Chin. Ann. Math. Ser. B 39(6), 2018, 989–1000 DOI: 10.1007/s11401-018-0109-1

Strongly Gauduchon Spaces

Wei XIA¹ Lingxu MENG²

Abstract The authors define strongly Gauduchon spaces and the class \mathscr{SG} , which are generalization of strongly Gauduchon manifolds in complex spaces. Comparing with the case of Kählerian, the strongly Gauduchon space and the class \mathscr{SG} are similar to the Kähler space and the Fujiki class \mathscr{C} respectively. Some properties about these complex spaces are obtained. Moreover, the relations between the strongly Gauduchon spaces and the class \mathscr{SG} are studied.

 Keywords Strongly Gauduchon metric, Strongly Gauduchon space, Class SG, Topologically essential map
2000 MR Subject Classification 32C15, 32C10, 53C55

1 Introduction

The complex manifold with a strongly Gauduchon metric is an important object in non-Kähler geometry. In [13, 15], Popovici first defined the strongly Gauduchon metric in the study of limits of projective manifolds under deformations. A strongly Gauduchon metric on a complex *n*-dimensional manifold is a hermitian metric ω such that $\partial \omega^{n-1}$ is $\overline{\partial}$ -exact. A compact complex manifold is called a strongly Gauduchon manifold, if there exists a strongly Gauduchon metric on it.

Proposition 1.1 Let M be a compact complex manifold of dimension n. Then the following is equivalent:

- (1) M is a strongly Gauduchon manifold.
- (2) There exists a strictly positive (n-1, n-1)-form Ω , such that $\partial \Omega$ is $\overline{\partial}$ -exact.

(3) There exists a real closed (2n-2)-form Ω whose (n-1, n-1)-component $\Omega^{n-1,n-1}$ is strictly positive.

In [13], Popovici observed that (1) and (3) are equivalent. "(1) \Rightarrow (2)" is obvious by the definition of strongly Gauduchon manifolds. Conversely, for any strictly positive (n-1, n-1)-form Ω , there exists a unique strictly positive (1, 1)-form ω such that $\omega^{n-1} = \Omega$ (see [12, p. 280]). So we have "(2) \Rightarrow (1)".

Popovici proved the following two important theorems.

¹School of Mathematical Sciences, Fudan University, Shanghai 200433, China.

Manuscript received November 27, 2015. Revised June 14, 2016.

E-mail: 11110180005@fudan.edu.cn

 $^{^2 \}rm Department$ of Mathematics, North University of China, Taiyuan 030051, China. E-mail: 20160012@nuc.edu.cn

Theorem 1.1 (see [13, Proposition 3.3]) Let M be a compact complex manifold. Then M is a strongly Gauduchon manifold if and only if there is no nonzero positive current T of bidegree (1,1) on M which is d-exact on M.

Theorem 1.2 (see [14, Theorem 1.3]) Let $f : M \to N$ be a modification of compact complex manifolds. Then M is a strongly Gauduchon manifold if and only if N is a strongly Gauduchon manifold.

On the other hand, in [8], Fujiki generalized the concept "Kähler" to general complex spaces. A kind of generalization is the Kähler space which is a complex space admitting a strictly positive closed (1,1)-form, and the other kind is the Fujiki class \mathscr{C} consisting of the reduced compact complex spaces which are the meoromorphic images of compact Kähler spaces. In [16–17], Varouchas proved that any reduced complex space in the Fujiki class \mathscr{C} has a proper modification which is a compact Kähler manifold. Now, many authors use it as the definition of the Fujiki class \mathscr{C} . Inspired by the method of Fujiki and the theorem of Varouchas, we give two kinds of generalizations of strongly Gauduchon manifolds to complex spaces — the strongly Gauduchon spaces and the class \mathscr{SG} . In view of definitions of them, the strongly Gauduchon spaces (see Definition 2.1) is similar to the Kähler spaces, and the class \mathscr{SG} (see Definition 3.1) is similar to the Fujiki class \mathscr{C} .

In Section 2, we study the properties of strongly Gauduchon spaces and give a method of constructing examples which are singular strongly Gauduchon spaces, but not in \mathscr{B} , where \mathscr{B} is the set of reduced compact complex spaces which are bimeromorphic to compact balanced manifolds.

In Section 3, we study the class \mathscr{SG} and propose a conjecture on the relation between strongly Gauduchon spaces and the class \mathscr{SG} as follows.

Conjecture 1.1 Any strongly Gauduchon space belongs to class \mathcal{SG} .

We prove it in some special cases (see Theorems 3.2-3.4).

In Section 4, we study a family of reduced complex spaces over a nonsingular curve and give a theorem on the total space being in \mathscr{SG} .

2 Strongly Gauduchon Spaces

First, we give a proposition about strongly Gauduchon manifolds which is similar to the case of balanced manifolds.

Proposition 2.1 Let M and N be compact complex manifolds of pure dimension.

(1) If $f: M \to N$ is a holomorphic submersion and M is a strongly Gauduchon manifold, then N is a strongly Gauduchon manifold.

(2) $M \times N$ is a strongly Gauduchon manifold if and only if M and N are both strongly Gauduchon manifolds.

Proof Set dim M = m, dim N = n.

