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1 Introduction

Let 7 = {Ti}i1>0 be a family of operators such that the limit %1_1)% T:f(x) = Tf(z) exists in
some sense. A classical method of measuring the speed of convergence of the family {7}}~0
is to consider “square function” of the type (ioj |T%, f — Tti+1f|2)%, where t; N\, 0, or more
generally the p -variation operator defined by -

1

VAT D)@ = sup (3 TS @) = TifP) (1)
i i=1

where p > 1 and the supremum is taken over all sequence {t;} decreasing to zero. We denote
F, the space that includes all the functions ¢ : (0,00) — R, such that

o0 1
el = sup (D le(es) = wlesn)l?)” < oc. (1.2)
{ej}jen j=0
Then || - [|F, is a seminorm on Fj,. It can be written as
Vo(To)(f) = TS| 7, (1.3)

The variation for martingales and some families of operators have been studied in many recent
papers on probability, ergodic theory, and harmonic analysis. We refer the readers to [2, 7-8,
11, 16, 18-19] and the references therein for more background information.
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Recently, Betancor et al. [3] studied the bounded behaviors of variation operators for some
Schrédinger type operators in Lebesgue spaces. Precisely, let n > 3 and £ = —A + V be the
Schrodinger operator defined on R™ associated with a fixed non-negative potential V € RH,
(the reverse Holder class) for ¢ > %, that is, there exists C' > 0, such that

) x ¢ r)dx
|B|/ d |B| V( )d (1.4)

for every ball B in R™. Consider the heat semigroup {W/};~o generated by the operator —L,
which can be written as

WEf) (@) = e f(2) == | Wf(z,y)f(y)dy for f e L*(R"), t > 0.
]Rn
It follows from [14] that W (x, y) satisfies the estimates:

2
n T —
O<Wt (z,y) < (4m)~ 2exp(—%),

and the semigroup {W/£} is Cp in LP(R™) with 1 < p < oc. In [3], Betancor et al. showed that
the variation operator V,(W£) associated with {W£};~0 is bounded from LP(R™) into itself for
1 < p < oo, and is of weak type (1,1).

Moreover, for £ = 1,---,n, we consider the /-th Riesz transform in the L-context defined
by
RE(f)(z) = lim st(f)( ) := lim RE(x,y)f(y)dy, ae xR,
e—=0t e—0t lz—y|>e

and its adjoint operator defined by

R;™(f)(z) = lim Rf;(f)(x) = lim RE(y,2) f(y)dy, ae xR,

e—0t e—0t

Here, for every z, y € R™, x # y,

R (2,y) = “or
™

where I'(z, y, 7) represents the fundamental solution to the operator £ + it (see [3, 29, 34]).
Betancor et al. [3] proved that when § < ¢ <n, for £ =1, 2,--- , n, the variation operators
Vp(Rf)E) (resp., Vp(Rﬁé*)) associated with the family of truncations {Rfa}oo (resp., {Rﬁ;*}5>0)
are bounded from LP(R™) into itself for 1 < p < pg (resp., pj < p < 00) with pio = % — %,
and VP(RQE) are of weak type (1, 1). Moreover, when ¢ > n, both Vp(Rf)E) and Vp(Rﬁé*) are

bounded from LP(R™) into itself for 1 < p < oo and of weak type (1, 1).

In addition, for every V' € RHz, Shen [28] introduced the function ~, which is called as the

critical radius and defined as

1
~(z) = sup {7" >0: e /B( )V(y)dy < 1}, x e R"™, (1.5)

and plays key roles in the theory of Harmonic analysis operators associated with £. In [4],
Bongioann et al. defined the space BMOy(v), 6 > 0, as follows.
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Definition 1.1 A locally integrable function b in R™ is BMOg(y) provided that

[%
< — .

for all z € R"™ and r > 0, where bp = |B|™" [, |b(z) — bp|dx. We denote

—6
b = su / —bpenldy(1+ =)
H HBMOQ(’Y) reRnR>0 |B .T r | z T) B( | y 'Y(x)

It is easy to check that BMO(R™) = BMOg(y) € BMOy(v) € BMOg/(7) for 0 < 6 < ¢'.
Set BMOoo () = |J BMOg(y). Then BMOq(7) is larger than BMO(R"™) in general (see [4]).
0>0

Forb € BMOyo(v) and £ = 1, -+ ,n, the commutators R;ﬁ , and le) ;" are respectively defined
by
R (f) = bRf — RE(bf) and Ry (f) =bR{™ — Ri(bf) for f € CF(R™).

