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A Schwarz Lemma for Harmonic Mappings Between the
Unit Balls in Real Euclidean Spaces®

Shaoyu DATI! Yifei PAN?

Abstract The authors prove a Schwarz lemma for harmonic mappings between the unit
balls in real Euclidean spaces. Roughly speaking, this result says that under a harmonic
mapping between the unit balls in real Euclidean spaces, the image of a smaller ball
centered at origin can be controlled. This extends the related result proved by Chen in
complex plane.

Keywords Harmonic mappings, Schwarz lemma, Unit balls
2000 MR Subject Classification 31B05, 32H02

1 Introduction

Let n be a positive integer greater than 1. R™ is the real space of dimension n. For
= (21, ,2y) € R, let |z| = (Ja1|2 + -+ + [2n])2. Let B® = {& € R" : |z < 1}
be the unit ball of R™. The unit sphere, the boundary of B™ is denoted by S; normalized
surface-area measure on S is denoted by o (so that o(S) = 1). Let ST denote the northern
hemisphere {z = (21, -+ ,2,) € S : x, > 0}, and let S~ denote the southern hemisphere
{z = (1, ,2p) €S : 1y, <0}. N=(0,---,0,1) denotes the north pole of S. B = {z €
R™ : |z| < r} is the open ball centered at origin of radius 7; its closure is the closed ball B2,

Let m be a positive integer with m > 1. A mapping F = (Fi, -, Fy, Fipyq1) from B”
into B™*! is harmonic on B” if and only if for k = 1,--- ,m,m + 1, F}, is twice continuously
differentiable and AFy = 0, where A = D} + --- + D; and D7 denotes the second partial
derivative with respect to the j" coordinate variable ;. By Q, ;+1, we denote the class of all
harmonic mappings F from B" into B™*!.

Let D be the unit disk in the complex plane C. Denote the disk {z € C: |z| < r} by D, and
its closure is the closed disk D,. Let 8™ be the unit ball in the complex space C™. Denote the
ball {z € C": |z| < r} by B, and its closure is the closed ball 8. For a holomorphic function
from D into D, the classical Schwarz lemma (see [1, 7-8]) is well-known. For a holomorphic
mapping f from B" into B™, the classical Schwarz lemma (see [8]) says that if f(0) = 0, then

[f(2)] < |z (1.1)
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holds for z € B™. For 0 < r < 1, (1.1) may be written in the following form:
f(By) By

So the classical Schwarz lemma can be regarded as considering the region of f(B7). If £(0) # 0,
then what is the region of f(%B7)? It seems that there is not much of research in the literature.
However, the same problem also exists in harmonic mappings. The work in the following by
Chen [3] seems to be the first result of this kind of study for harmonic mappings in the complex
plane.

For 0 < r < 1and 0 < p <1, Chen [3] constructed a closed domain E,. , and proved the
following result.

Theorem A Let 0 < p <1, a € Rand 0 < r < 1 be given. For every complex-valued
harmonic function F on D such that F(D) C D, if F(0) = pe'®, then

F(D,) C €“°E,,, (1.2)
which is sharp.

Note that the function F' in the above theorem can be seen as F' € Q35. So (1.2) can be
regarded as considering the region of F(B2) when F € Qy 5 regardless of F(0) = 0 or F(0) # 0.
In [3], the most important theorem for the proof of Theorem A is the theorem as follows, which
is the motivation for our study of the extremal mapping. The mappings U, s, and F, ; , in the
following theorem are defined in [3].

Theorem B Let FF = U+iV be a harmonic mapping, such that F(D) C D and F(0) = a+bi.
Then for 0 <r <1 and 0 <60 < 2,

U(rel?) < Uyp.,(ri)

with equality at some point re'? if and only if F(z) = Fa,b,r(ei(%_e)z). PFurthermore, U(z) <
Uapr(ri) for|z] <.

A classical Schwarz lemma for complex-valued harmonic function on B™ (see [2]) says as
follows.

Theorem C Suppose that F is a complex-valued harmonic function on B™, |F| <1 on B,
and F(0) =0. Then

[F(z)] <U(||N) (1.3)

holds for every x € B", where U is the Poisson integral of the function that equals 1 on ST and
—1 on S™. Equality holds for some nonzero x € B™ if and only if ' = A\(U o A), where X is a

complex constant of modulus 1, and A is an orthogonal transformation.

Especially, when n = 2 in the above theorem, it is known (see [5]) that
4
|F(x)| < — arctan |z|
7T

holds for every x € B2.
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From Theorem C, for 0 < r < 1, (1.3) may be written in the following form:

F(B}) € Dy, (1.4)

where Dy,ny = {2 € C: [2| SU(rN)}.

Note that the function F' in the above Theorem C can be seen as F' € Q,2. So (1.4) can
be regarded as considering the region of F(BZ) when F € €0, 5 with F(0) = 0. It is natural to
consider what the region of F(BP) is, if F' € Q,, » with F(0) # 0. This problem was resolved in
[4]. Furthermore, we want to know what the estimate corresponding to (1.4) is, when F(0) =0
or F(0) # 0, for the general F' € Qy, s,41. This problem will be resolved in this paper. When
F(0) # 0, this problem is serious, because the composition f o F' of a mdbius transformation f
and a harmonic mapping F' does not need to be harmonic.

In this paper, inspired by the method of the proof of Theorem B in [3], we obtain the
following Theorem 1.1, which is very important in this paper. (1.5) is the estimate corresponding
to (1.3) without the assumption F(0) = 0. Especially, when F'(0) = 0, we have Corollary 1.1,
which is coincident with Theorem C when m + 1 = 2. Note that in the following theorem,
Flap)q. r is defined as (3.21).

Theorem 1.1 Let F(z) be a harmonic mapping such that F(B™) C B™* and F(0) = (a,b),
where a € R™ and b € R. Let e be a unit vector in R™H eq = (1,0,---,0) € R™ and Q.
be an orthogonal matriz such that eQ. = eg. Then, for 0 <r <1 andw € S,

(F(rw),e) < (Flapq..r(rN), eo) (1.5)

with equality at some point rw if and only if F(x) = F(a7b)Qe7T(xA)Qe_1, where A is an orthogonal
matriz such that wA = N and Q' is the inverse matriz of Q.. Furthermore, (F(z),e) <

(Flap)q.,r(rN),eq) for x| <r.

Corollary 1.1 Let F(z) be a harmonic mapping such that F(B") C B™! and F(0) = 0.
Then

[F(x)] < U(|z|N)

for every x € B™, where U is the Poisson integral of the function that equals 1 on ST and —1
on ST. Equality holds for some nonzero xo € B" if and only if F(x) = U(xA)e, where A is an

orthogonal matriz such that 1oA = |wg|N, and e is a unit vector in R™+1,

Geometrically, for a harmonic mapping F' € €, ,,+1, we can consider the image of B" under
F : F(B") as a submanifold of B! except with possible singularity. Since F is harmonic, it is
known that F'(B™) is a minimal submanifold whenever it is smooth. (1.5) shows the distortion
of the image F'(B™).

From Theorem 1.1, we deduce the following theorem, which is called a harmonic Schwarz
lemma for F' € Q,, ;,4+1 and which resolves the problem we want to know above. Theorem 1.2
extends Theorem A and is coincident with Theorem A when n = m + 1 = 2. Note that in the
following theorem, F, ). » is defined as (3.21).
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Theorem 1.2 Let F(x) be a harmonic mapping such that F(B™) C B™*! and F(0) = (a,b),
where a € R™ and b € R. Let 0 <7 < 1. Then

F(BY) C Ey (ab), (1.6)
where
Er,(a,b) = ﬂ R,
ecR™ !
le]=1
R.={z ¢ R, (z,e) < (Flap)q..r(TN),e0)},
eo = (1,0,---,0) € R™*! and Q. is an orthogonal matriz such that eQ. = eg.

Note that F,. (,4) in Theorem 1.2 is a region enveloped by all the hyperplanes
P.={z c R (ze) = (Fla,p)g.,r(TN),e0)},

which is the boundary of R.. By Theorem 1.1, it is obviously that the region E,. ) is sharp.
This means that under F' € €y, 41, the image of a small ball centered at origin of radius r can
be controlled.

In Section 2, we will give two main lemmas. The proofs of the lemmas will be given in

Section 4. In Section 3, the main results of this paper and the proofs will be given.

