gi (i = 1, 2) are constants with |u| and |gi| (i = 1, 2) sufficiently small.

In a similar way to the strictly hyperbolic case (see [1, 2]), one can prove the following

lemma.

Lemma 2.3 Let b1 : Ω → R
n−m and b2 : Ω → R

m be C1-maps satisfying assumption (H5),

and let g1 ∈ R
n−m, g2 ∈ R

m. Then, for any given u ∈ Br(0), there exists a positive constant

δ∗ with the following property: If |g1 − b1(u)| ≤ δ∗, then there is a unique choice of (n − m)

small numbers σm+1, · · · , σn such that b1(Ψm+1(σm+1) ◦ · · · ◦ Ψn(σn)[u]) = g1; Similarly, if

|g2 − b2(u)| ≤ δ∗, then there is a unique choice of m small numbers σ1, · · · , σm such that

b2(Ψm(σm) ◦ · · · ◦Ψq+1(σk+p+1) ◦Ψk+1(σk+p, · · · , σk+1) ◦Ψk(σk) ◦ · · · ◦Ψ1(σ1)[u]) = g2.

Therefore, by property (2.6), the solution to problem (2.7) on the domain {t > τ, x > 0}

coincides with the solution to the Riemann initial value problem at (τ, 0) with initial states

uL = Ψm+1(σm+1) ◦ · · · ◦ Ψn(σn)[u], uR = u. While, on the domain {t > τ, x < L}, the

solution to problem (2.8) coincides with the solution to the Riemann initial value problem at
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(τ, L) with the initial data uL = u, uR = Ψm(σm)◦· · ·◦Ψk+p+1(σk+p+1)◦Ψk+1(σk+p, · · · , σk+1)◦

Ψk(σk) ◦ · · · ◦Ψ1(σ1)[u].

Following the fact that Ψi is smooth with respect to σi for i ∈ {1, · · · , k, k+p+1, · · · , n} and

Ψk+1 is smooth with respect to σk+1, · · · , σk+p, the next two lemmas on estimates for boundary

interaction of fronts can be obtained by similar proofs as in [4] for the strictly hyperbolic case.

Lemma 2.4 Suppose that b1 and b2 satisfy assumption (H5). If

u− = Ψm(σm) ◦ · · · ◦Ψk+p+1(σk+p+1)

◦Ψk+1(σk+p, · · · , σk+1) ◦Ψk(σk) ◦ · · · ◦Ψ1(σ1)[u],

u = Ψn(σ̃n) ◦ · · · ◦Ψm+1(σ̃m+1)[u
+]

with u, u−, u+ ∈ Br(0), then

n∑

i=m+1

|σ̃i| ≤ C
( m∑

i=1

|σi|+ |b1(u
+)− b1(u

−)|
)
.

Similarly, if

u = Ψn(σn) ◦ · · · ◦Ψm+1(σm+1)[u
−],

u+ = Ψm(σ̃m) ◦ · · · ◦Ψk+p+1(σ̃k+p+1)

◦Ψk+1(σ̃k+p, · · · , σ̃k+1) ◦Ψk(σ̃k) ◦ · · · ◦Ψ1(σ̃1)[u],

then
m∑

i=1

|σ̃i| ≤ C
( n∑

i=m+1

|σi|+ |b2(u
+)− b2(u

−)|
)
.

Lemma 2.5 Suppose that b1 and b2 satisfy assumption (H5). If u∗, v∗ ∈ Br(0) and there

exist small numbers q∗1 , · · · , q
∗
n such that

v∗ = Sn(q
∗
n) ◦ · · · ◦ Sk+p+1(q

∗
k+p+1)

◦Ψk+1(q
∗
k+p, · · · , q

∗
k+1) ◦ Sk(q

∗
k) ◦ · · · ◦ S1(q

∗
1)[u

∗],

then we have

n∑

j=m+1

|q∗j | ≤ C
( m∑

i=1

||q∗i |+ |b1(u
∗)− b1(v

∗)|
)

and

m∑

i=1

|q∗i | ≤ C
( n∑

j=m+1

|q∗j |+ |b2(u
∗)− b2(v

∗)|
)
.

