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Abstract The authors get on Métivier groups the spectral resolution of a class of operators
m(L,−∆z), the joint functional calculus of the sub-Laplacian and Laplacian on the centre,
and then give some restriction theorems together with their asymptotic estimates, asserting
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1 Introduction

In this paper, we extend the mix-norm boundedness obtained by V. Casarino and P. Ciatti

[4] to general two classes of projection operators (we call projector for simplicity) on Métivier

groups (a class of 2-step nilpotent Lie group, first defined and studied by G. Métivier in [10]).

Métivier group class is strictly more general than the H-type group class introduced by A.

Kaplan [5], with the Heisenberg group being the only special one (of H-type) with 1-dimensional

centre.

The “restriction-type” operator (spectral projector) we study acts on the central variables

by the Euclidean Fourier transform while acting on the “space-v” variables by the spectral

projection of the twisted Laplacian. As the quotient of a Métiver group corresponding to

the hyperplanes in the centre is isomorphic to the Heisenberg group, we can use the spectral

projector on the Heisenberg group to estimate that on the Métivier group by a “partial” Radon

transform. For the Fourier transform on the central variables, we use the famous Tomas-Stein

theorem. Our result includes not only homogeneous (like L2 − ∆z) but also inhomogeneous

operators (like full Laplacian ∆G = L − ∆z), and also cover the uniform-norm boundedness

Lp → Lp′

with exponents in the corresponding range.

First we recall some histories. The restriction problem on R
n, denoted by RS(p → q),

cares the Lp(Rn) → Lq(S) boundedness of the Fourier transform for any hypersurface S with
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boundary endowed with the Lebesgue surface measure dσ. It has many useful applications in

both harmonic analysis and PDE. The restriction problem with respect to the unit sphere (more

generally for any compact hypersurface with boundary and non-vanishing Gaussian curvature

everywhere) is given in the following conjecture.

Conjecture 1.1 (Stein’s Restriction Conjecture)

RSn−1(p → q) holds if and only if p <
2n

n+ 1
and q ≤

n− 1

n+ 1
p′.

The conjecture has been proved for q = 2 or n = 2 by P. Tomas, E. Stein and C. Fefferman.

For n = 3, J. Bourgain and L. Guth have recently gotten the best result so far in [2], where

they proved the dual extension theorem ESn−1(∞ → p′) for p′ > 3 3
10 . The authors used the

method of multilinear theory from [1] together with the Kakeya maximal estimate due to T.

Wolff [17] and improved a bit an old result of T. Tao
(
Tao’s bilinear approach gives p′ > 3 1

3

)
.

In a word, some exciting progresses have been made while the whole picture is still far from

known.

Recalling the famous Tomas-Stein theorem, due to P. Tomas and E. Stein [16] (Stein’s result

for the endpoint is unpublished), they proved Conjecture 1.1 for q = 2. It corresponds to the

Lp → Lp′

boundedness of the convolution operator f ∗ d̂σλ, which is just the spectral projector

of the positive Laplacian −∆ whose symbol is |ξ|2. In [13], R. Strichartz study analogues of this

in other settings from a viewpoint of harmonic analysis as spectral theory of sub-Laplacians.

Motivated by this idea, D. Müller [11] proved a mix-norm1 boundedness L∞
t Lp

z → L1
tL

p′

z of the

restriction operator associated to the sub-Laplacian on the Heisenberg group, using a bound of

the spectral projector of the twisted Laplacian ‖Λkg‖Lp′ . k
(n−1)(1− 2

p′
)
‖g‖Lp. The exponent on

the centre is trivial because of the trivial 1-dimensional Tomas-Stein theorem. So when centre

dimension is bigger than one, it is reasonable to get restriction theorems for exponents of wider

range (see [8–9, 14–15] for related results). In [4], Casarino and Ciatti used an improved sharp

bound of ‖Λk‖Lp→Lq to get a greatly improved mix-norm bound for the restriction operators

associated to the sub-Laplacian and full Laplacian on the Heisenberg group and simultaneously

an analogue for sub-Laplacian on the Métivier group. More precisely, on a Métivir group with

dimension 2n + d, where d is the dimension of the centre, we have the following theorem of

Casarino and Ciatti about the restriction operator PL
λ associated to the sub-Laplacian L (details

will be explained later).

Theorem 1.1 Given 1 ≤ p ≤ 2 ≤ q ≤ 2, 1 ≤ r ≤ 2 d+1
d+3 , we have

‖PL
µ f‖Lr′

z L
q
v
≤ Cµ‖f‖Lr

zL
p
v

with

Cµ . µn( 1
p
− 1

q
)+d( 1

r
− 1

r′
)−1.

In [8], the first author advised to compute some joint functional calculus of the Laplacians

including the full Laplacian, first done by M. Song, on groups of H-type. Combining the

1We will use the same mix-norm through this paper: The (p, q)-type mix-norm of a function f on the

measure space X × Y is defined by ‖f‖Lp
xL

q
y
=

( ∫

Y

( ∫

X
|f(x, y)|pdx

)
q
p dy

)
1
q , which is reduced to the Lp norm

‖f‖Lp(X×Y ) when p = q.
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two works, we obtain the mix-norm bound in [4] for the joint functional calculus in [8]. V.

