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Abstract Let Pr denote an almost prime with at most r prime factors, counted according

to multiplicity. In the present paper, it is proved that for any sufficiently large even integer

n, the equation

n = x
3
+ p

3

1 + p
3

2 + p
3

3 + p
3

4 + p
3

5 + p
4

6 + p
4

7

has solutions in primes pi with x being a P6. This result constitutes a refinement upon

that of Hooley C.
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1 Introduction

Waring problem for sums of mixed type concerns the representation of a natural number n

as the form

n = xk1
1 + · · ·+ xks

s , n > s, (1.1)

where n, k1, k2, · · · , ks are natural integers satisfying 2 ≤ k1 ≤ k2 ≤ · · · ≤ ks. Not very much

is known about results of this kind. For historical references, the reader should consult P12 of

LeVeque’s reviews in number theory and the bibliography in [11].

The circle method of Hardy and Littlewood provides a technique for problems of this sort,

but one has to overcome various difficulties not experienced in the pure waring problem (1.1)

with k1 = k2 = · · · = ks. In particular, the choice of the relevant parameters in the definition

of major and minor arcs tends to become complicated if a deeper representation problem (1.1)

is under consideration.

Hooley [8] established an asymptotic formula for the number of representations of a natural

number n as the sum of six cubes and two biquadrates of a natural number, the condition being

that the Riemann hypothesis is true for a certain Hasse-Weil L-function.

In view of Hooley’s result it is reasonable to propose the conjecture that for every sufficiently

large even integer n the equation

n = p31 + p32 + p33 + p34 + p35 + p36 + p47 + p48
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is solvable. But this conjecture is perhaps out of the grasp of modern number theory techniques.

However, Motivated by [2–4], the Hardy-Littlewood method and the sieve theory enable us to

obtain the following approximation to it.

Theorem 1.1 For any sufficiently large even integer n, let ν(n) be the number of solutions

of the equation

n = x3 + p31 + p32 + p33 + p34 + p35 + p46 + p47 (1.2)

with x being an almost prime P6 and primes pi. Then we have

ν(n) ≫ n
85
72

log8 n
.

2 Notation and Some Preliminary Lemmas

In this paper, ε ∈ (0, 10−10) and n denotes a sufficiently large even integer. The constants

≪-symbol and O-term depend at most on ε. For positive A and B, by A ≍ B we mean

that A ≪ B and B ≪ A, and by x ∼ X we denote X < x ≤ 2X . The letter p, with or

without subscript, is reserved for a prime number. We denote by (m, k) the greatest common

divisor of m and k. As usual, µ(m) and φ(m) denote Möbius function and Euler’s function

respectively. By τ(m) we denote the divisor function, and by a(d) we denote the arithmetical

function bounded above by τ(m). We use e(α) to denote e2πiα and eq(α) = e
(

α
q

)

. We denote

by
∑

x(q)

and
∑

x(q)∗

sums with x running over a complete system and a reduced system of residues

modulo q respectively. We always denote by χ a Dirichlet character (mod q), and by χ0 the

principal Dirichlet characters (mod q). Let

C = 1010, Q0 = log20C n, Q1 = n
11
48+9ε, Q2 = n

1
2 ,

D = n
1
36−14ε, z = D

1
3 , X1 = 0.5n

1
3 , X2 = 0.5n

5
18 , Y = 0.5n

25
144 ,

Mr = {m | m ∼ X1, m = p1p2 · · · pr, z ≤ p1 ≤ · · · ≤ pr},
Nr = {m | m ∼ X1, m = p1p2 · · · pr−1,

z ≤ p1 ≤ · · · ≤ pr−1, p1 · · · pr−2p
2
r−1 ≤ 2X1} (7 ≤ r ≤ 36),

S∗
k(q, a) =

∑

r(q)∗

eq(ar
k), Sk(q, a) =

∑

r(q)

eq(ar
k),

Fi(α) =
∑

n∼Xi

e(αn3), fi(α) =
∑

p∼Xi

(log p)e(αp3)ui(λ) =

∫ 2Xi

Xi

e(λu3)du,

G(α) =
∑

n∼Y

e(αn4), g(α) =
∑

p∼Y

(log p)e(αp4), v(λ) =

∫ 2Y

Y

e(λu4)du,

f3,r(α) =
∑

n∈Nr
np∼X1

e(α(np)3)
( log p

log
(X1

n

)