(1) Let Ω_M be a strictly positive (m-1, m-1)-form, such that $\partial \Omega_M = \overline{\partial} \alpha$, where α is a

(2m-2)-form on M. Define

$$\Omega_N := f_* \Omega_M.$$

By the proof of Proposition 1.9(ii) in [12], we know that Ω_N is a strictly positive (n-1, n-1)-form. Obviously, $\partial \Omega_N = \overline{\partial}(f_*\alpha)$ is $\overline{\partial}$ -exact. So N is a strongly Gauduchon manifold.

(2) If $M \times N$ is a strongly Gauduchon manifold, then M and N are both strongly Gauduchon manifolds by (1).

Conversely, let M and N be both strongly Gauduchon manifolds. Suppose that ω_M and ω_N are strongly Gauduchon metrics on M and N, respectively, such that $\partial \omega_M^{m-1} = \overline{\partial} \alpha$ and $\partial \omega_N^{n-1} = \overline{\partial} \beta$, where α and β are (2m-2)- and (2n-2)-form on M and N, respectively. We define a metric on $M \times N$

$$\omega := \omega_M + \omega_N.$$

Then

$$\omega^{m+n-1} := C_1 \omega_M^{m-1} \wedge \omega_N^n + C_2 \omega_M^m \wedge \omega_N^{n-1},$$

where C_1, C_2 are constants. So

$$\partial \omega^{m+n-1} := C_1 \partial \omega_M^{m-1} \wedge \omega_N^n + C_2 \omega_M^m \wedge \partial \omega_N^{n-1}$$
$$= \overline{\partial} (C_1 \alpha \wedge \omega_N^n + C_2 \omega_M^m \wedge \beta)$$

is $\overline{\partial}$ -exact on $M \times N$. Hence ω is a strongly Gauduchon metric on $M \times N$.

We recall the definitions of forms and currents on complex spaces (see [11]).

Let X be a reduced complex space and X_{reg} be the set of nonsingular points on X. Obviously, X_{reg} is a complex manifold.

Suppose that X is an analytic subset of a complex manifold M. Set $I_X^{p,q}(M) = \{ \alpha \in A^{p,q}(M) \mid i^*\alpha = 0 \}$, where $i: X_{\text{reg}} \to M$ is the inclusion. Define $A^{p,q}(X) := A^{p,q}(M)/I_X^{p,q}(M)$. It can be easily shown that $A^{p,q}(X)$ does not depend on the embedding of X into M. Hence, for any complex space X, we can define $A^{p,q}(X)$ through the local embeddings in \mathbb{C}^N . More precisely, we define a sheaf of germs $\mathcal{A}_X^{p,q}$ of (p,q)-forms on X and $A^{p,q}(X)$ as the group of its global sections. Similarly, we can also define $A_c^{p,q}(X)$ (the space of (p,q)-forms with compact supports), $A^k(X)$ and $A_c^k(X)$.

We can naturally define $\partial : A^{p,q}(X) \to A^{p+1,q}(X), \overline{\partial} : A^{p,q}(X) \to A^{p,q+1}(X)$ and $d : A^k(X) \to A^{k+1}(X)$.

If $f: X \to Y$ is a holomorphic map between reduced complex spaces, then we can naturally define $f^*: A^{p,q}(Y) \to A^{p,q}(X)$, such that f^* commutes with $\partial, \overline{\partial}, d$.

When X is a subvariety of a complex manifold M, we define the space of currents on X

$$\mathcal{D}'^{r}(X) := \{ T \in \mathcal{D}'^{r}(M) \mid T(u) = 0, \ \forall u \in I^{2n-r}_{X,c}(M) \},\$$

where $\mathcal{D}'^{r}(M)$ is the space of currents on M and $I_{X,c}^{2n-r}(M) = \{\alpha \in A_{c}^{2n-r}(M) \mid i^{*}\alpha = 0\}$. We can define a space $\mathcal{D}'^{r}(X)$ of the currents on any reduced complex space X as the case of $A^{r}(X)$. Define

$$\mathcal{D}^{\prime p,q}(X) := \{ T \in \mathcal{D}^{\prime p+q}(X) \mid T(u) = 0, \ \forall u \in A_c^{r,s}(M), \ (r,s) \neq (n-p,n-q) \}.$$

A current T is called a (p,q)-current on X, if $T \in \mathcal{D}'^{p,q}(X)$. If $T \in \mathcal{D}'^r(X)$, we call r the degree. If $T \in \mathcal{D}'^{p,q}(X)$, we call (p,q) the bidegree. We also denote $\mathcal{D}'_r(X) = \mathcal{D}'^{2n-r}(X)$ and $\mathcal{D}'_{p,q}(X) = \mathcal{D}'^{n-p,n-q}(X)$. A current $T \in \mathcal{D}'^{p,p}(X)$ is called real if for every $\alpha \in A_c^{2n-2p}(X)$, $T(\overline{\alpha}) = \overline{T(\alpha)}$.

If $f: X \to Y$ is a holomorphic map of reduced compact complex spaces, we define $f_*: \mathcal{D}'_r(X) \to \mathcal{D}'_r(Y)$ as $f_*T(u) := T(f^*u)$ for any $u \in A^r_c(Y)$.