Casarino and P. Ciatti [3] also got a similar bound for the full Laplacian without asymptotic

characterization. Our main result is the following theorem about two classes of operators

m(L,−∆z) from the joint functional calculus of the sub-Laplacian L and Laplacian on the

centre −∆z.

Theorem 1.2 Given α, β > 0, γ 6= 0, 1 ≤ p ≤ 2 ≤ q ≤ ∞, (d, p, q) 6= (1, 2, 2), 1 ≤ r ≤

2 d+1
d+3 , m1(a, b) = (aα + bβ)γ , m2(a, b) = (1 + aα + bβ)γ , we have

‖Pmi
µ f‖Lr′

z L
q
v
≤ Cmi

µ ‖f‖Lr
zL

p
v
, i = 1, 2

with

Cm1
µ .

{
µB, µ

1
γ
( 1
α
− 1

2β ) ≤ 1,

µA, µ
1
γ
( 1
α
− 1

2β ) > 1

and

Cm2
µ .





µB , µ → ∞signγ , µ
1
γ
( 1
α
− 1

2β ) ≤ 1,

µA, µ → ∞signγ , µ
1
γ
( 1
α
− 1

2β ) > 1,

|1− µ|D, µ → e
signγ
∞ , |1− µ|

1
α
− 1

2β ≤ 1,

|1− µ|C , µ → e
signγ
∞ , |1− µ|

1
α
− 1

2β > 1.

The range of exponent r is already sharp from the Tomas-Stein theorem and the restriction

operator Pm
µ and constants A,B,C,D dependent on n, d, p, q, r, α, β, γ will be given later by

(2.5) and (2.7) in Section 2.

We arrange the remaining part of our paper in the following order. In Section 2, we will give

the main result without proof after introducing basic notations and the restriction operators

by functional calculus on the Métivier group. Following the theorems, some remarks will also

be given. In Section 3, we will put our attention to the detailed proofs of the main result given

in Section 2.

Concerning the boundedness we care in this note, we introduce two notations: We will

always use “.” to indicate that the left side is less than a constant multiple 2 of the right side,

while “.λ,···” to mean that the constant is dependent on λ, · · · ; We also use “∼” for “almost

equal”, accurately, the quotient is bounded both from above and below.

2 Main Results

In Subsection 2.1, we introduce the Laplacians on the Métivier Group and give the definition

and explicit formula of the restriction operators associated to the joint functional calculus of

the sub-Laplacian and Laplacian on the central variables. By the partial Randon transform, we

can connect our Métivier group with the Heisenberg group and then use the bound of spectral

projector of the twisted Laplacian on the Heisenberg group (scaled special Hermite projector)

to estimate the mix-norm bound of the restriction operators associated to the Laplacians on the

Métivier group. In Subsection 2.2, we list two detailed main theorems, but leave their proofs

in the next section.

2We do not care the detailed expression of the constant in the present formula.
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2.1 Restriction operators on the Métivier group

First, we will give some definitions. We take many notations and terminologies from [4, 15],

to which the reader can refer if is not very familiar with them. Let G be a connected, simply

connected, two-step nilpotent Lie group, associated with Lie algebra g, endowed with an inner

product 〈·, ·〉. The Lie algebra g can be decomposed into the direct sum g = z + v, with the

centre z and its complement v. Take

d = dim z, k = dim v,

both which we assume are always positive integers, and z∗ denotes the dual of z with dual norm

| · | induced by the inner product 〈·, ·〉 in z. The unit ball in the dual space z∗ is denoted by

S = {ω ∈ z∗, |ω| = 1}. For each ω ∈ S, we can find a unique unit Zω ∈ z such that ω(Zω) = 1.

Then the centre z can be decomposed as z = RZω + kerω, with the quotient isomorphism

z/kerω ≃ RZω. Denote gω = RZω + v, then we have isomorphism g/kerω ≃ gω. As kerω is

an ideal of z, gω is a Lie subalgebra. We denote by Gω the connected simply connected Lie

subgroup of G, associated with Lie algebra gω. We define the Métivier property by the following

non-degeneracy description.

Definition 2.1 Bilinear function Bω(U, V )
def
= ω([U, V ]) with U, V ∈ v, ω ∈ S, is called

non-degenerate, if

Bω(U, V ) = 0, ∀U ∈ v ⇒ V = 0. (2.1)

Definition 2.2 Group G discussed above is called a Métivier Group, if Bω is non-degenerate

for all ω ∈ S.

D. Müller and A. Seeger [12] gave an example that is a Métivier group but not of H-type.

For completion, we explain it here: Given Lie algebra g = v+ z = R8+R2, with the Lie bracket

[V + Z,U +W ] = 0 + (vtJ(1,0)u, v
tJ(0,1)u),

where u, v are the coordinates of U, V in an orthonormal basis, and matrix

Jz =

(
0 Ez

−Ez 0

)
, Ez =




z1 0 0 −z2
z2 z1 0 0
0 z2 z1 0
0 0 z2 z1


 .