2 The Main Lemmas

In this section, we will introduce two main lemmas, which are important for the proof of
Theorem 3.1 and which extend the related lemmas proved by Chen in [3]. Lemma 2.1 constructs
a bijection (R, I) from R™ x R* onto the upper half ball {(a,b) : a € R™, b € R, |a]?> + b <
1, b> 0}, which will be used to construct g in Theorem 3.1 for the case that b > 0. Lemma
2.2 constructs a bijection R from R™ onto the ball {a : a € R™, |a| < 1}, which will be used
to construct u, 4, in Theorem 3.1 for the case that b = 0. Now we give the two main lemmas.
The proofs of Lemmas 2.1-2.2 will be given in Section 4.

For0<r<1,u>0,A€R™ and = (1,0,---,0) € R™, define

1 1
An)\)u(w) = ﬁ(ml - )\), w € S (21)
and
A,
R(r, A\, pu) = A (@) do, I(r,\p) z/ do. (2.2)
s V14 [Arxu(w)l? s V14 A (W)

The idea of the conformation of A, x ,(w), R(r, A, u) and I(r, A, ) originates from (3.5) and
(3.9).

Lemma 2.1 Let 0 < r <1 be fixred. Then there exist a unique pair of continuous mappings
A= Ar,a,b) € R™ and p = p(r,a,b) > 0, defined on the upper half ball {(a,b) : a € R™, b€
R, |a|? +b% < 1, b> 0}, such that R(r,\(r,a,b), u(r,a,b)) = a and I(r, \(r,a,b), u(r,a,b)) = b
for any point (a,b) in the half ball.
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For0<r <1, A€R™andl=(1,0,---,0) € R™, define

AT)A(LU) = m — A, w € S (23)
and
B Ay (w) ”
R(r,\) = /S ERNIR (2.4)

The idea of the conformation of A, \(w) and R(r, A) originates from (3.14). Note that R(r, \)

is well defined, since | A, x(w)| # 0 except for a zero measure set of w at most.

Lemma 2.2 Let 0 < r < 1 be fired. Then there exist a unique continuous mapping A =
Ar,a) € R™, defined on {a:a € R™, |a|] < 1}, such that R(r,A(r,a)) = a for any point a.

3 The Main Results

Leta e R™, b€ Rand 0 < b < 1, |a]*> + b* < 1. Let Uy, denote the family of mappings
u € (L*°(S))™ satisfying the following conditions:

oo < 1, /Su(w)dcr —a, /S\/1 " Tu(w)Edo > b (3.1)

Every function u € (L°°(S))™ defines a harmonic mapping

1— 2
U(z) = / iu(w)dcr for z € B".
5

|z — wl?

Let 0 <r<1,1=(1,0,---,0) € R™ and define a functional L, on (L>°(S))™ by

Lo(u) = <U(7~N),z>:/ Lo ), Ddo (3.2)

g |[rN —w|™

Obviously, Uy p is a closed set, and L, is a continuous functional on U, . Then there exists
a extremal mapping, such that L, attains its maximum on U, ; at the extremal mapping. We
will claim in the following theorem that the extremal mapping is unique. In the proof of the
following theorem, we will construct a mapping ug first, and then prove that ug is the unique

extremal mapping, which will be denoted by ug,p -

Theorem 3.1 For any a, b and r satisfying the above conditions, there exists a unique

extremal mapping g by € Uap, such that L, attains its maximum on Uy p at uep. -
For the proof of Theorem 3.1, we need Lemmas 2.1-2.2 and the lemma as follows.

Lemma 3.1 Let x,y € R™, |z| <1 and |y| < 1. Then

\/1 —|y]z - \/1 = (z—y,y) + |z —y|*(1 - [g]*) + |§9C -y, (3.3)

V1= y? 2(1 = |y?)

holds, where y =y + ((x —y), 0 < ¢ < 1.
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Proof Letz = (21, - ,2Zm), y = (Y1, ,Ym) and g(z) = \/1 —[z|2. For j =1,---,m

and k =1,---,m, denote g( ) by gj(x), and g;_gézi by gjx(z). Then

x; 5]1@(1 — |5L‘|2) + xjxK 1, j=k,
. iy ———————N . = — s h 5 =
W= o TEFOEE R (N 1
Let o(t) = g(y + t(z — y)). By Taylor formula, we have
1
p(1) = 9(0) =¢"(0) + 5¢"(¢), 0<( <L (34)

2

Note that

0(0) =vV1-1|yl% (1) =V1-|z?

m

0= 00 0~ 3) = -G

"= 9@ - (x5 — )z — yr)
7,k=1
- ]k1_|y|)+gj§k. o B
o =3P 1%+ 3 (e — )k )
_ Jrk=
(- [5P)?
ey ) + e — g, )P
(1 [5P)3 |

where ¥ = y + ((x — y). Then by (3.4), (3.3) is proved.
Now we give the proof of Theorem 3.1.
Proof of Theorem 3.1 Let a, b and r be fixed. First assume that b > 0. From Lemma

2.1, we have A = A(r,a,b) and p = p(r,a,b) > 0 such that R(r, A\, u) = a and I(r, A\, u) = b. For
the need of (3.9), let

Arpp(w)

UO(W) = 1 - |AT)>\7M(W)|27

where A, » ,(w) is defined as (2.1). Then |lupllec < 1 and by (2.2), we know

/Suo(w)da =R(r,\,pu) = a, /Sx/l — luo(w)|2do = I(r, A\, ) = . (3.6)

This means that ug € Uy p.
Let u € U, p. By (3.1) and (3.6), we have

/(uo(w) —u(w), \)de =0, u/(\/l — |uo(w)[2 — /1 — |u(w)[2)de < 0. (3.7)
s s
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By Lemma 3.1, we have

V1= Juo(W))? = /1~ Ju(w)P?
_ {uw) —uo(w), uo(w)) | Julw) —uo(@)[*(1 — [a(w)[?) + [(u(w) — uo(w), t(w))|”

= — 5 . (3.8)
1 — Jug(w)[? 2(1 — [u(w)]?)2
where @(w) = ug(w) + ((u(w) — ug(w)), 0 < ¢ < 1. By (3.5) and (2.1), we have
L S 1) C) B (3.9)

[rN —wn VI—Tuw@pP
Then by (3.2) and (3.7)—(3.9), we obtain
LT(U()) — LT(U)
1— 72
[ (o) ).l
_/S [rN — w|? d

<UO(W)_U(W)7I> _ uo(w) — ulw o
2/5 [rN —w|® do /s< o) ule) A

+u /S (VI = Ta@)F — V1~ [u(@)P)do

0(e) — (@) P [H)?) + | (u(w) — uo(e), W)
+M/s 2(1 — [u(w)[?)? do
) — w0 PO = [T@)) + [f0(e) — upfe) T@)E
i 20— [a(@)P)? i

Note that
[a(w)] = [luo(w)(1 = ¢) + Cu(w)[| < [luo(w)[[(L =) + [[u(@){ <1 —-(+¢=1.

Thus L,(ug) > L,(u) with equality if and only if u(w) = ug(w) almost everywhere on S. This
shows that ug(w) is the unique extremal mapping, which will be denoted by g p (w).
Next we consider the case that b = 0. Let

Ar,)\(r,a) (W)

_ Lrara)W) 3.10
|Ar,)\(r,a) (UJ)| ( )

up(w)

where A(r,a) and A, \(rq)(w) are defined in Lemma 2.2. Obviously, |[uol|c < 1,

/S VT = Tao(@)do = 0, (3.11)

and by Lemma 2.2,
/ up(w)de = R(r, \(r,a)) = a. (3.12)
S

This means that ug € Uy o.
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Let w € Uy 0. By (3.1) and (3.12), we have

/S<u0(w) — (), A(r, a))do = 0. (3.13)
By (2.3), we have
m; CA@) = Ay (). (3.14)
By [Jul|s < 1, we have
[(u(w), Aragra) (@) < [u(@)[[Arxra) (W)] < [Ar x(r,0) (W) (3.15)
and
A0 )] = (00, Ay ) cnly ) = D ). (310)
Then by (3.2), (3.10) and (3.13)—(3.16), we obtain
Ll L) _ [ fe) ut) D,
_ /S <u0|(:]2[1125;)’l>da— /S {110 (@) — u(w), A(r, a))do

:/S<u0(w)—u(w),ml—)\(r,a»da
- /S (110(w) — u(w), Ay x(r0) (@) do

Ar ) (W)
- IV RVENZATEE A Aera d
[ (G e Aniea ) o

- /S (Arrray @) — (@), Aprray@)))do > 0

with equality if and only if u(w) = ug(w) almost everywhere on S. Thus L, (ug) > L,(u) with

equality if and only if u(w) = ug(w) almost everywhere on S. The theorem is proved.

