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Abstract The authors define strongly Gauduchon spaces and the class S G , which are

generalization of strongly Gauduchon manifolds in complex spaces. Comparing with the

case of Kählerian, the strongly Gauduchon space and the class S G are similar to the

Kähler space and the Fujiki class C respectively. Some properties about these complex

spaces are obtained. Moreover, the relations between the strongly Gauduchon spaces and

the class S G are studied.
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1 Introduction

The complex manifold with a strongly Gauduchon metric is an important object in non-

Kähler geometry. In [13, 15], Popovici first defined the strongly Gauduchon metric in the

study of limits of projective manifolds under deformations. A strongly Gauduchon metric on a

complex n-dimensional manifold is a hermitian metric ω such that ∂ωn−1 is ∂-exact. A compact

complex manifold is called a strongly Gauduchon manifold, if there exists a strongly Gauduchon

metric on it.

Proposition 1.1 Let M be a compact complex manifold of dimension n. Then the following

is equivalent:

(1) M is a strongly Gauduchon manifold.

(2) There exists a strictly positive (n− 1, n− 1)-form Ω, such that ∂Ω is ∂-exact.

(3) There exists a real closed (2n− 2)-form Ω whose (n− 1, n− 1)-component Ωn−1,n−1 is

strictly positive.

In [13], Popovici observed that (1) and (3) are equivalent. “(1) ⇒ (2)” is obvious by the

definition of strongly Gauduchon manifolds. Conversely, for any strictly positive (n− 1, n− 1)-

form Ω, there exists a unique strictly positive (1, 1)-form ω such that ωn−1 = Ω (see [12, p. 280]).

So we have “(2) ⇒ (1)”.

Popovici proved the following two important theorems.
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Theorem 1.1 (see [13, Proposition 3.3]) Let M be a compact complex manifold. Then

M is a strongly Gauduchon manifold if and only if there is no nonzero positive current T of

bidegree (1, 1) on M which is d-exact on M .

Theorem 1.2 (see [14, Theorem 1.3]) Let f : M → N be a modification of compact

complex manifolds. Then M is a strongly Gauduchon manifold if and only if N is a strongly

Gauduchon manifold.

On the other hand, in [8], Fujiki generalized the concept “Kähler” to general complex

spaces. A kind of generalization is the Kähler space which is a complex space admitting a

strictly positive closed (1, 1)-form, and the other kind is the Fujiki class C consisting of the

reduced compact complex spaces which are the meoromorphic images of compact Kähler spaces.

In [16–17], Varouchas proved that any reduced complex space in the Fujiki class C has a proper

modification which is a compact Kähler manifold. Now, many authors use it as the definition

of the Fujiki class C . Inspired by the method of Fujiki and the theorem of Varouchas, we give

two kinds of generalizations of strongly Gauduchon manifolds to complex spaces— the strongly

Gauduchon spaces and the class S G . In view of definitions of them, the strongly Gauduchon

spaces (see Definition 2.1) is similar to the Kähler spaces, and the class S G (see Definition

3.1) is similar to the Fujiki class C .

In Section 2, we study the properties of strongly Gauduchon spaces and give a method of

constructing examples which are singular strongly Gauduchon spaces, but not in B, where B

is the set of reduced compact complex spaces which are bimeromorphic to compact balanced

manifolds.

In Section 3, we study the class S G and propose a conjecture on the relation between

strongly Gauduchon spaces and the class S G as follows.

Conjecture 1.1 Any strongly Gauduchon space belongs to class S G .

We prove it in some special cases (see Theorems 3.2–3.4).

In Section 4, we study a family of reduced complex spaces over a nonsingular curve and give

a theorem on the total space being in S G .

2 Strongly Gauduchon Spaces

First, we give a proposition about strongly Gauduchon manifolds which is similar to the

case of balanced manifolds.

Proposition 2.1 Let M and N be compact complex manifolds of pure dimension.

(1) If f : M → N is a holomorphic submersion and M is a strongly Gauduchon manifold,

then N is a strongly Gauduchon manifold.

(2) M × N is a strongly Gauduchon manifold if and only if M and N are both strongly

Gauduchon manifolds.

Proof Set dimM = m, dimN = n.