As |Jz| = (z41 + z42)
2 6= 0 unless z = 0, we see that g is Métivier with non-degeneracy property

(2.1). Now we try to say that g is not of H-type. Actually, assume that there is another

H-type Lie algebra g′ = v′ + z′ (in abuse of notation, a map3 J ′
z′ : v′ → v′ just as Bω(U)

above, is orthogonal whenever |z′| = 1, and we sometimes identify z and z∗) and a Lie algebra

isomorphism α : g → g′, then under orthonormal basis, α =
(
A 0
C D

)
(notice that α preserves

the centers and induces an isomorphism z → z′). By the conservation of Lie brackets, for any

u, v, z, we have

(A−1v)tJ ′
Dtz(A

−1u) = vtJzu,

3See accurate definition of H-type and this map in [5].
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which tells (from J ′2
z′ = −|z′|2I) the following determinant relation

|Dtz|8 = |J ′
Dtz| = |A|2|Jz| = |A|2(z41 + z42)

2.

Take |A|−
1
4Dt =

(
a b
c d

)
, then we have

[(az1 + bz2)
2 + (cz1 + dz2)

2]2 = z41 + z42 ,

which implies a contradiction 



a2 + c2 = 1,
b2 + d2 = 1,
2(ab+ cd)2 + 1 = 0,
ab+ cd = 0.

For Métivier group G, the dimension of v is even from the non-degeneracy and skew-symmetry,

which we denote by dim v = 2n, then Lie subgroup Gω ≃ Hn, the Heisenberg group with Lie

algebra hn = Cn +R. We will use the spectral decomposition of the Laplacians on the Heisen-

berg group to get its counterpart on the Métivier group, and finally obtain the corresponding

restriction operators.

By the nilpotency of G, we can parameterizeG by its Lie algebra z+v, through the surjective

exponential map. Fix a basis of Lie algebra g,

{V1, V2, · · · , V2n;Z1, Z2, · · · , Zd},

then we can endow every point of group G with an exponential coordinate (V, Z) or (v, z) ∈

R2n × Rd. By Baker-Campbell-Hausdorff formula, we get the multiplication law

(V, Z) · (V ′, Z ′) =
(
V + V ′, Z + Z ′ +

1

2
[V, V ′]

)

with V, V ′ ∈ v, Z, Z ′ ∈ z. Simple computation gives the left-invariant vector fields

Ṽj =
∂

∂vj
+

1

2

d∑

i=1

〈Zi, [V, Vj ]〉
∂

∂zi
, j = 1, · · · , 2n,

Z̃i =
∂

∂zi
, i = 1, · · · , d,

associated respectively to one-parameter subgroups {(sVj , 0) | s ∈ R} and {(0, tZi) | t ∈ R}.

These 2n + d vector fields form a basis of the tangent bundle of G. Now we can define on G

the sub-Laplacian, the Laplacian on the centre, and the full Laplacian respectively to be

L = −

2n∑

j=1

(Ṽj)
2, −∆z = −

d∑

i=1

(Z̃i)
2, ∆G = L−∆z.

Hömander’s theorem tells that the sub-Laplacian and full Laplacian are hypoelliptic, positive,

and essentially self-adjoint, and the Laplacians play an important role in harmonic analysis on

the group.

The partial Radon transform on the central variables is a powerful tool for us to get the

spectral decomposition on Métivier group from that on the Heisenberg group.
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Definition 2.3 For ω ∈ S, f ∈ S(G), the Schwartz space on G, we define the partial Radon

transform of f to be

Rωf(V, t) =

∫

kerω

f(V, tZω + Z ′)dσ(Z ′).

Lemma 2.1 For Schwartz functions f ∈ S(G), g ∈ S(Gω), we have the following formulas:

(1) Sub-Laplacians on G and Gω:

Rω(Ṽjf)(V, t) = V ω
j (Rωf)(V, t), Rω(Lf) = Lω(Rωf),

where V ω
j = ∂

∂vj
+ 1

2ω([V, Vj ])
∂
∂t

and Lω = −
2n∑
j=1

(V ω
j )2 are respectively the left-invariant vector

field and sub-Laplacian on Gω.

(2) Sub-Laplacian and twisted Laplacian on Gω:

F1(V
ω
j g)(V, λ) = V λ,ω

j (F1g)(V, λ), F1(L
ωg) = Lλ,ω(F1g),

where F1 means the inverse Fourier transform on the one dimensional centre, and V λ,ω
j =

∂
∂vj

− iλ
2 ω([V, Vj ]) and Lλ,ω = −

2n∑
j=1

(V λ,ω
j )2 are respectively the λ-twisted left-invariant vector

field and λ-twisted Laplacian on Gω.

(3) Sub-Laplacian and λω-twisted Laplacian on G:

Fz(Ṽjf)(V, λω) = V λω
j (Fzf)(V, λω), Fz(Lf) = Lλω(Fzf),

where Fz means the inverse Fourier transform on the centre, and V λω
j = ∂

∂vj
− iλ

2 ω([V, Vj ]) and

Lλω = −
2n∑
j=1

(V λω
j )2 are respectively the λω-twisted left-invariant vector field and λω-twisted

Laplacian on G.

Remark 2.1 Lemma 2.1 tells us that the λω-twisted Laplacian on G is nothing but the

λ-twisted Laplacian on Gω . This gives the idea how to get the spectral projection of the twisted

Laplacian on G.