Leta € R™, beR, [a>+0%> < 1,and 0 < r < 1. If b > 0, u,p, has been defined in Theorem

3.1. Now, define
Vapr(w) = 4/1 = |ugpr(W)|? forwe S, (3.17)

[Ju, (1’) — / L |x|2 u (w)da (3 18)
T a,b,r 5 .
” S |ZE ("’|n o
1 |]:|2
[a r\T) = a,b,r \W do. 3.19
,b, ( ) / |5L’ |n’U ,b, ( ) ( )

For b < 0, let

Ua,b,r(iZ?) = Ua,—b,r($)7 Va,b,r(QT) = — a,—b,r(x)- (3.20)
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Then for any a € R™, b € R and |a|* + b < 1, let

Fopr() = Uapr(x),Vapr(x)) forzeB". (3.21)
The harmonic mapping F, ; () satisfies F, 5 ,(0) = (a,b) and F, ;.. (B") C B™H! since we

will show Uy p(2)|> + |Vapr(2)|* < 1. By the convexity of the square function,

1—|zf?
Unr P + Vo @ < [ 2= (s @ 4023, (@) =1
=

with equality if and only if g pr1 (W), Uabr2(W), -+, Ugprm(w) and vep(w) are constants
almost everywhere on S, where
ua,b,r(w) = (ua,b,r,l(w)a ua,b,r,?(w)a o aua,b,r,m(w))-

However g p.r.1(W), Ug,br2(Ww), -, Uqgprm(w) are not possiblely constants almost everywhere
on S. Thus |Uapr(2)? + |[Vapr(z)]? < 1.

The mappings F,,;, are the extremal mappings in the following theorem. Theorem 3.2
extends Theorem B to F' € ,, 41, and when n =m + 1 = 2, Theorem 3.2 is coincident with
Theorem B. Note that in the following theorem, U, , is defined as (3.18) and (3.20), Fg p,, is
defined as (3.21).

Theorem 3.2 Let F(z) = (U(z), V() be a harmonic mapping such that F(B™) C B™+!
and F(0) = (a,b), where U(z) € R™, V(z) € R, a € R™ and b € R. Letl = (1,0,---,0) € R™.
Then, for 0 <r <1 andw € S,

(U(rw), 1) < (Ugpr(rN),1)

with equality at some point rw if and only if F(x) = Fyp,(xA), where A is an orthogonal
matriz such that wA = N. Further, (U(x),l) < (Ugpr(rN),1) for |z] <r.

Proof Step 1 First the case that rw = rN will be proved. Let 0 < 7 < 1 be fixed.
Construct mapping G(z) = F(7z) for z € B". G(z) is harmonic on B" and G(0) = (a,b). Let
G(z) = (u(z),v(z)), where u(z) € B™. Then ||lullo <1, [qu(w)do = a and

/S 1—|u(w)|2d02/5|v(w)|d02 }/Sv(w)da} — . (3.22)

So by (3.1), we know u € U, ;. By Theorem 3.1, we have (u(rN),l) < (Ug p|,»(rN),[) with
equality if and only if u(w) = ug |p|,»(w) almost everywhere on S. For ug s, (w), by (3.6) and
(3.11) we have

/ L — |ug,p|,»(w)[>do = [b]. (3.23)
S
If u(w) = uq,p),r(w) almost everywhere on S, then by (3.18) and (3.20), we have

uw(x) = Uy jp) r(2) = Uap,r(z) for z € B",

and by (3.17), we have

Va, ], (W) = /1 = [ttg ), (W) ][> = V1 = [u(w)>. (3.24)
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Note that by (3.22)—(3.24) we have

|b|:/va|b‘ do>/|v |da>}/ -

Then v(w) = v, p|,r(w) almost everywhere on S when b > 0, and v(w) = —vg|p|,»(w) almost
everywhere on S when b < 0. So v(x) = V,p»(z) for x € B,

For G(z) = (u(z),v(x)), it is proved that (u(rN),l) < (Ugpr(rN),1) with equality if and
only if G(z) = Fyp,(x). Now let ¥ — 1. Note that %1_}1111 G(x) = %1_}11% F(rz) = F(z) and
%1_21% u(rN) = U(rN). Then by the result for G(x), we have (U(rN),l) < (Ugp,r(rN),1) with
equality if and only if F(z) = F, ().

Step 2 Now we prove the case that rw # rN. Construct mapping F(z) = F(zA™!) for
x € B", where A is an orthogonal matrix such that rwA = N and A~! is the inverse matrix of
A. By [2], we know that F(z) is also a harmonic mapping. Let F(z) = (U(z), V(z)). Note that
F(0) = F(0) = (a,b). Then by the result of Step 1, we have (U(rN),1) < (U, 4(rN),1) with
equality if and only if F(z) = F, 4., (). Note that U(rN) = U(rNA™') = U(rw) and F(z) =
F(xA™Y). Thus (U(rw),l) < (Uasp.(rN),l) with equality if and only if F(zA™!) = F, ().
It is just that (U(rw),l) < (Uapr(rN),1) with equality if and only if F(z) = F,p (zA).

Step 3 We will show that (U(z),l) < (Uapr(rN),l) for |z| < r. Let

g(xz) = (U(z),l) for z € B". (3.25)

Then g(x) is a real-valued harmonic function. By the result of Step 2, we know that g(rw) <
(Uapr(rN),1). Then by the maximum principle, we have g(z) < (Uyp.(rN),1) for |z| < r.
If there exists a point zg with |zg| < r such that g(x¢) = (Ugp,(rN),1), then

g(x) = (Uapr(rN),l) for|z| <r. (3.26)

Then g(rN) = (Ugp,»(rN),1). Since (3.25) holds, we have g(rN) = (U(rN),). Then (U(rN),1)
= (Uqp,r(rN),1). Then by the result of Step 1, we have U(z) = Uq . (x). Thus by (3.25)—(3.26),
we obtain

Uapr(x), 1) = (Ugpr(rN), 1) for |z] <r.

However, it is impossible since (U, (), 1) is not a constant for |x| < r. Therefore, for any x

with |z| < r, we have g(z) < (Ugp,(rN),1). The proof of the theorem is complete.
Consequently, we have a corollary as follows.
Corollary 3.1 Let F(x) be a harmonic mapping such that F(B") C B™*! and F(0) =
(a,b), where a € R™ and b € R. Leteg = (1,0,---,0) € R™*L. Then, for0 <r <1 andw € S,
(F(rw),eq) < (Fapr(rN),eo)

with equality at some point rw if and only if F(x) = Fyp»(xA), where A is an orthogonal matriz
such that wA = N, and F, ., is defined as (3.21). Furthermore, (F(x),eq) < (Fapr(rN),eo)
for x| <.
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Generally, we have Theorem 1.1 in Section 1. Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1 For x € B", we have

(F(z),e) = F(a)e" = F(z)(e0Qc )" = Fl2)(e0Q2)" = F(2)Qeeq = (F(2)Qe, e),

where T is the transpose symbol. Let F(z) = F(z)Q. for € B". Then F(z) is a harmonic
mapping by [2], and F(B") ¢ B™*!, F(0) = F(0)Q. = (a,b)Q.. Applying Corollary 3.1 to
F(z), we have for 0 < 7 < 1 and w € S, (F(rw),eq) < (Fla,p)q.,r(rN), eq) with equality at
some point 7w if and only if F(z) = Flapq.r(rA), where A is an orthogonal matrix such that
rwA = rN. Furthermore, (F(x),eq) < (Fla,p)q.,r(rN),eq) for |z| < r. Note that for 2 € B",
F(z) = F(2)Qe, (F(x),e0) = (F(2)Qe, e0) = (F(z),¢e) and (F(rw),eo) = (F(rw),e). Then the

theorem is proved.

From Theorem 1.1, we obtain Corollary 1.1 in Section 1. Now we give the proof of Corollary
1.1.

