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1 Introduction

The Drinfel’d quantum double construction is very important not only because it produces

new Hopf algebras but also that it provides a systematic method to produce quasitriangular

Hopf algebras, which provide solutions to the quantum Yang-Baxter equation. Many results

about quasitriangular Hopf algebras are obtained, see [1–2] for example. In [3], Gould, Zhang

and Bracken generalized the double construction to the Z2-graded case, and described the

corresponding graded universal R-matrix explicitly. As is known to all, quasitriangular Hopf

(super) algebras which possess an invertible central element known as the ribbon element are

called ribbon Hopf (super) algebras, and finite dimensional ribbon Hopf (super) algebras play

an important role in constructing invariants of 3-manifolds (see [4]). Thus, it is interesting

to decide when the Drinfel’d quantum double is ribbon. In [5], Kauffman and Radford give a

necessary and sufficient condition for the Drinfel’d double of a finite dimensional Hopf algebra to

have a ribbon element. In recent years, two parameter quantum groups get rapid development

and with the criterion given in [5], one can determine when a two parameter quantum group is

ribbon (see [6–8] for example). However, in the Z2-graded case, the corresponding criterion, as

far as we know, is not obtained.

In the present paper, we try to give a criterion as in [5] to determine when the Z2-graded

Drinfel’d double constructed in [3] has a ribbon element. By studying the connection between

grouplike elements and ribbon elements in finite dimensional quasitriangular Hopf superalgebra

H , we give a necessary and sufficient condition for H to have a ribbon element. Then we
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prove that the Drinfel’d double D(H) of a finite dimensional Hopf superalgebra H is always

unimodular, and get a criterion to decide when D(H) is ribbon. As an application, we apply the

criterion to the Drinfel’d double D(Aℓ) of the Taft superalgebra Aℓ (Z2-graded Taft algebra).

Different from the non-super case in [5], in the graded case, the quasi-ribbon element is no longer

consistent with the ribbon element. At last, we study the quantum superalgebra uq(osp(1, 2, c)),

which is proved to be isomorphic to the Drinfel’d double D(Aℓ) of the Taft superalgebra Aℓ,

and describe its universal R-matrix explicitly.

The paper is organized as follows. In Section 2, we recall the definition of quasitriangular

Hopf superalgebras and introduce some notations. Some useful identities are given for finite

dimensional Hopf superalgebras. In Section 3, we give a necessary and sufficient condition for

a finite dimensional quasitriangular Hopf superalgebra to have a ribbon element. In Section

4, we give a criterion to decide when the Drinfel’d double D(H) of a finite dimensional Hopf

superalgebra H is ribbon. In Section 5, we apply the results obtained in Section 4 to the

Drinfel’d double D(Aℓ) of the Taft superalgebra Aℓ, and determine when D(Aℓ) has a ribbon

element. In Section 6, we study the quantum superalgebra uq(osp(1, 2, c)), and describe its

universal R-matrix explicitly.

Throughout this paper, we always assume that the ground field k is algebraically closed.

2 Preliminaries

Let Z2 = Z/2Z = {0, 1}, and A = A0 ⊕A1 be a Z2-graded algebra. The elements in A0 are

called even, while those in A1 are called odd. For a homogeneous element a ∈ A, we use [a] to

denote its grading. For the definition of Hopf superalgebra, one can see [3, 9].

Definition 2.1 (see [3]) Let H be a Hopf superalgebra. If there exists an invertible even

element R ∈ H ⊗H, such that

R∆(x) = ∆′(x)R, for all x ∈ H, (2.1)

(∆⊗ id)R = R13R23, (2.2)

(id⊗∆)R = R13R12, (2.3)

then H is called a quasi-triangular Hopf superalgebra. Here ∆′ = ∆◦P and P : V ⊗W → W⊗V

is the twist map, which defines for homogeneous elements v ∈ V, w ∈ W by P (v ⊗ w) =

(−1)[v][w]w ⊗ v and extends to all elements of V and W linearly. Denote R =
∑

R(1) ⊗ R(2),

R12 =
∑

R(1) ⊗R(2) ⊗ 1, R13 =
∑

R(1) ⊗ 1⊗R(2), and R23 =
∑

1⊗R(1) ⊗R(2). The element

R is called the universal R-matrix of H.

Lemma 2.1 Let (H,R) be a quasi-triangular Hopf superalgebra. Then the universal R-

matrix R satisfies the following equations:

R12R13R23 = R23R13R12, (2.4)

(S ⊗ S)R = R, (S ⊗ id)R = R−1, (id⊗ S)R−1 = R, (2.5)

(ε⊗ id)R = (id⊗ ε)R = 1. (2.6)
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Lemma 2.2 (see [10]) Suppose that (H,R) is a quasi-triangular Hopf superalgebra, and

R =
∑

R(1) ⊗R(2). Let u =
∑

(−1)[R
(1)]S(R(2))R(1). Then u is invertible, and

∆(u) = (u⊗ u)(R′R)−1, ε(u) = 1,

where R′ =
∑

(−1)[R
(1)]R(2) ⊗R(1). Furthermore, for all x ∈ A, we have

S2(x) = uxu−1.

We introduce some notations which will be used in this paper. For any integer n > 0, set

(n)q = 1 + q + · · ·+ qn−1,

(n)!q = (1)q(2)q · · · (n)q,

and (0)!q = 1. We define the Gauss binomial number for 0 ≤ k ≤ n by

(

n

k

)

q

=
(n)!q

(k)!q(n− k)!q
.

As is well known, if yx = qxy, then for all n > 0, we have

(x+ y)n =
∑

0≤k≤n

(

n

k

)

q

xkyn−k.

In the following of this section, we always assume (H,m, u,∆, ε, S) to be a finite dimensional

Hopf superalgebra, then its dual space H∗ is also a Hopf superalgebra, where the multiplication

m0 = ∆∗, unit u0 = ε∗, comultiplication ∆0 = m∗, counit ε0 = u∗ and the antipode S0 = S∗.

With no confusion, we also use S to denote the antipode of H∗.

Define the left and right H∗-module of H as follows:

p ⇀ a =
∑

(−1)[p][a1]a1〈p, a2〉, a ↼ p =
∑

(−1)[p][a2]〈p, a1〉a2.