Observing the non-degeneracy property (2.1) of skew-symmetric bilinear function Bω, we can

use an invertible linear transform Aω to change the bilinear function to the standard symplectic

form

(
0 In

−I
n 0

)
. In this new coordinates, denoted e.g. by {yj}

2n
j=1, the λ-twisted Laplacian on

Gω is then

Lλ,ω = −

2n∑

j=1

∂2

∂y2j
+

λ2

4

2n∑

j=1

y2j + iλ

n∑

j=1

(
yj

∂

∂yj+n

− yj+n

∂

∂yj

)
,

which is just the usual λ-twisted Laplacian Lλ on the Heisenberg group Hn, and actually we

have educed an isomorphism (non-isometric) between Gω and Hn. Then we get the spectral

decomposition of the λω-twisted Laplacian of G in the following proposition.

Proposition 2.1 For g ∈ S(v), ω ∈ S, take gω = g◦(Aω)
−1 and denote by Πλω

k the spectral

projector of the λω-twisted Laplacian on G, then

g = (2π)−nλn
∑

k

Πλω
k g, Πλω

k g = (Λλ
kgω) ◦Aω, (2.2)
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where Λλ
k is the spectral projection of the λ-twisted Laplacian Lλ on the Heisenberg group H

n,

given by the twisted convolution

Λλ
kg(z) = g ×λ ϕ

|λ|
k (z)

for z ∈ Cn, and the special Hermite function

ϕλ
k(z) = Ln−1

k

(λ
2
|z|2

)
e−

λ
4 |z|2 ,

where Ln−1
k is the Laguerre polynomial of type n− 1 and degree k.

Now, we use the spectral projector Πλω
k to give the restriction operators associated to the

joint functional calculus of L and − ∆z. From the inverse Fourier transform formula on the

central variables, polar coordinates transformation, and spectral expansion (2.2), we can get

the following expansion for f ∈ S(G),

f(V, Z) ∼

∫

Rd

e−iη(Z)Fzf(V, η)dη

=

∫∫

Sd−1×R+

e−iλω(Z)Fzf(V, λω)λ
d−1dσ(ω)dλ

∼

∫ ∞

0

( ∞∑

k=0

λn+d−1

∫

Sd−1

e−iλω(Z)(Πλω
k ◦ Fz)f(V, λω) dσ(ω)

)
dλ. (2.3)

Since the k-term in the sum is the joint eigenfunction4 of L and −∆z, associated to the spectrum

ray Rk = ((2k + n)λ, λ2), we can naturally define the functional calculus operator associated

to a function m by

m(L,−∆z)f(V, Z)

∼

∫ ∞

0

( ∞∑

k=0

m((2k + n)λ, λ2)λn+d−1

∫

Sd−1

e−iλω(Z)(Πλω
k ◦ Fz)f(V, λω) dσ(ω)

)
dλ, (2.4)

given a “proper”m such that m
(
(2k+n)λ, λ2

)
is differentiable, positive, and strictly monotonic

on R+ with regards to λ. Generally, given a spectral decomposition of operator D,

D =

∫

R+

λdEλ,

the associated restriction operator (spectral projector) can be defined as

PD
λ = lim

ǫ→0

1

ǫ
χ(λ−ǫ,λ+ǫ)(D)

= lim
ǫ→0

1

ǫ

∫ λ+ǫ

λ−ǫ

dEµ,

and similarly, the restriction operator associated to m(D) can be defined as

lim
ǫ→0

1

ǫ
χ(λ−ǫ,λ+ǫ)(m(D)).

4See for L from Lemma 2.1(3) and Proposition 2.1 and it is obvious for −∆z.
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Now, we will care the operator m(L,−∆z) on G. ∀µ ∈ R
+, µk denotes the solution λ of the

equation m((2k + n)λ, λ2) = µ and µ′
k denotes the derivative relative to µ, and we will write

simply Pm
µ to mean the restriction operator P

m(L,−∆z)
µ , whose formula is given in the following

theorem.

Theorem 2.1 ∀f ∈ S(G), f have the following expansion:

f =

∫

R+

Pm
µ fdµ

under the spectral decomposition

m(L,−∆z) ◦ P
m
µ = µ Pm

µ ,

where Pm
µ is the restriction operator defined by

Pm
µ f(V, Z) ∼

∞∑

k=0

µn+d−1
k µ′

k

∫

Sd−1

e−iµkω(Z)(Πµkω
k ◦ Fz)f(V, µkω) dσ(ω). (2.5)

Proof By changing variables from (2.3) or (2.4),

f(V, Z) ∼

∫ ∞

0

( ∞∑

k=0

µn+d−1
k

∫

Sd−1

e−iµkω(Z)(Πµkω
k ◦ Fz)f(V, µkω) dσ(ω)

)
dµk.

From Lemma 2.1 and Proposition 2.1, we have, after taking

fµkω(V, Z) = e−iµkω(Z)(Πµkω
k ◦ Fz)(V, µkω),

that

Lfµkω = F−1
z

LλωFzfµkω = (2k + n)µk fµkω, (−∆z)fµkω = µ2
k fµkω,

and

m(L,−∆z)fµkω = m((2k + n)µk, µ
2
k)fµkω = µfµkω,

which finally gives

m(L,−∆z)P
m
µ f = µ Pm

µ f.