It was shown in [4] that, for every b € BMOy(y) and £ = 1,--- ,n, the operators Rfj (resp.,
le)’;) are bounded on LP(R™), provided that 1 < p < pg (resp., pj < p < 00) with pio = (%—%)Jr
for Ve RHy, ¢ > %. In [3], Betancor et al. obtained the following point-wise representations

of the commutator operators by a principal value integral:

Ri(f)(x) = lim BE, (f)(w) = lim GO b(y)RE (2, y)f(y)dy, ae xR
T—y|>€
and
Ryy (f)(x) = lim Ry (f)(2) := lim . (b(x) = b))RE (y,2) f(y)dy, ac. z€R
r—yY|>€

Moreover, the authors in [3] proved that for every b € BMOy(y) and £ = 1, - - - , n, the variation
operators V,(Ry, ) (resp., Vp(Rﬁkfs)) associated with the family of truncations {Rf, _}e>o
(resp., {Rbﬁ’zs}oo) are bounded from LP(R™) into itself, provided that 1 < p < po (resp.,
Py < p < 00) Wi‘chpio:(%—%)Jr for V.€ RHy, ¢ > 5.

On the other hand, in order to extend the boundedness of Schrodinger type operators in
Lebesgue spaces, Tang and Dong [32] introduced the following Morrey spaces related to the

non-negative potential V', denoted by L?’ (R")

Definition 1.2 Let p € [1, oo) a € (—o00,4+00) and X € [0,n). For f € L} (R™) and
V €eRH, (¢ > 1), we say f € LY (R") provided that

IR oy = sup (14
LP p v (R™) B(zg,r)CR™

Y
r |f(z)[Pdz < oo, (1.7)
W(xo)) /B(mo,r)
where B = B(xg,r) denotes a ball centered at xo and with radius r, v(x) is the critical radius
at xo defined as in (1.5).

Clearly, when @« =0 or V =0 and 0 < A < n, the spaces Lp v (R™) are the classical Morrey
spaces LP*(R™), which were introduced by Morrey [23] in 1938 and were subsequently found
to have many important applications to the elliptic equations (see [6, 9, 13-14, 17, 24]), the
Navier-Stokes equations (see [21-22, 33]) and the Schriodinger equations (see [26-27, 30-31])
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etc. It is easy to see that LZ’:}/(R”) C LPA(R™) for a > 0 and LPA(R™) C LZ’)){,(R") for a < 0.
In [32], the authors established the LZ’:}, (R™)-boundedness of the Riesz transforms R, Rf’*,
and the corresponding commutators with V' € B,, (see also [25, 32] for more results related to
Schrodinger operators in LZ’)’}/ (R™)).

Based on the above results, it is a natural and interesting question that whether we can
establish the LZ’}/ (R™)-boundedness of the variation operators aforementioned in Schrodinger
setting. The main purpose of this paper is to answer this question. Our results can be formu-
lated as follows.

Theorem 1.1 Let V € RH, for ¢ > % and p > 2. Assume o € (—00,+00) and X € (0,n).

(i) If 1 < p < o0, then ”VP(Wtﬁf)HLgﬁ,(R") < C||f||L,;,§/(Rn), where C' is independent of f.

(i) If p=1, then for any n > 0,

U , c A
11+ =5) 1w € Bl s VVENWI >} < C Iy oy

holds for all balls B(x,r), where C is independent of x,r,n and f.

Theorem 1.2 Let{=1,--- ,n, p>2andV € RHgy withq = 5 and assume a € (—00, +-00)
and A € (0, (1= Z)n). Then
(i) for 1 <p < po, where £ = (L - 1) |

IVoRED 1 ey < Ol oy

where C' is independent of f;
(i) for p=1 and any n > 0,

a1+ ﬁ)al{y € Blw,r) : Vo(RE W) >0} < CrIfll o, ey

holds for all balls B, where C' is independent of x, r, n and f;
(ili) for p{ < p < o0,

L%
||Vp(Re,s f)HLgﬁ,(Rn) < C||f||LZ:§/(Rn)a
where C' is independent of f.