2.2 Solution as the limit of ε-approximate front tracking solutions

We first give the definition of ε-approximate front tracking solutions. The only difference

with the one given in [9] is that now there are fronts corresponding to the characteristics with

constant multiplicity p ≥ 2.
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Definition 2.1 For any given time T > 0 and any fixed ε > 0, we say that a continuous

map

t 7→ uε(t, ·) ∈ L
1(0, L), ∀t ∈ (0, T )

is an ε-approximate front tracking solution to system (2.1) if

(1) uε = uε(t, x) ∈ Br(0) for all (t, x) ∈ D := {0 ≤ t ≤ T, 0 ≤ x ≤ L}, and, as a function of

two variables, it is piecewise constant with discontinuities occurring along finitely many straight

lines with non-zero slope in the domain D. Jumps can be of two types: physical fronts (shocks,

contact discontinuities or rarefaction fronts) and non-physical fronts, denoted by P and NP,

respectively.

(2) Along each physical front x = xα(t) (α ∈ P), the left and right limits of uε(t, ·) on it are

selected by

uR = Ψkα
(σα)[u

L], if kα ∈ {1, · · · , k, k + p+ 1, · · · , n},

uR = Ψkα
(σα,p, · · · , σα,1)[u

L], if kα = k + 1,

where uL := uε(t, xα(t)−), uR := uε(t, xα(t)+), and σα or (σα,p, · · · , σα,1) denotes the

corresponding wave amplitude. Moreover, if the kα-th characteristic is simple and genuinely

nonlinear with σα < 0, i.e., the front is a shock, then

|ẋα − λkα
(uL, uR)| ≤ Cε.

If the kα-th characteristic is linear degenerate (no matter it is simple or not), i.e., the front

is a contact discontinuity, then

|ẋα − λkα
(uL)| ≤ Cε.

If the kα-th characteristic family is genuinely nonlinear with 0 < σα ≤ ε, i.e., the front is a

rarefaction front, then

|ẋα − λkα
(uR)| ≤ Cε.

(3) All non-physical fronts x = xα(t) (α ∈ NP) have the constant speed ẋα ≡ λ̂ with either

λ̂ > max
1≤i≤n

sup
u∈Br(0)

|λi(u)| or 0 < λ̂ < c, where c is given by (1.3). Moreover, the total amplitude

of all non-physical waves in uε(t, ·) is uniformly bounded by ε, i.e.,

∑

α∈NP

|uε(t, xα+)− uε(t, xα−)| ≤ ε, ∀t ∈ (0, T ).

In addition, if the initial-boundary values of uε satisfy approximatively the initial-boundary

conditions (2.2), namely, if

‖uε(0, ·)− u‖L1(0,L) ≤ ε,

‖b1(u
ε(·, 0+))− g1‖L1(0,T ) ≤ ε, ‖b2(u

ε(·, L−))− g2‖L1(0,T ) ≤ ε,

then uε = uε(t, x) is called the ε-approximate front tracking solution to the initial-boundary

value problem (2.1)–(2.2). For brevity, the ε-approximate front tracking solution will be called

the ε-solution in what follows.
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The construction of ε-solutions was given in [9] in the strictly hyperbolic case (i.e. p = 1).

The algorithm can be roughly described as follows: We first choose a piecewise constant vector

function (uε, gε1, g
ε
2) which is a good approximation to the given initial-boundary data (u, g1, g2).

At the time t = 0, we approximately solve the Riemann initial value problem or the Riemann

initial-boundary value problem at each jump point, such that each rarefaction wave of the

solution to the corresponding Riemann problem is replaced by an approximate wave consisting

of several fronts with wave amplitude smaller than ε, while the shock or the contact discontinuity

is not modified at all. When these fronts interact at some points, we approximately solve again

the Riemann problem at these interaction points. In order to avoid the infinitely increment

of fronts number, we apply three different approximate Riemann solvers (accurate Riemann

solver, simplified Riemann solver and crude Riemann solver) according to specific rules. We

repeat this process and the algorithm can be extended up to a given time T , provided that the

total amplitude of waves is sufficiently small and the total number of fronts is finite.