2.2 Mix-norm boundedness of the restriction operator Pm

µ

In [4], V. Casarino and P. Ciatti have given the mix-norm boundedness of the restriction

operator PL
µ associated to the sub-Laplacian L. We now use the similar method to get the mix-

norm boundedness of the restriction operators associated to a class of operators m(L,−∆z). In

this subsection, we will state our main theorems of this paper in detail.

First give some notations. We define a function φ on
[
0, 12

]
by

φ(s) =





−
s

2
, s ≤ s∗,

ns−
1

2
, s ≥ s∗,

(2.6)
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where s∗ = 1
2n+1 , from which we see that both φ and s∗ are related to dimension n. Given

α, β ∈ R+, γ ∈ R∗, 1 ≤ p ≤ 2 ≤ q ≤ ∞, 1 ≤ r ≤ 2 d+1
d+3 , we define four numbers relative to

(α, β, γ, p, q, r, n, d):

A =
1

2βγ

[
n
(1
p
−

1

q

)
+ d

(1
r
−

1

r′

)]
+

1

γ

( 1

α
−

1

2β

)[
φ
(1
p
−

1

2

)
+ φ

(1
2
−

1

q

)
+ 1

]
− 1,

B =
1

αγ

[
n
(1
p
−

1

q

)
+ d

(1
r
−

1

r′

)]
− 1,

C =
1

2β

[
n
(1
p
−

1

q

)
+ d

(1
r
−

1

r′

)]
+
( 1

α
−

1

2β

)[
φ
(1
p
−

1

2

)
+ φ

(1
2
−

1

q

)
+ 1

]
− 1,

D =
1

α

[
n
(1
p
−

1

q

)
+ d

(1
r
−

1

r′

)]
− 1.

(2.7)

Now, we can state the boundedness theorems of restriction operators Pm
µ .

Theorem 2.2 Given α, β > 0, γ 6= 0, 1 ≤ p ≤ 2 ≤ q ≤ ∞, 1 ≤ r ≤ 2 d+1
d+3 , (d, p, q) 6=

(1, 2, 2) and m(a, b) = (aα + bβ)γ , we have for all f ∈ S(G),

‖Pm
µ f‖Lr′

z L
q
v
≤ Cm

µ ‖f‖Lr
zL

p
v

with

Cm
µ .α,β,γ,p,q,r,n,d

{
µB, µ

1
γ
( 1
α
− 1

2β ) ≤ 1,

µA, µ
1
γ
( 1
α
− 1

2β ) > 1.
(2.8)

Remark 2.2 (1) The theorem can be described in several cases relative to parameters
α
2β , γ, and also µ, which can be seen from the following table:

γ
α

2β
µ sharp exponent of Cm

µ

> 0 < 1 > 1 A
≤ 1 B

> 1 > 1 B
≤ 1 A

= 1 A = B
< 0 < 1 > 1 B

≤ 1 A
> 1 > 1 A

≤ 1 B
= 1 A = B

(2) The theorem contains the inhomogeneous operator — full Laplacian ∆G, when α = β =

γ = 1 (also homogeneous ones like L2 −∆z).

(3) The mix-norm bound covers the uniform-norm bound when p = q′ = r, especially that

on H-type groups, when the exponent function is degenerated to an easy form. Actually, from

the Clifford algebra of H-type groups, we have a dimension relation d < 2n (see [6]), which tells

p = q′ = r ≤ 2 d+1
d+3 < 2 2n+1

2n+3 , a critical point for A and B, more precisely, 1
p
− 1

2 > s∗, see (2.6),

and

A =
1

γ

(n
α
+

d

2β

)(2
p
− 1

)
− 1, B =

n+ d

αγ

(2
p
− 1

)
− 1,

which coincides with the result of [8], just like the case for the sub-Laplacian, when the result of

[4] coincides with that of [9] on H-type groups although slightly different arguments are applied.
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Theorem 2.3 Given α, β > 0, γ 6= 0, 1 ≤ p ≤ 2 ≤ q ≤ ∞, 1 ≤ r ≤ 2 d+1
d+3 , (d, p, q) 6=

(1, 2, 2) and m(a, b) = (1 + aα + bβ)γ , we have for all f ∈ S(G),

‖Pm
µ f‖Lr′

z L
q
v
≤ Cm

µ ‖f‖Lr
zL

p
v

with

Cm
µ .α,β,γ,p,q,r,n,d





µB, µ → ∞signγ , µ
1
γ
( 1
α
− 1

2β ) ≤ 1,

µA, µ → ∞signγ , µ
1
γ
( 1
α
− 1

2β ) > 1,

|1− µ|D, µ → e
signγ
∞ , |1− µ|

1
α
− 1

2β ≤ 1,

|1− µ|C , µ → e
signγ
∞ , |1− µ|

1
α
− 1

2β > 1.