)

,

Bd(q, n) =
∑

a(q)∗

S3(q, ad
3)S∗5

3 (q, a)S∗2
4 (q, a)eq(−an),

Ad(q, n) =
Bd(q, n)

qφ7(q)
, A(q, n) = A1(q, n), Sd(n) =

∞
∑

q=1

Ad(q, n),
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S(n) = S1(n), J (n) =

∫ ∞

−∞

u3
1(λ)u

3
2(λ)v

2(λ)e(−λn)dλ.

Lemma 2.1 For (q, a) = 1, we have

(i) Sj(q, a) ≤ q1−
1
j ; (ii) S∗

j (q, a) ≪ q
1
2+ε.

In particular, for (p, a) = 1, we have

(iii) |Sj(p, a)| ≤ ((j, p− 1)− 1)p
1
2 ;

(iv) |S∗
j (p, a)| ≤ ((j, p− 1)− 1)p

1
2 + 1;

(v) S∗
j (p

l, a) = 0 for l ≥ γ(p),

where

γ(p) =

{

θ + 2, if pθ‖j, p 6= 2 or p = 2, θ = 0,

θ + 3, if pθ‖j, p = 2, θ > 0.

Proof For (i) and (iii)–(iv), see Theorem 4.2 and Lemma 4.3 in [11], respectively. For (ii),

see Chapter VI, Problem 14 in [13]. For (v), see Lemma 8.3 in [7].

Lemma 2.2 We have

(i)

∫ 1

0

|F1(α)F
2
2 (α)|2dα ≪ n

8
9+ε,

(ii)

∫ 1

0

|f1(α)f2
2 (α)|2dα ≪ n

8
9+ε.

Proof This is the theorem in Vaughan [10] and the inequality (ii) follows from (i) by

considering the number of solutions of the underlying Diophantine equations.

Lemma 2.3 We have

(i)

∫ 1

0

|F1(α)F2(α)G
2(α)|2dα ≪ n

23
24+ε,

(ii)

∫ 1

0

|f1(α)f2(α)g2(α)|2dα ≪ n
23
24+ε.

Proof The inequality (i) follows easily from Theorem 4 in [1], and the inequality (ii) follows

from (i) by considering the number of solutions of the underlying Diophantine equations.

Lemma 2.4 We have

(i)

∫ 1

0

|F1(α)F
3
2 (α)G

2(α)|2dα ≪ n
73
36 ,

(ii)

∫ 1

0

|f1(α)f3
2 (α)g

2(α)|2dα ≪ n
73
36 (log n)12.

Proof For (q, a) = 1, put

N =
⋃

1≤q≤n
1
12

q
⋃

a=1
(a,q)=1

(a

q
− 1

100qn
3
4

,
a

q
+

1

100qn
3
4

]

,

N0 =
(

− 1

10n
3
4

, 1− 1

10n
3
4

]

\ N .

Then we have

∫ 1

0

|F1(α)F
3
2 (α)G

2(α)|2dα =

∫ 1− 1
10n

− 3
4

− 1
10n

− 3
4

|F1(α)F
3
2 (α)G

2(α)|2dα
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=
(

∫

N

+

∫

N0

)

|F1(α)F
3
2 (α)G

2(α)|2dα. (2.1)

For α ∈ N0, by Weyl’s inequality (see [11, Lemma 2.4]), we have

F2(α) ≪ n
37
144+ε,

from which and Lemma 2.3 (i), we get

∫

N0

|F1(α)F
3
2 (α)G

2(α)|2dα ≪ n
37
36+4ε

∫ 1

0

|F1(α)F2(α)G
2(α)|2dα

≪ n
143
72 +5ε ≪ n

73
36 . (2.2)

For α = a
q
+ λ ∈ N , by Theorem 4.1 in [11] and Lemma 4.2 in [12], we have

F1(α) =
S3(q, a)

q
u1(λ) +O(q

1
2+ε) ≪ X1

q
1
3 (1 + |λ|n)

, (2.3)

F2(α) =
S3(q, a)

q
u2(λ) +O(q

1
2+ε) ≪ X2

q
1
3

, (2.4)

G(α) =
S4(q, a)

q
v(λ) +O(q

1
2+ε) ≪ Y

q
1
4

, (2.5)

where Lemma 2.1(i) and the bound

u1(λ) ≪
X1

1 + |λ|n
are used.