Proof of Corollary 1.1 We will prove the corollary by three steps.
Step 1 We claim that for 0 < r < 1,

F070;T(x) = (U({E), 07 T 70)7 (327)

where U is the Poisson integral of the function that equals 1 on ST and —1 on S™.
By Theorem 3.1, (3.10), (2.3) and Lemma 2.2, we have

" (w)_ (1703"'50)7 WES+7
OO T (<1,0,-4,0), we S

Then by (3.17)-(3.19), we obtain that Up.(x) = (U(z),0,---,0) and Voo, () = 0. Thus
Fo 0. (z) = (Uo,0.r(x), Vo,0,r(x)) = (U(x),0,---,0). The claim is proved.

Step 2 For any x € B", let |x| = r, = rw. Since F(0) = 0, by Theorem 1.1, we have
that for eg = (1,0,---,0) € R™T! and any unit vector e € R™ 1 (F(rw),e) < (Fy0.-(rN),eo).
That is

(F(z),€) < (Fo,0,a)(|2|N), €0). (3.28)

If F(x) = 0, then obviously |F(z)| < U(Jz|N) since U(Jz|N) > 0. If F(z) # 0, then let
e= ;Eg‘ and consequently by (3.27)—(3.28), we have |F(z)| < U(|z|N).
Step 3 For some 2y € B"™, let |zo| = r9. By Step 2 and Theorem 1.1, we have that

|F(z0)| = U(Jzo|N) if and only if F(z) = Fp0.m(zA)Q:?

where A is an orthogonal matrix

e

such that xgA = rgN, e = ;Ew , Qe is an orthogonal matrix such that eQ. = eg, and Q;*
is the inverse matrix of Q.. By (3.27), we have Fp g, (zA) = (U(zA),0 ,0). Note that

(U(zA),0,---,0) = (U(xzA),0,- - ,0)ed eg, where T is the transpose symbol. Then

F(CL‘) = (U(xA)v 0,--- aO)Qe_l = ((U(:,CA), 0,--- 70)63‘)(60Qe_1) = U(CL‘A)@.

The corollary is proved.
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4 The Proofs of Lemmas 2.1-2.2

For the proofs of Lemmas 2.1-2.2, we need the following two lemmas.

Lemma 4.1 Let the matriz A, = (a;j) where n > 2 and a;; = —c;c; except for aiy.

nxn’
Let Q, = bl,, + A, where b is a real number and I, is n X n unit matriz. Then

detQy = b" +b" (a1 + azz + - + ana)

—2 a11  ai2 ai1  ais a1 ai
+ b" + + -+ " . (4 1)
az1 a2 azp ass Gnl  Ann
Proof Note that
Q21 Q22 - A2p —C2
= ( —Cc1 —C2 -+ —Cp )7
an1 an2 e Ann —Cn

the rank of A,, is no more than 2, and A,, is a symmetric matrix. Then there exists an orthogonal
matrix P such that

PA,P~! = diag(\1, X2,0,---,0),

where \; and Ay are some real numbers. Then

detQ,, = det(PQ,P~') = det(bI, + PA,P™")
=0+ 0"\ 4+ X2) + 0" A e, (4.2)

Since A1 + Ao is the trace of A, and A1z is the sum of all the level 2 principal minor of A,,, by
(4.2), we know

_ B Qi s
detQy, = 0" + 0" (a1 + as2 + -+ app) + 0" 72 Z al-z‘ az.j.
1<i<j<n ! 70 7Y
Note that
Gii Qg | _ | TCC GG | g g q <j<n
@ji - Ajj —Cjc;  —CjCy =

Thus (4.1) holds. Then the lemma is proved.

Lemma 4.2 Fixed integer k > 1, let matrices

X1 bl

To bQ A b
A:(a”ij)kxk’ T = . ) b= . ) 02(613627"'7616)7 B:( ¢ Chgl >

Tk bk

Suppose Ax +b =0 and detA #£ 0. Then

detB

cxr + Ck+1 = m



A Schwarz Lemma for Harmonic Mappings

1077

Proof Let I be the level k unit matrix. Note that —x = A~'b and detA # 0. Then

detB 1 B A1 A b
JotA =detA™" - detB = det {( 1 ) ( ¢ o >}

I —x
= det =T+ Cra1-
( L ) -

Thus (4.3) is proved.

Now we give the proof of Lemma 2.1.

Proof of Lemma 2.1 We will prove Lemma 2.1 by six steps, where Step 2 is only for the

case that m = 1, and Step 3—Step 5 are only for the case that m > 2.

Step 1 We give some denotation and calculation. Write
AT:>‘7M((‘U) = A((U) = (Al ((U), A?(w)7 T ,Am(W)),

R(T,)\,,U) = (Rl(T,)\,,LL),RQ(T,)\,,U), T 7R’m(r7)\mu))7
L=, ,lm), A=(A\1,A2, -, \p) and a = (a1,a2,  ,am).

For i,5 = 1,2,---,m, we denote
AI(r, A\, 1)
o

o N,

= I,,. Then a simple calculation gives

do forj=1,2,---,m,

i =

1 [ 14 [A@w)P - AHw)
J

z (1+]AW)2)3
Rji:_l/ MdU for i, i,j=1,2,---,m,
mJs (14 [Aw)]?)z

1 A;
Rm:——/s(g#_da for j=1,2,---,m,
Ij:l/%da for j=1,2,---,m,

S 2

_Lf AP
= M/S (1+|A(w)|2)%d '

It is easy to see that

OR;(r, A\, pn) IR (r ) ) AI(r,\,pn)
—on— = Ry, —57= = Ry, —5—

= I; and

(4.4)

(i) By (44), for j = 1,2,---,m, Rj; < 0 for any A € R™ and p > 0, and R;(r, A, p) is

strictly decreasing as a function of \; for fixed the other components of A and y;

(ii) By (2.1)-(2.2), for j = 1,2,---,m, fixing p and the components of A expect A;,

Rj(r,A\, ;) = —1 or 1 according to \; — 400 or Aj — —o0;
(iii) By (2.1)-(2.2), 0 < I(r, A\, ) < 1 for any A € R™ and p > 0.
In addition, let

R R o Rim R
Ryt Rig -+ R Ri R;z N R; R;#
Ro1 Rap -+ Ry " "
=\ . ) ) ., e= : : : :
| ! ' ' Rm Rm Rmm Rm
Ryn Rpa -+ R ! 2 K
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We claim that

T
ML 0 for integer k with 1 <k <m —1 when m > 2 (4.9)
k
and
©
> 0 when m >1. (4.10)

Now we will prove the two claims above.

For (4.4)—(4.8), let do = (m)da T = [¢do, d¢ = (F)do, b= Js(1 4 [A(w)]?)d¢,

and for 4,5 =1,2,--- ,m, @;; = [ —Ai(w)A;(w)dE, ¢; = [ Aj(w)dE. Then T >0, [(dé =1,
and

T~
Ra‘j:—;(b+aa‘j) for j =1,2,---,m, (4.11)
T S,
Rji:_ﬁaij fOI'Z?é‘], 27321727"' , M, (412)
T .
Rj# = _;CJ for J = 1327 M, (413)
T :
IJ = Ecj fOI‘] = 1327" c,m, (414)
T ~
Iy =—(b-1), (4.15)
1

b+an +age + -+ aj; > b+ ay +dag + o+ g = 1 for j=1,2,--- ,m. (4.16)

Since A; (w) = * (m A1) by (2.1) and [¢d¢ = 1, we have
B ) ) 2 2
- = / A2 (w)dE — (/ A (w)dg) - / [Al(w) - / A (w)dg} dE>0. (417
s s s 5
When m > 2, since [¢dé =1 and Aj;(w) = —% for j =2,---,m by (2.1), we have

aij = —/SAi(w)dg/SAj(w)dé =—¢ic; fori#lorj#1,4,j=12,---,m, (4.18)

and by (4.17), we have

%i Zl :‘ _iljlq S0 | =i — )20 forj=20m (4.19)
For integer 1 < p < m, let
b+ an a1z e aip
Q= M Mmoo (4.20)
a;'ﬂ 5;2 .

By (4.16), we have that when p =1, Q; = b+an > 0. By (4.18) and Lemma 4.1, we have that
when p > 2,

- = L ~ £ a1 a

= pP 4 pp1L Qi+ pP2 11 Ay

~ ~ p p
L ‘ =0+ > a | D
Q. .