(2.9)

Remark 2.3 (1) We have a similar table as last theorem (we give the case γ < 0, which

we care more about):
α

2β
µ sharp exponent of Cm

µ

< 1 → 0+ A
→ 1− D

> 1 → 0+ B
→ 1− C

= 1 → 0+ A = B
→ 1− C = D

(2) The new approximating situation µ → 1± is similar, as we get a similar control of µk

and µ′
k. Our result includes many useful operators like the resolvent (I + L)−1 or (I +∆G)

−1.

3 Proof of the Main Results

The following important sharp estimate due to H. Koch and F. Ricci [7], about the Lp → L2

bound of the spectral projector of twisted Laplacian for 1 ≤ p ≤ 2, is critical in our proof,

‖Λk‖Lp(Cn)→L2(Cn) .p,n (2k + n)φ(
1
p
− 1

2 ). (3.1)

3.1 Series bound for general m

Lemma 3.1 Let Λλ
k , given in Proposition 2.1, be the spectral projection operator on the

Heisenberg group Hn. Then for 1 ≤ p ≤ 2 ≤ q ≤ ∞, we have

‖Λλ
k‖Lp(Cn)→Lq(Cn) .p,q,n λn( 1

p
− 1

q
−1)(2k + n)φ(

1
p
− 1

2 )+φ( 1
2−

1
q
). (3.2)

Proof From duality and the projection property of Λk = Λ1
k, we see Λk = Λ2

k = Λ∗
kΛk,

and the sharp Lp → L2 estimate (3.1) for 1 ≤ p ≤ 2 gives the following Lp → Lq estimate for

general exponents 1 ≤ p ≤ 2 ≤ q ≤ ∞,

‖Λ1
k‖Lp(Cn)→Lq(Cn) . (2k + n)φ(

1
p
− 1

2 )+φ( 1
2−

1
q
).
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By the definition of Λλ
k and changing variables, the twisted convolution

Λλ
kg(z) =

∫

Cn

g(z − w)ϕλ
k (w)e

i λ2 Im z·wdw

= λ−n

∫

Cn

g[λ− 1
2 (λ

1
2 z − w)]ϕk(w)e

i
2 Im(λ

1
2 z)·wdw

= λ−nδ
λ

1
2
(δ

λ
−

1
2
g ×1 ϕ

1
k)(z)

= λ−nδ
λ

1
2
(Λ1

k(δλ−
1
2
g))(z),

where we use dilation δλg(·) = g(λ ·). So we have

‖Λλ
kg‖Lq(Cn) . λ−n(1+ 1

q
)‖Λ1

k‖Lp(Cn)→Lq(Cn)‖δ
λ
−

1
2
g‖Lp(Cn)

. λn( 1
p
− 1

q
−1)‖Λ1

k‖Lp(Cn)→Lq(Cn)‖g‖Lp(Cn)

. λn( 1
p
− 1

q
−1)(2k + n)φ(

1
p
− 1

2 )+φ( 1
2−

1
q
)‖g‖Lp(Cn),

and the hidden ignored constant is dependent on p, q, n from (3.1). Therefore, we get the

expected bound of Λλ
k .

Theorem 3.1 Given 1 ≤ p ≤ 2 ≤ q ≤ ∞, 1 ≤ r ≤ 2 d+1
d+3 and “proper” m(·, ·), then for all

f ∈ S(G), we have

‖Pm
µ f‖Lr′

z L
q
v
≤ Cm

µ ‖f‖Lr
zL

p
v

with

Cm
µ .p,q,r,n,d

∞∑

k=0

µ′
k µ

n( 1
p
− 1

q
)+d( 1

r
− 1

r′
)−1

k (2k + n)φ(
1
p
− 1

2 )+φ( 1
2−

1
q
). (3.3)

If m(·, ·) is good enough, the sharp constant is finite.

Proof Using the relation between the spectral projection of the λω-twisted Laplacian on

G and that on Heisenberg group Hn in Proposition 2.1, we have

‖Πλω
k ‖Lp→Lq = |Aω|

1
p
− 1

q ‖Λλ
k‖Lp→Lq

with |Aω| = |Bω|
− 1

2 . As Bω is non-degenerate for all ω and the function |Bω| is continuous

with regards to ω on the unit sphere, we can assume |Aω | ∼ 1, so from (3.2) in last Lemma 3.1,

we have

‖Πλω
k ‖Lp→Lq . λn( 1

p
− 1

q
−1)(2k + n)φ(

1
p
− 1

2 )+φ( 1
2−

1
q
). (3.4)

Denote by5 〈·, ·〉 the dual action of two functions respectively in two dual Lp and Lp′

spaces or

mix-norm spaces on G, i.e.,

〈f, g〉 =

∫∫

G

fgdV dZ.

By the formula (2.5) of the restriction operator Pm
µ in Theorem 2.1, changing integral

orders, and then using orderly the Höder inequality, Lp → Lq bound (3.4) of Πµkω
k , Cauchy-

Schwartz inequality, Minkowski inequality (glancing at the exponent p, q′ ≤ 2), and finally the

5In abuse of notation.
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Tomas-Stein theorem, we get for any f, g ∈ S(G),

∣∣∣〈Pm
µ f, g〉

∣∣∣ .
∞∑

k=0

µ′
kµ

n+d−1
k

∫

Sd−1

|〈(Πµkω
k ◦ Fz)f(V, µkω), g(V, Z)eiµkω(Z)〉|dσ(ω)

.