Similarly, H∗ can be made into left and right H-module by the following actions:

〈a ⇀ p, x〉 = (−1)[a]([p]+[x])〈p, xa〉, 〈p ↼ a, x〉 = 〈p, ax〉,

where a, x ∈ H , p ∈ H∗ are homogeneous elements.

Recall that an element x ∈ H is called a left (respectively, right) integral of H , if for all

a ∈ H , we have ax = ε(a)x (xa = ε(a)x). Denote by
∫ l

H
(resp.

∫ r

H
) the space of left integrals

(resp. right integrals). Then
∫ l

H
and

∫ r

H
are each one-dimensional (see [11, Corollary 5.8]).

Integrals play an important role in studying knot invariants of finite dimensional ribbon Hopf

(super) algebras.

Lemma 2.3 Let H be a finite dimensional Hopf superalgebra, with antipode S, and t ∈
∫ l

H
.

Let α be the distinguished grouplike element of H∗, which means that for all elements h ∈ H,

we always have th = 〈α, h〉t. Then

∑

t

S(h)t1 ⊗ t2 =
∑

t

(−1)[t1][h]t1 ⊗ ht2, (2.7)

∑

t

(−1)[t2][h]t1h⊗ t2 =
∑

t

t1 ⊗ t2(α
−1 ⇀ S(h)). (2.8)
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Proof Note that ht = ε(h)t, hence ∆(ht) =
∑

h,t

(−1)[h2][t1]h1t1 ⊗ h2t2 =
∑

t

ε(h)t1 ⊗ t2.

Therefore,

∑

t

(−1)[h][t1]t1 ⊗ ht2

=
∑

h,t

(−1)[h2][t1]t1 ⊗ ε(h1)h2t2

=
∑

h,t

(−1)[h3][t1]S(h1)h2t1 ⊗ h3t2

=
∑

h,t

S(h1)ε(h2)t1 ⊗ t2

=
∑

t

S(h)t1 ⊗ t2.

Hence (2.7) is obtained. As th = 〈α, h〉t, then

∑

h,t

(−1)[h1][t2]t1h1 ⊗ t2h2 =
∑

t

〈α, h〉t1 ⊗ t2.

Therefore,

∑

t

(−1)[t2][h]t1h⊗ t2

=
∑

h,t

(−1)[t2][h1]t1h1ε(h2)⊗ t2

=
∑

h,t

(−1)[t2][h1]t1h1 ⊗ t2h2S(h3)

=
∑

h,t

t1 ⊗ t2〈α, h1〉S(h2)

=
∑

t

t1 ⊗ t2(α
−1 ⇀ S(h)).

Using the lemma above, we have the following equations.

Lemma 2.4 Let H, t and α be defined as in Lemma 2.3. Then we have

(λ ↼ h) ⇀ t = (−1)[λ][h]S(h), (2.9)

((α−1 ⇀ S(h)) ⇀ λ) ⇀ t = h, (2.10)

λ ↼ h = (−1)[λ][h](α−1 ⇀ S2(h)) ⇀ λ, (2.11)
∑

λ

λ1 ⊗ λ2 =
∑

λ

(−1)[λ1][λ2]S2(λ2)α
−1 ⊗ λ1, (2.12)

where λ ∈
∫ l

H∗
and 〈λ, t〉 = 1.

Proof For any β ∈ H∗, we have

〈β, (λ ↼ h) ⇀ t〉 = 〈β(λ ↼ h), t〉

=
∑

t

(−1)([λ]+[h])[t1]〈β, t1〉〈λ, ht2〉
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=
∑

t

(−1)[h][t1]〈β ⊗ λ, t1 ⊗ ht2〉

=
∑

t

〈β ⊗ λ, S(h)t1 ⊗ t2〉

=
∑

t

(−1)[λ]([h]+[t1])〈β, S(h)t1〉〈λ, t2〉

= (−1)[λ][h]〈(β ↼ S(h))λ, t〉

= (−1)[λ][h]〈β ↼ S(h), 1〉〈λ, t〉

= 〈β, (−1)[λ][h]S(h)〉,

where we use (2.7) in the fourth equation. Therefore, (2.9) is obtained. Note that

〈β, ((α−1 ⇀ S(h)) ⇀ λ) ⇀ t〉

= 〈β((α−1 ⇀ S(h)) ⇀ λ), t〉

=
∑

t

(−1)([λ]+[h])[t1]〈β, t1〉〈(α
−1 ⇀ S(h)) ⇀ λ, t2〉

=
∑

t

(−1)([λ]+[h])[t1]+[h]([λ]+[t2])〈β, t1〉〈λ, t2(α
−1 ⇀ S(h))〉

=
∑

t

(−1)[h][t1]+[h]([λ]+[t2])〈β ⊗ λ, t1 ⊗ t2(α
−1 ⇀ S(h))〉

=
∑

t

(−1)[h][t1]+[h][λ]〈β ⊗ λ, t1h⊗ t2〉

=
∑

t

(−1)[h][t1]+[λ][t1]〈β, t1h〉〈λ, t2〉

=
∑

t

(−1)[λ][t1]]+[h][β]〈h ⇀ β, t1〉〈λ, t2〉

= (−1)[h][β](h ⇀ β)λ, t〉

= (−1)[h][β]〈(h ⇀ β), 1〉〈λ, ts〉

= 〈β, h〉,

where we use (2.8) in the fifth equation, and (2.10) is obtained. Using (2.9)–(2.10), we have

〈λ ↼ h, t ↼ β〉 = 〈β(λ ↼ h), t〉

= 〈β, (λ ↼ h) ⇀ t〉

= (−1)[λ][h]〈β, S(h)〉

= (−1)[λ][h]〈β, ((α−1 ⇀ S2(h)) ⇀ λ) ⇀ t〉

= (−1)[λ][h]〈β((α−1 ⇀ S2(h)) ⇀ λ), t〉

= (−1)[λ][h]〈(α−1 ⇀ S2(h)) ⇀ λ, t ↼ β〉.