1 j=1 j=2

ajj
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Consequently, by (4.16), (4.19) and b > 0, we obtain that when p>2,Q,>0.
Let

b+an a2 e A1m —C1
asi b+as - Q2m —C2
Qmi1 = : : 5 ; . (4.21)
aml Zim2 e b + amm :Cm
—c1 —cy e —Cm b—-1

If m =1, then Qi1 = b(b+ a1 — 1) + (—a11 — ¢2). Qa1 > 0, since (4.16)—(4.17) hold. If
-1

m > 2, then by (4.18), —¢; = —¢; x 1, = —1 x 1 and Lemma 4.1, we have

m m ~
~ ~ _ ~ a11 al alr —C
0 +1:bm+1+bm( a--—1)+bm 1 j
m J; 77 ZQ . i —c1 -1
o (T L N = | @ ay a c
= pm (b+ i — 1) + bm—l ~11 ~1] 11 —C1 ,
j:zl 7 J; ajz1  QAjy —C1 -1

and Q41 > 0 since (4.16)—(4.17), (4.19) and b > 0 hold.
By (4.11)—(4.12) and (4.20), we have for integer k& with 1 < k& < m — 1 when m > 2,
Fl’i—:l = (—% % Note that 7> 0, u > 0, Qx > 0, Qg1 > 0. Then the first claim (4.9) is

By (4.11)—(4.15) and (4.20)—(4.21), we have when m > 1, Fm = %% Note that T' >
0, £>0, Qu >0, Qu+1 > 0. Then the second claim (4.10) is proved.

Step 2 Step 2 is only for the case that m = 1. By (i)—(ii) in Step 1, we know that for fixed
iy, R(r, A\, ) is strictly decreasing from 1 to —1 as A is increasing from —oo to +o00. Then for

any —1 < a < 1 and fixed p, there exists a unique real number A(y, a) such that

R(Tv A, :u) ‘)\:)\(;ha) =a

Further, using the implicit function theorem, we have that the function A = A(u, a) defined on
{(u,a) : 1> 0,-1 < a <1} is a continuous function and %’;’a) exists.

Step 3 Step 3 is only for the case that m > 2. By (i)—(ii) in Step 1, we know that for
fixed Aa, -+, A\ and p, Ry(r, A, ) is strictly decreasing from 1 to —1 as Ay is increasing from
—00 to +00. Then for any —1 < a; < 1 and fixed Ao, -+ , A, and p, there exists a unique real
number Ay (Mg, -+, Ap, i1, a1) such that

Ry (Ta /\nu) |>\1:>\1(>\27"' Amopnar) — @1

Further, using the implicit function theorem, we have that the function Ay = Ay (Aa, -+, A\, 14,
ay) defined on {(Aa, - , A, p,a1) : de € R, -+ N, € Ry > 0,—1 < a3 < 1} is a continuous
function and —a)‘l(’\2"5'/\’)‘m’”’al),"' : 8A1(A2"5;\"Am’“’al), aAl(h"é"Am"“"al) exist.

2 m “w

Step 4 For the case that m > 2, we will prove the following result.
For an integer k with 1 <k <m — 1, if
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(1) There exists a unique continuous function Ay = Ay (A2, -+, A, i, a1), which defined on
{2y, Amy a1) : A ER -+ A €R, >0, —1 < ay < 1}, such that

Ri(r, A 10) [ 3221 (aees Apmogan) = 01

OAL (A2, Am,p,a1) L OA (A2, Ampar) OA (A2, Amupan) fot -
and s , , R , Bm exist;
(2) There exists a unique continuous function Ay = Aa(A3, -+ , A, 14, a1, a2), which defined

on
{3, 5 Ay s a1,a2) s A3 ER, -+ Xy € R, p > 0,a1 € R az € R, a? + a2 < 1}, such that

Ro(r, A 1) | n=x1 Oayo Apoan) = G2,
A2=X2(Az, , Am, 1h,01,a2)

exist;

OX2(A3, A, 1,01,02) OA2(A3,  Amop,a1,a2)  OA2(Ag,0 Ay 1,a1,a2)
and SR )

8A3 ? BAm Bu

(k) There exists a unique continuous function A, = Ag(Agt1, -+ Amy 14, @1, - -+ , @), which
defined on {(Akg1, s Adms by a1, -+ yag) : Agp1 ERy-o- X R, >0, a1 €ER,--+ jay €
R, a? 4+ ---+a} < 1}, such that

Ri (1, A 1) | 3y =21 (haeee A i) = Gk,
A2=A2(A3, -, Am, 1,01 ,a2)

A=At (Akg 1, A, 1,01, k)

and ONe Pkt 1, Ams a1, 50k) 0 ONe Akt Ao p,@1,+,0k) - ONe Ak 1,0 Ay 14,00, ,a)
8)\k+1 ) ? 6)\771 ) 6”

(1) If K < m — 2, there exists a unique continuous function

exist, then

A1 = A1 (Mg, 0 Ay I @1, -+ 5 Q1)

which defined on {(Agya2, Ay by a1, - yakt1) @ A2 € Ry-oo Ay € Ry p > 0, a1 €
R,--- a1 €R, a%+---+ai+1<l},suchthat

Rk+1(7“7 A M) A1=A1 (A2, s A, ptsa1) = Qk+1,
A2=A2(A3, ;A ph,01,a2)

A=Ak (A 157 5 A, 1,@1 570,k )
Akt 1= Xt 1 (N2, 5 Am 14,0157 @ k4 1)

and ONkt1 Abg2, Amsis @1, 50k 41) 0 Ok 1 Q2 Ams 01,50k 41) Ot kg2, Aim 4,01, 0k 1)
TAnso AR D ) on

exist;

(2) If k = m — 1, there exists a unique continuous function A\, = Ay, (4, @1, - , am ), which
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defined on {(p, a1, -+ ,am):pp >0, ag ER,--- Ja, €R, a? +---+ a2, < 1}, such that

R/H-l(ra /\M) A1=A1( A2, A isa1) = Qm.
A2=X2(A3, , Am,1,01,02)

>\7n71:)\m71(>\7n7ﬂ7a17"' 7a7n71)
A =Am (a1, ,am)

Now we will prove the result above. For 1 < k <m — 1, let

* * * *
A= ( 17A27"' 7)\k7)\k+17"' 7)\m):)\ Ar=A1 (A2, A p,a1) ’
A2=X2(A3, ", Am 4,01 ,02)

A=Ak Ak 15 A 1,@1 5,00 ,ak)

where

* *
/\1 =\ A1 =A1 (A2, Am,,a1) ) /\2 = A2 X2=A2(A3, ;A\, ph,01,a2) T
A2=X2(A3, ", A, 4,01,02) :

: A=Ak (ka1 5 Am 14,1500 ,k)
A=Ak (A 1577 3 Ay 1,@1 570 Ak )

* pr—
/\k = Xk |)\k:)\k()\k+17”' A1, ,A)

Consider the function Ry41(r, \*, ). A simple calculation gives

ORpy1 (r, A", 1) O ON;
Co A (Rpparyi e + Ripp1yp 2 +
OAkt1 ( G N 02 9N
O
+ R(k-‘rl)km + R(k+1)(k+1)) ‘A:A*- (4.22)
By the condition (1)-(k), we have for j = 1,2,--- k, R;j(r,A\*, ) = a; and consequently
ORI — 0, which is
ON: ONS aN: )
Pl LR, 4Ry SCk LR ’ =0 forj=1,2-,k (423
(le ONk11 2 OAjt1 o Bk OAjt1 * J(k+1)) A=\* orJ ( )

By (4.22)—(4.23) and Lemma 4.2, we have ORppa (r A7) — Linr

OXkt1 Tro|y=x
%ﬁ"“) < 0, which shows that Ryy1(r, A", 1) is strictly decreasing as a function of \gyq.

Note that —1 < Rpg1(r, A*,u) < 1 and Rpi1(r, \*, ) is bounded by (i) and (ii) in Step 1.
Thus, Ri41(r, \*, 1), as a function of Agy1, respectively has finite limit as Ag41 — 400 and as

. Then by (4.9), we obtain

/\k+1 — —OQ.