(1) Let ΩM be a strictly positive (m− 1,m− 1)-form, such that ∂ΩM = ∂α, where α is a
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(2m− 2)-form on M . Define

ΩN := f∗ΩM .

By the proof of Proposition 1.9(ii) in [12], we know that ΩN is a strictly positive (n− 1, n− 1)-

form. Obviously, ∂ΩN = ∂(f∗α) is ∂-exact. So N is a strongly Gauduchon manifold.

(2) If M ×N is a strongly Gauduchon manifold, then M and N are both strongly Gaudu-

chon manifolds by (1).

Conversely, let M and N be both strongly Gauduchon manifolds. Suppose that ωM and

ωN are strongly Gauduchon metrics on M and N , respectively, such that ∂ωm−1
M = ∂α and

∂ωn−1
N = ∂β, where α and β are (2m − 2)- and (2n − 2)-form on M and N , respectively. We

define a metric on M ×N

ω := ωM + ωN .

Then

ωm+n−1 := C1ω
m−1
M ∧ ωn

N + C2ω
m
M ∧ ωn−1

N ,

where C1, C2 are constants. So

∂ωm+n−1 : = C1∂ω
m−1
M ∧ ωn

N + C2ω
m
M ∧ ∂ωn−1

N

= ∂(C1α ∧ ωn
N + C2ω

m
M ∧ β)

is ∂-exact on M ×N . Hence ω is a strongly Gauduchon metric on M ×N .

We recall the definitions of forms and currents on complex spaces (see [11]).

LetX be a reduced complex space andXreg be the set of nonsingular points onX . Obviously,

Xreg is a complex manifold.

Suppose that X is an analytic subset of a complex manifold M . Set Ip,qX (M) = {α ∈

Ap,q(M) | i∗α = 0}, where i : Xreg → M is the inclusion. Define Ap,q(X) := Ap,q(M)/Ip,qX (M).

It can be easily shown that Ap,q(X) does not depend on the embedding of X into M . Hence,

for any complex space X , we can define Ap,q(X) through the local embeddings in CN . More

precisely, we define a sheaf of germs Ap,q
X of (p, q)-forms on X and Ap,q(X) as the group of its

global sections. Similarly, we can also define Ap,q
c (X) (the space of (p, q)-forms with compact

supports), Ak(X) and Ak
c (X).

We can naturally define ∂ : Ap,q(X) → Ap+1,q(X), ∂ : Ap,q(X) → Ap,q+1(X) and d :

Ak(X) → Ak+1(X).

If f : X → Y is a holomorphic map between reduced complex spaces, then we can naturally

define f∗ : Ap,q(Y ) → Ap,q(X), such that f∗ commutes with ∂, ∂, d.

When X is a subvariety of a complex manifold M , we define the space of currents on X

D′r(X) := {T ∈ D′r(M) | T (u) = 0, ∀u ∈ I2n−r
X,c (M)},

where D′r(M) is the space of currents on M and I2n−r
X,c (M) = {α ∈ A2n−r

c (M) | i∗α = 0}.

We can define a space D′r(X) of the currents on any reduced complex space X as the case of

Ar(X). Define

D′p,q(X) := {T ∈ D′p+q(X) | T (u) = 0, ∀u ∈ Ar,s
c (M), (r, s) 6= (n− p, n− q)}.



992 W. Xia and L. X. Meng

A current T is called a (p, q)-current on X , if T ∈ D′p,q(X). If T ∈ D′r(X), we call r the

degree. If T ∈ D′p,q(X), we call (p, q) the bidegree. We also denote D′
r(X) = D′2n−r(X) and

D′
p,q(X) = D′n−p,n−q(X). A current T ∈ D′p,p(X) is called real if for every α ∈ A2n−2p

c (X),

T (α) = T (α).

If f : X → Y is a holomorphic map of reduced compact complex spaces, we define f∗ :

D′
r(X) → D′

r(Y ) as f∗T (u) := T (f∗u) for any u ∈ Ar
c(Y ).

A real (p, p)-form ω onX is called strictly positive, if there exists an open covering U = {Uα}

of X with an embedding iα : Uα → Vα of Uα into a domain Vα in Cnα and a strictly positive

(p, p)-form ωα on Vα, such that ω |Uα
= i∗αωα, for each α.

