
Chin. Ann. Math. Ser. B

39(6), 2018, 963–972
DOI: 10.1007/s11401-018-0107-3

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2018

Besov Functions and Tangent Space to the Integrable

Teichmüller Space∗

Shu’an TANG1 Xiaogao FENG2 Yuliang SHEN3

Abstract The authors identify the function space which is the tangent space to the

integrable Teichmüller space. By means of quasiconformal deformation and an operator

induced by a Zygmund function, several characterizations of this function space are ob-

tained.

Keywords Universal Teichmüller space, Integrable Teichmüller space, Zygmund

function, Quasiconformal deformation, Besov function

2010 MR Subject Classification 30C62, 30F60, 32G15, 30H25

1 Introduction and Statement of Results

We begin with some basic definitions and notations. Let ∆ = {z : |z| < 1} denote the unit

disk in the extended complex plane Ĉ. ∆∗ = Ĉ−∆ is the exterior of ∆, and S1 = ∂∆ = ∂∆∗

is the unit circle. For any function f = f(ζ) defined on the unit circle S1, we always denote

by f̂ the function defined by f̂(θ) = f(eiθ). The letter C denotes a positive constant that may

change at different occurrences. The notation A ≍ B means that there is a positive constant

C independent of A and B such that A/C ≤ B ≤ CA. The notation A . B (A & B) means

that there is a positive constant C independent of A and B such that A ≤ CB (A ≥ CB).

One of its models of the universal Teichmüller space T can be defined as the right coset space

T = QS(S1)/Möb(S1), where QS(S1) denotes the group of all quasisymmetric homeomorphisms

of the unit circle, and Möb(S1) the subgroup of Möbius transformations of the unit disk. Recall

that a sense preserving self-homeomorphism h of the unit circle S1 is quasisymmetric, if there

exists a constant M > 0, such that

1

M
≤

∣∣∣ ĥ(θ + t)− ĥ(θ)

ĥ(θ)− ĥ(θ − t)

∣∣∣ ≤M (1.1)

for all real numbers θ and t > 0. Beurling-Ahlfors [4] proved that a sense preserving self-
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homeomorphism h is quasisymmetric if and only if there exists some quasiconformal homeo-

morphism of ∆ onto itself which has boundary values h.

Let M(∆) denote the open unit ball of the Banach space L∞(∆) of essentially bounded

measurable functions on ∆. For µ ∈ M(∆), let fµ be the quasiconformal mapping of ∆ onto

itself with complex dilatation equal to µ and keeping the points 1, −1 and i fixed. We say two

elements µ and ν in M(∆) are equivalent, denoted by µ ∼ ν, if fµ|S1 = fν |S1 . Then M(∆)/∼
is the Bers model of the universal Teichmüller space T . There exists the one to one map Ψ

which maps M(∆)/∼ onto T = QS(S1)/Möb(S1) by sending an equivalence class [µ] to fµ|S1 .

It is known that T = QS(S1)/Möb(S1) =M(∆)/∼ carries a natural complex structure so that

the natural projection Φ from M(∆) onto T is a holomorphic split submersion (see [12–13]).

Let Λ denote the Zygmund space in the usual sense (see [27]), which consists of all continuous

functions H on the real line R satisfying the condition

|H(x+ t)− 2H(x) +H(x− t)| = O(t) (1.2)

for all real number x and t > 0. Then Reimann [16] (see also [8]) identified the tangent space to

T at the identity map as the set of all functions H on the unit circle which satisfy the condition

Ĥ ∈ Λ and the normalized conditions

Re ζH(ζ) = 0 (1.3)

and

H(1) = H(−1) = H(i) = 0. (1.4)

In this paper, we will identify the function space which is the tangent space to the integrable

Teichmüller space, a subspace of the universal Teichmüller space which we define below. Let

p ≥ 2 be a fixed number throughout the paper. Given an open subset Ω in the extended

complex plane, we denote by Lp(Ω) the Banach space of all essentially bounded measurable

functions µ on Ω with norm

‖µ‖Lp = ‖µ‖∞ +
( 1

π

∫∫

Ω

|µ(z)|p

(1− |z|2)2
dxdy

) 1

p

. (1.5)

Set Mp(∆) = M(∆) ∩ Lp(∆). Then Tp = Mp(∆)/∼ is one of the models of the p-integrable

Teichmüller space. T2 was first introduced by Cui [5] and was much investigated in recent

years (see [19–20]), and nowadays T2 is usually called the Weil-Petersson Teichmüller space.