Hence we get (2.11). Now we prove (2.12). On one hand,

〈λ ↼ h, x〉 = 〈λ, hx〉 =
〈

∑

λ

λ1 ⊗ λ2, h⊗ x
〉

.

On the other hand,

〈(−1)[λ][h](α−1 ⇀ S2(h)) ⇀ λ, x〉
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= (−1)[x][h]〈λ1, x(α
−1 ⇀ S2(h))〉

=
∑

λ

(−1)[x][h]+[λ2][x]〈λ1, x〉〈λ2, α
−1 ⇀ S2(h)〉

=
∑

λ,h

(−1)[x][h]+[λ2][x]〈λ1, x〉〈λ2, S
2(h1)〉〈α

−1, S2(h2)〉

=
∑

λ,h

(−1)[x][h]+[λ2][x]〈λ1, x〉〈S
2(λ2), h1〉〈α

−1, h2〉

=
∑

λ

(−1)[x][h]+[λ2][x]〈λ1, x〉〈S
2(λ2)α

−1, h〉

=
∑

λ

(−1)[λ2][λ2]〈S2(λ2)α
−1 ⊗ λ1, h⊗ x〉.

By (2.11), we have λ ↼ h = (−1)[λ][h](α−1 ⇀ S2(h)) ⇀ λ, hence

∑

λ

λ1 ⊗ λ2 =
∑

λ

(−1)[λ1][λ2]S2(λ2)α
−1 ⊗ λ1.

Equivalently,
∑

λ

λ2 ⊗ λ1 =
∑

λ

(−1)[λ1][λ2]λ1 ⊗ S2(λ2)α
−1.

Remark 2.1 Suppose t ∈
∫ l

H
and T ∈

∫ r

H∗
. Let α and g be the distinguished grouplike

element of H∗ and H respectively. Then for any h ∈ H and p ∈ H∗, we have th = 〈α, h〉t,

pT = 〈p, g〉T , and

∑

t

t1 ⊗ t2 =
∑

t

(−1)[t1][t2]S2(t2)g ⊗ t1. (2.13)

(2.13) is in fact the duality of (2.12). Note that t is the left integral of H = H∗∗, S(T ) is the

left integral of H∗, and satisfying p ∈ H∗, S(T )p = 〈p, g−1〉S(T ), hence (2.13) is obtained.

3 Ribbon Hopf Superalgebra

First we recall the definition of ribbon Hopf superalgebra. Let (H,R) be a quasitriangular

Hopf superalgebra. An invertible even element v ∈ H is a quasi-ribbon element, if the following

conditions are satisfied:

v2 = c := uS(u), (3.1)

S(v) = v, (3.2)

ε(v) = 1, (3.3)

∆(v) = (v ⊗ v)(R′R)−1. (3.4)

Furthermore, if v is in the center of H , then v is a ribbon element, and (H,R, v) is called a

ribbon Hopf superalgebra.

Lemma 3.1 Let (H,R) be a quasitriangular Hopf superalgebra. Denote R =
∑

R(1)⊗R(2).

For η ∈ G(H∗), define gη =
∑

R(1)η(R(2)). Then gη lies in the center of G(H), and gηgρ = gηρ,

where ρ ∈ G(H∗).
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Proof By (2.2), ∆(gη) =
∑

∆(R(1))η(R(2)) =
∑

(−1)[r
(1)][R(2)]R(1) ⊗ r(1)η(R(2)r(2)) =

gη ⊗ gη. For any a ∈ G(H), by (2.1),
∑

aR(1) ⊗ aR(2) =
∑

R(1)a ⊗ R(2)a. Applying id ⊗ η

to the two sides of the above equation, we get agηη(a) = gηaη(a), hence gη is in the center

of G(H). Let ρ ∈ G(H∗). Then gηρ =
∑

R(1)(ηρ)(R(2)) =
∑

R(1)η((R(2))1)ρ((R
(2))2) =

∑

R(1)r(1)η(r(2))ρ(R(2)) = gρgη = gηgρ.

Theorem 3.1 Let (H,R) be a quasitriangular Hopf superalgebra, and R =
∑

R(1) ⊗ R(2).

Denote u =
∑

(−1)[R
(1)]S(R(2))R(1), and w = S(u)−1. Let g and α be the distinguished group-

like elements of H and H∗ respectively, h = gαg
−1. Then we have

g = w
(

∑

(−1)[R
(1)][R(2)]S(R(2) ↼ α)R(1)

)

, (3.5)

g = wugα, (3.6)

h−1 = wu. (3.7)

Proof Let t ∈ H be a left integral. By (2.7) and α−1 ⇀ S(x) = S(x ↼ α), we have
∑

t

(−1)[t2][x]t1x⊗ t2 =
∑

t

t1 ⊗ t2(S(x ↼ α)). (3.8)

Therefore
∑

t

(−1)[t1]([t2]+[R(1)]+[R(2)])t2(S(R
(2) ↼ α)R(1) ⊗ t1

=
∑

t

(−1)[t1][t2]+[t1][R
(1)]+[R(1)][R(2)]t2R

(1) ⊗ t1R
(2)

=
∑

t

(−1)[R
(1)][R(2)]+[t1][R

(2)]R(1)t1 ⊗R(2)t2

=
∑

t

(−1)[R
(1)][R(2)]R(1)S(R(2))t1 ⊗ t2

=
∑

t

(−1)[R
(1)][R(2)]+[t1][t2]R(1)S(R(2))S2(t2)g ⊗ t1,

where we used (2.1) in the second equation, (2.7) in the third equation, and (2.13) in the last

equation. Equivalently, we have
∑

t

(−1)[t1][t2]t2(S(R
(2) ↼ α)R(1) ⊗ t1 =

∑

t

(−1)[R
(1)][R(2)]+[t1][t2]R(1)S(R(2))S2(t2)g ⊗ t1.

Taking sums over R on the two sides above, we have
∑

t,R

(−1)[t1][t2]+[R(1)][R(2)]t2(S(R
(2) ↼ α)R(1) ⊗ t1 =

∑

t,R

(−1)[t1][t2]R(1)S(R(2))S2(t2)g ⊗ t1.