Now, following [2], we give a kind of generalization of strongly Gauduchon manifolds.

Definition 2.1 A purely n-dimensional reduced compact complex space X is called a strong-

ly Gauduchon space, if there exists a strictly positive (n − 1, n − 1)-form Ω, such that ∂Ω is

∂-exact.

By its definition, it is easy to see that X is a strongly Gauduchon space if and only if there

exists a real closed (2n− 2)-form Ω′ on X whose (n− 1, n− 1)-component Ω′n−1,n−1 is strictly

positive. Indeed, if Ω is a strictly positive (n − 1, n− 1)-form, such that ∂Ω = ∂α, where α is

a (n, n− 2)-form, then

Ω′ := Ω− α− α

is the desired form. Conversely, since Ω′ is real and d-closed, ∂Ω′n−1,n−1 = −∂Ω′n,n−2. Hence,

Ω := Ω′n−1,n−1 is the desired form.

Obviously, strongly Gauduchon manifolds and compact balanced spaces are strongly Gaudu-

chon spaces.

Proposition 2.2 Let X be a reduced compact complex space of pure dimension and M be

a compact complex manifold of pure dimension. If X ×M is a strongly Gauduchon space, then

M is a strongly Gauduchon manifold.

Proof Let Xreg be the set of nonsingular points on X and Ω be a strictly positive

(n + m − 1, n + m − 1)-form on X × M , such that ∂Ω is ∂-exact, where n = dimX and

m = dimM . Suppose that π : Xreg × M → M is the second projection. By the proof of

Proposition 1.9(ii) in [12], we know that π∗(Ω |Xreg×M ) is a strictly positive (m−1,m−1)-form

on M . Obviously, ∂π∗(Ω |Xreg×M ) is ∂-exact. So M is a strongly Gauduchon manifold.

We know that, on a compact balanced manifold M , the fundamental class [V ] of any hyper-

surface V is not zero in H2(M,R) (see [12, Corollary 1.7]). It is equivalent to that, the current

[V ] on M defined by any hypersurface V is not d-exact. For strongly Gauduchon spaces, we

have the following proposition.

Proposition 2.3 If X is a strongly Gauduchon space, then the current [V ] defined by any

hypersurface V of X is not ∂∂-exact.

Proof Suppose dimX = n. Let Ω be a strictly positive (n− 1, n− 1)-form on X such that

∂Ω = ∂α, where α is a (2n− 2)-form on X . If [V ] = ∂∂Q for some current Q on X , then

[V ](Ω) =

∫

V

Ω > 0.
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On the other hand,

[V ](Ω) = (∂∂Q)(Ω) = −Q(∂∂Ω) = −Q(∂∂α) = 0.

It is a contradiction.

Proposition 2.4 If f : X → Y is a finite holomorphic unramified covering map of reduced

compact complex spaces of pure dimension, then X is a strongly Gauduchon space if and only

if Y is a strongly Gauduchon space.

Proof Set n = dimX = dimY and d = deg f .

Let X be a strongly Gauduchon space and ΩX be a strictly positive (n − 1, n − 1)-form

on X , such that ∂ΩX = ∂αX , where αX is a 2(n − 1)-form on X . For every y ∈ Y , we

set f−1(y) = {x1, · · · , xd}. Then there exists an open neighbourhood V ⊆ Y of y, and open

neighbourhoods U1, · · · , Ud of x1, · · · , xd in X , respectively, which do not intersect with each

other, such that f−1(V ) =
d⋃

i=1

Ui and the restriction f |Ui
: Ui → V is an isomorphism for

i = 1, · · · , d. We define two forms on V as

ΩV :=

d∑

i=1

(f |−1
Ui

)∗(ΩX |Ui
),

αV :=

d∑

i=1

(f |−1
Ui

)∗(αX |Ui
).