Theorem 1.3 Let { = 1,---,n, p > 2, b € BMOu(v) and V € RH, with

assume o € (—o00,400) and X € (0, (1 — pﬁo)n). Then for 1 < p < pg, where pio =(

n
25and

)

q
1
q

3=
~—
+

||Vp(R1§e7af)||Lg§,(Rn) < Cllbllollfll oy, @y
and for ply < p < o0,

IVo(Be 7 Hlle s ey < Clellol Il oy
where C' is independent of f.

Remark 1.1 In [29], it was proved that if V' is a nonnegative polynomial, then V' € RH,
for any 1 < ¢ < oo. Therefore, as special cases of our results, the corresponding ones to the
Hermite operator: H = —A + |z|? hold. This can be regarded as the generalization of the
corresponding results in [10-11].
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The rest of this paper is organized as follows. In Section 2, we will prove Theorem 1.1, and
the proofs of Theorems 1.2-1.3 will be given in Section 3. Throughout this paper, the letter C'
always denotes a positive constant that is independent of main parameters involved but whose
value may differ from line to line. For any index p € [1, oc], we denote by p’ its conjugate index,
namely, % + % =1.

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We first recall some properties of the
auxiliary function (), which will be used below.

Lemma 2.1 (see [29]) IfV € Bz, then there exist co and ko > 1, such that for all z,y € R",

1 |z —y[\~*o |z — yl\ ot
@+ SF) T W) s an@(1+ ) (2.1)

In particular, v(z) ~v(y) if |x — y| < Cvy(x), and the ball B(x,~(x)) is called critical.

Proof of Theorem 1.1  Without loss of generally, we may assume that o < 0. Picking
any zo € R” and r > 0, we write

flz) = f0($)+ifi($)a (2.2)
=1
where fo = fXB(we,2r)> fi = IXB(xo,2i+17)\ B(xo,2ir) for i > 1. Then
([, menepra) <c(f IVp(Wf)(fo)(x)l”dx)%
+C Z /
By the LP-boundedness of V,(W£), we have

g P _r
/B(%)T)IVP(Wtﬁ)(fo)(x)l de < /B(Mr)If(x)l da < (1+ 7(%)) PII oy 29

Assume that {¢;};en is a real decreasing sequence that converges to zero. For every i > 1, we

WEf)@)Pdr)

B(xo, T’)

can write

(S| [ 0wt -we @s])’
=0

< Ci/ ol [

<o
<c | il [ [gwEen|ua. e B (24)

0
5V (@) }dtdy

Note that for every k € N, there exist ¢, C' > 0 such that (see [14, (2.7)])

C t t Nk _clzul®
—(1 -5 for z, y € R™, t > 0. 2.5
’(%Wt xy)‘_ﬁﬂ( +7(x)2+7(y)2) e orw, y € > (2.5)
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Then, for € B(xzo,r) and y € R™\ B(zo, 2r), we claim that for any N € N, there exists C' > 0
such that

/ ‘ WE(z,y ‘dt ¢ ! . (2.6)
ot (1 + Lo=sl)n |z —y]"

Indeed, let ro = v(x¢) and r; = |xg — y|. Without loss of generality, we may assume ro < rq,
otherwise (2.6) holds obviously. Then

/ ‘awﬁxy’dt /107/ ’8WExy‘dt+/loo

zo—y|?

P
aWf(x,y)’dt =1 + L.

For term Iy, applying (2.5) and Lemma 2.1, we have

> _n_q t Nk _cle-w?
I, <C (1 ) e T
|wo—y|? 7(y)

2\ —k [ B
<o+t T e
F)/(y) |zo—y|?
|x0—y| -
<o(ia Bty H

e ) ol

X —1 2
(I (101;|) )_k

< Clao —y™(1+
(1_|_ |zo— y\)ko+1

v(zo)
—-n |x0 - yl kkoojrll)k
< Clzg — y (1 + )
¥(z0)
_ —N
SC|$0—y|_n(1—|— |$0 y|)
¥(o0)

by taking N = [M] for any k£ € N.
For term Iy, using (2.5) and Lemma 2.1 again, we have

re 9 ri 9
0 3

ot
2N -1 —
X X clz—y|2
<o [T (ot |°f|—%m+c/ ety
T% u u
"0
%0 -
<Cr;" /2 uz ! e “du+Crg"™ 5 rf
1
T2
"0

<Cri"e 70 —I—CT_" 2e 73 r?

lzo — ) N

(o) '

This together with the estimate of Is implies that our claim holds.
Now, by (2.4) and (2.6), we get

>0
I/ ][ | |ty
B(xzo,2it1r)\B(z0,2'r) 0

< Clzo —y|™" (1 +
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n xo —y|\ N
<c fro — = (14 2 I gy
B(z0,2i+1r)\ B(zo,2r) ¥(x0)

<C2ir)"% (1 + %)_N(/ngzma If(y)lpdy)%

and

[ mwawere <@y (te 25 )Py
B(zo,r) ? K B 7(1‘0) B(xzo,21t1r)

2ty \ —Np—
WO)) RE{[e.