For a general p, Tp was first introduced and investigated by Guo [10] (see also [21–22, 25]). We

say a quasisymmetric homeomorphism h is a p-integrable asymptotic affine homeomorphism

if it represents a point in Tp. Let QSp(S
1) denote the set of p-integrable asymptotic affine

homeomorphisms of S1. Then the right coset space QSp(S
1)/Möb(S1) is another model of

the p-integrable Teichmüller space Tp. It is known that Tp = QSp(S
1)/Möb(S1) = Mp(∆)/∼

carries a natural complex structure so that the natural projection Φ from Mp(∆) onto Tp is a

holomorphic split submersion (see [19–20, 22]). To guess what the tangent space to Tp should

be, we recall the following result, which characterizes intrinsically the elements in QSp(S
1)

without using quasiconformal extensions.

Theorem 1.1 A sense-preserving homeomorphism h on the unit circle belongs to the class

QSp(S
1) if and only if h is absolutely continuous (with respect to the arc-length measure) such

that log ĥ′ belongs to the Besov class Bp(S
1).
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Theorem 1.1 was first proved in [19] for p = 2 and then was extended to a general p in [22].

Recall that the Besov space Bp(S
1) is the collection of measurable functions u on the unit circle

S1 with the semi-norm

‖u‖Bp
=

(∫ 2π

0

∫ 2π

0

|u(eit)− u(eiθ)|p

|t− θ|2
dtdθ

) 1

p

. (1.6)

To identify the tangent space to Tp at the identity map, we denote by Λp the set of all functions

H on the unit circle S1 such that H is absolutely continuous with Ĥ ′ ∈ Bp(S
1). We will prove

the following theorem.

Theorem 1.2 The tangent space at the identity to the manifold Tp is the function space

consisting of all functions H ∈ Λp with the normalized conditions (1.3)–(1.4).

We will also give several characterizations of the function space Λp. In our previous paper

[11], we associate a continuous function H on the unit circle with a holomorphic function φH
by

φH(ζ, z) =
1

2πi

∫

S1

H(w)

(1− ζw)2(1− zw)2
dw, (ζ, z) ∈ (∆×∆) ∪ (∆∗ ×∆∗), (1.7)

and consequently a kernel function by

KH(ζ, z) = (χ∆(ζ)χ∆(z)− χ∆∗(ζ)χ∆∗(z))φH(ζ, z), (ζ, z) ∈ (∆ ∪∆∗)× (∆ ∪∆∗), (1.8)

where χ is the characteristic function of a set. Consider the standard Bergman space A2 which

is the complex Hilbert space of all holomorphic functions ψ on ∆ ∪∆∗ with inner product and

norm

〈φ, ψ〉 =
1

π

∫∫

∆∪∆∗

φ(w)ψ(w)dudv, ‖φ‖A2 = 〈φ, φ〉
1

2 . (1.9)

Then KH (formally) induces an integral operator TH by the formula

THψ(ζ) =

∫∫

∆∪∆∗

KH(ζ, z)ψ(z)dxdy, (1.10)

or more precisely, for ψ ∈ A2,

THψ(ζ) =





1

π

∫∫

∆

φH(ζ, z)ψ(z)dxdy, if ζ ∈ ∆,

−
1

π

∫∫

∆∗

φH(ζ, z)ψ(z)dxdy, if ζ ∈ ∆∗.

(1.11)

We proved in [11] that TH is a bounded operator from A2 into itself if and only if Ĥ ∈ Λ,

furthermore, TH is a Hilbert-Schmidt operator if and only if Ĥ belongs to the Sobolev space

H
3

2 (S1), or equivalently, H ∈ Λ2. We will extend the latter result for a general p. Recall that a

linear operator T from a Hilbert space E into itself is a p-Schatten class operator if and only if∑
|〈T (en), en〉|

p <∞ for any orthonormal basis en of E (see [26]). A 2-Schatten class operator

is also called a Hilbert-Schmidt operator.