Since (H,⇀) is a free left H∗-module with basis t, there is some p ∈ H∗ such that p ⇀ t =
∑

t

(−1)[p][t1]t1〈p, t2〉 = 1. Applying p⊗ id to the two sides of the above equation, we get

∑

R

(−1)[R
(1)][R(2)](S(R(2) ↼ α)R(1) =

∑

R

R(1)S(R(2))g.

By (2.5),
∑

R

R(1)S(R(2)) =
∑

R

S(R(1))S2(R(2))
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= S
(

∑

R

(−1)[R
(1)][R(2)]S(R(2))R(1)

)

= S(u) = w−1.

Therefore g = w
(
∑

R

(−1)[R
(1)][R(2)]S(R(2) ↼ α)R(1)

)

, and we get (3.5).

To prove (3.6), just to prove
∑

R

(−1)[R
(1)]S(R(2) ↼ α)R(1) = ugα. By (2.3),

∑

R

R(1) ⊗ (R(2))1 ⊗ (R(2))2 =
∑

R

R(1)r(1) ⊗ r(2) ⊗R(2).

Hence,

∑

R

R(1) ⊗ (R(2) ↼ α) =
∑

R

R(1) ⊗ 〈α, (R(2))1〉(R
(2))2

=
∑

R

R(1)r(1) ⊗ 〈α, r(2)〉R(2)

=
∑

R

R(1)gα ⊗R(2).

By this equation and
∑

R

(−1)[R
(1)]S(R(2) ↼ α)R(1) =

∑

R

(−1)[R
(1)]S(R(2)R(1)gα = ugα, we get

(3.6).

To prove (3.7), just note that by (3.6) and Lemma 3.1, wu = gg−1
α = h−1.

Lemma 3.2 Let (H,R) be a quasitriangular Hopf superalgebra, v be the quasi-ribbon ele-

ment of H, u =
∑

(−1)[R
(1)]S(R(2))R(1), h = gαg

−1, c = uS(u), l = u−1v. Then l2 = h, and

l ∈ G(H).

Proof Firstly, S2(v) = uvu−1. Since v is the quasi-ribbon element, S2(v) = v, hence

uv = vu. As v2 = c, by Theorem 3.1, c = u2h, therefore v2 = u2h, l2 = (u−1v)2 = u−2v2 = h.

Note that ∆(l) = ∆(u)−1∆(v) = ((R′R)−1(u ⊗ u))−1((R′R)−1(v ⊗ v)) = l ⊗ l, hence

l ∈ G(H).

Theorem 3.2 Let (H,R) be a quasitriangular Hopf superalgebra, u and h be defined as in

Lemma 3.2. Then

(1) l 7−→ ul defines a one-one correspondence

{l ∈ G(H) | l2 = h} ↔ {quasi-ribbon elements of (H,R)}.

(2) Suppose that l ∈ G(H) satisfies l2 = h. Then v = ul is a ribbon element of (H,R) if and

only if S2(x) = l−1xl for all x ∈ H.

The proof is similar to the non-super case in [5].

If H is unimodular, then α = ε, hence h = gαg
−1 = g−1. Then by Theorem 3.2, we have

the following proposition.

Proposition 3.1 Let (H,R) be a finite dimensional quasitriangular Hopf superalgebra, with

antipode S. Suppose that H is unimodular and g is the distinguished grouplike element of H.

Then

(1) (H,R) has a quasi-ribbon element if and only if there exists l ∈ G(H), such that l2 = g.



Ribbon Hopf Superalgebras and Drinfel’d Double 1055

(2) (H,R) has a ribbon element if and only if there exists l ∈ G(H), such that l2 = g, and

for all x ∈ H, we have S2(x) = lxl−1.

4 Drinfel’d Double of Hopf Superalgebra

Firstly we introduce the construction of the Drinfel’d double of a finite dimensional Hopf

superalgebra (see [3]). Let (H,m, u,∆, ε, S) be a finite dimensional Hopf superalgebra. Then

H∗cop is also a Hopf superalgebra, with multiplication m0 = m0 = ∆∗, unit u0 = u0 = ε∗,

comultiplication ∆0 = P ◦ m∗, counit ε0 = ε0 = u∗, and antipode S0 = (S−1)∗. More

explicitly, see [3]. The Drinfel’d double D(H) of H is defined as follows: As a Z2-graded space,

D(H) := H ⊗H∗cop. For a ∈ H , b∗ ∈ H∗, denote a⊗ b∗ by ab∗ simply. Then D(H) is a Hopf

superalgebra with multiplication MD, unit uD, comultiplication ∆D, and counit εD defined as

follows.

The multiplication is

MD(ba∗ ⊗ dc∗) =
∑

a∗,d

(−1)([a
∗]+[d1])([d]+[d3])〈S0(a

∗
1), d1〉〈a

∗
3, d3〉(bd2)(a

∗
2c

∗);

the unit is

uD(k) = u(k)ε;

the comultiplication is

∆D(ba∗) = ∆(b)∆0(a
∗) =

∑

a∗,b

(−1)([a
∗

1 ]+[b2])[a
∗

2 ]b1a
∗
2 ⊗ b2a

∗
1;

the counit is

εD(ba∗) = ε(b)ε0(a
∗);

the antipode is

SD(ba∗) = (−1)[a
∗][b]1HS0(a

∗)1H∗S(b).

Remark 4.1 Here we follow the expressions in [3], and denote ∆0(a
∗) = Σa∗1 ⊗ a∗2.

Theorem 4.1 Let H be a finite dimensional Hopf superalgebra, T the right integral of

H∗cop, and t the left integral of H. Then tT is the left and right integral of D(H). In particular,

D(H) is unimodular.

Proof Let α and g be the distinguished grouplike elements of H∗ and H respectively.