∞∑

k=0

µ′
kµ

n+d−1
k

∫

Sd−1

‖(Πµkω
k ◦ Fz)f(V, µkω)‖Lq

v
‖Fzg(V, µkω)‖Lq′

v
dσ(ω)

.

∞∑

k=0

µ′
kµ

n+d−1
k ‖Πµkω

k ‖Lp→Lq‖Fzf(V, µkω)‖Lp
vL2

ω
‖Fzg(V, µkω)‖Lq′

v L2
ω

.

∞∑

k=0

µ′
kµ

n+d−1
k ‖Πµkω

k ‖Lp→Lq‖µ−d
k f(V, µ−1

k Z)‖Lr
zL

p
v
‖µ−d

k g(V, µ−1
k Z)‖

Lr
zL

q′

v

.

∞∑

k=0

µ′
kµ

n+d(1− 2
r′

)−1

k ‖Πµkω
k ‖Lp→Lq‖f‖Lr

zL
p
v
‖g‖

Lr
zL

q′

v

.

∞∑

k=0

µ′
kµ

n( 1
p
− 1

q
)+d( 1

r
− 1

r′
)−1

k (2k + n)φ(
1
p
− 1

2 )+φ( 1
2−

1
q
)‖f‖Lr

zL
p
v
‖g‖

Lr
zL

q′

v
.

By duality, we have proved the bound (3.3) in the theorem.

3.2 µ-dependent bound for two special classes of m

Now, with the series bound control (3.3) associated to general proper functional calculus in

Theorem 3.1, we are going to get more sophisticated µ-dependent control for two special cases

of functionals (Lα+(−∆z)
β)γ and (1+Lα+(−∆z)

β)γ with α, β > 0, γ 6= 0. In short, we come

to prove our main results: Theorems 2.2–2.3.

Proof of Theorem 2.2 For Theorem 2.2, we consider operators (Lα +(−∆z)
β)γ , associ-

ated to

m(a, b) = (aα + bβ)γ .

Then we have the following easy estimates for µk, the solution λ of equation ((2k+n)λ)α+λ2β =

µ
1
γ ,

{
µk < min{µ

1
2βγ , (2k + n)−1µ

1
αγ },

|µ′
k| ∼α,β,γ µ−1µk.

(3.5)

So from (3.3) in Theorem 3.1, we have

Cm
µ .

∞∑

k=0

µ−1 µ
n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)

k (2k + n)φ(
1
p
− 1

2 )+φ( 1
2−

1
q
)

.
( ∑

2k+n≤µ
1
γ

( 1
α

−
1
2β

)

+
∑

2k+n≥µ
1
γ

( 1
α

−
1
2β

)

)
· · ·

= I1 + I2

= I. (3.6)

We consider in two cases6.
6The two cases can also be divided into several more detailed cases, see table in first term of the remark

following Theorem 2.2.
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Case 1 When µ
1
γ
( 1
α
− 1

2β ) ≤ 1.

In this case, the first term in (3.6) can be discarded, so after inserting the estimate (3.5),

we have

I = I2

= µ−1+ 1
αγ

[n( 1
p
− 1

q
)+d( 1

r
− 1

r′
)]

×
∑

2k+n≥µ
1
γ

( 1
α

−
1
2β

)

(2k + n)φ(
1
p
− 1

2 )+φ( 1
2−

1
q
)−[n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]

. µ
1

αγ
[n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]−1

= µB .

Actually, in order to derive the last inequality, it suffices to check the exponent of the power

series. First, we denote7 p∗ = 2 2n+1
2n+3 , and the exponent

ν = φ
(1
p
−

1

2

)
+ φ

(1
2
−

1

q

)
−
[
n
(1
p
−

1

q

)
+ d

(1
r
−

1

r′

)]
.

Using 1 ≤ r ≤ 2 d+1
d+3 , we check it in four cases corresponding to the piecewise function φ in

(2.6):

(a) p ≤ p∗, q ≥ p′∗,

ν = −1− d
(
1
r
− 1

r′

)
≤ −1− 2d

d+1 ≤ −2 < −1.

(b) p ≤ p∗, q ≤ p′∗,

ν = −
(
n+ 1

2

)(
1
2 − 1

q

)
− 1

2 − d
(
1
r
− 1

r′

)
≤ − 1

2 − 2d
d+1 ≤ − 3

2 < −1.

(c) p ≥ p∗, q ≥ p′∗,

this case is equivalent to item (b).

(d) p ≥ p∗, q ≤ p′∗,

ν = −
(
n+ 1

2

)(
1
p
− 1

q

)
− d

(
1
r
− 1

r′

)
≤ −

(
n+ 1

2

)(
1
p
− 1

q

)
− 2d

d+1 ≤ −1, and ν < −1 unless

d = 1, r = 1, p = q = 2, which is just the bad endpoint case on the Heisenberg group.

Case 2 When µ
1
γ
( 1
α
− 1

2β ) > 1.