Theorem 1.3 Let H be continuous on the unit circle S1. Then TH : A2 → A2 is a

p-Schatten class operator if and only if H ∈ Λp.

In the proof of Theorems 1.2–1.3, we will give some more characterizations of the function

space Λp. Our proof will be based on the theory of quasiconformal deformations, especially on

the discussion from our previous paper [24] (see also [11, 18]). For completeness and for the

paper to be self-contained, we will repeat some discussion from the papers [11, 18, 24].
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2 Quasiconformal Deformation Extensions for Functions in Λp

According to Ahlfors [3], a complex-valued function F defined in a domain Ω is called a

quasiconformal deformation (abbreviated to q.d.) if it has the generalized derivative ∂F such

that ∂F ∈ L∞(Ω). There are several reasons for being interested in quasiconformal deformations

because of their close relation with quasiconformal mappings and Teichmüller spaces (see [1–2,

7–8, 12–13, 24]) and also of their own interests (see [3, 11, 15, 18]). In particular, the notion of

quasiconformal deformations is closely related to that of Zygmund functions. Reich and Chen

[15] proved that any function H on S1 with Ĥ ∈ Λ has a q.d. extension to the unit disk and

conversely, any continuous function H on the unit circle which has a q.d. extension to the unit

disk must satisfy Ĥ ∈ Λ, if H also satisfies the normalized condition (1.3). Later, we showed

in [18] that for a continuous function H on the unit circle, Ĥ ∈ Λ, if and only if H can be

extended to a quasiconformal deformation H̃ of the whole plane C so that H̃(z) = O(z2) as

z → ∞. Furthermore, it was proved that

E(H)(z) =
|1− |z|2|3

2πi

∫

S1

H(ζ)

(1 − zζ)3(ζ − z)
dζ, z ∈ C \ S1 (2.1)

is a desired extension of H when Ĥ ∈ Λ. For details, see [11, 15].

In this section, we are concerned with the q.d. extensions for functions in Λp based on the

discussion from our previous papers [18, 24]. We first recall some classical analytic function

spaces. We denote by H1(∆) the Hardy space in the usual sense, namely, φ ∈ H1(∆) if φ is

holomorphic in ∆ with

‖φ‖H1 = sup
0<r<1

∫ 2π

0

|φ(reiθ)|dθ <∞. (2.2)

We also denote by H∞(∆) the Banach space of all bounded holomorphic functions in ∆. We

denote by BMOA(∆) the subspace of H1(∆) which consists of those holomorphic functions φ

in ∆ with φ|S1 ∈ BMO(S1), the space of all integrable functions u on S1 of bounded mean

oscillation

‖u‖BMO = sup
I⊂S1

1

|I|

∫

I

∣∣∣u(z)− 1

|I|

∫

I

u(z)|dz|
∣∣∣|dz| <∞. (2.3)

We also denote by Bp(∆) the space of functions φ holomorphic in ∆ with semi-norm

‖φ‖Bp
=

( 1

π

∫∫

∆

|φ′(z)|p(1− |z|2)p−2dxdy
) 1

p

. (2.4)

It is well known that for a holomorphic function φ ∈ H1(∆), φ ∈ Bp(∆) if and only if φ|S1 ∈

Bp(S
1). We say φ ∈ BMOA(∆∗) if φ(z−1) ∈ BMOA(∆), and φ ∈ Bp(∆

∗) if φ(z−1) ∈ Bp(∆).

For more information on these function spaces, we refer to the books [9, 23, 26].

Lemma 2.1 Let f be analytic in the unit disk ∆. Then f(z) ∈ Bp(∆) if and only if

zf(z) ∈ Bp(∆).

Proof We first assume that f(z) ∈ Bp(∆). Noting that (see [26])
∫∫

∆

|f(z)|p(1 − |z|2)p−2dxdy ≍

∫∫

∆

|f ′(z)|p(1− |z|2)2p−2dxdy + |f(0)|p, (2.5)

we have ∫∫

∆

|(zf(z))′|p(1− |z|2)p−2dxdy .

∫∫

∆

(|f(z)|p + |f ′(z)|p)(1 − |z|2)p−2dxdy

.

∫∫

∆

|f ′(z)|p(1− |z|2)p−2dxdy + |f(0)|p.
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This implies that zf(z) ∈ Bp(∆).