<@y (14

< i\A—n,.A r
<OV (14 ) I
by taking N = [—a] + 1. Note that A < n, we get

HV ( )( )HLI"*(RH <C||f||LT—"\(Rn

As for the case p = 1, by replacing (2.3) with the corresponding weak estimate, we have

{vesen: mwomm > <5 [ il

\ /\

_HfHLM Rn)(1+ a ))_ark. (2.7)

Using (2.4) and (2.6), we get

{ve Bl \Vp(Wf)(ifi)(y)} -1

S—Z/ ooy PV @Iy
=% Z/ (,7) / B(0,2i+17)\ B(x0,2ir) o = Z|_n(1 N |3670(;))Z|)_N|f(z)|dz)dy
s —Z (4 555) OIS

IN

c iNA—n, A 2'r \~N-e
g;@) A sas) Ml

O o r o
SF;@)A ™ 7(950)) RLPENED (2.8)

by taking N = [-a] + 1. Noting A < n and combing the estimates (2.7) and (2.8), we get for
any n > 0,

11+ =75) W € Br) s pVEN@ > mh < s, 29)

Theorem 1.1 is proved.
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3 Proofs of Theorems 1.2—1.3
Let 9% (x,y) and %[ (2, y) be the kernel function of RS and RS, repectively.

Lemma 3.1 (see [3]) Let £ =1,--- ,n and V € RH, with ¢ > &. Then
(i) for every k € N, there exists C > 0 such that

RE ()| < O 1 (/B(I e v L) e

|z—y| k _ ayn—1 o _ n—1 _
(1+ LhyF e —y] JLezul) |z — a |z —yl

4
(il) when q > n, the term involving V' can be dropped from inequalities (3.1).

Proof of Theorem 1.2 It is enough to prove the result when § < ¢ < n. Indeed,

according to [15], if V' € RHn, then V' € RHcyn for some ¢ > 0. Moreover, RH,, C RH,,,
when ¢; > ¢2. On the other hand, noting that Ré: is the adjoint of Rés, for V' e RH, with

q> %, we can write

wEEp@ = [t @nrwa)

=N RE(y, ) )y
P cit1<|z—y|<e;

Therefore, we need only to prove the results of Vp(Rﬁs), and the proof of Vp(Rf:) is similar.

F,

Without loss of generality, we may assume that o < 0. Pick any zp € R™ and r > 0. As in the
proof of Theorem 1.1, we write

f(x) = fo(x) +Zfi(:r),

where fo = fXB(zo2r)s fi = [XB(eo,2it1r)\B(xo,2ir) for @ > 1. By the LP-boundedness of
Vp(Rf)a), we get

c bl
/B(mw) Vo (R o) (fo)(x)[Pd S/

r —«
Pde < (1+——=) M|fI . (3.2
ooy H@P e < (L4 =) A oy (32)

From (1.3), we have

wEEG@ = [ sl

FP
< / X (ers <lomylcen ()] 2, |RE (@, ) 1)y

<

/ v  RE @ y)If(y)ldy. (3.3)
B(20,2i+17)\B(w0,2r)

In the term last but one, we have used ||xc, , <jz—y|<c, (¥)[|F, < 1.
Now it follows from Lemma 3.1 that

[ mEE R @ra
B(zo,r)

p
<cf ([ Ryl )ldy) o
B(zo.r) N JB(z0,20+17)\ B(xo.2i7)

|z —y[\~F _ P
<c / 1+ 2~y Wldy) d
B(ww)( B(wo,2’i+1r)\B(wo,2’ir)( v(y) ) )
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|z —y[\F -
vefl (] 1+ 2 — "1 W)
B(mg,r)( B(zo,zmr)\B(zo,m)( Y(y) )

g (/B(ww) %)dy)pdx

=:A; + A,

For term A1, using Lemma 2.1, we have

iy FoiT P
A <C 1+ ——~ R AT / fy)ldy ) dz
B(zo,r) ( 7(170)) ) ( B(wo,2t+1r) ) )