By (2.3)–(2.5), we get
∫

N

|F1(α)F
3
2 (α)G

2(α)|2dα

≪
∑

q≤n
1
12

q
∑

a=1
(q,a)=1

∫

|λ|≤n
− 3

4

X2
1X

6
2Y

4

q
11
3 (1 + n|λ|)2

dλ

=
∑

1≤q≤n
1
12

q
∑

a=1
(q,a)=1

q−
11
3

∫

|λ|≤n
− 3

4

n
109
36

(1 + n|λ|)2 dλ

≪
∑

1≤q≤n
1
12

q−
8
3

(

∫ n−1

0

n
109
36 dλ+

∫ n
− 3

4

n−1

n
109
36

(nλ)2
dλ

)

≪ n
73
36 . (2.6)

Thus by (2.1)–(2.2) and (2.6), the inequality (i) is proved. The inequality (ii) follows from (i)

by considering the number of solutions of the underlying Diophantine equations. Then Lemma

2.4 is established.

Lemma 2.5 For α = a
q
+ λ, let

h∗(α) =
∑

d≤D

a(d)

dq
S3(q, ad

3)u1(λ), (2.7)
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∆(α) = f1(α)−
S∗
3 (q, a)

φ(q)

∑

n∼X1

e(λn3), (2.8)

I =
⋃

q≤Q0

2q
⋃

a=−q

(q,a)=1

(a

q
− 1

qQ0
,
a

q
+

1

qQ0

]

. (2.9)

Then we have ∫

I

|h∗(α)∆(α)|2dα ≪ n
1
3 (log n)−100C .

Proof The proof is similar to that of Lemma 2.5 in [4].

Lemma 2.6 For i = 1, 2, let

f∗
i (α) = φ(q)

−1
S∗
3 (q, a)ui(λ). (2.10)

Then we have

(i)

∫

I

|f∗
1 (α)|2dα ≪ n− 1

3 (logn)21C ,

(ii)

∫

I

|h∗(α)|2dα ≪ n− 1
3 (logn)27C ,

where h∗(α) and I are defined by (2.7) and (2.9), respectively.

Proof The proof is similar to that of Lemma 2.6 in [4].

For (a, q) = 1, 1 ≤ a ≤ q, let

M0(q, a) =
(a

q
− Q0

n
,
a

q
+

Q0

n

]

, M0 =
⋃

1≤q≤Q5
0

q
⋃

a=1
(a,q)=1

M0(q, a),

M(q, a) =
(a

q
− 1

qQ2
,
a

q
+

1

qQ2

]

, M =
⋃

1≤q≤Q5
0

q
⋃

a=1
(a,q)=1

M(q, a),

M1(q, a) =
(a

q
− 1

10qn
25
36+14ε

,
a

q
+

1

10qn
25
36+14ε

]

,

m1 =
⋃

Q5
0≤q≤Q1

q
⋃

a=1
(a,q)=1

M1(q, a), J0 =
(

− 1

Q2
, 1− 1

Q2

]

, m0 = M \M0,

m =
⋃

Q5
0<q≤Q1

q
⋃

a=1
(a,q)=1

M(q, a), m3 = m \m1, m2 = J0 \ (M ∪m).

Then we have the Farey dissection

J0 = M0 ∪m0 ∪m1 ∪m2 ∪m3. (2.11)

Lemma 2.7 For α = a
q
+ λ ∈ M0, let

g∗(α) = φ(q)−1
S∗
4 (q, a)v(λ).