Conversely, suppose that g(z) := zf(z) ∈ Bp(∆). Recall that given a function v ∈ L∞(S1),

the associated Toeplitz operator Tv is defined for f ∈ H1(∆) by

(Tvf)(z) =
1

2πi

∫

S1

v(ζ)f(ζ)

ζ − z
dζ, z ∈ ∆.

It is known that Tv : Bp(∆) → Bp(∆) is a bounded operator for any v ∈ H∞(∆) (see [17]).

Noting that Bp(∆) ⊂ BMOA(∆), we conclude by [24, Lemma 3.2] that f(z) ∈ BMOA(∆) ⊂

H1(∆). Then the Cauchy integral formula gives

f(z) =
1

2πi

∫

S1

f(ζ)

ζ − z
dζ =

1

2πi

∫

S1

ζg(ζ)

ζ − z
dζ = (Tζg)(z).

We obtain f(z) ∈ Bp(∆) by the above mentioned result of Shamoyan [17].

We now prove the following proposition.

Proposition 2.1 Let f be analytic in ∆. Then the following statements are equivalent:

(1) f is continuous in ∆ ∪ S1 with f |S1 ∈ Λp;

(2) f ′ ∈ Bp(∆);

(3)
∫∫

∆ |f ′′′(z)|p(1− |z|2)2p−2dxdy <∞;

(4) f can be extended to a quasiconformal deformation F to the whole plane so that ∂F ∈

Lp(∆∗), and F (z) = O(z2) as z → ∞.

Proof It is well known that (2) ⇔ (3) (see (2.5)). It is also well known (see [6]) that for an

analytic function f on the unit disk ∆, f is continuous in ∆ ∪ S1 such that f |S1 is absolutely

continuous in S1 if and only if f ′ ∈ H1(∆), and in this case

f̂ ′(θ) = ieiθf ′(eiθ). (2.6)

Now suppose that (1) holds. Then f ′ ∈ H1(∆) and therefore zf ′(z) ∈ H1(∆). This yields

zf ′(z) ∈ Bp(∆), which implies by Lemma 2.1 that f ′ ∈ Bp(∆). Conversely, we assume that (2)

holds, then f is continuous in ∆ ∪ S1 and f |S1 is absolutely continuous in S1. By Lemma 2.1,

we have zf ′(z) ∈ Bp(∆), which implies that f̂ ′ ∈ Bp(S
1). This shows that (1) ⇔ (2).

We now show that (3) ⇒ (4). Suppose that (3) holds so that (see [26])

sup
z∈∆

|f ′′′(z)|(1− |z|2)2 .

∫∫

∆

|f ′′′(z)|p(1− |z|2)2p−2dxdy <∞. (2.7)

Consider the function F defined as F (z) = f
(
1
z

)
−
(
1
z
−z

)
f ′
(
1
z

)
+ 1

2

(
1
z
−z

)2
f ′′

(
1
z

)
, z ∈ ∆∗\{∞}.

Then F (z) = O(z2) as z → ∞ and a direct computation gives |∂F (z)| = 1
2 |f

′′′
(
1
z

)
|
(
1 − 1

|z|2

)2
.

It follows from (2.7) that ∂F ∈ L∞(∆∗), and

∫∫

∆∗

|∂F (z)|p

(|z|2 − 1)2
dxdy .

∫∫

∆

|f ′′′(z)|p(1− |z|2)2p−2dxdy <∞.

Consequently, ∂F ∈ Lp(∆∗).

Finally, we show that (4) ⇒ (3). Suppose that (4) holds and set ∂F = µ. By Cauchy

integral formula and Green formula, we conclude that

f ′′′(z) =
3

πi

∫

S1

F (ζ)

(ζ − z)4
dζ = −

6

π

∫∫

∆∗

µ(ζ)

(ζ − z)4
dξdη.
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Consequently, by Hölder inequality, we deduce that

∫∫

∆

|f ′′′(z)|p(1− |z|2)2p−2dxdy =
36

π2

∫∫

∆

∣∣∣
∫∫

∆∗

µ(ζ)

(ζ − z)4
dξdη

∣∣∣
p

(1− |z|2)2p−2dxdy

.