If V and V ′ are two open subsets in Y as above (possible for different points in Y ) and V ∩V ′ 6=

Ø, we can easily check ΩV = ΩV ′ on V ∩V ′. Hence, we can construct a global (n−1, n−1)-form

ΩY on Y such that ΩY |V = ΩV . By the same reason, we can define a global 2(n− 1)-form αY

on Y such that αY |V = αV . Obviously, ΩY is strictly positive and ∂ΩY = ∂αY . Therefore, Y

is a strongly Gauduchon space.

Conversely, suppose that ΩY is a strictly positive (n−1, n−1)-form on Y , such that ∂ΩY is ∂-

exact on Y . For all x ∈ X , there is an open neighbourhood U of x in X , an open neighbourhood

V of f(x) in Y , such that f |U : U → V is an isomorphism. (f∗ΩY )|U = (f |U )
∗(ΩY |V ) is

obviously strictly positive on U , so is f∗ΩY on X . Obviously, f∗ΩY is ∂-exact on X . Therefore,

X is a strongly Gauduchon space.

3 The Class S G

Now, we give the other generalization of strongly Gauduchon manifolds.

Definition 3.1 A reduced compact complex space X of pure dimension is called in class

S G , if it has a desingularization X̃ which is a strongly Gauduchon manifold.

If one desingularization of X is a strongly Gauduchon manifold, then every desingularization

of X is a strongly Gauduchon manifold. Indeed, if X1 → X and X2 → X are two desingular-

izations of X , then there exists a bimeromorphic map f : X1 99K X2. Let Γ ⊆ X1 × X2 be

the graph of f , and p1 : Γ → X1, p2 : Γ → X2 be the two projections on X1, X2, respectively.

Then p1, p2 are modifications. If Γ̃ is a desingularization of Γ, then Γ̃ → X1 and Γ̃ → X2 are
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modifications of compact complex manifolds. By Theorem 1.2, we know that X1 is a strongly

Gauduchon manifold if and only if Γ̃ is a strongly Gauduchon manifold, and then if and only

if X2 is a strongly Gauduchon manifold. Hence Definition 2.1 is not dependent on the choice

of the desingularization of X . So, if X ∈ S G is nonsingular, then X is a strongly Gauduchon

manifold.

Using the same method as above, we can prove the following proposition.

Proposition 3.1 The class S G is invariant under bimeromorphic maps.

Obviously, strongly Gauduchon manifolds and the normalizations of complex spaces in class

S G are in class S G . Recall that a reduced compact complex space X is called in class B, if it

has a desingulariztion X̃ which is a balanced manifold (see [7]). Then complex spaces in class

B are in class S G .

Proposition 3.2 If X and Y are reduced compact complex spaces, then X × Y is in the

class S G if and only if X and Y are both in the class S G .

Proof If f : X̃ → X and g : Ỹ → Y are desingulariztions, then f × g : X̃ × Ỹ → X × Y

is a desingulariztion of X × Y . By Proposition 2.1(2), we know that X̃ × Ỹ is a strongly

Gauduchon manifold if and only if X̃ and Ỹ are both strongly Gauduchon manifolds. So we

get this proposition easily.

Using this proposition, we can construct some examples of complex spaces in S G which

are neither strongly Gauduchon manifolds nor in class B. If Y is a singular reduced compact

complex space in class B and Z is a compact strongly Gauduchon manifold but not a balanced

manifold, then Y × Z is in S G , but it is neither a strongly Gauduchon manifold nor in B.

Indeed, Y × Z is singular, so it is not a strongly Gauduchon manifold. By Proposition 3.2,

Y × Z ∈ S G . Assume Y × Z ∈ B. By [7, Proposition 2.3], we know Z ∈ B. Since Z

is nonsingular, Z is balanced, which contradicts the choice of Z. Hence we get the following

relations:

C $ B $ S G ,

where C is the Fujiki class, and the first “$” was proved in [7, Section 2].

If X is a reduced compact complex space of pure dimension, then X ∈ S G if and only if

every irreducible component of X is in S G . Indeed, if let X̃1, · · · , X̃r be the desingulariztions

of X1, · · · , Xr, all the irreducible components of X , then the disjoint union X̃:=X̃1 ∐ · · · ∐ X̃r

is a desingulariztion of X . Hence the conclusion follows, since X̃ is a strongly Gauduchon

manifold if and only if X̃1, · · · , X̃r are all strongly Gauduchon manifolds.