First we prove that tT is the right integral of D(H). Let d ∈ H , and c∗ ∈ H∗cop, with the

multiplication in D(H), we have

(tT )(dc∗) =
∑

T,d

(−1)([T ]+[d1])([d]+[d3])〈S0(T1), d1〉〈T3, d3〉(td2)(T2c
∗)

=
∑

T,d

(−1)([T ]+[d1])([d]+[d3])〈S0(T1), d1〉〈T3, d3〉〈α, d2〉tT2c
∗

=
∑

T

(−1)[T1][T2]〈S0(T1)αT3, d〉tT2c
∗.
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We claim

∑

T

(−1)[T2][T3]S0(T1)αT3 ⊗ T2 = ε⊗ T. (4.1)

Then applying d⊗ id to the two sides of (4.1), we have

∑

T

(−1)[T1][T2]〈S0(T1)αT3, d〉T2 = ε(d)T,

hence

(tT )(dc∗) =
∑

T,d

(−1)[T1][T2]〈S0(T1)αT3, d〉tT2c
∗

= ε(d)tT c∗ = ε(d)〈c∗, 1〉tT.

As we know, εD(dc∗) = ε(d)〈c∗, 1〉, hence tT is a right integral of D(H).

Now we prove (4.1). By (2.12), we have

∑

λ

λ1 ⊗ λ2 =
∑

λ

(−1)[λ1][λ2]S2(λ2)α
−1 ⊗ λ1.

Applying S ⊗ S to the two sides of the equation above, we get

∑

λ

S(λ1)⊗ S(λ2) =
∑

λ

(−1)[λ1][λ2]αS2(S(λ2))⊗ S(λ1)

=
∑

λ

αS2(S(λ)1)⊗ S(λ)2.

Let p = S(λ) ∈
∫ r

H∗
, then

∑

p

p1 ⊗ p2 =
∑

p

(−1)[p1][p2]p2 ⊗ αS2(p1).

Noting that H∗cop ∼= (Hop)∗, together with the equation above, we have

∑

T

T1 ⊗ T2 =
∑

T

(−1)[T1][T2]T2 ⊗ βS2
0 (T1).

Equivalently,
∑

T

(−1)[T1][T2]T2 ⊗ T1 =
∑

T

βS2
0(T1)⊗ T2,

where β is the distinguished grouplike element of H∗cop, and for t′ ∈
∫ l

Hop , t
′ ◦ h′ = 〈β, h′〉t′

holds for all h′ ∈ Hop. We claim that β = α−1. Note that t ∈
∫ l

H
, so S−1(t) ∈

∫ l

Hop , and

S−1(t) ◦ S−1(h) = 〈β, S−1(h)〉S−1(t) = 〈S0(β), h〉S
−1(t),

here we use “ ◦ ” to denote the multiplication of Hop. On the other hand,

S−1(t) ◦ S−1(h) = (−1)[h][t]S−1(h)S−1(t) = S−1(th) = S−1(〈α, h〉t) = 〈α, h〉S−1(t),

hence S0(β) = α, β = α−1, and

∑

T

(−1)[T1][T2]T2 ⊗ T1 =
∑

T

α−1S2
0(T1)⊗ T2. (4.2)
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Applying id⊗∆0 to the two sides of (4.2), we have

∑

T

(−1)[T3]([T1]+[T2])T3 ⊗ T1 ⊗ T2 =
∑

T

α−1S2
0(T1)⊗ T2 ⊗ T3.

Applying P ⊗ id to the two sides above, we have

∑

T

(−1)[T3]([T1]+[T2])+[T3][T1]T1 ⊗ T3 ⊗ T2 =
∑

T

(−1)[T1][T2]T2 ⊗ α−1S2
0(T1)⊗ T3.

Furthermore,

∑

T

(−1)[T3][T2]S0(T1)αT3 ⊗ T2 =
∑

T

S0(S0(T1)T2)⊗ T3 = ε⊗ T,

hence we get (4.1).

Next we prove tT is also a left integral of D(H). Note that

(ba∗)(tT ) =
∑

a∗,t

(−1)([a
∗]+[t1])([t]+[t3])〈S0(a

∗
1), t1〉〈a

∗
3, t3〉(bt2)(a

∗
2T )

=
∑

a∗,t

(−1)([a
∗]+[t1])([t]+[t3])〈a∗1, S

−1(t1)〉〈a
∗
3, t3〉〈a

∗
2, g〉(bt2)T

=
∑

a∗,t

(−1)[t3]([t1]+[t2])〈a∗, t3gS
−1(t1)〉(bt2)T

= b〈id⊗ a∗,
∑

t

(−1)[t1]([t2]+[t3])t2 ⊗ t3gS
−1(t1)〉T

= b〈id⊗ a∗, t⊗ 1〉T

= (−1)[a
∗][t]bt⊗ 〈a∗, 1〉T

= ε(b)〈a∗, 1〉tT,

hence tT is also a left integral of D(H). In the fifth equation, we used the following result:

∑

t

(−1)[t1]([t2]+[t3])t2 ⊗ t3gS
−1(t1) = t⊗ 1. (4.3)

Now we prove it. By (2.13), we have

∑

t

t1 ⊗ t2 =
∑

t

(−1)[t1][t2]S2(t2)g ⊗ t1.

Applying S−1 ⊗∆ to the two sides above, we have

∑

t

S−1(t1)⊗ t2 ⊗ t3 =
∑

t

(−1)([t1]+[t2])[t3]g−1S(t3)⊗ t1 ⊗ t2.

Applying (P ⊗ id) ◦ (id⊗ P ) to the two sides above, we have

∑

t

(−1)([t1]+[t2])[t3]t3 ⊗ S−1(t1)⊗ t2 =
∑

t

(−1)([t3]+[t2])[t1]t2 ⊗ g−1S(t3)⊗ t1.

Hence

∑

t

(−1)([t1]+[t2])[t3]t3gS
−1(t1)⊗ t2 =

∑

t

(−1)([t3]+[t2])[t1]t2S(t3)⊗ t1.
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Furthermore,

∑

t

(−1)([t3]+[t2])[t1]t2 ⊗ t3gS
−1(t1) =

∑

t

t1 ⊗ t2S(t3) = t⊗ 1,

hence we obtain (4.3).

So far we have proved that D(H) is unimodular.

It is easy to know that g ⊗ α is the distinguished grouplike element of D(H). Applying

Proposition 3.1 to the double D(H), we have the following result.