We claim that Rii1(r, A", pu) = —y/1 —a? — -+ — a3 as A1 — +00, and
Rip1(r, N pu) = /1 —a? — - —a? as A\gp1 — —00.
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As Agy1 — +oo. Note that for j =1,2,--- Jk+1,

_
Akl
k+1 2
As
> (=)
=1 A=A*
N
is bounded since % < 1. Then there exists a subsequence (/\k+1)p — 400,
X 2
= ( Ak+1 ) A

_

such that for j = 1,2,--- .k + 1, % has a finite limit ¢;. Let
X 2
,Z%(’\kﬂ) s
B ‘/\k+1:(/\k+1)p
(A"), = /\*|)\k+1:(>\k+1)p. Then we have
Y
lim —— ket =t; forj=1,2- k+1 (4.24)
P—0 k+1 )\ 2
% ()

A=(A),

We only need to prove that Ry1(r, (\*), ;) = —y/1—af —--- —af asp — oo. Let (A(w)), =

((Ar(w))p -+ 5 (Am(w))p) = Ar(a%), u(w). By (2.1) and (4.24), we obtain for j = 1,2,--- | k+1,

S B ¥ SV,
m (Aj(w))P — lim [rN—w]™ XNpt1 Net1
P THTAGLE % [ . o
Py +Z§: (|7’N W™ Ner1 Ak+1)
N A=(A7),
Y
= lim ———2 =t (4.25)
p=oo k4l o) N2
= (Ak+1)

uniformly for w € S. By the Lebesgue’s dominated convergence theorem and (2.2), (4.25), we
have for j =1,2,--- [k +1,

Jim Ry(r, (A )paﬂ):pgﬁ(}o/\/%do

:/ lim Mdaztj. (4.26)
gP= \/1+[(A(w))p|?

kt1
Note that R;(r,(X"),,pu) = a; for j = 1,2,---,k by the conditions (1)-(k), and } t? =
j=1
1, tg+1 < 0 by (4.25). Then by (4.26) we have t; = a; for j = 1,2,--- ,k, and tp41 =
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—/1—a? —---—aj. Consequently pli}rgo R (r,(\%), ;1) = —y/1—af —--- —aj. The first
claim is proved.
Using the method of the proof of the first claim, we can prove the second claim. It is

proved that Rjyyi1(r, \*,p) is continuous and strictly decreasing from \/1 —aj—---—a; to
—/1—a? — -+ —aj as \j41 is increasing from —oo to +oo. Thus, for any —/1 —a? —--- —a?
<app1 </l1—a?—---—a? and af + -+ +al < 1, we have

(1) If k < m—2, then there exists a unique real number Agy1(Agg2, 5 Ay fly G1y -+ 5 Qlet1)
such that

* p—
Rk+1 (ra AT, /J’)|)\k+1:)\k+1()\k+2-,"' Amophar,apgr) — Gk41-

Further, using the implicit function theorem, we have that the function A1 (Agt2, -, Am, i,
ay, -+ appr) defined on {(Aga2, s Ay s @1, o+ 5 Qpt1) t A2 ER, - A €R, 1 >0, ay €
R,---,ar+1 €R, af +--- +aj,, <1} is a continuous function, and
a)\k+l(Ak+27 Ty Ama My A1y 7ak+l) . a)\k-Fl(Ak-‘rQa T Ama My A1y 7ak+l)
OAjt2 B O ’
a)\k-Fl(Ak-‘rQa T Ama My Ay 7ak+l)
o
exist;
(2) If kK =m — 1, then there exists a unique real number A\, (¢, a1, -+ ,a.,) such that

Ry41 (Ta /\*v ILL)|)\7n:)\Tn(N)a1)"' Jam) — Am-

Further, using the implicit function theorem, we have that the function A, (4, a1, -, am)
defined on {(it, a1, ,am) : >0, ay €ER,--+ ,a, €R, a? +---+ a2, < 1} is a continuous
function.

Step 5 For the case that m > 2, by Step 3 and Step 4, we have that there exists a unique

continuous mapping

A, a) = A1=A1(A2, s Am 11,01

A=Ak (Nkg1,  Am 1,01, ,ak)

Am =Am (11,01, ,am)

defined on {(p,a) : 4 >0, a € R™, a= (a1, ,ay), |a* <1}, such that

Rj(rﬂ/\(uaa)aﬂ):aj fO].“(]'::LQ’-..’Tn7

and 6’\18(5@) 2T 8/\%8;,@) exist, where (A1 (g, @), -+, A (1, @)) = A(p, a).
Step 6 For m > 1, by Step 2 and Step 5, we know that there exists a unique continuous
mapping A(u, a) defined on {(p,a) : >0, a € R™, |a|? < 1}, such that

R(r, AN, a), u) = a, (4.27)

and aAla(::’a) PR a)\néifﬂa) eXiStv where ()\1(,“’ a)v T 7)\m(,u7 CL)) = /\(lu“v CL).
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In the following, we consider the function I(r, A(i, a), p).
For a fixed a = (ay,- -+ ,a;,) € R™ with |a|? < 1, write A(u, a) = M) = (A1 (@), -+, Am (12))-
Then

dI(r, A(w), 1) dhi(p) |, dra(p) A (1)

= (7 I e+ Iy, . 4.28
du ( du i du ot dp “) ‘,\:,\(M) (4.28)

By (4.27), we know that
Ri(r,\(u), ) =a; forj=1,2,---,m (4.29)

and
dAi (p) da () A (1) ‘
. , . - . -0
(Rj 4 R R Rw) o

for j=1,2,--- ,m. (4.30)

Then by (4.30), (4.28) and Lemma 4.2, we have H(:300) — .0

. By (4.10), we have
N y (4.10)

%}W > 0, which shows that I(r, \(u), p) is strictly increasing as a function of . By (iii)
in Step 1, we know that I(r, \(u), 1) respectively has finite limit as ¢ — 0 and as p — +00.
We claim that I(r, A(p), 1) — 0 as p — 0, and I(r, \(un), ) = /1 — |a|? as u — +oo.
As p — 0, there exists a subsequence pi — 0, such that Aj(ug) has a finite limit ¢ or

tends to co. We only need to prove that I(r, A(ug), k) — 0 as k — oco. Since I(r, M(ug), pr) =
1

fs VIF A A gy g, (W)I2

on S. Note that

do, we only need to prove that |A, x(u,),u (W)| — 00 almost everywhere

1 1 1 1
A, = —|— 01— A ‘>—‘7—)\
| Ak )bk (w)| m |’I”N — w|" (/J’k) =k |7”N — w|n l(ﬂk)
and
1 1 1

< < .

(1+7r) = |rN—-w*» = (1—r)"
If Ay(ug) — t as k — oo, then m m — A1 () # 0 almost
everywhere on S. Thus |4, x(u,),u. (W)] = +00 almost everywhere on S. If Aj(ux) — oo as

— A1(ux) is bounded and

k — oo, then it is obvious that A, \(u,.),u (w)| = 400 uniformly for w € S. The first claim is

proved.

As pp — 400, %W — 0 uniformly forw € S. Forj=1orj=2or--- or j =m, if there
exists a subsequence pj, — 400 such that % — 00, then |A; z(u,),ue (W)| — 400 uniformly
for w e S, and I(r, \N(ux), px) — 0, a contradiction. This shows that for j =1,2,--- ,m, ’\’T(“)

are bounded as i — +o0o. Thus there exists a subsequence p; — 400 such that —% tend
to a finite limit ¢; for j = 1,2,---,m. That is,

A.
i ) _ t; forj=1,2,---,m. (4.31)
k—oo joy>

We only need to prove that I(r, \(ux), ui) = /1 — |a|? as k — oo. Let

(AW = ((Ar(@))r, -5 (Am (W))k) = Ar xui) s (W)-
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By (2.1) and (4.31), we obtain for j = 1,2,--- ,m,

(w ) A (Mk) L
P~ lim L = J (4.32)
k—)oo 1 + | UJ) |2 k— o0 2 m
v 14 z Aulee) ) 14y ¢2
i=1
uniformly for w € S, and
1 1
= lim = (4.33)
k—)oo 1+ | |2 k—o0 A (i) m 5
1+ Z (e ) 1+ Y £
i=1

uniformly for w € S. By the Lebesgue’s dominated convergence theorem and (2.2), (4.32)-
(4.33), we have for j =1,2,-

w )k
klgI;OR (r, A(pere), o) /k_mo 1+| ®) |2 \/7 (4.34)
and
hm I(ry M k), o) (4.35)

/ 1
Sk—>001/1+ 2 m '
| )il 1/1+§jt$
i=1

Note that R;(r, N(ug), pr) = aj for j =1,2,--- ,m by (4.29), and

2 2

m ; 1
= e 14 Z 2
i=1 i=1
Then by (4.34), we obtain that tijm =a; for j=1,2,--- ,m, and + =/1—lal%
VI 8 NS
i=1 i=1
Consequently by (4.35), klim I(r, Mpk), pr) = +/1 — |a|?. The second claim is proved.
—00
It is proved that I(r, A(u), 1) is continuous and strictly increasing from 0 to /1 — |a|? as u
is increasing from 0 to +oco. Thus, for any 0 < b < /1 — |a|? and |a| < 1, there exists a unique
real number p(a,b) such that I(r, \(u(a,b)), u(a,d)) = b. Further, using the implicit function
theorem, we have the function u(a,b) defined on {(a,b) : a € R™, b e R, |a| <1, 0 <b<
v/1 —|al?} is a continuous function.
Denote A(u(a,b)) by A(r,a,b). Denote u(a,b) by u(r,a,b). We have proved that there
exists a unique pair of continuous mappings A = A(r,a,b) and p = p(r,a,b), such that
R(r, A(r,a,b), u(r, a,b)) = a and I(r,A(r,a,b),u(r,a,b)) = b on the upper half ball. The

lemma is proved.