Then for i = 1, 2 and 7 ≤ r ≤ 36 we have

fi(α) = f∗
i (α) +O(Xi exp(− log

1
3 n)), (2.12)
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g(α) = g∗(α) +O(Y exp(− log
1
3 n)), (2.13)

f3,r(α) =
crf

∗
1 (α)

logX1
+O(X1 exp(− log

1
3 n)), (2.14)

where f∗
i (α) is defined by (2.10), and

cr = (1 +O(ε))

∫ 35

r−1

dt1
t1

· · ·
∫ tr−4−1

3

dtr−3

tr−3

∫ tr−3−1

2

log(tr−2 − 1)dtr−2

tr−2
. (2.15)

Proof By some routine arrangements and summation by parts, formulae (2.12)–(2.13)

follow from Siegel-Walfisz theorem and prime number theorem. The detailed proof of (2.14) is

similar to that of Lemma 2.6 in [5], hence we omit it here.

Lemma 2.8 (see [3, Lemma 6]) Suppose that |a(d)| ≤ τ(d) and

h(α) =
∑

d≤D

a(d)
∑

X1
d

<l≤
2X1
d

e(αd3l3). (2.16)

Then for α = a
q
+ λ ∈ [0, 1], (q, a) = 1, q ≤ Q2, |λ| ≤ 1

qQ2
, we have

h(α) ≪ n
1
3+ε

q
1
3 (1 + n|λ|) 1

3

+ n
1
4+εD

1
4 .

3 Mean Value Theorems

In this section, we shall prove the mean value theorems for the proof of the theorem.

Proposition 3.1 Let

Jd(n) =
∑

(dl)3+p31+p32+p33+p34+p35+p46+p47=n

dl,p1,p4∼X1, p2,p3,p5∼X2, p6,p7∼Y

(log p1) · · · (log p7).

Then for |a(d)| ≤ τ(d), we have

∑

d≤D

a(d)cmdk

(

Jd(n)−
Sd(n)

d
J (n)

)

≪ n
85
72 (log n)−C .

Proof Let

K(α) = h(α)f2
1 (α)f

3
2 (α)g

2(α)e(−αn),

where h(α) is defined by (2.16). Then by the farey dissection (2.11), we get

∑

d≤D

a(d)cmdkJd(n)K(α)dα

=

∫

J0

=
(

∫

M0

+

∫

m0

+

∫

m1

+

∫

m2

)

K(α)dα. (3.1)

By Cauchy’s inequality, we have

∫ 1

0

∣

∣f2
1 (α)f

3
2 (α)g

2(α)
∣

∣ dα
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≪
(

∫ 1

0

∣

∣f1(α)f
2
2 (α)

∣

∣

2
dα

)
1
2
(

∫ 1

0

∣

∣f1(α)f2(α)g
2(α)

∣

∣

2
dα

)
1
2

≪ n
1
2 (

8
9+ε)n

1
2 (

23
24+ε) ≪ n

133
144+ε. (3.2)

For α ∈ m2, by Lemma 2.8 we get

h(α) ≪ n
37
144−2ε,

from which and (3.2), we have

∫

m2

K(α)dα ≪ max
α∈m2

|h(α)|
(

∫ 1

0

∣

∣f2
1 (α)f

3
2 (α)g

2(α)
∣

∣ dα
)

≪ n
85
72−ε. (3.3)

Similarly, Lemma 2.8 and (3.2) imply

∫

m3

K(α)dα ≪ max
α∈m3

|h(α)|
(

∫ 1

0

∣

∣f2
1 (α)f

3
2 (α)g

2(α)
∣

∣ dα
)

≪ n
85
72−ε. (3.4)

Write

a(d) =
∑

m≤D
2
3

k≤D
1
3

mk=d

cmdk, h(α) =
∑

d≤D

a(d)
∑

l∼
X1
d

e(α(dl)3).