A real (p, p)-form ω on X is called strictly positive, if there exists an open covering $\mathcal{U} = \{U_{\alpha}\}$ of X with an embedding $i_{\alpha} : U_{\alpha} \to V_{\alpha}$ of U_{α} into a domain V_{α} in $\mathbb{C}^{n_{\alpha}}$ and a strictly positive (p, p)-form ω_{α} on V_{α} , such that $\omega \mid_{U_{\alpha}} = i_{\alpha}^* \omega_{\alpha}$, for each α .

Now, following [2], we give a kind of generalization of strongly Gauduchon manifolds.

Definition 2.1 A purely n-dimensional reduced compact complex space X is called a strongly Gauduchon space, if there exists a strictly positive (n - 1, n - 1)-form Ω , such that $\partial \Omega$ is $\overline{\partial}$ -exact.

By its definition, it is easy to see that X is a strongly Gauduchon space if and only if there exists a real closed (2n-2)-form Ω' on X whose (n-1, n-1)-component $\Omega'^{n-1,n-1}$ is strictly positive. Indeed, if Ω is a strictly positive (n-1, n-1)-form, such that $\partial \Omega = \overline{\partial} \alpha$, where α is a (n, n-2)-form, then

$$\Omega' := \Omega - \alpha - \overline{\alpha}$$

is the desired form. Conversely, since Ω' is real and *d*-closed, $\partial \Omega'^{n-1,n-1} = -\overline{\partial} \Omega'^{n,n-2}$. Hence, $\Omega := \Omega'^{n-1,n-1}$ is the desired form.

Obviously, strongly Gauduchon manifolds and compact balanced spaces are strongly Gauduchon spaces.

Proposition 2.2 Let X be a reduced compact complex space of pure dimension and M be a compact complex manifold of pure dimension. If $X \times M$ is a strongly Gauduchon space, then M is a strongly Gauduchon manifold.

Proof Let X_{reg} be the set of nonsingular points on X and Ω be a strictly positive (n + m - 1, n + m - 1)-form on $X \times M$, such that $\partial \Omega$ is $\overline{\partial}$ -exact, where $n = \dim X$ and $m = \dim M$. Suppose that $\pi : X_{\text{reg}} \times M \to M$ is the second projection. By the proof of Proposition 1.9(ii) in [12], we know that $\pi_*(\Omega \mid_{X_{\text{reg}} \times M})$ is a strictly positive (m - 1, m - 1)-form on M. Obviously, $\partial \pi_*(\Omega \mid_{X_{\text{reg}} \times M})$ is $\overline{\partial}$ -exact. So M is a strongly Gauduchon manifold.

We know that, on a compact balanced manifold M, the fundamental class [V] of any hypersurface V is not zero in $H^2(M, \mathbb{R})$ (see [12, Corollary 1.7]). It is equivalent to that, the current [V] on M defined by any hypersurface V is not d-exact. For strongly Gauduchon spaces, we have the following proposition.

Proposition 2.3 If X is a strongly Gauduchon space, then the current [V] defined by any hypersurface V of X is not $\partial \overline{\partial}$ -exact.

Proof Suppose dim X = n. Let Ω be a strictly positive (n-1, n-1)-form on X such that $\partial \Omega = \overline{\partial} \alpha$, where α is a (2n-2)-form on X. If $[V] = \partial \overline{\partial} Q$ for some current Q on X, then

$$[V](\Omega) = \int_{V} \Omega > 0.$$

On the other hand,

$$[V](\Omega) = (\partial \overline{\partial} Q)(\Omega) = -Q(\overline{\partial} \partial \Omega) = -Q(\overline{\partial} \overline{\partial} \alpha) = 0.$$

It is a contradiction.

Proposition 2.4 If $f : X \to Y$ is a finite holomorphic unramified covering map of reduced compact complex spaces of pure dimension, then X is a strongly Gauduchon space if and only if Y is a strongly Gauduchon space.

Proof Set $n = \dim X = \dim Y$ and $d = \deg f$.

Let X be a strongly Gauduchon space and Ω_X be a strictly positive (n-1, n-1)-form on X, such that $\partial \Omega_X = \overline{\partial} \alpha_X$, where α_X is a 2(n-1)-form on X. For every $y \in Y$, we set $f^{-1}(y) = \{x_1, \dots, x_d\}$. Then there exists an open neighbourhood $V \subseteq Y$ of y, and open neighbourhoods U_1, \dots, U_d of x_1, \dots, x_d in X, respectively, which do not intersect with each other, such that $f^{-1}(V) = \bigcup_{i=1}^d U_i$ and the restriction $f|_{U_i} : U_i \to V$ is an isomorphism for $i = 1, \dots, d$. We define two forms on V as

$$\Omega_V := \sum_{i=1}^d (f|_{U_i}^{-1})^* (\Omega_X|_{U_i}),$$
$$\alpha_V := \sum_{i=1}^d (f|_{U_i}^{-1})^* (\alpha_X|_{U_i}).$$

If V and V' are two open subsets in Y as above (possible for different points in Y) and $V \cap V' \neq \emptyset$, we can easily check $\Omega_V = \Omega_{V'}$ on $V \cap V'$. Hence, we can construct a global (n-1, n-1)-form Ω_Y on Y such that $\Omega_Y|_V = \Omega_V$. By the same reason, we can define a global 2(n-1)-form α_Y on Y such that $\alpha_Y|_V = \alpha_V$. Obviously, Ω_Y is strictly positive and $\partial\Omega_Y = \overline{\partial}\alpha_Y$. Therefore, Y is a strongly Gauduchon space.