For system (1.1) with λ(u) with constant multiplicity p (≥ 2), by Lemma 2.1, the wave

corresponding to λ(u) is always a contact discontinuity, then we treat it as the same as the

contact discontinuities or shocks corresponding to simple characteristics. The only difference is

that its wave amplitude is now a vector with p components.

In order to prove that the total amplitude of waves is sufficiently small, we need to define

the linear Glimm functional V ε and nonlinear Glimm functional Qε similar to those in [9]. For

notational convenience, for a front α corresponding to a simple characterisitc with amplitude

σα or a front corresponding to λ(u) with amplitude (σα,k+1, · · · , σα,k+p), we write

σ̂α =

{
σα, if α is a front corresponding to a simple characterisitic,

(σα,k+1, · · · , σα,k+p), if α is a front corresponding to λ(u).

The absolute value |σ̂α| of wave corresponding to λ(u) is

|σ̂α| =

p∑

j=1

|σα,k+j |.

With this notation, we define Glimm-type functionals V ε(t) and Qε(t) as follows:

V ε(t) :=
∑

α

Kα|σ̂α(t)|+ C1

∑

i=1,2

Tot.Var.
t<s<T

(gεi (s)),

where the first sum takes over all fronts α across the segment {t} × (0, L) and C1 is a positive

constant which can be specified as in [9].

Qε(t) :=
∑

(α,β)∈A

|σ̂α(t)||σ̂β(t)|

measures the wave interaction potential, where A is the set of all approaching waves (see [3,

9]).

It is easy to see that all of the interaction estimates (see [9, Lemmas 5.6–5.8]) in [9]) are

valid in our case by replacing |σα| with |σ̂α|. Then we can similarly use the argument in [9] to
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get the same results on semi-global solutions to the mixed initial-boundary value problem (1.7)

satisfying assumptions (H1)–(H5), by means of the new Glimm-type functionals V ε and Qε.

In fact, we have the following existence results of ε-solutions: For any given T > 0, any given

initial-boundary data (u, g1, g2) and any given ε > 0 small enough, if Λ(u, g1, g2) is sufficiently

small, where

Λ(u, g1, g2) := Tot.Var.
0<x<L

(u) + |u(0+)|+
∑

i=1,2

Tot.Var.
0<t<T

(gi)

+ |b1(u(0+))− g1(0+)|+ |b2(u(L−))− g2(0+)|,

we can construct an ε-solution to problem (2.1)–(2.2) on the domain D via an algorithm given

in [9], such that for all ε > 0 small, the maps t 7→ uε(t, ·) are uniformly Lipschitz continuous

in L
1 norm with respect to t and Tot.Var.

0<x<L
(uε(t, ·)) remains sufficiently small uniformly for all

t ∈ (0, T ).

Moreover, as in [9], we can prove that the approximate stability holds for ε-solutions uε and

vε on the triangle domains

L(x1) :=
{
(t, x)

∣∣∣ 0 < t < τ̂1(x1), 0 < x <
x1(τ̂1(x1)− t)

τ̂1(x1)

}

and

R(x0) :=
{
(t, x)

∣∣∣ 0 < t < τ̂2(x0),
(L− x0)t

τ̂2(x0)
+ x0 < x < L

}

for any given x1 ∈ (0, L] and x0 ∈ [0, L), where

τ̂1(x1) = x1 min
u∈Br(0)

{|λ1(u)|
−1} and τ̂2(x0) = (L− x0) min

u∈Br(0)
{λn(u)

−1}.

In fact, at each point (t, x) ∈ L(x1) ∪ R(x0), we define the vector function q̂ = (q1, .., qn)

implicitly by

vε(t, x) = Sn(qn) ◦ · · · ◦ Sk+p+1(qk+p+1)

◦Ψk+1(qk+p, · · · , qk+1) ◦ Sk(qk) ◦ · · · ◦ S1(q1)[u
ε(t, x)].