Then by Theorem 4.1 in [11], for α ∈ m1, we have

h(α) = h∗(α) +O(DQ
1
2+ε

1 ) = h∗(α) +O(N
21
144 ), (3.5)

where h∗(α) is defined by (2.7). Let K1(α) = h∗(α)f2
1 (α)f

3
2 (α)g

2(α)e(−αn). Then from (3.2)

and (3.5), we get

∫

m1

K(α)dα =

∫

m1

K1(α)dα +O(n
85
72−ε). (3.6)

Let

I0 =
⋃

1≤q≤Q0

2q
⋃

a=−q

(q,a)=1

(a

q
− 1

n
11
12

,
a

q
+

1

n
11
12

]

, I1 = I \ I0,

where I is defined by (2.9). Then we have m1 ⊂ J0 ⊂ I. By the rational approximation theorem

of Dirichlet, we get

∫

m1

|K1(α)| dα ≤
∫

m1∩I0

|K1(α)|dα +

∫

m1∩I1

|K1(α)|dα. (3.7)

By (2.7), Lemma 2.1(i), the inequalities (q, d3) ≤ (q, d)3, τ(dl) ≤ τ(d)τ(l) and
∑

d≤x

τ(d)
d

≪

log2 x, we have

h∗(α) ≪
∑

d≤D

τ(d)

d
(q, d3)

1
3 q−

1
3 |u1(λ)|
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≪
∑

t|q
t≤D

τ(t)
(

∑

d≤D
t

τ(d)

d

)

q−
1
3 |u1(λ)|

≪ q−
1
3+ε|u1(λ)| log2 n. (3.8)

For α ∈ I1(q, a), we obtain

h∗(α) ≪ n
1
3+ε

1 + |λ|n ≪ n
1
4+ε. (3.9)

From (3.2) and (3.9), we get

∫

m1∩I1

|K1(α)|dα ≪ n
1
4+ε

∫ 1

0

∣

∣f2
1 (α)f

3
2 (α)g

2(α)
∣

∣ dα

≪ n
169
144+2ε ≪ n

85
72−ε. (3.10)

By Lemma 4.8 in [12], we have

∫

m1∩I0

|K1(α)|dα =

∫

m1∩I0

|h∗(α)∆(α)f1(α)f
3
2 (α)g

2(α)|dα

+

∫

m1∩I0

|h∗(α)f∗
1 (α)f1(α)f

3
2 (α)g

2(α)|dα

+O
(

∫

m1∩I0

|h∗(α)f1(α)f
3
2 (α)g

2(α)|dα
)

=: I1 + I2 +O(I3), (3.11)

where ∆(α), f∗
1 (α) are defined by (2.8) and (2.10) respectively.

By Cauchy’s inequality, Lemma 2.4(ii) and Lemma 2.5, we obtain

I1 ≪
(

∫

I0

|h∗(α)∆(α)|2dα
)

1
2
(

∫ 1

0

|f1(α)f3
2 (α)g

2(α)|2dα
)

1
2

≪ (n
1
3 log−100C n)

1
2 (n

73
36 (log n)12)

1
2 ≪ n

85
72L−10C . (3.12)

By (3.8), we have for α ∈ m1,

h∗(α) ≪ q−
1
3+ε|u1(λ)| log2 n ≪ Q

− 1
3+ε

0 n
1
3 log2 n ≪ n

1
3L−30C ,

from which, Cauchy’s inequality, Lemma 2.4(ii) and Lemma 2.6(i), we obtain

I2 ≪ n
1
3L−30C

(

∫

I0

|f∗
1 (α)|2dα

)
1
2
(

∫ 1

0

|f1(α)f3
2 (α)g

2(α)|2dα
)

1
2

≪ n
1
3L−30C(n

2
3−1L21C)

1
2 (n

73
36 (log n)12)

1
2

≪ n
85
72L−10C . (3.13)

By Cauchy’s inequality, Lemma 2.4(ii) and Lemma 2.6(ii), we obtain

I3 ≪
(

∫

I0

|h∗(α)|2dα
)

1
2
(

∫ 1

0

|f1(α)f3
2 (α)g

2(α)|2dα
)

1
2
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≪ (n− 1
3 log27C n)

1
2 (n

73
36 (logn)12)

1
2

≪ n
85
72L−10C . (3.14)

From (3.11)–(3.14), we get
∫

m1∩I0

|K1(α)|dα ≪ n
85
72L−10C . (3.15)