Now we give the proof of Lemma 2.2.
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Proof of Lemma 2.2 We will prove Lemma 2.2 by two cases: m = 1 and m > 2. The
case that m = 1 will be proved in Step 1. The case that m > 2 will be proved in Step 2—Step 5.
Step 1 For the case that m = 1, we have
1
T , eyl
— rN—w|™ — IN—w” w\" - 1
R(Ta /\) —/S ||TN£W|H — /\| do = fs \‘ o Al do, M€ ((1+r)n’ = r)")

NS [W, +OO)

Obviously R(r,A) = 1 when A\ < (1+—1r)”’ R(r,A) = —1 when \ >

continuous and strictly decreasing from 1 to —1 as A is increasing from

and R(r A) is
Then

1
(1_T)71 )
1 4o

T O
for any —1 < a < 1, there exists a unique real number A(a) such that

R(T‘, )\) |)\:)\(a) = aq.

Further, using the implicit function theorem, we have that the function A = A(a) defined on
{a: =1 < a < 1} is a continuous function. Write A(a) = A(r,a). Then the case that m =1 is
proved.

Step 2 For the case that m > 2, we give some denotation and calculation. Let

Ara(w) = Aw) = (A1 (w), A2(w), - -+, A (w),
R(r,A) = (R1(r,N), Ra(r, A), -+, Rin (1, A)),
L=, lm), A= (A1, A,--, A

m) and a = (a1,az2, -, am)-

2
7 23,14 = (o = 2a) +23 +ooe 2 So i s

H={A=M\1,,An) ER": Xog=--- =)\, =0},
then obviously for i,j = 1,2,--- ,m, 87%7&”” exist for A € R™\ H. We denote 87%7%)‘) =Rji
fori,7=1,2,--- ,m. Then a simple calculation gives that for A € R™\ H,
Aw
= / | ( )da for j=1,2,---,m, (4.36)
(w)
(w)A (w) L
R = — 7d0 fori#j, i,7=1,2,---,m. (4.37)
! s AW

It is easy to see that

(1) By (2.3)-(2.4), for j =1,2,--- ,m, R;(r,\) is a continuous function for any A € R™;

(2) By (2.3)-(24), for j = 1,2,--- ,m, fixing the components of A expect A;, R;(r,\) = —1
or 1 according to A; — 400 or A\; — —00;

(3) By (2.3) and (4.36), R11 < 0 for any A € R™\H, and Rq(r, \) is strictly decreasing as
a function of Ay for fixed Ao, -+, A, with Ao, -+ | A\, being not all 0;

(4) By (2.4), for fixed Ag = --- =\, =0,

17 )\1 S (—OO

;]

1 A 1 A R

FN—w® M rN—w” — 1 1 1
B T T

S|m_)‘l| S|m_)‘l| (I4r)m2 (1-7)

—1, AL € [ﬁ,—i-w);
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(5) By (2.3) and (4.36), for j = 2,--- ,m, R;; <0 for any A € R™, and R;(r, ) is strictly
decreasing as a function of A; for the other fixed component of A.
In addition, let the matrix I'y, = (Rij)rxr. For A € R™\H, we claim that

| )
k

<0 forinteger k with 1 <k <m — 1. (4.38)

Now we will prove the claim above.
For (4.36)—(4.37), let d& = (|A(w)‘3)da T=[,ds, d§ = (%)d5, b = [¢]Aw)[*d¢, and for

=12, m, Ay = [g— A w)d, ¢j = [4 Aj(w)dé. Then T >0, [(d¢ =1, and
RJJ - M(b+a‘JJ) fOI‘j = 1327" U (439)
T L
Rji = _Zaij for ¢ #]7 ) = 1723' EERLLB (440)

Since A; (w )—m A1 by (2.3) and [ d€ = 1, we have

Can— = /S A(w)ae — ( /S A1(u)d§)2 _ /S (A1) - /S Al(w)dgrd§> 0. (441)

Since [¢d¢ =1 and Aj(w) = —\; for j =2,--- ,m, by (2.3), we have

- [ Awre [ A
s s
—cicj foriAlorj#1,4,57=1,2,---,m, (4.42)
611 &13‘ —C1C4 _ 20~ 2
6j1 'djj ‘ CJCl —CjCj _CJ( a1 —ci)
)\ (a1 —c3) forj=2,--- m. (4.43)
For integer 1 < p < m, let
Q= . : N (4.44)
apl ap? U 54_ app

Since A € R™\ H, we have that when p = 1, Q; = b+ @, > 0. By (4.42) and Lemma 4.1, we
have that when p > 2,

p P ~ ~
— PP a2 s ayg
O Z a Z a1 aj
¢ @i ay
— - 1( )+bp 2 au dyyo|

Consequently, by (4.43), (4.41), b > 0 and A € R™\ H, we obtain that when p > 2, Qp > 0.
By (4.39)-(4.40) and (4.44), we have for integer k with 1 <k <m — 1, T = (=T) 2L,
Note that T > 0, Qr > 0, Qx+1 > 0. Then the claim (4.38) is proved.
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Step 3 For the case that m = 2, by (1)—(3) in Step 2, we know that for fixed Ao, -+, Ay,
with Ag,- -+, A, being not all 0, Rq(r, \) is strictly decreasing from 1 to —1 as A; is increasing
from —oo to +oo By (4) in Step 2, we know that for fixed Ay = --- = A\, =0, R1(r,\) =1
(1+r)"’ Ri(r,A) = —1 when \; > ﬁ,
decreasing from 1 to —1 as A; is increasing from ﬁ ﬁ
and any fixed Ao, -, A, there exists a unique real number Aq (A2, -+, Ay, a1) such that

when \; < and Rq(r,\) is continuous and strictly

to Then for any —1 < a; <1

Rl(T‘, )\) |)\1:>\1(A2,---,>\m,a1) = aj.

Further, using the implicit function theorem, we have that the function Ay = Ay (A, -+, A\, a1)
defined on {(Ag, -+ , A, a1): Ao €R, -+ [\, € R, —1 < a1 < 1} is a continuous function, and
(9)\1(>\25');2-,Am>a1) R aAl(A2é.).\;;LAm"al) exist for ()\2, o Am, al) with Ao, -+, A\ being not all 0.

Step 4 For the case that m > 2, we will prove the following result.