2”’ _k:«pu S / p
<C(1+ L) TP d
( 7(IO)) ') ( sy @) )
2i7’ _kk«pu
<C(1+ T (i) TP / f(y)|Pdy
( 7(170)) ( ) B(zo 2i+1r)| ( )|
217" _kécf»l A—
< n
<01+ ) r(27) IIfIIL“(Rn

<oy (10 =) (1 25 T g

Now, we estimate the term As. Using (2.1) and Holder’s inequality, we can write

i __kp_
A2 S C (21'7,)(1—71)10 (1 + 2'r ) ko+1
B(zo,r) 7('1;0)

V(z)dz P
x swi( [ S N ay) o
(/B@o,zwlr)\B(mo,w) ( B(a lzpul) [z — 2 1) )

% __kp
< C (21'7,)(1—71);0 (1 + 2'r ) ko+1
B(zo,r) F)/(x())

V(z)dz P
x fly / R Ny da
(w/B($0,2i+1T) | ( )|( B(z0,2i127) |Z - ZE|"—1) )

2y )—%
¥(wo0)

<C (2i7)(1=m)p (1 +
B(zo,r)

p
([ OV b))y da
B(xo,20t1r)

. 2i,r _ +1
<O 21,,'. (l—n)p 1+ 0 I V . e, »
B B(IO,T)( ) ( 7(960)) 121 (VXB(a0 2 +2r)) (7)]

p
([ i)
B(xo,21t1r)

i 2iT _kkil i pn
< @) (4 ) R (gitd / |
scemt (e es) e Wl

x / T2 (V X ey 32 ()Pl
B(wm )

981

(3.4)
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Using Holder’s inequality again and the boundedness of the 1-th Euclidean fractional integral

T, : L9 — LPo with - =1 — L (see [1]), we obtain that
po _q n

/( ) T2 (VX B 2i+20)) (@) [Pda < CI T2 (VX B (g 2420 w0 | B(wo, 7)1~ 70
B(xo,

_pbn
< Cr" v HVXB(mei*%‘)HIZQ'

Moreover, V € B, for some ¢ > 1 implies that V satisfies the doubling condition, i.e., there
exist constants p > 1 and C such that

/t V(s < Cr /B V(2)da

holds for every ball B and ¢ > 1. Therefore,

i) g T i\ 2—n nH n—
VB asanlln < " [ Vs < 0@'n) i () "y o),
B(wo,2i+17)

¥(zo)

Then we have

' 2ir \—e—wt L N
i,.\2p—n 0 % i\ pg " (n—2)
A2 SOIFIG, 0 g @270 (14 25 ) N R (S5 ) T o)

¥(xo) v(zo)
< CHfHLp A (Rn)(zi)/w%—n?ﬂ,\(l 4 7?;7;))_a_ RO bt (%)2p—pn+pnu
< ClAIEpa (Rn)(Qi)A-‘r’;,—g—nT)\(l n 7?ZJ))—a—,W’jf;l+2p—zm+pnu
< @500 (4 25 1y

This together with (3.4) by taking k = ([—a+ 2+ n(u — 1)] + 1)(ko + 1) implies that
||Vp(Re£,a)(f)||Lg§,(Rn) < Cllfllpey, @ny-

As for the case p = 1, by replacing (3.2) with the corresponding weak estimate, we have

y € Ba,r) : Vo(RE (fo)(w)] > 2 sg F@)ldy
i )

B(xzo,2r)

IIfIILu(Rn (1+ (T ))_ar)‘. (3.5)

Lo

According to (3.3) and (3.1), we get

{veten:purga (S )] > 3]
—Z/”)R“wum
= % ; /B(w,r) (/B(wo,2i+1r)\B(wo,2i7‘) |%l§($7 Z)| |f(z>|dz) dy

\ /\
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< —Z/ / |w|]:|( Gl dz)dy
(x, r) (0,27t 1r)\B(z0,2ir) (1 + N ) |£C — Z|n

ST ()l
(z,r) (0,27t 1r)\B(z0,2ir) (1 + |z~ zl)k|x — Z|n_1

) (/B(m,x;) %))dy

=: D1 + DQ.