In the following, we need the definition of a smooth morphism (see [4, (0.4)]). A surjective

holomorphic map f : X → Y between reduced complex spaces is called a smooth morphism, if

for all x ∈ X , there is an open neighbourhood W of x in X , an open neighbourhood U of f(x)

in Y , such that f(W ) = U , and there is a commutative diagram

W

g

��

f |W
// U

∆r × U

pr2

;;
w
w
w
w
w
w
w
w
w
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where r = dimX − dimY , g is an isomorphism (i.e., biholomorphic map), pr2 is the second

projection, and ∆r is a small polydisc. Moreover, if dimX = dimY , a smooth morphism is

exactly a surjective local isomorphism.

Obviously, if f : X → Y is a smooth morphism, and Y is a complex manifold, then X must

also be a complex manifold, and f is a submersion between complex manifolds.

Proposition 3.3 Let f : X → Y be a smooth morphism of reduced compact complex spaces.

If X ∈ S G , then Y ∈ S G .

Proof Suppose that p : Ỹ → Y is a desingulariztion. Consider the following Cartesian

diagram:

X̃ := X ×Y Ỹ

q

��

f̃
// Ỹ

p

��
X

f
// Y

(3.1)

whereX×Y Ỹ = {(x, ỹ) ∈ X×Ỹ | f(x) = p(ỹ)}, q is the projection toX , and f̃ is the projection

to Ỹ . We can prove that f̃ is a submersion of complex manifolds and q is a modification (see

[7, Claims 1–2 in the proof of Proposition 2.4]). Since X ∈ S G , X̃ is a strongly Gauduchon

manifold, so is Ỹ by Proposition 2.1(1), hence Y ∈ S G .

Proposition 3.4 If f : X → Y is a finite unramified covering map of reduced compact

complex spaces, then X ∈ S G if and only if Y ∈ S G .

Proof Suppose that p : Ỹ → Y is a desingulariztion. Consider the Cartesian diagram

(3.1). We know that f̃ is a surjective local isomorphism, and q is a modification. Since Ỹ is

locally compact, by [10, Lemma 2], f̃ is a finite covering map in topological sense. Moreover,

since f̃ is a local isomorphism (in analytic sense), f̃ is a finite unramifield covering map (in

analytic sense). By Proposition 2.4, we know that X̃ is a strongly Gauduchon manifold, if and

only if Ỹ is a strongly Gauduchon manifold. Hence X ∈ S G if and only if Y ∈ S G .

We generalize Theorem 3.5(2) and Theorem 3.9(2) in [1] as follows.

Proposition 3.5 Let f : X → Y be a smooth morphism of reduced compact complex spaces,

and n = dimX > m = dim Y ≥ 2. If Y ∈ B and there exists a point y0 in Y such that the

current [f−1(y0)] is not d-exact on X, then X ∈ S G .

Proof Choose a desingulariztion p : Ỹ → Y , such that Ỹ is a compact balanced manifold.

Considering the Catesian diagram (3.1), we know that f̃ is a submersion of complex manifolds

and q is a modification.

For every ỹ ∈ p−1(y0), the current [f̃−1(ỹ)] can not be written as dQ for any current Q of

degree 2m− 1 on X̃ . Otherwise, since f̃−1(ỹ) = f−1(y0)× {ỹ}, we have

[f−1(y0)] = q∗[f̃
−1(ỹ)] = q∗(dQ) = dq∗Q,

which contradicts the assumption.

Now suppose that ỹ′ is any point in Ỹ . Then the fundamental classes [ỹ] = [ỹ′] inH2m(Ỹ ,R).
Since f̃ is smooth,

[f̃−1(ỹ′)] = f̃∗[ỹ′] = f̃∗[ỹ] = [f̃−1(ỹ)]
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in H2m(X̃,R), where ỹ ∈ p−1(y0) and f̃∗ : H2m(Ỹ ,R) → H2m(X̃,R) is the pull back of f̃ .

Hence for every ỹ′ ∈ Ỹ , the current [f̃−1(ỹ′)] is not d-exact on X̃. By [1, Theorem 3.5(2) and

Theorem 3.9(2)], X̃ is a strongly Gauduchon manifold, hence, X ∈ S G .