Theorem 4.2 Let H be a finite dimensional Hopf superalgebra, with antipode S. Let g and

α be the distinguished grouplike elements of H and H∗ respectively. Then

(1) (D(H), R) has a quasi-ribbon element if and only if there exist l ∈ G(H) and β ∈ G(H∗)

such that l2 = g and β2 = α.

(2) (D(H), R) has a ribbon element if and only if there exist l and β satisfying the conditions

in (1), and for any x ∈ H, we have S2(x) = l(β ⇀ x ↼ β−1)l−1.

Proof (1) Note that (x, η) 7−→ x ⊗ η gives an isomorphism of groups G(H) ×G(H∗) and

G(D(H)) (see [12]). Therefore part (1) is obtained by Proposition 3.1(1).

(2) By Proposition 3.1(2), (D(H), R) has a ribbon element if and only if there exist l and β

satisfying the conditions in (1), such that

S2(x)⊗ S2
0(p) = (l ⊗ β)(x⊗ p)(l ⊗ β)−1 (4.4)

holds for all x ∈ H , and p ∈ H∗cop. As (l ⊗ β)−1 = l−1 ⊗ β−1, considering the multiplication

in D(H), we have

(l ⊗ β)(x⊗ p)(l ⊗ β)−1

=
∑

x

(−1)([β]+[x1])([x]+[x3])〈β−1, x1〉〈β, x3〉(lx2 ⊗ βp)(l−1 ⊗ β−1)

=
∑

p

(−1)([βp]+[l1])([l]+[l3])〈β−1, x1〉〈β, x3〉〈S0((βp)1), l
−1〉〈(βp)3, l

−1〉lx2l
−1 ⊗ (βp)2β

−1

=
∑

p

〈β−1, x1〉〈β, x3〉〈β, l〉〈p1, l〉〈β, l
−1〉〈p3, l

−1〉lx2l
−1 ⊗ βp2β

−1

= l(β ⇀ x ↼ β−1)l−1 ⊗ β(l−1 ⇀ p ↼ l)β−1,

hence (4.4) holds if and only if

S2(x) ⊗ S2
0(p) = l(β ⇀ x ↼ β−1)l−1 ⊗ β(l−1 ⇀ p ↼ l)β−1. (4.5)

Let p = ε. Then by (4.5), for any x ∈ H , we have S2(x) = l(β ⇀ x ↼ β−1)l−1. On the other

hand, it is easy to prove that S2(x) = l(β ⇀ x ↼ β−1)l−1 implies (4.5).

5 Taft Superalgebras

As is well known, the Taft n2-dimensional Hopf algebras An are an interesting class of

pointed Hopf algebras. In [5], Kauffman and Radford extended Henning’s result (see [13]) and

proved that the Drinfel’d double D(An) of An has a quasi-ribbon element if and only if D(An)
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has unique ribbon element if and only if n is odd. Furthermore, when n is odd, D(An) provides

an invariant of three-manifolds. In this section we study the Taft superalgebra Aℓ (Z2-graded

Taft algebra), construct its Drinfel’d double, and determine when the double has a ribbon

element.

Suppose that ℓ > 2, and q ∈ k is a primitive ℓ-th root of unity. Define

ℓ′ =















ℓ, if ℓ ∈ 4N,

ℓ

2
, if ℓ ∈ 4N+ 2,

2ℓ, if ℓ ∈ 2N+ 1.

(5.1)

The Taft superalgebra Aℓ is generated by a and x, subject to the relations aℓ = 1, xℓ′ = 0

and ax = qxa. The Z2-grading is [a] = 0, and [x] = 1. The Hopf superalgebra structure is

given by

∆(a) = a⊗ a, ∆(x) = x⊗ a+ 1⊗ x,

S(x) = −xa−1, S(a) = a−1, ε(x) = 0, ε(a) = 1.

Next we construct the Drinfel’d double D(Aℓ) of Aℓ. Take the basis {xman} of Aℓ, and

define the linear forms α and η on the basis as

〈α, xman〉 = δm0q
n, 〈η, xman〉 = δm1. (5.2)

Then we have the following lemma.

Lemma 5.1 For all integrals i, j,m, n, the following equation holds:

〈ηiαj , xman〉 = δmi(i)!(−q)q
j(i+n).

Proof Set X = (Aop
ℓ )∗, λ, γ ∈ X. Then for any h ∈ Aℓ, we have

〈λγ, h〉 = 〈λ⊗ γ,∆(h)〉 =
∑

(−1)[γ][h1]〈λ, h1〉〈γ, h2〉. (5.3)

Note that

∆(x)m =

m
∑

r=0

(−1)r(m−r)

(

m
r

)

−q

(xm−r ⊗ xram−r), (5.4)

hence by (5.2) and induction on i and j, we have

〈ηi, xman〉 = δmi(i)!(−q), 〈αj , xman〉 = δm0q
jn.

Therefore

〈ηiαj , xman〉 =

m
∑

r=0

(−1)r(m−r)

(

m
r

)

−q

〈ηi, xm−ran〉〈αj , xram+n−r〉

=

m
∑

r=0

(−1)r(m−r)δm−r,i(i)!(−q)δr0q
j(m+n−r)

= δm,i(i)!(−q)q
j(i+n).

Now we are ready to prove the following proposition.
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Proposition 5.1 The following relations hold in X:

αℓ = 1, ηℓ
′

= 0, αη = q−1ηα,

∆(α) = α⊗ α, ∆(η) = 1⊗ η + η ⊗ α,

ε(α) = 1, ε(η) = 0,

S(α) = αℓ−1, S(η) = −ηαℓ−1.

Proof (1) By Lemma 5.1 and qℓ = 1, we have

〈αℓ, xman〉 = δm0 = 〈ε, xman〉.

Hence, αℓ = ε. Similarly, we have

〈ηℓ
′

, xman〉 = δmℓ′(ℓ
′)!(−q) = 0,

where we have used (ℓ′)!(−q) = (−q)ℓ
′

− 1
−q−1 = 0. By Lemma 5.1, we get

〈ηα, xman〉 = δm1q
n+1.

But

〈αη, xman〉 = δm1q
n,

so αη = q−1ηα.