It follows from (3.6)–(3.7), (3.10) and (3.15) that
∫

m1

K(α)dα ≪ n
85
72L−10C . (3.16)

By arguments similar to but simpler than that leading to (3.16), we have
∫

m0

K(α)dα ≪ n
85
72L−10C . (3.17)

For α ∈ M0, let

K0(α) = h∗(α)f∗2
1 (α)f∗3

2 (α)g∗2(α)e(−αn). (3.18)

By Theorem 4.1 in [11], for α ∈ M0, we have

h(α) = h∗(α) +O(D(Q5
0)

1
2+ε) = h∗(α) +O(n

1
36−9ε),

from which and Lemma 2.7, we get

K(α) −K0(α) ≪ n
157
72 exp (− log

1
4 n). (3.19)

By (3.19), we have
∫

M0

K(α)dα =

∫

M0

K0(α)dα +O(n
85
72L−C). (3.20)

By the well-known standard endgame technique in the Hardy-Littlewood method, we obtain
∫

M0

K0(α)dα =
∑

m≤D
2
3

k≤D
1
3

cmdk
Smk(n)

mk
J (n) +O(n

85
72L−C), (3.21)

J (n) ≍ n
85
72 . (3.22)

From (3.1), (3.3), (3.16)–(3.17) and (3.20)–(3.22), Proposition 3.1 is proved.

By the same method, we obtain the following proposition.

Proposition 3.2 For 7 ≤ r ≤ 36, let

J
(r)
d (n) =

∑

(dl)3+(mp)3+p3
1
+p3

2
+p3

3
+p3

4
+p4

5
+p4

6
=n

dl,mp,p3∼X1,m∈Nr, ,p1,p2,p4∼X2,p5,p6∼Y

(log p1) · · · (log p6)
( log p

log(X1

n
)

)

.

Then for |cm| ≤ 1, |dk| ≤ 1, we have

∑

m≤D
2
3

k≤D
1
3

cmdk

(

J
(r)
mk(n)− cr

Smk(n)

mk logX1
J (n)

)

≪ n
85
72L−C ,

where cr is defined by (2.15).
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4 On the Function ω(d)

In order to prove our theorem, in this section, we consider the function ω(d) which is defined

by (4.9).

Lemma 4.1 Let K(q, n) and H(q, n) denote the number of solutions to the congruences

y3 +

4
∑

i=1

x3
i +

2
∑

j=1

y4j ≡ n (mod q), 1 ≤ y, xi, yj ≤ q, (yxiyj , q) = 1

and

x3 + y3 +
4

∑

i=1

x3
i +

2
∑

j=1

y4j ≡ n (mod q), 1 ≤ x, y, xi, yj ≤ q, (yxiyj, q) = 1

respectively. Then we have H(p, n) > K(p, n). Moveover,

H(p, n) = p7 +O
(

p6
)

, (4.1)

K(p, n) = p6 +O
(

p5
)

. (4.2)

Proof Let us consider the congruence

x3 + y3 +

4
∑

i=1

x3
i +

2
∑

j=1

y4j ≡ n (mod p), 1 ≤ x, y, xi, yj ≤ p− 1. (4.3)

Let H∗(p, n) denote the number of solutions to the congruence (4.3). Then we have H(p, n) =

H∗(p, n) +K(p, n). Therefore it suffices to prove H∗(p, n) > 0. We have

pH∗(p, n) =

p
∑

a=1

S∗6
3 (p, a)S∗2

4 (p, a)ep(−αn)

= (p− 1)8 + δp, (4.4)

where

δp =

p−1
∑

a=1

S∗6
3 (p, a)S∗2

4 (p, a)ep(−αn).

By Lemma 2.1(iv), we have

|δp| ≤ (p− 1) (2
√
p+ 1)

6
(3
√
p+ 1)

2
. (4.5)

It is easy to show that |δp| < (p − 1)8 for p > 13, hence we have H∗(p, n) > 0. On the other

hand, for p = 2, 3, 5, 7, 11, 13 it can be checked by hand that H∗(p, n) > 0.

By (4.4)–(4.5) we have

H∗(p, n) = p8 +O(p7),

and (4.1)–(4.2) follow from similar arguments.