Then we can define functional Γ(uε, vε)(t) measuring the distance between uε(t, ·) and vε(t, ·)

in the same way as in [9]. Combining the standard argument in [4] and the stability results in

[6] for the Cauchy problem, we can get the same results of the approximate stability on L(x1)

and R(x0) in our case with characteristics with constant multiplicity p ≥ 2. By induction, we

can obtain the approximate stability of ε-solutions on the domain D.

Now, fix a sequence εν ց 0 as ν → +∞. By Helly’s theorem (see [3, Theorem 2.3]),

we can extract a subsequence of {uν}, which converges to a limit function u = u(t, x) in

L
1((0, T )× (0, L)). In fact, we have the following proposition.

Proposition 2.1 For any fixed T > 0, there exist positive constants δ and C(T ) such that

for every initial-boundary data (u, gu1 , g
u
2 ) with

Λ(u, gu1 , g
u
2 ) ≤ δ,
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problem (2.1)–(2.2) associated with the initial-boundary data (u, gu1 , g
u
2 ) admits a solution u =

u(t, x) on the domain D = {0 < t < T, 0 < x < L} as the limit of a sequence of ε-solutions,

satisfying

Tot.Var.
0<x<L

(u(t, ·)) ≤ C(T )Λ(u, g1, g2), ∀t ∈ (0, T ),

‖u(t, ·)− u(s, ·)‖L1(0,L) ≤ C(T )|t− s|, ∀t, s ∈ (0, T )

and u(t, x) ∈ Br(0) for a.e. (t, x) ∈ D.

Moreover, if v = v(t, x) is a solution as the limit of a sequence of εν-solutions of system

(2.1), associated with the initial-boundary data (v, gv1 , g
v
2) with Λ(v, gv1 , g

v
2) ≤ δ, then for any

given x0 ∈ [0, L) and x1 ∈ (0, L], there exists a positive constant C independent of x0 and x1,

such that

‖u(t, ·)− v(t, ·)‖L1(Lt(x1))

≤ C
(
‖u− v‖L1(0,x1) +

ˆ t

0

|gu1 (s)− gv1(s)
)
|ds

)
, ∀t ∈ [0, τ̂1(x1)], (2.9)

‖u(t, ·)− v(t, ·)‖L1(Rt(x0))

≤ C
(
‖u− v‖L1(x0,L) +

ˆ t

0

|gu2 (s)− gv2(s)|ds
)
, ∀t ∈ [0, τ̂2(x0)], (2.10)

where

Lt(x1) :=
{
x
∣∣∣ 0 < x <

x1(τ̂1(x1)− t)

τ̂1(x1)

}
,

Rt(x0) :=
{
x
∣∣∣ (L− x0)t

τ̂2(x0)
+ x0 < x < L

}
,

and there exists a positive constant C(T ) depending on time T , such that

‖u(t, ·)− v(t, ·)‖L1(0,L)

≤ C(T )
(
‖u− v‖L1(0,L) +

∑

i=1,2

ˆ t

0

|gui (s)− gvi (s)|ds
)
, ∀t ∈ (0, T ). (2.11)

In particular, (2.11) implies that the solution provided by Proposition 2.1 is independent of

different choices of the convergent sequence of ε-solutions.

Remark 2.1 Under the assumption that system (2.1) possesses a convex entropy η(u), the

solution u = u(t, x) given by Proposition 2.1 is actually an entropy solution to the problem

(2.1)–(2.2) on the domain D (see [3, Section 7.4]).

Remark 2.2 According to (2.9) (resp. (2.10)), the triangle domain L(x1) (resp. R(x0)) is

the determinate domain of the solution to one-sided initial-boundary value problem (2.1) with

the initial data on the interval (0, x1) (resp. (x0, L)) and the boundary condition on x = 0

(resp. x = L).