(2) Now we deal with the comultiplication of X . By [3], for any λ ∈ X , h, g ∈ Aℓ, ∆(λ)(h⊗

g) = (−1)[h][g]〈λ, gh〉. Therefore,

∆(α)(xiaj ⊗ xman) = (−1)[x
i][xm]qni〈α, xi+maj+n〉

= (−1)[x
i][xm]qniδi+m,0q

n+j

= δi0δm0q
nqj

= 〈α, xiaj〉〈α, xman〉,

hence ∆(α) = α⊗ α. Similarly, we have

∆(η)(xiaj ⊗ xman) = (−1)[x
i][xm]qni〈η, xi+maj+n〉

= (−1)[x
i][xm]qniδi+m,1

= δi0δm1 + δi1δm0q
n

= 〈1⊗ η + η ⊗ α, xiaj ⊗ xman〉,

hence ∆(η) = 1⊗ η + η ⊗ α.

(3) As for the counit and antipode, we have

ε(α) = 〈α, 1〉 = 1, ε(η) = 〈η, 1〉 = 0,

〈S(α), xiaj〉 = 〈α, S−1(xiaj)〉 = δi0〈α, a
−j〉 = δi0q

−j ,

〈αℓ−1, xiaj〉 = δi0q
(ℓ−1)j .

As qℓ = 1, hence S(α) = αℓ−1. Similarly, we have S(η) = −ηαℓ−1.

According to the multiplication given in Section 4, it is easy to get the following proposition.
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Proposition 5.2 The following relations hold in D(Aℓ):

αa = aα, αx = qxα, ηa = qaη, ηx = 1− qxη − aα.

Obviously, t = (1 + a+ · · ·+ aℓ−1)xℓ′−1 is a non-zero left integral of Aℓ, and T = ηℓ
′−1(1 +

α + · · ·+ αℓ−1) is a non-zero right integral of A∗
ℓ . Let γ and g be the distinguished grouplike

elements of A∗
ℓ and Aℓ respectively. Note that

ta = 〈γ, a〉t =











qt, ℓ′ 6=
ℓ

2
,

−qt, ℓ′ =
ℓ

2
.

By Lemma 5.1, we have γ = α when ℓ′ 6= ℓ
2 , and γ = α

ℓ

2+1 when ℓ′ = ℓ
2 . Similarly, we have

g = a if ℓ′ 6= ℓ
2 and g = a

ℓ

2+1 if ℓ′ = ℓ
2 . In each case, we have G(A∗

ℓ ) = (α) and G(Aℓ) = (a).

Applying Theorem 4.2 to the double D(Aℓ), we get the following proposition.

Proposition 5.3 Let Aℓ be the Taft superalgebra. The following results hold:

(1) (D(Aℓ), R) has a quasi-ribbon element if and only if ℓ cannot be divided by 4;

(2) (D(Aℓ), R) has a ribbon element if and only if ℓ is odd.

Proof (1) Suppose that (D(Aℓ), R) has a quasi-ribbon element. Then by Theorem 4.2(1),

there exist l ∈ G(Aℓ) and β ∈ G(A∗
ℓ ), such that l2 = g, and β2 = γ. If ℓ = 4s, where s is an

integer, then γ = α, and β2 = γ = α4s+1. This is a contradiction. Therefere ℓ cannot be divided

by 4. Conversarly, assume that ℓ can’t be divided by 4. If ℓ is odd, denote ℓ = 2s − 1, then

take β = αs, l = as, and we have β2 = α, l2 = a; if ℓ = 4s+ 2, then γ = α2s+2, and g = a2s+2,

obviously β = αs+1 and l = as+1 are the square roots of α2s+2 and a2s+2 respectively. By

Theorem 4.2(1), (D(Aℓ), R) has a ribbon element.

(2) By Theorem 4.2(2), (D(Aℓ), R) has a ribbon element if and only if S2(y) = l(β ⇀ y ↼

β−1)l−1, where y = a or y = x. Note that S2(a) = a, S2(x) = qx. Let l and β be defined as

in (1). Then when ℓ = 4s + 2, l(β ⇀ x ↼ β−1)l−1 = q2s+2x 6= S2(x). Therefore, (D(Aℓ), R)

does not have a ribbon element. When ℓ is odd, S2(y) = l(β ⇀ y ↼ β−1)l−1 always holds no

matter y = x or y = a, hence (D(Aℓ), R) has a ribbon element.

Compared to the non-super case (see [5]), the quasi-ribbon element of D(Aℓ) may not be

the ribbon element.

6 Quantum Superalgebra uq(osp(1, 2, c))

In [14], corresponding to the simple Lie algebra sl2, Liu constructed a new class of quantum

algebra sl
t
q,z(2). It is generated by E, F, K±1 and the central elements z±1, subject to the

following relations:

KK−1 = K−1K = 1, zz−1 = z−1z = 1,

KEK−1 = q2E, KFK−1 = q−2F,

EF − FE =
K −K−1z−1

q − q−1
,

Et = F t = 0, Kt = zt = 1,



1062 J. L. Chen and S. L. Yang

where q2 is a primitive t-th root of unity (t ≥ 2). Liu also studied the left and right universal

R-matrix of sltq,z(2), and obtained a new class of universal R-matrix. Particularly, when t is

odd, sltq,z(2) is a charmed Hopf algebra. By the relations between charmed element and ribbon

element given in [15], we know that when t is odd, sltq,z(2) is a ribbon Hopf algebra.

Inspired by this, corresponding to the Lie superalgebra osp(1, 2), in this section we construct

a new class of quantum algebra uq(osp(1, 2, c)), and prove that it is isomorphic to the Drinfel’d

double of the Taft superalgebra given in Section 5. We describe its universal R-matrix explicitly.

By the results in Section 5, we know that uq(osp(1, 2, c)) is a ribbon Hopf superalgebra if and

only if ℓ is odd, here q is a primitive ℓ-th root of unity.

Definition 6.1 The superalgebra U = Uq(osp(1, 2, c)) is a Z2-graded algebra generated by

E, F, K±1 and the central elements c and c−1, satisfying the following relations:

KK−1 = K−1K = 1, cc−1 = c−1c = 1,

KEK−1 = qE, KFK−1 = q−1F,

EF + FE =
K −K−1c−1

q − q−1
.