Lemma 4.2 The series S(n) is convergent and S(n) > 0.

Proof The convergence of S(n) immediately follows from Lemma 2.1(i)–(ii). Note that

A(q, n) is multiplicative in q and by Lemma 2.1(v), we get

S(n) =
∏

p

(1 +A(p, n)). (4.6)
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From Lemma 2.1(iii)–(iv), for p > 11 we get

|A(p, n)| ≤ (p− 1)
√
p
(

2
√
p+ 1

)5 (
3
√
p+ 1

)2

p(p− 1)7
≤ 100

p2
.

Therefore we have

∏

p>11

((1 +A(p, n)) >
∏

p>11

(

1− 100

p2

)

> c > 0. (4.7)

It is easy to show that

1 +A(p, n) =
H(p, n)

(p− 1)7
. (4.8)

From Lemma 4.1 and (4.6)–(4.8), we get S(n) > 0. Hence Lemma 4.2 is proved.

In view of Lemma 4.2, for a natural number d, we may define

ω(d) =
Sd(n)

S(n)
.

Lemma 4.3 The function ω(d) is multiplicative and

0 ≤ ω(p) < p, ω(p) = 1 +O(p−1) (4.9)

for each prime p.

Proof Similarly to (4.6), we have

Sd(n) =
∏

p∤d

(1 +Ad(p, n))
∏

p|d

(1 +Ad(p, n)). (4.10)

By the facts that Sk(q, ad
k) = Sk(q, a) for (d, q) = 1, Ad(p, n) = Ap(p, n) for p | d and (4.6)–

(4.10), we get

ω(p) =
1 +Ap(p, n)

1 +A(p, n)
. (4.11)

It is easy to show that

1 +Ap(p, n) =
pK(p, n)

φ7(p)
. (4.12)

From (4.8), (4.11)–(4.12) we drive that

ω(p) =
pK(p, n)

H(p, n)
. (4.13)

By (4.13) and Lemma 4.1, the proof of Lemma 4.3 is completed.
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5 Proof of Theorem 1.1

In this section, f(s) and F (s) denote the classical functions in the linear sieve theory, γ

denotes Euler’s constant. Then by (8.2.8) and (8.2.9) in [6] we have

f(s) =
2eγ log(s− 1)

s
, 2 ≤ s ≤ 4; (5.1)

F (s) =
2eγ

s
, 1 ≤ s ≤ 3. (5.2)

In the proof of Theorem 1.1 we adopt the following notations:

P =
∏

2<p<z

p, log 2X = (log 2X1)
2(log 2X2)

3(log2 2Y ),

logX = (logX1)
2(logX2)

3(log2 Y )

and let λ±(d) denote Rosser’s weights of order D. Put

V (z) =
∏

p|P

(

1− ω(p)

p

)

.

Then by Lemma 4.3 and Merten’s prime number theorem we get

V (z) ≍ 1

logn
. (5.3)

Let ν(n) denote the number of solutions of the equation (1.2) with x being a P6. Then we

have

ν(n) ≥
∑

l3+p31+p32+p33+p34+p35+p46+p47=n

(l,P)=1,l,p1,p4∼X1
p2,p3,p5∼X2,p6,p7∼Y

1−
36
∑

r=7

∑

h3+p31+p32+p33+p34+p35+p46+p47=n

h∈Mr, p1,p4∼X1
p2,p3,p5∼X2,p6,p7∼Y

1

≥
∑

l3+p31+p32+p33+p34+p35+p46+p47=n

(l,P)=1,l,p1,p4∼X1
p2,p3,p5∼X2,p6,p7∼Y

1−
36
∑

r=7

∑

(mp)3+p31+p32+p33+p34+p35+p46+p47=n

m∈Mr, mp,p1,p4∼X1
p2,p3,p5∼X2,p6,p7∼Y

1

=: ν0(n)−
36
∑

r=7

νr(n). (5.4)

Next we shall give a nontrivial lower bound for ν(n). The facts are required:

∑

d|P

λ−(d)ω(d)

d
≥ V (z)

(

f
( logD

log z

)

+O(log−
1
3 D)

)

, (5.5)

∑

d|P

λ+(d)ω(d)

d
≤ V (z)

(

F
( logD

log z

)

+O(log−
1
3 D)

)

, (5.6)

which follow from (12)–(13) in [9] and (4.9).