In a similar way to the estimates for terms A; and Ay with p = 1, we can take k = ([—a+ 2+
n(u—1)] +1)(ko + 1) and note that 0 < A < (1 — --)n to obtain

—a
D; < —||f||L1 2 (R”)(l + (11?0)) '

and

C r —o
Do < 2N fllir on (1+ —) -
n Ry (Y )

v(2o

These together with (3.5) imply that
(1+ =)y € Bla.r) : Vo(BE D) > )] < O fll
n '7(1') Y ’ . P e Y n — Lof,v(Rn)’

which completes the proof of Theorem 1.2.

In what follows, we will prove Theorem 1.3. The following property of BMO4,(y) functions
will be useful.

Lemma 3.2 (see [4]) Let 0 > 0 and 1 < s < co. If b € BMOg(7), then

1 : ro\Y
- _bnals)® < - .
(7 /L 1p=1") " < Clblanso, o (1+ =) (36)

for all B = B(xg,r), with xg € R™ and r > 0, where ' = (ko + 1)0 and ko is the constant
appearing in (2.1).

Proof of Theorem 1.3 We need only to prove the results of V,(Rf,.)(f) in part (i).
Without loss of generality, we may assume that o < 0. Pick any z¢p € R™ and r > 0, and write

f(z) = fo(z) + Zfi(il?)

where fo = fXB(wo2r), fi = [XB(xo,21+1r)\B(xo,2ir) for i > 1. By the LP-boundedness of
Vo(R, ), we have

[ R D)@l ds < Clbllgo,) [ If@)Pds
B(zg,r)

B(zo,2r)

T
< O, (14 5y) Py oy BT
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Set
b, = |B(x0,7“)|_1/ b(x)dx.
B(zo,r)

For ¢ > 1, according to (1.3), we have
Vo(Ri o) (i) (@) = | Ry o (fi) (@)l
s AR CC R )

< [ Wi <tomsi<eo 1, (o) = B)IRE ()] )y
R
< [ 1bla) = blIRE )10y
<) bl [ RISy
z0,2¢t1r\ B(z0,2r))

w o ) - bIRE )W,
B(zg,2¢t1r\ B(z0,2r))

Applying Lemma 3.1, we can write

[ mRE @ P
B(xo,r)

: C/ oy /B(MMT)\B(Mm (1+ o) e =iy 0o
" C/ (0. r) o |p(/B($0>2i+1r)\B(rg,2ir) (1 i |$7(—y§/|)—k|x —y W)l
) (/B@c—) ﬁ)dyydx
+c /Bm,r) ( /B(wwr)\B(w%) b(y) — by (1+ '“"”7 (_y)y |)_k|x — g™ f(y)|dy)pdx
’ C/Bm,r) (/B(fm?i“f’)\B(rg,Tr) bl =l (1 i |xv(_y3y| ) Tl )

g o))

ZZB1+BQ—|—B3—|—B4.

Using Lemma 2.1, Holder’s inequality and Lemma 3.2, we have

B, </B(wm 1b(x) — by |p(1+ ?ir)) T iy (/B(momﬂr)lf(y)ldy)pdx

AT
<l ) T e [ ) - b
B(zo,r)

L2 (R) (

o= k0+1 +0’

< ClIfIG,

i, \A—n_n
Rn( HCO RS [T
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2 \—o— i tor
) 0 (21)A nTA

< Clolri0, ) 11 oy (1 —

2l \—a—pti+0'p r —a
< p 0 INA—n >\. .
>~ C”b”BMOQ »y)HfHLp >\ R" (1 + ’Y(ZEO)> (1 + ’Y(l“o)) (2 ) r (3 8)

Similarly, we can get

: iy \ —md / P
By <C 2ir) (1 b(y) = brl|f(y)ldy ) dz
’ B(zo,r) ( ) ( 7($0)) ( B(zo,2tt1r) | )

<o@n (14 o) e ( [ o era) () )

P
Y

2'r e k+1 i NA—np+EL
LP’\(R”)(1+'Y($O)) T

1 ’ ’ ;pr
BT M) e =)

<1l

(2i,r,))\—n,rn

2y \—o— gk te'p
’7(580))

2ip | ~o-rhty
7($0)>

x(1+ ﬁ)_a@i)*—"r*. (3.9)

< CUFIy oy IPlas0ge G+ 17 (1 +

+6'p

< OISy oy Py i 27 (1 +

Imitating the estimation of term As, using Lemma 2.1, Holder’s inequality and Lemma 3.2
again, we obtain