Conversely, suppose that Ω_Y is a strictly positive (n-1, n-1)-form on Y, such that $\partial\Omega_Y$ is ∂ exact on Y. For all $x \in X$, there is an open neighbourhood U of x in X, an open neighbourhood V of f(x) in Y, such that $f|_U: U \to V$ is an isomorphism. $(f^*\Omega_Y)|_U = (f|_U)^*(\Omega_Y|_V)$ is obviously strictly positive on U, so is $f^*\Omega_Y$ on X. Obviously, $f^*\Omega_Y$ is $\overline{\partial}$ -exact on X. Therefore, X is a strongly Gauduchon space.

3 The Class \mathscr{SG}

Now, we give the other generalization of strongly Gauduchon manifolds.

Definition 3.1 A reduced compact complex space X of pure dimension is called in class \mathscr{SG} , if it has a desingularization \widetilde{X} which is a strongly Gauduchon manifold.

If one desingularization of X is a strongly Gauduchon manifold, then every desingularization of X is a strongly Gauduchon manifold. Indeed, if $X_1 \to X$ and $X_2 \to X$ are two desingularizations of X, then there exists a bimeromorphic map $f: X_1 \dashrightarrow X_2$. Let $\Gamma \subseteq X_1 \times X_2$ be the graph of f, and $p_1: \Gamma \to X_1, p_2: \Gamma \to X_2$ be the two projections on X_1, X_2 , respectively. Then p_1, p_2 are modifications. If $\widetilde{\Gamma}$ is a desingularization of Γ , then $\widetilde{\Gamma} \to X_1$ and $\widetilde{\Gamma} \to X_2$ are modifications of compact complex manifolds. By Theorem 1.2, we know that X_1 is a strongly Gauduchon manifold if and only if $\tilde{\Gamma}$ is a strongly Gauduchon manifold, and then if and only if X_2 is a strongly Gauduchon manifold. Hence Definition 2.1 is not dependent on the choice of the desingularization of X. So, if $X \in \mathscr{SG}$ is nonsingular, then X is a strongly Gauduchon manifold.

Using the same method as above, we can prove the following proposition.

Proposition 3.1 The class SG is invariant under bimeromorphic maps.

Obviously, strongly Gauduchon manifolds and the normalizations of complex spaces in class \mathscr{SG} are in class \mathscr{SG} . Recall that a reduced compact complex space X is called in class \mathscr{B} , if it has a desingularization \widetilde{X} which is a balanced manifold (see [7]). Then complex spaces in class \mathscr{B} are in class \mathscr{SG} .

Proposition 3.2 If X and Y are reduced compact complex spaces, then $X \times Y$ is in the class \mathscr{SG} if and only if X and Y are both in the class \mathscr{SG} .

Proof If $f: \tilde{X} \to X$ and $g: \tilde{Y} \to Y$ are desingularizations, then $f \times g: \tilde{X} \times \tilde{Y} \to X \times Y$ is a desingularization of $X \times Y$. By Proposition 2.1(2), we know that $\tilde{X} \times \tilde{Y}$ is a strongly Gauduchon manifold if and only if \tilde{X} and \tilde{Y} are both strongly Gauduchon manifolds. So we get this proposition easily.

Using this proposition, we can construct some examples of complex spaces in $\mathscr{G}\mathscr{G}$ which are neither strongly Gauduchon manifolds nor in class \mathscr{B} . If Y is a singular reduced compact complex space in class \mathscr{B} and Z is a compact strongly Gauduchon manifold but not a balanced manifold, then $Y \times Z$ is in $\mathscr{S}\mathscr{G}$, but it is neither a strongly Gauduchon manifold nor in \mathscr{B} . Indeed, $Y \times Z$ is singular, so it is not a strongly Gauduchon manifold. By Proposition 3.2, $Y \times Z \in \mathscr{S}\mathscr{G}$. Assume $Y \times Z \in \mathscr{B}$. By [7, Proposition 2.3], we know $Z \in \mathscr{B}$. Since Z is nonsingular, Z is balanced, which contradicts the choice of Z. Hence we get the following relations:

$$\mathscr{C} \subsetneqq \mathscr{B} \subsetneqq \mathscr{S} \mathscr{G},$$

where \mathscr{C} is the Fujiki class, and the first " \subsetneq " was proved in [7, Section 2].

If X is a reduced compact complex space of pure dimension, then $X \in \mathscr{GG}$ if and only if every irreducible component of X is in \mathscr{GG} . Indeed, if let $\widetilde{X}_1, \dots, \widetilde{X}_r$ be the desingularizations of X_1, \dots, X_r , all the irreducible components of X, then the disjoint union $\widetilde{X}:=\widetilde{X}_1 \amalg \dots \amalg \widetilde{X}_r$ is a desingularization of X. Hence the conclusion follows, since \widetilde{X} is a strongly Gauduchon manifold if and only if $\widetilde{X}_1, \dots, \widetilde{X}_r$ are all strongly Gauduchon manifolds.