Next, we consider the relation between strongly Gauduchon spaces and class S G . From

definitions of them, the relation between strongly Gauduchon spaces and the class S G is similar

to that of Kähler spaces and the Fujiki class C . Moreover, in the nonsingular case, we know

that a modification of a strongly Gauduchon manifold is also a strongly Gauduchon manifold,

by Theorem 1.2. So we think that the following also holds.

Conjecture 3.1 Any strongly Gauduchon space belongs to class S G .

We can prove it in some extra conditions. First, we recall a theorem and several notations.

Theorem 3.1 (see [3, Theorem 1.5]) Let M be a complex manifold of dimension n, E be a

compact analytic subset and {Ei}i=1,··· ,s be all the p-dimensional irreducible components of E.

If T is a ∂∂-closed positive (n− p, n− p)-current on M such that suppT ⊆ E, then there exist

constants ci ≥ 0, such that T −
s∑

i=1

ci[Ei] is supported on the union of the irreducible components

of E of dimension greater than p.

For a compact complex manifold M , the Bott-Chern cohomology group of degree (p, q) is

defined as

Hp,q
BC(M) :=

Ker(d : Ap,q(M) → Ap+q+1(M))

∂∂Ap−1,q−1(M)
,

and the Aeplli cohomology group of degree (p, q) is defined as

Hp,q
A (M) :=

Ker(∂∂ : Ap,q(M) → Ap+1,q+1(M))

∂Ap−1,q(M) + ∂Ap,q−1(M)
.

It is well-known that all these groups can also be defined by means of currents of corresponding

degree. For every (p, q) ∈ N2, the identity induces a natural map

i : Hp,q
BC(M) → Hp,q

A (M).

In general, the map i is neither injective nor surjective. If M satisfies ∂∂-lemma, then for every

(p, q) ∈ N2, i is an isomorphism (see [5, Lemma 5.15, Remarks 5.16, 5.21]).

Theorem 3.2 Let X be a strongly Gauduchon space. If it has a desingularization X̃ such

that i : H1,1
BC(X̃) → H1,1

A (X̃) is injective, then X ∈ S G .

Proof Set dimX = n. Suppose that π : X̃ → X is the desingularization. We need to

prove that X̃ is a strongly Gauduchon manifold. By Theorem 1.1, it suffices to prove that if T

is a positive (1, 1)-current on X̃ which is d-exact, then T = 0.

Let E ⊆ X̃ be the exceptional set of π, Ω be the real closed (2n − 2)-form on X whose

(n − 1, n− 1)-part Ωn−1,n−1 is strictly positive. Since T is d-exact, we have T (π∗Ω) = 0. On

the other hand, since T is a (1, 1)-current, we have

T (π∗Ω) = T (π∗Ωn−1,n−1) =

∫

X̃

T ∧ π∗Ωn−1,n−1
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and π∗Ωn−1,n−1 is strictly positive on X̃ − E, so we obtain suppT ⊆ E.

By Theorem 3.1 for p = n− 1, we obtain

T =
∑

i

ci[Ei],

where ci ≥ 0 and Ei are the (n− 1)-dimensional irreducible components of E. Since T is real

and d-exact, i([T ]BC) = 0 in H1,1
A (X̃). Because i is injective, we know [T ]BC = 0 in H1,1

BC(X̃).

So, there is a real 0-current Q on X̃ , such that T = i∂∂Q. Since T ≥ 0, Q is plurisubhamonic.

By maximum principle, Q is a constant. Hence T = 0.

Lemma 3.1 (see [7, Lemma 3.6]) Let f : X → Y be a modification between reduced compact

complex spaces of dimension n. If Y is normal and the Betti number satisfies b2n−1(Y ) = 0,

then there is an exact sequence

0 // H2n−2(E,R)
i∗ // H2n−2(X,R)

f∗ // H2n−2(Y,R) ,

where E is the exceptional set of f , i : E → X is the inclusion. Moreover, H2n−2(E,R) =⊕
j

R[Ej ], where {Ej}j are all the (n − 1)-dimensional irreducible components of E (possibly

there exist some other components of dimension < n− 1 in E).