(1) The lower bound for ν0(n). Let

R(l) =
∑

l3+p31+p32+p33+p34+p35+p46+p47=N

p1,p4∼X1
p2,p3,p5∼X2,p6,p7∼Y

7
∏

i=1

log pi.
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Then by the property for λ−(d), Proposition 3.1 and (5.5), we have

ν0(n) ≥
1

log 2X

∑

l∼X1
(l,P)=1

R(l) =
1

log 2X

∑

l∼X1

R(l)
∑

d|(l,P)

µ(d)

≥ 1

logX

∑

l∼X1

R(l)
∑

d|(l,P)

λ−(d) =
1

logX

∑

d|P

Jd(n)

=
(

1 +O
( 1

logn

))

S(n)J (n)

logX

∑

d|P

λ−(d)ω(d)

d
+O(n

85
72L−100)

≥ (1 +O(log−
1
3 D))

f(3)S(n)J (n)V (z)

logX
+O(n

85
72L−100). (5.7)

(2) The upper bound for νr(n). Let

Rr(l) =
∑

l3+(mp)3+p3
1
+p3

2
+p3

3
+p3

4
+p4

5
+p4

6
=n

m∈Mr,l,mp,p3∼X1, p1,p2,p4∼X2,p5,p6∼Y

6
∏

i=1

log pi

( log p

log(X1

n
)

)

.

Then by Proposition 3.2 and (5.6) the upper bound for νr(n) is obtained along the similar

arguments that lead to ν0(n). We have

νr(n) ≤
logX1

logX

∑

l∼X1
(l,P)=1

Rr(l)

≤ (1 +O(log−
1
3 D))

F (3)crS(n)J (n)V (z)

logX
+O(n

85
72L−100). (5.8)

(3) The proof of Theorem 1.1.

By numerical integration we get

c7 < 0.4487, c8 < 0.1136, c9 < 0.0226, c10 < 0.0036, c11 < 0.0005,

ck < 0.0001, for 12 ≤ k ≤ 36,

36
∑

r=7

cr < 0.5915. (5.9)

By (5.4), (5.7)–(5.9) we obtain

ν(n) ≥ (0.6931− 0.5915)
2eγ

3 logX
S(n)J (n)V (z) ≫ n

85
72

log8 n
,

where (3.22) and (5.1)–(5.3) and Lemma 4.2 are used. Then Theorem 1.1 is proved.
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[3] Brüdern, J., A sieve approach to the Waring-Goldbach problem I, Ann. Sci. Ec. Norm. Sup., 28(4), 1995,
461–476.

[4] Cai, Y. C., The Waring-Goldbach problem: One square and five cubes, Ramanujan J., 34, 2014, 57–72.

[5] Cai, Y. C. and Mu, Q. W., Waring-Goldbach problem: Two squares and some unlike powers, Acta Math.

Hungar., 145(1), 2015, 46–67.

[6] Halberstam, H. and Richert, H. E., Sieve Methods, Academic Press, London, 1974.

[7] Hua, L. K., Additive Theory of Prime Numbers, Amer. Math. Soc., Providence Rhode Island, 1965.

[8] Hooley, C., On Waring’s problem, Acta Math., 157, 1986, 49–97.

[9] Iwaniec, H., A new form of the error term in the linear sieve, Acta Arith., 37, 1980, 307–320.

[10] Vaughan, R. C., Sums of three cubes, Bull. London Math. Soc., 17, 1985, 17–20.

[11] Vaughan, R. C., The Hardy-Littlewood Method, 2nd edition, Camb. Univ. Press, Cambridge, 1997.

[12] Titchmarsh, E. C., The theory of the Riemann Zeta-Function, 2nd edition (Revised by D. R. Heath-Brown),
Oxford University Press, Oxford, 1986.

[13] Vinogradov, I. M., Elements of Number Theory, Dover. Publ., New York, 1954.