In the following, we need the definition of a smooth morphism (see [4, (0.4)]). A surjective holomorphic map $f: X \to Y$ between reduced complex spaces is called a smooth morphism, if for all $x \in X$, there is an open neighbourhood W of x in X, an open neighbourhood U of f(x)in Y, such that f(W) = U, and there is a commutative diagram

where $r = \dim X - \dim Y$, g is an isomorphism (i.e., biholomorphic map), pr_2 is the second projection, and Δ^r is a small polydisc. Moreover, if dim $X = \dim Y$, a smooth morphism is exactly a surjective local isomorphism.

Obviously, if $f: X \to Y$ is a smooth morphism, and Y is a complex manifold, then X must also be a complex manifold, and f is a submersion between complex manifolds.

Proposition 3.3 Let $f : X \to Y$ be a smooth morphism of reduced compact complex spaces. If $X \in \mathscr{SG}$, then $Y \in \mathscr{SG}$.

Proof Suppose that $p: \widetilde{Y} \to Y$ is a desingularization. Consider the following Cartesian diagram:

where $X \times_Y \widetilde{Y} = \{(x, \widetilde{y}) \in X \times \widetilde{Y} \mid f(x) = p(\widetilde{y})\}, q$ is the projection to X, and \widetilde{f} is the projection to \widetilde{Y} . We can prove that \widetilde{f} is a submersion of complex manifolds and q is a modification (see [7, Claims 1–2 in the proof of Proposition 2.4]). Since $X \in \mathscr{SG}, \widetilde{X}$ is a strongly Gauduchon manifold, so is \widetilde{Y} by Proposition 2.1(1), hence $Y \in \mathscr{SG}$.

Proposition 3.4 If $f : X \to Y$ is a finite unramified covering map of reduced compact complex spaces, then $X \in \mathscr{SG}$ if and only if $Y \in \mathscr{SG}$.

Proof Suppose that $p: \tilde{Y} \to Y$ is a desingularization. Consider the Cartesian diagram (3.1). We know that \tilde{f} is a surjective local isomorphism, and q is a modification. Since \tilde{Y} is locally compact, by [10, Lemma 2], \tilde{f} is a finite covering map in topological sense. Moreover, since \tilde{f} is a local isomorphism (in analytic sense), \tilde{f} is a finite unramifield covering map (in analytic sense). By Proposition 2.4, we know that \tilde{X} is a strongly Gauduchon manifold, if and only if \tilde{Y} is a strongly Gauduchon manifold. Hence $X \in \mathscr{SG}$ if and only if $Y \in \mathscr{SG}$.

We generalize Theorem 3.5(2) and Theorem 3.9(2) in [1] as follows.

Proposition 3.5 Let $f : X \to Y$ be a smooth morphism of reduced compact complex spaces, and $n = \dim X > m = \dim Y \ge 2$. If $Y \in \mathscr{B}$ and there exists a point y_0 in Y such that the current $[f^{-1}(y_0)]$ is not d-exact on X, then $X \in \mathscr{SG}$.

Proof Choose a desingularization $p: \widetilde{Y} \to Y$, such that \widetilde{Y} is a compact balanced manifold. Considering the Catesian diagram (3.1), we know that \widetilde{f} is a submersion of complex manifolds and q is a modification.

For every $\tilde{y} \in p^{-1}(y_0)$, the current $[\tilde{f}^{-1}(\tilde{y})]$ can not be written as dQ for any current Q of degree 2m-1 on \tilde{X} . Otherwise, since $\tilde{f}^{-1}(\tilde{y}) = f^{-1}(y_0) \times \{\tilde{y}\}$, we have

$$[f^{-1}(y_0)] = q_*[\tilde{f}^{-1}(\tilde{y})] = q_*(dQ) = dq_*Q,$$

which contradicts the assumption.

Now suppose that \tilde{y}' is any point in \tilde{Y} . Then the fundamental classes $[\tilde{y}] = [\tilde{y}']$ in $H^{2m}(\tilde{Y}, \mathbb{R})$. Since \tilde{f} is smooth,

$$[\widetilde{f}^{-1}(\widetilde{y}')] = \widetilde{f}^*[\widetilde{y}'] = \widetilde{f}^*[\widetilde{y}] = [\widetilde{f}^{-1}(\widetilde{y})]$$

in $H^{2m}(\widetilde{X}, \mathbb{R})$, where $\widetilde{y} \in p^{-1}(y_0)$ and $\widetilde{f}^* : H^{2m}(\widetilde{Y}, \mathbb{R}) \to H^{2m}(\widetilde{X}, \mathbb{R})$ is the pull back of \widetilde{f} . Hence for every $\widetilde{y}' \in \widetilde{Y}$, the current $[\widetilde{f}^{-1}(\widetilde{y}')]$ is not *d*-exact on \widetilde{X} . By [1, Theorem 3.5(2) and Theorem 3.9(2)], \widetilde{X} is a strongly Gauduchon manifold, hence, $X \in \mathscr{SG}$.

Next, we consider the relation between strongly Gauduchon spaces and class \mathscr{SG} . From definitions of them, the relation between strongly Gauduchon spaces and the class \mathscr{SG} is similar to that of Kähler spaces and the Fujiki class \mathscr{C} . Moreover, in the nonsingular case, we know that a modification of a strongly Gauduchon manifold is also a strongly Gauduchon manifold, by Theorem 1.2. So we think that the following also holds.