∫∫

∆

∫∫

∆∗

|µ(ζ)|p

|ζ − z|4
dξdηdxdy =

∫∫

∆∗

|µ(ζ)|p

(|ζ|2 − 1)2
dξdη.

This completes the proof Proposition 2.1.

Repeating the reasoning in the proof of Proposition 2.1, we are able to obtain the following

proposition.

Proposition 2.2 Let g be analytic in ∆∗. Then the following statements are all equivalent:

(1) g is continuous in ∆∗ ∪ S1 with g|S1 ∈ Λp;

(2) g′ ∈ Bp(∆
∗);

(3)
∫∫

∆∗
|g′′′(z)|p(|z|2 − 1)2p−2dxdy <∞;

(4) g can be extended to a quasiconformal deformation G to the whole plane so that ∂G ∈

Lp(∆).

We proceed to discuss the q.d. extensions for functions in Λp. For a continuous function H

on the unit circle, we consider the Cauchy integral

C(H)(z) =
1

2πi

∫

S1

H(ζ)

ζ − z
dζ, z ∈ ∆ ∪∆∗. (2.8)

More precisely, we always set f(z) = C(H)(z) for z ∈ ∆, g(z) = C(H)(z) for z ∈ ∆∗ in the

rest of this section. Then f and g are holomorphic in ∆ and ∆∗, respectively. We also let J

denote the harmonic conjugation operator in the usual sense (see [6, 9]), namely, J(H) is the

following Cauchy principle value integral

J(H)(z) = −
1

π

∫

S1

H(ζ)

ζ − z
dζ, z ∈ S1. (2.9)

It is well known that J preserves the Zygmund space Λ and the Besov space Bp(S
1) as well

(see [9, 23]). We now show that J also preserves the space Λp.

Proposition 2.3 The harmonic conjugation operator J keeps the space Λp invariant.

Proof Suppose H ∈ Λp so that H is absolutely continuous on S1 with Ĥ ′ ∈ Bp(S
1).

As done in [24], for f(z) = C(H)(z), we find out that zf ′(z) ∈ H1(∆) with boundary values
Ĥ′+iJ(Ĥ′)

2 up to a constant. Since Ĥ ′ ∈ Bp(S
1), and J preserves Bp(S

1), we conclude that

zf ′(z) ∈ Bp(∆), which implies f ′ ∈ Bp(∆) by Lemma 2.1. Thus, f is continuous in ∆ ∪ S1

and absolutely continuous in S1. Noting that f = H+iJ(H)
2 on S1, we conclude that J(H) is

absolutely continuous in S1, and Ĥ ′(θ) + iĴ(H)
′
(θ) = 2f̂ ′(θ) = 2ieiθf ′(eiθ) ∈ Bp(S

1), which

implies that Ĵ(H)
′
∈ Bp(S

1). Thus, J(H) ∈ Λp as required.

Now we can prove the main results in this section.

Theorem 2.1 Let H be continuous on the unit circle. Then the following statements are

equivalent:

(1) H ∈ Λp;

(2) f ′ ∈ Bp(∆), and g′ ∈ Bp(∆
∗);
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(3) f and g have q.d. extensions F and G respectively to the whole plane so that ∂F ∈

Lp(∆∗), ∂G ∈ Lp(∆), and F (z) = O(z2) as z → ∞;

(4) H can be extended to a quasiconformal deformation H̃ to the whole plane so that ∂H̃ ∈

Lp(C), and H̃(z) = O(z2) as z → ∞.

Proof Noting that f = H+iJ(H)
2 , g = −H+iJ(H)

2 on S1, we conclude that (1) ⇔ (2) ⇔ (3)

by means of Propositions 2.1–2.3.

(3) ⇒ (4) Suppose that f and g have q.d. extensions F and G respectively to the whole

plane so that ∂F ∈ Lp(∆∗), ∂G ∈ Lp(∆), and F (z) = O(z2) as z → ∞. Define H̃ by

H̃(z) = F (z) − G̃(z) on ∆ ∪ S1, and H̃(z) = F̃ (z) − G(z) on ∆∗ ∪ S1 \ {∞}. Then H̃ is the

desired q.d. extension of H to the whole plane.