In this case, we can assume µ
1
γ
( 1
α
− 1

2β ) > n and need to estimate both of the two terms in

(3.6). After inserting the estimate (3.5), we have

I1 = µ−1+ 1
2βγ

[n( 1
p
− 1

q
)+d( 1

r
− 1

r′
)]

∑

2k+n≤µ
1
γ

( 1
α

−
1
2β

)

(2k + n)φ(
1
p
− 1

2 )+φ( 1
2−

1
q
)

. µ
1

2βγ
[n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]+ 1

γ
( 1
α
− 1

2β )[φ( 1
p
− 1

2 )+φ( 1
2−

1
q
)+1]−1

= µA

I2 = µ−1+ 1
αγ

[n( 1
p
− 1

q
)+d( 1

r
− 1

r′
)]

×
∑

2k+n≥µ
1
γ

( 1
α

−
1
2β

)

(2k + n)φ(
1
p
− 1

2 )+φ( 1
2−

1
q
)−[n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]

. µ
1

αγ
[n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]+ 1

γ
( 1
α
− 1

2β ){φ( 1
p
− 1

2 )+φ( 1
2−

1
q
)−[n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]+1}−1

(checking the convergence of the series as before in Case 1)

= µA.

7p∗ is a critical point as 1
p∗

− 1
2
= s∗.
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Here, we need to check the exponent of the series for I1. We denote the exponent by

ν1 = φ
(1
p
−

1

2

)
+ φ

(1
2
−

1

q

)
,

then ν1 > −1, as the worst case is that p → p∗ and q → p′∗, then

ν1 = −s∗ > −1.

Then from the formulas of the exponents in (2.7)–(2.8) and hence Theorem 2.2 is proved.

Proof of Theorem 2.3 For Theorem 2.3, we consider operators (1 + Lα + (−∆z)
β)γ ,

associated to

m(a, b) = (1 + aα + bβ)γ .

We may assume γ < 0, µ ∈ (0, 1) and µk is the solution of equation 1+
(
(2k+n)λ

)α
+λ2β = µ

1
γ ,

which is easily seen to be strictly decreasing relative to µ. We naturally consider two boundary

cases {
µ → 0+, µk → ∞,
µ → 1−, µk → 0 + .

First we have similar bound µk ≤ min{(µ
1
γ − 1)

1
2β , (2k + n)−1(µ

1
γ − 1)

1
α }, or given in specific

cases,

µk .γ

{
min{µ

1
2βγ , (2k + n)−1µ

1
αγ }, µ → 0+,

min{(1− µ)
1
2β , (2k + n)−1(1− µ)

1
α }, µ → 1− .

(3.7)

By the decreasing of µk corresponding to not only µ but also k, we also have

|µ′
k| ∽

{
µ−1µk, µ → 0+,
(1− µ)−1µk, µ → 1− .

(3.8)

From the last two estimates of {µk, µ
′
k}, which is similar to that in the proof of Theorem 2.2, we

can repeat the proof there, and so similar is the form of the conclusions in two main theorems.

For case µ → 0+, the estimate of {µk, µ
′
k} is absolutely the same as that in Theorem 2.2, so

is the proof process. For case µ → 1−, the process is similar. By (3.3) in Theorem 3.1 and

(3.7)–(3.8), we have

Cm
µ .

∞∑

k=0

(1− µ)−1µ
n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)

k (2k + n)φ(
1
p
− 1

2 )+φ( 1
2−

1
q
)

.
( ∑

2k+n≤(1−µ)
1
α

−
1
2β

+
∑

2k+n≥(1−µ)
1
α

−
1
2β

)
· · ·

= I1 + I2

= I. (3.9)

Again we discussed it in two cases.

Case 1 When (1− µ)
1
α
− 1

2β ≤ 1.
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Still the first term in (3.9) can be omitted, then

I = I2

= (1− µ)−1+ 1
α
[n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]

×
∑

2k+n≥(1−µ)
1
α

−
1
2β

(2k + n)φ(
1
p
− 1

2 )+φ( 1
2−

1
q
)−[n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]

. (1− µ)
1
α
[n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]−1 (checking the convergence of the series)

= (1− µ)D.

The exponent of the series is the same as that in the proof of Theorem 2.2, i.e., it equals ν and

< −1, wiping off the bad endpoint in the Heisenberg case.

Case 2 When (1− µ)
1
α
− 1

2β > 1.

There are also two terms to estimate.

I1 = (1− µ)−1+ 1
2β [n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]

∑

2k+n≤(1−µ)
1
α

−
1
2β

(2k + n)φ(
1
p
− 1

2 )+φ( 1
2−

1
q
)

. (1− µ)−1+ 1
2β [n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]+( 1

α
− 1

2β )[φ( 1
p
− 1

2 )+φ( 1
2−

1
q
)+1]

= (1− µ)C ,

I2 = (1− µ)−1+ 1
α
[n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]

×
∑

2k+n≥(1−µ)
1
α

−
1
2β

(2k + n)φ(
1
p
− 1

2 )+φ( 1
2−

1
q
)−[n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]

(checking the convergence of the series as before)

. (1− µ)
1
α
[n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]+( 1

α
− 1

2β ){φ( 1
p
− 1

2 )+φ( 1
2−

1
q
)−[n( 1

p
− 1

q
)+d( 1

r
− 1

r′
)]+1}−1

= (1− µ)C .

Then from (2.7) and (2.9), therefore, Theorem 2.3 is proved.
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