Conjecture 3.1 Any strongly Gauduchon space belongs to class \mathcal{SG} .

We can prove it in some extra conditions. First, we recall a theorem and several notations.

Theorem 3.1 (see [3, Theorem 1.5]) Let M be a complex manifold of dimension n, E be a compact analytic subset and $\{E_i\}_{i=1,\dots,s}$ be all the p-dimensional irreducible components of E. If T is a $\partial\overline{\partial}$ -closed positive (n-p, n-p)-current on M such that $\operatorname{supp} T \subseteq E$, then there exist constants $c_i \geq 0$, such that $T - \sum_{i=1}^{s} c_i[E_i]$ is supported on the union of the irreducible components of E of dimension greater than p.

For a compact complex manifold M, the Bott-Chern cohomology group of degree (p,q) is defined as

$$H^{p,q}_{BC}(M) := \frac{\operatorname{Ker}(d: A^{p,q}(M) \to A^{p+q+1}(M))}{\partial \overline{\partial} A^{p-1,q-1}(M)},$$

and the Aeplli cohomology group of degree (p, q) is defined as

$$H^{p,q}_A(M) := \frac{\operatorname{Ker}(\partial\overline{\partial} : A^{p,q}(M) \to A^{p+1,q+1}(M))}{\partial A^{p-1,q}(M) + \overline{\partial} A^{p,q-1}(M)}.$$

It is well-known that all these groups can also be defined by means of currents of corresponding degree. For every $(p,q) \in \mathbb{N}^2$, the identity induces a natural map

$$i: H^{p,q}_{BC}(M) \to H^{p,q}_A(M).$$

In general, the map *i* is neither injective nor surjective. If *M* satisfies $\partial \overline{\partial}$ -lemma, then for every $(p,q) \in \mathbb{N}^2$, *i* is an isomorphism (see [5, Lemma 5.15, Remarks 5.16, 5.21]).

Theorem 3.2 Let X be a strongly Gauduchon space. If it has a desingularization \widetilde{X} such that $i: H^{1,1}_{BC}(\widetilde{X}) \to H^{1,1}_{A}(\widetilde{X})$ is injective, then $X \in \mathscr{SG}$.

Proof Set dim X = n. Suppose that $\pi : \widetilde{X} \to X$ is the desingularization. We need to prove that \widetilde{X} is a strongly Gauduchon manifold. By Theorem 1.1, it suffices to prove that if T is a positive (1, 1)-current on \widetilde{X} which is *d*-exact, then T = 0.

Let $E \subseteq \widetilde{X}$ be the exceptional set of π , Ω be the real closed (2n-2)-form on X whose (n-1, n-1)-part $\Omega^{n-1, n-1}$ is strictly positive. Since T is *d*-exact, we have $T(\pi^*\Omega) = 0$. On the other hand, since T is a (1, 1)-current, we have

$$T(\pi^*\Omega) = T(\pi^*\Omega^{n-1,n-1}) = \int_{\widetilde{X}} T \wedge \pi^*\Omega^{n-1,n-1}$$

of the c_i 's is positive.

and $\pi^* \Omega^{n-1,n-1}$ is strictly positive on $\widetilde{X} - E$, so we obtain supp $T \subseteq E$.

By Theorem 3.1 for p = n - 1, we obtain

$$T = \sum_{i} c_i[E_i],$$

where $c_i \geq 0$ and E_i are the (n-1)-dimensional irreducible components of E. Since T is real and d-exact, $i([T]_{BC}) = 0$ in $H^{1,1}_A(\widetilde{X})$. Because i is injective, we know $[T]_{BC} = 0$ in $H^{1,1}_{BC}(\widetilde{X})$. So, there is a real 0-current Q on \widetilde{X} , such that $T = i\partial\overline{\partial}Q$. Since $T \geq 0$, Q is plurisubhamonic. By maximum principle, Q is a constant. Hence T = 0.

Lemma 3.1 (see [7, Lemma 3.6]) Let $f : X \to Y$ be a modification between reduced compact complex spaces of dimension n. If Y is normal and the Betti number satisfies $b_{2n-1}(Y) = 0$, then there is an exact sequence

$$0 \longrightarrow H_{2n-2}(E,\mathbb{R}) \xrightarrow{i_*} H_{2n-2}(X,\mathbb{R}) \xrightarrow{f_*} H_{2n-2}(Y,\mathbb{R}) ,$$

where E is the exceptional set of f, $i : E \to X$ is the inclusion. Moreover, $H_{2n-2}(E, \mathbb{R}) = \bigoplus_{j} \mathbb{R}[E_j]$, where $\{E_j\}_j$ are all the (n-1)-dimensional irreducible components of E (possibly there exist some other components of dimension < n-1 in E).

Theorem 3.3 If X is a normal strongly Gauduchon space of dimension n with the Betti number $b_{2n-1}(X) = 0$, then $X \in \mathscr{SG}$.

Proof Suppose that T is a positive (1, 1)-current on \widetilde{X} which is d-exact. As the proof in Theorem 3.2, we obtain

$$T = \sum_{i} c_i[E_i],$$

where $c_i \ge 0$, E_i are the (n-1)-dimensional irreducible components of E. Since T is d-exact, $\sum_i c_i[E_i] = [T]_{\widetilde{X}} = 0$ in $H_{2n-2}(\widetilde{X}, \mathbb{R})$. By Lemma 3.1, we get $c_i = 0$ for all i.