The Z2-grading is given as

[K±1] = [c±1] = 0, [E] = [F ] = 1.

U is a Hopf superalgebra, with comultiplication ∆, counite ε, and the antipode S defined as

∆(E) = E ⊗K + 1⊗ E, ε(E) = 0, S(E) = −EK−1,

∆(F ) = F ⊗ 1 + c−1K−1 ⊗ F, ε(F ) = 0, S(F ) = −KcF,

∆(X) = X ⊗X, ε(X) = 0, S(X) = X−1,

where X = K±1, c±1.

Lemma 6.1 For all a, b ∈ Z
+, the following relations hold in U :

FEa = (−1)aEaF + Ea−1
(qa + (−1)a−1

q + 1
K −

q−a + (−1)a−1

q−1 + 1
K−1c−1

)

(q − q−1)−1,

EF b = (−1)bF bE + F b−1
(q−b + (−1)b−1

q−1 + 1
K −

qb + (−1)b−1

q + 1
K−1c−1

)

(q − q−1)−1.

Suppose that q is a primitive ℓ-th root of unity. ℓ′ is defined as in (5.1). By Lemma 6.1, it

is easy to see that EF ℓ′ = (−1)[E][F ℓ
′

]F ℓ′E, FEℓ′ = (−1)[F ][Eℓ
′

]Eℓ′F, Kℓ′E = EKℓ′, Kℓ′F =

FKℓ′. Let I be the ideal generated by Eℓ′ , F ℓ′ , Kℓ − 1 and cℓ − 1.

Definition 6.2 The restricted quantum superalgebra uq(osp(1, 2, c)) is defined as

uq(osp(1, 2, c)) := Uq(osp(1, 2, c))/I.

It is easy to see that I is the Hopf ideal of Uq(osp(1, 2, c)), hence uq(osp(1, 2, c)) is a finite

dimensional Hopf superalgebra with basis EiF jKkcl, where i, j ∈ {0, 1, 2, · · · , ℓ′ − 1}, k, l ∈

{0, 1, 2, · · · , ℓ− 1}.
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Let bq be the sub Hopf superalgebra of uq(osp(1, 2, c)) generated by E and K with the

following relations:

KE = qEK, Eℓ′ = 0, Kℓ = 1.

In fact, bq is the Taft superalgebra defined in Section 5. Constructing the Drinfel’d double

D(bq) as in Section 5, we have the following proposition.

Proposition 6.1 Define χ : D(bq) → uq(osp(1, 2, c)) by

χ(EiKjηkαl) =
(q−1 − q

q

)k

q−jk−
k(k−1)

2 EiF kKj+k+lck+l, (6.1)

where 0 ≤ i, k ≤ ℓ′ − 1, 0 ≤ j, l ≤ ℓ. Then χ is an isomorphism of Hopf superalgebra.

Proof Firstly, by the definition of χ, it is easy to see that each generater of uq(osp(1, 2, c))

has a preimage, so χ is full. Comparing the dimension one knows that χ is bijective. Next we

prove that χ is a homomorphism of superalgebra. By (6.1) we know that

χ(E) = E, χ(K) = K, χ(α) = Kc, χ(η) =
q−1 − q

q
FKc.

Clearly

χ(K)χ(α) = χ(α)χ(K),

χ(K)χ(η) =
q−1 − q

q
KFKc = q−1χ(η)χ(K),

χ(α)χ(E) = KcE = qEKc = χ(E)χ(α),

χ(η)χ(E) =
q−1 − q

q
FKcE = (q−1 − q)FEKc

= (q−1 − q)
(

− EF +
K −K−1c−1

q − q−1

)

Kc

= −(q−1 − q)EFKc−K2c+ 1

= χ(1)− qχ(E)χ(η)− χ(K)χ(α).

Hence χ is a homomorphism of superalgebra. At last we prove that χ keeps the comultiplication

and the antipode. Note that

∆(χ(η)) =
q−1 − q

q
∆(FKc) =

q−1 − q

q
(FKc⊗Kc+ FKc)

= χ(η)⊗ χ(α) + χ(1)⊗ χ(η)

= (χ⊗ χ)∆(η)

and

χ(S(η)) = −χ(ηα−1) =
q − q−1

q
F

=
q−1 − q

q
S(Kc)S(F ) =

q−1 − q

q
S(FKc) = S(χ(η)).

One can check it on the other generators E,K and α similarly.
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Proposition 6.1 tells us that uq(osp(1, 2, c)) is quasitriangular. If we set RD be the universal

R-matrix of D(bq), then the universal R-matrix of Uq(osp(1, 2, c)) R =: (χ ⊗ χ)(RD). Let

EiKj be the basis of bq. Now we seek for its dual basis. By Lemma 5.1, 〈ηmek, E
iKj〉 =

δi,m(i)!(−q)δk,i+j , where ek = 1
ℓ

N−1
∑

s=0
q−ksαs, and we use the equation

N−1
∑

s=0
q−ks = δk,0. Hence

the dual basis of EiKj is

1

(i)!(−q)
ηiei+j =

1

(i)!(−q)
ηi
1

ℓ

ℓ−1
∑

s=0

q−s(i+j)αs.

By Proposition 6.1, we have the following theorem.

Theorem 6.1 uq(osp(1, 2, c)) is a quasitriangular Hopf superalgebra, and the universal R-

matrix is

R =
1

ℓ

ℓ′−1
∑

i=0

ℓ−1
∑

j,s=0

q−s(i+j)

(i)!(−q)

(q−1 − q

q

)i

q−
i(i−1)

2 EiKj ⊗ F iKi+sci+s.

By Proposition 5.3, it is easy to see that uq(osp(1, 2, c)) has a ribbon element if and only if

ℓ is odd, and uq(osp(1, 2, c)) has a quasi-ribbon element if and only if ℓ cannot be divided by 4.

Clearly the universal R-matrix is not unique. For example, if we set R = 1
ℓ

ℓ−1
∑

a,b=0

q−abca⊗cb,

then RR also satisfies (2.1)–(2.3), hence RR is also the universal R- matrix of uq(osp(1, 2, c)).
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