Theorem 3.3 If X is a normal strongly Gauduchon space of dimension n with the Betti

number b2n−1(X) = 0, then X ∈ S G .

Proof Suppose that T is a positive (1, 1)-current on X̃ which is d-exact. As the proof in

Theorem 3.2, we obtain

T =
∑

i

ci[Ei],

where ci ≥ 0, Ei are the (n − 1)-dimensional irreducible components of E. Since T is d-exact,∑
i

ci[Ei] = [T ]
X̃

= 0 in H2n−2(X̃,R). By Lemma 3.1, we get ci = 0 for all i.

Theorem 3.4 Let X be a compact strongly Gauduchon space. If it has a desingularization

X̃ whose exceptional set has codimension ≥ 2, then X ∈ S G .

Proof Suppose that dimX = n, and that T is a positive (1, 1)-current on X̃ which is

d-exact. As the proof in Theorem 3.2, we obtain suppT ⊆ E. By Theorem 3.1, for p = n− 1,

we get T = 0 immediately.

4 Families of Complex Spaces over a Nonsingular Curve

In this section, we study families of complex spaces over a curve. It should be useful in

the study of deformations and moduli spaces of complex spaces. The following definition is a

generalization of the corresponding notion defined in [12].

Definition 4.1 Let X be a reduced compact complex space of pure dimension n, and

f : X → C be a holomorphic map onto a nonsingular compact complex curve C. f is called topo-

logically essential, if for every p ∈ C, no linear combination
∑
j

cj [Fj ] is zero in H2n−2(X,R),

where the Fj
,s are all the irreducible components of the fibres f−1(p), cj ≥ 0, and at least one

of the cj
,s is positive.
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Note that, for any reduced compact complex space X of pure dimension n and the holomor-

phic map f : X → C onto a nonsingular compact complex curve C, f is an open map by the

open mapping theorem (see [9, p. 109]). Hence for every p ∈ C, every irreducible component of

f−1(p) has dimension n− 1 (see [6, Subsection 3.10]).

Now, we can generalize [18, Theorem 4.1] as follows.

Theorem 4.1 Suppose that X is a purely n-dimensional compact normal complex space

which admits a topologically essential holomorphic map f : X → C onto a nonsingular compact

complex curve C, and that X has a desingularization π : X̃ → X, such that no nonzero

nonnegative linear combination of hypersurfaces contained in the exceptional set of π is zero in

H2n−2(X̃,R). If every nonsingular fiber of f is a strongly Gauduchon manifold, then X ∈ S G .

Proof Set f̃ := f ◦ π. For every p ∈ C, set f−1(p) =
⋃
i

Vi, where Vi are all the irreducible

components of f−1(p) which have dimension n − 1. Since X is normal, codimXs ≥ 2, where

Xs is the set of singular points of X . So

π−1(Vi) = Ṽi

⋃⋃

j

Eij ,

where Ṽi = π−1(Vi −Xs) is the strict transform of Vi, and Eij are all irreducible components

of π−1(Vi) contained in the exceptional set of π. It is possible that some Eij are contained in

other Ekl or Ṽk. We denote any Eij , which is not properly contained in either Ekl or Ṽk, by

Eij′ , and we denote any Eij , which is properly contained in either Ekl or Ṽk, by Eij′′ (i.e., there

exists either Ekl or Ṽk, such that Eij′′ $ Ekl or Ṽk). Then

f̃−1(p) =
⋃

i

(
Ṽi

⋃⋃

j′

Eij′

)

is the irreducible decomposition of f̃−1(p). Hence codimEij′ = 1.

We need the following two claims.

Claim 4.1 f̃ is topologically essential.

Proof Otherwise, we have

∑

i

ai[Ṽi] +
∑

ij′

bij′ [Eij′ ] = 0

in H2n−2(X̃,R), for some ai, bij′ ≥ 0, and at least one of the ai
,s, bij′

,s is positive. Since

π(Eij′ ) ⊆ Xs has codimension ≥ 2, π∗[Eij′ ] = 0 in H2n−2(X,R). In H2n−2(X,R), π∗[Ṽi] = [Vi].