Theorem 3.4 Let X be a compact strongly Gauduchon space. If it has a desingularization \widetilde{X} whose exceptional set has codimension ≥ 2 , then $X \in \mathscr{SG}$.

Proof Suppose that dim X = n, and that T is a positive (1, 1)-current on \widetilde{X} which is d-exact. As the proof in Theorem 3.2, we obtain $\operatorname{supp} T \subseteq E$. By Theorem 3.1, for p = n - 1, we get T = 0 immediately.

4 Families of Complex Spaces over a Nonsingular Curve

In this section, we study families of complex spaces over a curve. It should be useful in the study of deformations and moduli spaces of complex spaces. The following definition is a generalization of the corresponding notion defined in [12].

Definition 4.1 Let X be a reduced compact complex space of pure dimension n, and $f: X \to C$ be a holomorphic map onto a nonsingular compact complex curve C. f is called topologically essential, if for every $p \in C$, no linear combination $\sum_{j} c_j[F_j]$ is zero in $H_{2n-2}(X, \mathbb{R})$, where the F_j 's are all the irreducible components of the fibres $f^{-1}(p), c_j \geq 0$, and at least one

Note that, for any reduced compact complex space X of pure dimension n and the holomorphic map $f: X \to C$ onto a nonsingular compact complex curve C, f is an open map by the open mapping theorem (see [9, p. 109]). Hence for every $p \in C$, every irreducible component of $f^{-1}(p)$ has dimension n-1 (see [6, Subsection 3.10]).

Now, we can generalize [18, Theorem 4.1] as follows.

Theorem 4.1 Suppose that X is a purely n-dimensional compact normal complex space which admits a topologically essential holomorphic map $f: X \to C$ onto a nonsingular compact complex curve C, and that X has a desingularization $\pi : \tilde{X} \to X$, such that no nonzero nonnegative linear combination of hypersurfaces contained in the exceptional set of π is zero in $H_{2n-2}(\tilde{X}, \mathbb{R})$. If every nonsingular fiber of f is a strongly Gauduchon manifold, then $X \in \mathscr{SG}$.

Proof Set $\tilde{f} := f \circ \pi$. For every $p \in C$, set $f^{-1}(p) = \bigcup_i V_i$, where V_i are all the irreducible components of $f^{-1}(p)$ which have dimension n-1. Since X is normal, $\operatorname{codim} X_s \ge 2$, where X_s is the set of singular points of X. So

$$\pi^{-1}(V_i) = \widetilde{V}_i \bigcup \bigcup_j E_{ij},$$

where $\widetilde{V}_i = \overline{\pi^{-1}(V_i - X_s)}$ is the strict transform of V_i , and E_{ij} are all irreducible components of $\pi^{-1}(V_i)$ contained in the exceptional set of π . It is possible that some E_{ij} are contained in other E_{kl} or \widetilde{V}_k . We denote any E_{ij} , which is not properly contained in either E_{kl} or \widetilde{V}_k , by $E_{ij'}$, and we denote any E_{ij} , which is properly contained in either E_{kl} or \widetilde{V}_k , by $E_{ij''}$ (i.e., there exists either E_{kl} or \widetilde{V}_k , such that $E_{ij''} \subsetneq E_{kl}$ or \widetilde{V}_k). Then

$$\widetilde{f}^{-1}(p) = \bigcup_{i} \left(\widetilde{V}_{i} \bigcup \bigcup_{j'} E_{ij'} \right)$$

is the irreducible decomposition of $\tilde{f}^{-1}(p)$. Hence $\operatorname{codim} E_{ij'} = 1$.

We need the following two claims.

Claim 4.1 \tilde{f} is topologically essential.

Proof Otherwise, we have

$$\sum_{i} a_i[\widetilde{V}_i] + \sum_{ij'} b_{ij'}[E_{ij'}] = 0$$

in $H_{2n-2}(\widetilde{X},\mathbb{R})$, for some $a_i, b_{ij'} \geq 0$, and at least one of the a_i 's, $b_{ij'}$'s is positive. Since $\pi(E_{ij'}) \subseteq X_s$ has codimension ≥ 2 , $\pi_*[E_{ij'}] = 0$ in $H_{2n-2}(X,\mathbb{R})$. In $H_{2n-2}(X,\mathbb{R})$, $\pi_*[\widetilde{V}_i] = [V_i]$. Hence

$$\sum_{i} a_i [V_i] = 0$$

through π_* . Since f is topologically essential, $a_i = 0$ for all i. So

$$\sum_{ij'} b_{ij'}[E_{ij'}] = 0$$

in $H_{2n-2}(\widetilde{X},\mathbb{R})$, where $b_{ij'} \geq 0$ and at least one of the $b_{ij'}$'s is positive. It contradicts the assumption on \widetilde{X} .

Strongly Gauduchon Spaces

Claim 4.2 For every $p \in C$, if $\tilde{f}^{-1}(p)$ is nonsingular, then it is a strongly Gauduchon manifold.