(4) ⇒ (3) Suppose that H can be extended to a quasiconformal deformation H̃ to the

whole plane so that ∂H̃ ∈ Lp(C), and H̃(z) = O(z2) as z → ∞. Denote ∂H̃ = µ. Set

G(z) = 1
π

∫∫
∆

µ(ζ)
ζ−z

dξdη and F (z) = H̃(z) + G(z). We proved in [24] that F and G are q.d.

extensions of f and g, respectively. It is clear that ∂F |∆∗ ∈ Lp(∆∗), ∂G|∆ ∈ Lp(∆), and

F (z) = O(z2) as z → ∞.

When H satisfies the normalized condition (1.3), we can obtain some stronger results, which

will be used to prove Theorem 1.2 in the next section.

Theorem 2.2 Let H be continuous on the unit circle which satisfies the normalized condi-

tion (1.3). Then the following statements are equivalent:

(1) H ∈ Λp;

(2) H can be extended to a quasiconformal deformation H̃ to the whole plane so that ∂H̃ ∈

Lp(C), and H̃(z) = O(z2) as z → ∞;

(3) H can be extended to a quasiconformal deformation H1 to ∆ so that ∂H1 ∈ Lp(∆);

(4) H can be extended to a quasiconformal deformation H2 to ∆∗ \ {∞} so that ∂H2 ∈

Lp(∆∗) and H2(z) = O(z2) as z → ∞.

Proof Repeat the proof of Theorem 3.4 in [24].

3 Proof of Theorem 1.2

We reproduce the proof of Theorem 1.1 in [24]. Suppose that we are given a curve of strongly

quasisymmetric mappings ht(ζ) (t > 0 is small) normalized to fix ±1 and i, which is the identity

for t = 0 and differentiable with respect to t for the manifold structure on Tp. Denote

ht(ζ) = ζ + tH(ζ) + o(t), t→ 0.

Since the natural projection Φ : Mp(∆) → Tp is a holomorphic split submersion, we conclude

that there is a differentiable curve of Beltrami coefficients νt ∈ M(∆) such that ht is the

restriction to the unit circle of the normalized quasiconformal mapping fνt . Now there exists

some µ ∈ Lp(∆) such that νt = tµ+ o(t). Consequently,

fνt(z) = z + tḟ [µ](z) + o(t), t→ 0.

Here ḟ [µ] satisfies the normalized conditions (1.3) and (1.4) and is uniquely determined by the

condition ∂ḟ [µ] = µ (see [1–2, 13–14]). Noting that H = ḟ [µ]|S1 , we conclude by Theorem 2.2

that H ∈ Λp and satisfies the normalized conditions (1.3)–(1.4).

Conversely, suppose that we are given a function H ∈ Λp satisfying the normalized con-

ditions (1.3)–(1.4). By Theorem 2.2, we deduce that H can be extended to the unit disk to
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a quasiconformal deformation H̃ with ∂−derivative µ = ∂H̃ ∈ Lp(∆). Set µt = tµ for small

t > 0. Then

fµt
(z) = z + tḟ [µ](z) + o(t), t→ 0.

Noting that both ḟ [µ] and H̃ satisfy the normalized conditions (1.3)–(1.4) and have the same

∂-derivative µ, we conclude that ḟ [µ] = H̃ . Then

fµt
(z) = z + tH̃(z) + o(t), t→ 0.

Set ht = fµt
|S1 . Then it holds that

ht(ζ) = ζ + tH(ζ) + o(t), t→ 0,

which implies that ht is a differentiable curve in Tp with the tangent vector H .

4 Proof of Theorem 1.3

We continue to use the notations in previous sections. Recall that

E(H)(z) =
|1− |z|2|3

2πi

∫

S1

H(ζ)

(1 − zζ)3(ζ − z)
dζ, z ∈ C \ S1 (4.1)

defines a q.d. extension of a continuous function H on S1 with Ĥ ∈ Λ. By differentiating (4.1)

with respect to z, we obtain

∂E(H)(z) =
3

2πi
(χ∆(z)− χ∆∗(z))(1− |z|2)2

∫

S1

H(ζ)

(1− zζ)4
dζ. (4.2)

If we set

φH(z) = φH(z, z) =
1

2πi

∫

S1

H(w)

(1 − zw)4
dw, z ∈ ∆ ∪∆∗, (4.3)

then we have

∂E(H)(z) = 3(χ∆(z)− χ∆∗(z))(1 − |z|2)2φH(z), z ∈ ∆ ∪∆∗. (4.4)

Theorem 1.3 is contained in the following result.