For an integer k with 1 < k <m — 1, if

(1) There exists a unique continuous function \; = A1 (A2, -+, Ay, a1), which defined on
{(Ag, -, Am,a1): e €R -+ N\, € R, —1 < a; < 1}, such that

Ra(r,A) |)\1:>\1(>\2,---,>\m,a1) =ay,

O (A2, Am, O (A2, Am, . . .
and 220 W o) ... Bl X 9) exist for (A, -+, Am,a1) With Ag, -+, Am being not

all 0;
(2) There exists a unique continuous function Ay = Aa(A3, -+, A, a1, a2), which defined on
{A3,+ , Amya1,a2) i A3 €ER, -+ Ay €R, a1 €R, az € R, a? + a3 < 1}, such that

RQ(T7 )\) )\1:>\1(>‘2;"';>\m)a1) = a2,
A2=X2(A3," ,Am,a1,a2)
a)\ )\ m ai.a a)\ )\. _’..._’Am)a ,a . .
and 2(Az, a)\g 1, 2)’_,_ ’ 2(A3 - 1,a2) exist for (/\37... ’,\m7a17a2) with Az, -+, A\p be-

ing not all 0;

(k) There exists a unique continuous function A\ = Ag(Ag+1, -+, Am, a1, -+ ,ax), which
defined on {(M\gs1, s Adm, @1, ,ak) i Agp1 ER, -+ A €R, a1 €R, -+ Jap €R, af +---+
ai < 1}, such that

Re(rs A) [ai=21 (Ao Amoar) = ak;
A2=X2 (A3, ,Am,a1,02)

)\k.:kk()\ki»l;"' JAm @1, k)

0N (A1, s Am, 01, ,0k) O (Mg, Amsan, - ,ak) s .
and 8)%:; T 6>\mm exist for ()‘k+17 e Am, G, ,ak) with
Ak+1s°** » Am being not all 0,
then

(1) If k < m — 2, there exists a unique continuous function A\py1 = Apr1(Akr2, 5 Am,

a1, ,ap+1), which defined on {(Agt2, -, Am, a1, ,ak41) : Mgz ER -+ A €ER, ag €
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R, - ars1 € R, a%—l—---—i—aiﬂ < 1}, such that
Rict1(75 A) | ai=21 oy s Amsan) = k41,
A2=A2(A3,"+,Am,a1,a2)
)\k.:)\k()\k+17”' Am,Q1,,ak)
Ap1=Appr1 (Aego, s Am 01, ,ak41)
(22 Ak42, s Am, 01,000 (22 Ak42, s Am, 01,000 :
and 1 Argo e a1 ap41) e k1 (Akt2 e a1 Q1) exist for ()\k+27 e Ama A,
ag+1) with Agga, -+, Ay being not all 0;
(2) If Kk = m — 1, there exists a unique continuous function \,, = A\, (a1, -+ ,am), which
defined on {(ay, - ,am): a1 €R,-- ,a, €R, a2 +---+ a2, < 1}, such that
Rm(r, /\) A=A (A2, Am,a1) = am-
A2=A2(A3,"+ ;A\ a1,a2)
)\m;1:>\7n71()\m>"' >>\7n>a1>"' 70177171)
Am=Am (a1, ,am)
Now we will prove the result above. For 1 <k <m — 1, let
A" = ( Ia /\37 T 7)‘;;7 Akt1s 7)‘m) =A A1=A1(A2, A ya1) )
A2=A2(A3,"+ ;A\ a1,a2)
Ak'zkk()\k+1y"' Am,a1, e ,ak)
where
AL = A1 A=A (ares Asan) A2 = A2 a=ae (g A a,a2) A
X2=A2(A3," ;A\ ,a1,a2) :
: A=Ak (Akt1, s Am,a1,+,ak)
A=At (Akg 1,7, Am a1, ,ak)
%k
/\k = Xk |>\k:)\k()\k+1>"'>>\7n>a1>"'>ak) :
Consider the function Ry41(r, A*). A simple calculation gives for A* with A\gy1,--+, Ay, being
not all 0,
OR 41 (1, A¥) ( Ot ONS
—— = (Rup+1n ! + Rk+1)2 z 4
OAy1 DY O N ks kD2 5 X ks
N}
IR 4R )‘ . 4.45
i gy Ry )| (4.45)

By the conditions (1)—(k), we have for j = 1,2,--- , k, R;(r, \*) = a; and consequently OR4(rA")

Oy
=0 for A\* with Agy1,---, Ay being not all 0, which is
ON} oS OAj, .
Ry Rp222 R, T R )‘ —0 forj=1,2,---,k (4.46
( J1 a)\k+1 + j2 a)\k+1 + + Jk a)\k—i-l + j(k+1) A+ or j ( )



1090 S. Y. Dai and Y. F. Pan

By (4.45)—(4.46) and Lemma 4.2, we have

aRk-rl(ﬁ /\*) o |y}

OAkt1 | I PN

for A* with Ag41,- -+, A\m being not all 0. Then by (4.38), we obtain

8Rk+1 (Ta A*)

<0
OAky1

for \* with Ag41,---, A\ being not all 0, which shows that when A\g11 # 0, Riq1(r, \*) is
strictly decreasing as a function of Agt1. Since Ry41(r, \*) is continuous as a function of g1
by the conditions (1)—(k) and (1) in Step 2, for Apt1 € R, Rit+1(r, A*) is strictly decreasing
as a function of A\gy1. Note that —1 < Rpq1(r, A*) < 1 and Ry41(r, A*) is bounded since (2)
and (5) in Step 2 hold. Thus Ry11(r, \*), as a function of A\g41, respectively has finite limit as
Ak4+1 — +o0o and as Ag11 — —00.

We claim that Ry41(r,\*) — —y/1—a? — - —a? as Agy1 — +00, and Ryp1(r, \*) —
V1—a? - —a} as \pp1 — —o0.

As Agy1 — +o0o, note that for j =1,2,--- [k + 1,

Y
Ak+1
k1 2
Ai
(o)
= A=A
N
is bounded since Hlkk“ < 1. Then there exists a subsequence (/\k+l)p — 400,
A )2
igl(xk*’l) A=\*
N
such that for j = 1,2,--- ,k + 1, % have a finite limit ¢;. Let
N, )2
El(kkﬂ) A
- |>‘k+1:(>‘k+1)p
(/\*)p = /\*|)\k+1:()\k+1)p. Then we have
Y
lim —— ket =t; forj=1,2- k+1 (4.47)
E I RIS
Z (Akil)
=t A=(A%),,
We only need to prove that Ry11(r, (X*),) = —y/1 —af —--- —af as p — oo. Let

(A@))p = ((A1(@))ps -5 (Am(w))p) = Ar a5, (@)-
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By (2.3) and (4.47), we obtain for j =1,2,--- |k + 1,

1 N
lim M = lim m)\wﬂ Ak+1
p—o0 |(A(w))p| p—o0 m . j N 5
z; (m Py )\k+1)
- A=(A"),,
N
= Jim =t (4.48)

k41 2
£ ()
Py
i=1 Nk

uniformly for w € S. By the Lebesgue’s dominated convergence theorem and (2.4), (4.48), we
have for j =1,2,--- [k +1,

A=(A%),

N (01 N A 11 PO
R 00 = i [ = [ a0

1
t2 =1, tgy1 <0 by

k
Note that R;(r, (/\*)p) = q; for j = 1,2,--- , k by the condition, and
=1

+
Jj=

(4.48). Then by (4.49), we have t; = a; for j = 1,2,--+ |k, and tj41 = —/1 —a? — - —al.
Consequently pli)n;o Rit1(r, (\*),) = —/1 —aj —--- — ai. The first claim is proved.

Using the method of the proof of the first claim, we can prove the second claim. It
is proved that Ry41(r, \*) is continuous and strictly decreasing from /1 —a? —--- —a? to
—\/1 —a?— - ai as A\p+1 is increasing from —oo to +oo. Therefore, for any

—\/1—a%—---—a%<ak+1 < \/1—a%—---—a%
with a? — -+ —a} < 1, we obtain

(1) If & < m — 2, then there exists a unique real number A1 (Agy2, s A, @1, Qpt1)
such that

* —
Rk+1(rv A )|)\k+1:)\k+1(>\k+2,"' Amsar,apyy) — Ak+1-

Further, using the implicit function theorem, we have that the function Agt1(Agto, -+, Am, a1,
- yapy1) defined on {(Agta, s Am, a1, ,akt1) : A2 ER - X ER >0, a; €R,---
ap+1 € R, a% 4+ aiﬂ < 1} is a continuous function, and

8)\k+1(Ak+2, e 3A’m.7 Ay, aak-‘rl) . 8Ak+1()\k+25 e 7)\7717 ai,--- 7a’k+1)
(9/\;.3_;,_2 ’ ’ 0Am
exist;
(2) If K = m — 1, then there exists a unique real number \,,, = A\, (a1, -+, ay,) such that
Rm(T‘, )\*)|)\m:)\m(a1,-~ Jam) — Am-
Further, using the implicit function theorem, we have that the function \,, = Ay, (a1, -, am)

defined on {(a1, -+ ,am): a1 €ER, -+ a, €R, a? + -+ a2, < 1} is a continuous function.
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con

Step 5 For the case that m > 2, by Step 3 and Step 4, we have that there exists a unique

tinuous mapping

A@) = A |x =21 e Amaar)

A=Ak A 157 Am a1y ,az)

>\7n.:>\7n (aly"' 701771)

defined on {a = (a1, - ,am) € R™ : |a] < 1} such that R(r, A(a)) = a. Write A(a) = A(r,a).
Then the case that m > 2 is proved.
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