In particular, let u = u(t, x) be the solution to problem (2.1)–(2.2) on the domain D given

by Proposition 2.1, with Λ(u, g1, g2) sufficiently small. For any given x0 ∈ (0, L), if u ≡ 0 on

(x0, L) and g2 ≡ 0 on the interval (0, τ̂2(x0)), then u ≡ 0 on the domain R(x0) ∩ D.
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2.3 Some further properties of ε-approximate front tracking solutions and solutions

Using the same arguments in the proof of Lemma 2.11 in [9], we can prove the following

lemma, which asserts that the trace of ε-solutions on the boundary converges to the

corresponding trace of the limit solution.

Lemma 2.6 Suppose that {uν} is a sequence of εν-solutions to the mixed initial-boundary

value problem (2.1)–(2.2). Then, up to a subsequence, as ν → ∞, we have

‖uν(·, 0+)− u(·, 0+)‖L∞ → 0,

‖uν(·, L−)− u(·, L−)‖L∞ → 0.

Using the fact that all negative eigenvalues are linearly degenerate, we can prove, in the

same way as in [9], that the equivalence between the solution to the forward problem and the

solution to the corresponding rightward problem. In fact, by checking the ε-solution to the

forward problem satisfying Definition 2.1 in the rightward sense (see Appendix in [9] for the

proof), we can obtain the following lemma.

Lemma 2.7 Let system (2.1) satisfy assumptions (H1)–(H4). Suppose that uε(t, x) is an ε-

solution in the forward sense of problem (2.1)–(2.2) on the domain D = {0 < t < T, 0 < x < L}.

Then, if we exchange the role of t and x, namely, regard x as the “time” variable and t as the

“space” variable, uε is also an ε-solution in the rightward sense of the system

∂xG(u) + ∂tH(u) = 0 (2.12)

on the domain D.

Since we can apply Helly’s theorem to the ε-solutions in the rightward sense, by passing to

the limit, we can prove the corresponding results (see Appendix in [9] for the proofs).

Proposition 2.2 Under the same assumptions of Lemma 2.7, if u is a solution to system

(2.1) in the forward sense, given by Proposition 2.1, then u is also a solution to system (2.12)

in the rightward sense. Similar results hold from the solution in the rightward sense to that in

the forward sense.

Proposition 2.3 Under the same assumptions of Lemma 2.7, assume that u = u(t, x)

is a forward solution to problem (2.1)–(2.2) on the domain {0 < t < T1, 0 < x < L} with

T1 ≥ L max
u∈Br(0)

1
|λm(u)| , given by Proposition 2.1. Then on the triangular domain

{
0 < t <

T1, 0 < x <
L(T1−t)

T1

}
, u coincides with the rightward solution ũ to system (2.12), given by

Proposition 2.1, associated with the initial condition

x = 0 : ũ = u(·, 0+)

and the following boundary condition corresponding to the original initial data u:

t = 0 : b̃1(ũ) = b̃1(u),

where b̃1 ∈ C1(Br(0); R
n−m) is an arbitrarily given function that satisfies the same assumption

(1.6) as b1.
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3 Proof of Theorem 1.1

In the same spirit of [9], we repeatedly apply the well-posedness of semi-global solutions to

prove Theorem 1.1, namely, to realize the one-sided local exact boundary null controllability

for a class of general hyperbolic systems of conservation laws with characteristics with constant

multiplicity.

∂tH(u) + ∂xG(u) = 0, t > 0, 0 < x < L (3.1)

with additional assumption that all negative characteristics are linearly degenerate. The proof

here is quite similar to that in [9], so we write it completely here for readers’ convenience.

In order to get Theorem 1.1, it suffices to establish the following lemma.

Lemma 3.1 Under the same assumptions of Theorem 1.1, let T > 0 satisfy (1.11). For any

given initial data u and boundary data g1 with Tot.Var.
0<x<L

(u) + |u(0+)| and Tot.Var.
0<t<T

(g1)+|g(0+)|

sufficiently small, system (1.1) together with the boundary condition

x = 0 : b1(u) = 0, t ∈ (0, T ) (3.2)

admits a solution u = u(t, x) on the domain {0 < t < T, 0 < x < L} with small

Tot.Var.
0<t<T

(u(·, L−)) + u(0, L−), satisfying simultaneously the initial condition (1.12) and the

final condition (1.14).