Theorem 4.1 Let H be a continuous function on the unit circle. Then the following

statements are all equivalent:

(1) H ∈ Λp;

(2) H can be extended to a quasiconformal deformation H̃ to the whole plane so that ∂H̃ ∈

Lp(C), and H̃(z) = O(z2) as z → ∞;

(3) TH is a p-Schatten class operator from A2 into itself ;

(4)
∫∫

∆∪∆∗
|φH(z)|p|1− |z|2|2p−2dxdy <∞;

(5) ∂E(H) ∈ Lp(C).

Proof We consider a special subset of A2. For fixed z ∈ ∆ ∪∆∗, we set ψz ∈ A2 by

ψz(ζ) =
1− |z|2

(1− zζ)2
χ∆(ζ), (4.5)

when z ∈ ∆, while when z ∈ ∆∗,

ψz(ζ) =
1− |z|2

(1− zζ)2
χ∆∗(ζ). (4.6)
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It is easy to see that ‖ψz‖A2 = 1. It was proved in [11] that for any continuous function H on

the unit circle, it holds that

THψz(ζ) = (1− |z|2)KH(ζ, z), (ζ, z) ∈ (∆ ∪∆∗)× (∆ ∪∆∗). (4.7)

Moreover, if for each fixed z ∈ ∆ ∪∆∗, KH(·, z) ∈ A2, then for all z ∈ ∆ ∪∆∗, it holds that

〈KH(·, z), ψz〉 = |1− |z|2|φH(z). (4.8)

(1) ⇔ (2) follows from Theorem 2.1, while (5) ⇒ (2) is obvious. To prove (2) ⇒ (3), let H̃

be a q.d. extension of H to the whole plane so that ∂H̃ ∈ Lp(C), and H̃(z) = O(z2) as z → ∞.

Let φn be any orthonormal basis of A2. Then, ‖φn‖A2 = 1, and (see [26, Theorem 4.19])

∑
|φn(z)|

2 =
1

(1− |z|2)2
, z ∈ ∆ ∪∆∗. (4.9)

On the other hand, it follows from the inequality (3.8) in [11] that

‖TH(φn)‖
2 .

∫∫

∆∪∆∗

|φn(z)∂H̃(z)|2dxdy.

The Hölder inequality yields

‖TH(φn)‖
p .

( ∫∫

∆∪∆∗

|φn(z)∂H̃(z)|2dxdy
) p

2

.

∫∫

∆∪∆∗

|φn(z)|
2|∂H̃(z)|pdxdy

( ∫∫

∆∪∆∗

|φn(z)|
2dxdy

) p

2
−1

=

∫∫

∆∪∆∗

|φn(z)|
2|∂H̃(z)|pdxdy.

By (4.9) we have

∑
‖TH(φn)‖

p .
∑∫∫

∆∪∆∗

|φn(z)|
2|∂H̃(z)|pdxdy =

∫∫

∆∪∆∗

∂H̃(z)|p

(1 − |z|2)2
dxdy <∞.

Thus, TH is a p-Schatten class operator from A2 into itself.

To prove (3) ⇒ (4), suppose that TH : A2 → A2 is a p-Schatten class operator. Consider

the map J defined by Jφ(z) = φ(z), which is an isometric isomorphism of A2 onto itself. Then

JTH : A2 → A2 is also a p-Schatten class operator. Now it is known (see [26, Corollary 6.7])
∫∫

∆∪∆∗

|〈JTH(ψz), ψz〉|
p(1 − |z|2)−2dxdy <∞. (4.10)

Noting that Jψz = ψz for each z ∈ ∆ ∪∆∗, we obtain that

〈JTH(ψz), ψz〉 = 〈TH(ψz), Jψz〉 = 〈TH(ψz), ψz〉,

which implies by (4.7)–(4.8) that (4.10) is equivalent to
∫∫

∆∪∆∗

|φH(z)|p|1− |z|2|2p−2dxdy <∞

as desired.

(4) ⇒ (5) follows directly from (4.4). This completes the proof of Theorem 4.1.
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