. 2y _kk—il
By, < C b(x) — by|P(20r) =P (1 + 0
: B(rg,r)l ( ) | ( ) ( 7('1;0))

<(f o ( /| o T Yoy 0

(1+ 2
L3y @) (o)

V(z)d P
x/ |b(x)—br|p(/ Lj_l) dw
B(zo,r) B(x,2i+27) |z — =

D T
<O||f||Lm(Rn)(1+W) TN TV X B 20420) (@) [0

<cisl )T

PQ—P
rPQ
x b(x) = by|ro-rdx) "
(/Bm,r)'“ 75 d)

2l —a—%ﬁ-e/p
< Oy oy Pl rs0 ) (1 + W)

(po—p)n
PO

(21 )A—i—p Ty

X | Z1 (VX B(ao,20+20)) (@)1 ] 00
9ty )—a—%-‘r@/p (p— po)n

< Oy oy IPlrs0 ) (1 + o) (2P (27)



986 J. Zhang and H. X. Wu
X T (VX B(zo,20+2r)) (%) 1700 -

According to the boundedness of the 1-th Euclidean fractional integral Z : L? — LP° with

L —1_ 1 we have
Po q n

2y
¥(z0)

7_n Hnp n—
1T (V X 2020 ) @) g < €T () () =2,

Therefore, we obtain

; k
2'r ) o o +0’p(2iT)A+2p—nP
)

B2 S CHinZ’},(R")HbH%MOB(’Y) (1 +

¥(zo
. (p—po)n 2i7ﬂ punp
X 21 PO ( ) T (n—2)p
@) () o)
2ip

<C P —a— o to'p i, \A+2p—np
1715, o 1t (1 =5 ) (2'r)

. (p—pg)n by \ Hnp
X 21 PO ( ) T (n—2)p
@) () )

< O, g Pt (1

x (2T

2ip )_0‘_%”/?( 2y )2P+(M—1)np
¥(x0) ¥(20)

; k
2tr )_0‘_ ko«pu

|| " +0'p+2p+(p—1)np r —a
LP A (R" BMOQ(’Y ( ,Y(:Z:,O) ( )

1+
¥(zo)
x (20N 50T, (3.10)

< CIfIf

Similarly, we can estimate B, as follows:

. 21',,, - +1
By <C 2ipyI=mp (1 4 o Ty . ,
e B(ww)( ) ( 7(x0)> 1 (VX B(ao 220 ) ()]
P
([ b -l e
B(xg,2°%1r)

2l
7(11?0)
v

x (/B(MMT) If(y)|pdy)(/B(moy2mr) b(y) — b dy)—,

; k
9y _Q—Tf;l+0'p

< Oy o9t G+ P (14 5

e ] (R AN o T

(QiT)p—pn+‘;—7+>\

_ 2
X P3O T (VX B 2i420) (@) s

] —a—-kr_ g
QZT ) TR p(2i)i_§—n+,\

< C|IfIP b ! p(l
< ClIEg 2 oy Pellsaio (17 (1 + 2

)\( 2y )2p+(u—1)np
¥(zo)
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+0'p+2p+(u—1)np

) kp
2'r ) T Ro+1

< CUI s gy o)+ 107 (14 25

r T i B —nA A
x (1+ 2")Po . 3.11
( 7(550)) #) ( )
Then (3.8)—(3.11) by taking k = ([—a+ ¢ + 2+ (u — 1)n] + 1)(ko + 1) imply that

||VP(RZ§,Z,6)(f)||LZ:>“/(RTL) < C”b”BMOe ('Y)”f”Lgv}(Rn)v

which completes the proof of Theorem 1.3.

Remark 3.1 The fluctuations of a family T = {T}};~0 of operators when ¢ — 0% can also
be analyzed by using oscillation operators (see, for instance, [5, 20] etc.). If {t;},en is a real
decreasing sequence that converges to zero, the oscillation operator O(T) is defined by

oo

OTHE) = (3 sw [T, f@) - TS @)

i—1 tit1<eip1<ei<t;

=

Then, by using the procedures developed in this paper, we can establish the corresponding
conclusions in Theorem 1.1 for O(W£), Theorem 1.2 for O(Rfﬁ) and (’)(Rﬁ?), Theorem 1.3
for (’)(Rb 0.) and O(Rb 72)- The details are omitted.
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