In fact, let u = u(t, x) be a solution given by Lemma 3.1. Taking the boundary control as

g2(t) := b2(u(t, L−)), ∀t ∈ (0, T ),

which has small amplitude and total variation, we obtain the local exact boundary null

controllability desired by Theorem 1.1.

Proof of Lemma 3.1 If (1.11) holds, then for r > 0 sufficiently small, we have

T > L max
u∈Br(0)

{ 1

|λm(u)|
+

1

λm+1(u)

}
. (3.3)

Step 1 Let

T1 := L max
u∈Br(0)

1

|λm(u)|
. (3.4)

Choosing an artificial function gf with Tot.Var.
0<t<T1

(gf )+|gf (0+)| sufficiently small, we consider the

forward problem of system (3.1) with the following initial condition and boundary conditions:

t = 0 : u = u,

x = 0 : b1(u) = 0,

x = L : b2(u) = gf .

By Proposition 2.1, there exists a unique solution uf = uf(t, x) obtained as the limit of

a sequence of εν-solutions uν
f = uν

f(t, x) on the domain {0 < t < T1, 0 < x < L} with
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Tot.Var.
0<x<L

(uf(t, ·))+Tot.Var.
0<t<T1

(uf(·, 0+))+Tot.Var.
0<t<T1

(uf(·, L−)) sufficiently small and uf(t, x) ∈

Br(0).

Step 2 Let

a(t) =

{
uf (t, 0+), 0 < t < T1,

0, T1 < t < T.

Obviously, a(t) ∈ Br(0) with sufficiently small total variation, and u = a(t) satisfies the

boundary condition (3.2) at x = 0 on the whole time interval (0, T ).

Now we exchange the role of variables t and x and consider the rightward problem for the

system

∂xG(u) + ∂tH(u) = 0, 0 < x < L, 0 < t < T

with the initial condition

x = 0 : u = a(t), 0 < t < T

and the following boundary conditions corresponding to the initial state u = u and the final

state u = 0:

t = 0 : ls(u)u = ls(u)u, s = m+ 1, · · · , n,

t = T : lr(u)u = 0, r = 1, · · · ,m, (3.5)

where li(u) (i = 1, · · · , n) are the left eigenvectors of (DH(u)−1DG(u), or equivalently, the left

eigenvectors of (DG(u))−1DH(u). A direct computation shows that this boundary condition

satisfies assumption (1.6).

By Proposition 2.1, the rightward problem admits a solution u = u(t, x) on the domain

{0 < t < T, 0 < x < L} as the limit of a sequence of εν-solutions uν . By Proposition 2.2, the

function u is also a solution of the system (1.1) in the forward sense on {0 < t < T, 0 < x < L}.

Since u(t, 0) = a(t) for a.e. t ∈ (0, T ), we have

b1(u(t, 0+)) = 0, a.e. t ∈ (0, T ).

Step 3 It now remains to show that u verifies the initial condition (1.12) and the final

condition (1.14).

By Proposition 2.2, both uf and u are solutions in the rightward sense. Then by Proposition

2.3 and Remark 2.2 for the rightward problem, and by (3.4), uf coincides with u on the

triangular domain
{
0 ≤ t ≤ T1, 0 ≤ x ≤ L(T1−t)

T1

}
. This implies (1.12).

Since u(t, 0) ≡ 0 for T1 ≤ t ≤ T and u satisfies (3.5) for 0 ≤ x ≤ L, by (3.3)–(3.4)

and by Remark 2.2 for the rightward problem, we have u(t, x) ≡ 0 on the triangular domain{
T1 ≤ t ≤ T, 0 ≤ x ≤ L(t−T1)

T−T1

}
. In particular, we get (1.14).

Thus u = u(t, x) is a desired solution and the proof of Lemma 3.1 is complete.

Remark 3.1 By Remark 2.1, under the assumption that system (3.1) possesses a convex

entropy η(u), the solution u = u(t, x) is actually an entropy solution.
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