Proof Since $\widetilde{f}^{-1}(p) = \bigcup_{i} \left(\widetilde{V}_{i} \bigcup_{j'} E_{ij'} \right)$ is nonsingular, we have

$$\begin{split} \widetilde{V_i} \cap \widetilde{V_k} &= \emptyset, \quad \forall \, i \neq k; \\ \widetilde{V_i} \cap E_{kl'} &= \emptyset, \quad \forall \, i, k, l'. \end{split}$$

Since for any i, j, E_{ij} is contained in some $E_{kl'}$ or $\widetilde{V_k}$, we have $\widetilde{V_i} \cap E_{ij} = \emptyset$. On the other hand, if $V_i \cap X_s \neq \emptyset$, then the intersection of $\widetilde{V_i}$ and $\bigcup_j E_{ij}$ is not empty, which contradicts $\widetilde{V_i} \cap E_{ij} = \emptyset$.

 $\widetilde{V}_i \cap E_{ij} = \emptyset$. So for all $i, V_i \cap X_s = \emptyset$. Hence, the map

$$\pi \mid_{\widetilde{f}^{-1}(p)} : \widetilde{f}^{-1}(p) \to f^{-1}(p)$$

is an isomorphism. Since every nonsingular fiber of f is a strongly Gauduchon manifold and $\tilde{f}^{-1}(p)$ is nonsingular, $\tilde{f}^{-1}(p)$ is a strongly Gauduchon manifold.

Now, by Claims 4.1–4.2, \widetilde{X} is a strongly Gauduchon manifold according to [18, Theorem 4.1]. Hence, $X \in \mathscr{SG}$.

By the above theorem, we have the following corollary immediately.

Corollary 4.1 Suppose that X is a purely dimensional compact normal complex space which admits a topologically essential holomorphic map $f: X \to C$ onto a nonsingular compact complex curve C, and that X has a desingularization \widetilde{X} whose exceptional set has codimension ≥ 2 . If every nonsingular fiber of f is a strongly Gauduchon manifold, then $X \in \mathscr{SG}$.

Corollary 4.2 Let X be a purely n-dimensional normal compact complex space which admits a topologically essential holomorphic map onto a nonsingular compact complex curve. If the Betti number satisfies $b_{2n-1}(X) = 0$, then $X \in \mathscr{SG}$.

Proof By Lemma 3.1, we know that, for any desingularization $\pi : \widetilde{X} \to X$, $\{[E_j]\}_j$ are linearly independent in $H_{2n-2}(\widetilde{X}, \mathbb{R})$, where $\{E_j\}_j$ are all the (n-1)-dimensional irreducible components of the exceptional set of π . Using Theorem 4.1, we get this corollary immediately.

Acknowledgement The authors would like to thank their supervisor Prof. Jixiang Fu for his constant encouragement and many helpful discussions.

References

- Alessandrini, L., Holomorphic submersions onto Kähler or balanced manifolds, Tohoku Math. J. (2), 68(4), 2014, 607–619.
- [2] Alessandrini, L. and Andreatta, M., Closed transverse (p, p)-forms on compact complex manifolds, Compositio Math., 61, 1987, 181–200; Erratum ibid., 61, 1987, 143.
- [3] Alessandrini, L. and Bassanelli, G., Positive ∂∂-closed currents and non-Kähler geometry, J. Geom. Anal., 2, 1992, 291–316.
- [4] Deligne, P., Équations Différentielles à Points Singuliers Réguliers, Lecture Notes in Math., 163, Springer-Verlag, Berlin, New York, 1970.

- [5] Deligne, P., Griffiths, P., Morgan, J., et al., Real homotopy theory of Kähler manifolds. Invent. Math., 29(3), 1975, 245–274.
- [6] Fischer, G., Complex Analytic Geometry, Lecture Notes in Math., 538, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
- [7] Fu, J., Meng, L. and Xia, W., Complex balanced spaces, Internat. J. Math., 26(12), 2015, 1550105.
- [8] Fujiki, A., Closedness of the Douady spaces of compact Kähler spaces, Publ. RIMS, Kyoto Univ., 14, 1978, 1–52.
- [9] Grauert, H. and Remmert, R., Coherent Analytic Sheaves, Grundlehren der Math. Wiss., 265, Springer-Verlag, Berlin, 1984.
- [10] Ho, C.-W., A note on proper maps, Proc. Amer. Math. Soc., 51, 1975, 237–241.
- [11] King, J., The currents defined by analytic varieties, Acta Math., 127, 1971, 185–220.
- [12] Michelsohn, M. L., On the existence of special metrics in complex geometry, Acta Math., 149, 1982, 261–295.
- [13] Popovici, D., Limits of projective manifolds under holomorphic deformations. arXiv: 0910.2032v1
- [14] Popovici, D., Stability of strongly Gauduchon manifolds under modifications, J. Geom. Anal., 23, 2013, 653–659.
- [15] Popovici, D., Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics, *Invent. Math.*, **194**, 2013, 515–534.
- [16] Varouchas, J., Stabilité de la classe des variétés Kählériennes par certains morphismes propres, Invent. Math., 77, 1984, 117–127.
- [17] Varouchas, J., Kähler spaces and proper open morphisms, Math. Ann., 283, 1989, 13–52.
- [18] Xiao, J., On strongly Gauduchon metrics of compact complex manifolds, J. Geom. Anal., 25, 2015, 2011– 2027.