Hence ∑

i

ai[Vi] = 0

through π∗. Since f is topologically essential, ai = 0 for all i. So

∑

ij′

bij′ [Eij′ ] = 0

in H2n−2(X̃,R), where bij′ ≥ 0 and at least one of the bij′
,s is positive. It contradicts the

assumption on X̃.
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Claim 4.2 For every p ∈ C, if f̃−1(p) is nonsingular, then it is a strongly Gauduchon

manifold.

Proof Since f̃−1(p) =
⋃
i

(
Ṽi

⋃⋃
j′
Eij′ ) is nonsingular, we have

Ṽi ∩ Ṽk = Ø, ∀ i 6= k;

Ṽi ∩Ekl′ = Ø, ∀ i, k, l′.

Since for any i, j, Eij is contained in some Ekl′ or Ṽk, we have Ṽi ∩ Eij = Ø. On the other

hand, if Vi ∩ Xs 6= Ø, then the intersection of Ṽi and
⋃
j

Eij is not empty, which contradicts

Ṽi ∩ Eij = Ø. So for all i, Vi ∩Xs = Ø. Hence, the map

π |
f̃−1(p): f̃

−1(p) → f−1(p)

is an isomorphism. Since every nonsingular fiber of f is a strongly Gauduchon manifold and

f̃−1(p) is nonsingular, f̃−1(p) is a strongly Gauduchon manifold.

Now, by Claims 4.1–4.2, X̃ is a strongly Gauduchon manifold according to [18, Theorem

4.1]. Hence, X ∈ S G .

By the above theorem, we have the following corollary immediately.

Corollary 4.1 Suppose that X is a purely dimensional compact normal complex space

which admits a topologically essential holomorphic map f : X → C onto a nonsingular compact

complex curve C, and that X has a desingularization X̃ whose exceptional set has codimension

≥ 2. If every nonsingular fiber of f is a strongly Gauduchon manifold, then X ∈ S G .

Corollary 4.2 Let X be a purely n-dimensional normal compact complex space which ad-

mits a topologically essential holomorphic map onto a nonsingular compact complex curve. If

the Betti number satisfies b2n−1(X) = 0, then X ∈ S G .

Proof By Lemma 3.1, we know that, for any desingularization π : X̃ → X, {[Ej ]}j are

linearly independent in H2n−2(X̃,R), where {Ej}j are all the (n − 1)-dimensional irreducible

components of the exceptional set of π. Using Theorem 4.1, we get this corollary immediately.
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[4] Deligne, P., Équations Différentielles à Points Singuliers Réguliers, Lecture Notes in Math., 163, Springer-
Verlag, Berlin, New York, 1970.



1000 W. Xia and L. X. Meng

[5] Deligne, P., Griffiths, P., Morgan, J., et al., Real homotopy theory of Kähler manifolds. Invent. Math.,
29(3), 1975, 245–274.

[6] Fischer, G., Complex Analytic Geometry, Lecture Notes in Math., 538, Springer-Verlag, Berlin, Heidel-
berg, New York, 1976.

[7] Fu, J., Meng, L. and Xia, W., Complex balanced spaces, Internat. J. Math., 26(12), 2015, 1550105.

[8] Fujiki, A., Closedness of the Douady spaces of compact Kähler spaces, Publ. RIMS, Kyoto Univ., 14,
1978, 1–52.

[9] Grauert, H. and Remmert, R., Coherent Analytic Sheaves, Grundlehren der Math. Wiss., 265, Springer-
Verlag, Berlin, 1984.

[10] Ho, C.-W., A note on proper maps, Proc. Amer. Math. Soc., 51, 1975, 237–241.

[11] King, J., The currents defined by analytic varieties, Acta Math., 127, 1971, 185–220.

[12] Michelsohn, M. L., On the existence of special metrics in complex geometry, Acta Math., 149, 1982,
261–295.

[13] Popovici, D., Limits of projective manifolds under holomorphic deformations. arXiv: 0910.2032v1

[14] Popovici, D., Stability of strongly Gauduchon manifolds under modifications, J. Geom. Anal., 23, 2013,
653–659.

[15] Popovici, D., Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics,
Invent. Math., 194, 2013, 515–534.
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