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Abstract The authors prove a Schwarz lemma for harmonic mappings between the unit

balls in real Euclidean spaces. Roughly speaking, this result says that under a harmonic

mapping between the unit balls in real Euclidean spaces, the image of a smaller ball

centered at origin can be controlled. This extends the related result proved by Chen in

complex plane.
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1 Introduction

Let n be a positive integer greater than 1. Rn is the real space of dimension n. For

x = (x1, · · · , xn) ∈ Rn, let |x| = (|x1|2 + · · · + |xn|2)
1
2 . Let Bn = {x ∈ Rn : |x| < 1}

be the unit ball of Rn. The unit sphere, the boundary of Bn is denoted by S; normalized

surface-area measure on S is denoted by σ (so that σ(S) = 1). Let S+ denote the northern

hemisphere {x = (x1, · · · , xn) ∈ S : xn > 0}, and let S− denote the southern hemisphere

{x = (x1, · · · , xn) ∈ S : xn < 0}. N = (0, · · · , 0, 1) denotes the north pole of S. Bn
r = {x ∈

R
n : |x| < r} is the open ball centered at origin of radius r; its closure is the closed ball Bn

r .

Let m be a positive integer with m ≥ 1. A mapping F = (F1, · · · , Fm, Fm+1) from Bn

into B
m+1 is harmonic on B

n if and only if for k = 1, · · · ,m,m + 1, Fk is twice continuously

differentiable and ∆Fk ≡ 0, where ∆ = D2
1 + · · · + D2

n and D2
j denotes the second partial

derivative with respect to the jth coordinate variable xj . By Ωn,m+1, we denote the class of all

harmonic mappings F from Bn into Bm+1.

Let D be the unit disk in the complex plane C. Denote the disk {z ∈ C : |z| < r} by Dr, and

its closure is the closed disk Dr. Let B
n be the unit ball in the complex space Cn. Denote the

ball {z ∈ Cn : |z| < r} by B
n
r , and its closure is the closed ball Bn

r . For a holomorphic function

from D into D, the classical Schwarz lemma (see [1, 7–8]) is well-known. For a holomorphic

mapping f from B
n into B

m, the classical Schwarz lemma (see [8]) says that if f(0) = 0, then

|f(z)| ≤ |z| (1.1)
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holds for z ∈ B
n. For 0 < r < 1, (1.1) may be written in the following form:

f(Bn
r ) ⊂ Bm

r .

So the classical Schwarz lemma can be regarded as considering the region of f(Bn
r ). If f(0) 6= 0,

then what is the region of f(Bn
r )? It seems that there is not much of research in the literature.

However, the same problem also exists in harmonic mappings. The work in the following by

Chen [3] seems to be the first result of this kind of study for harmonic mappings in the complex

plane.

For 0 < r < 1 and 0 ≤ ρ < 1, Chen [3] constructed a closed domain Er,ρ and proved the

following result.

Theorem A Let 0 ≤ ρ < 1, α ∈ R and 0 < r < 1 be given. For every complex-valued

harmonic function F on D such that F (D) ⊂ D, if F (0) = ρeiα, then

F (Dr) ⊂ eiαEr,ρ, (1.2)

which is sharp.

Note that the function F in the above theorem can be seen as F ∈ Ω2,2. So (1.2) can be

regarded as considering the region of F (B2
r ) when F ∈ Ω2,2 regardless of F (0) = 0 or F (0) 6= 0.

In [3], the most important theorem for the proof of Theorem A is the theorem as follows, which

is the motivation for our study of the extremal mapping. The mappings Ua,b,r and Fa,b,r in the

following theorem are defined in [3].

Theorem B Let F = U+iV be a harmonic mapping, such that F (D) ⊂ D and F (0) = a+bi.

Then for 0 < r < 1 and 0 ≤ θ ≤ 2π,

U(reiθ) ≤ Ua,b,r(ri)

with equality at some point reiθ if and only if F (z) = Fa,b,r(e
i(π

2 −θ)z). Furthermore, U(z) <

Ua,b,r(ri) for |z| < r.

A classical Schwarz lemma for complex-valued harmonic function on Bn (see [2]) says as

follows.

Theorem C Suppose that F is a complex-valued harmonic function on Bn, |F | < 1 on Bn,

and F (0) = 0. Then

|F (x)| ≤ U(|x|N) (1.3)

holds for every x ∈ Bn, where U is the Poisson integral of the function that equals 1 on S+ and

−1 on S−. Equality holds for some nonzero x ∈ Bn if and only if F = λ(U ◦ A), where λ is a

complex constant of modulus 1, and A is an orthogonal transformation.

Especially, when n = 2 in the above theorem, it is known (see [5]) that

|F (x)| ≤ 4

π
arctan |x|

holds for every x ∈ B2.
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From Theorem C, for 0 < r < 1, (1.3) may be written in the following form:

F (Bn
r ) ⊂ DU(rN), (1.4)

where DU(rN) = {z ∈ C : |z| ≤ U(rN)}.
Note that the function F in the above Theorem C can be seen as F ∈ Ωn,2. So (1.4) can

be regarded as considering the region of F (Bn
r ) when F ∈ Ωn,2 with F (0) = 0. It is natural to

consider what the region of F (Bn
r ) is, if F ∈ Ωn,2 with F (0) 6= 0. This problem was resolved in

[4]. Furthermore, we want to know what the estimate corresponding to (1.4) is, when F (0) = 0

or F (0) 6= 0, for the general F ∈ Ωn,m+1. This problem will be resolved in this paper. When

F (0) 6= 0, this problem is serious, because the composition f ◦ F of a möbius transformation f

and a harmonic mapping F does not need to be harmonic.

In this paper, inspired by the method of the proof of Theorem B in [3], we obtain the

following Theorem 1.1, which is very important in this paper. (1.5) is the estimate corresponding

to (1.3) without the assumption F (0) = 0. Especially, when F (0) = 0, we have Corollary 1.1,

which is coincident with Theorem C when m + 1 = 2. Note that in the following theorem,

F(a,b)Qe,r is defined as (3.21).

Theorem 1.1 Let F (x) be a harmonic mapping such that F (Bn) ⊂ Bm+1 and F (0) = (a, b),

where a ∈ Rm and b ∈ R. Let e be a unit vector in Rm+1, e0 = (1, 0, · · · , 0) ∈ Rm+1, and Qe

be an orthogonal matrix such that eQe = e0. Then, for 0 < r < 1 and ω ∈ S,

〈F (rω), e〉 ≤ 〈F(a,b)Qe,r(rN), e0〉 (1.5)

with equality at some point rω if and only if F (x) = F(a,b)Qe,r(xA)Q
−1
e , where A is an orthogonal

matrix such that ωA = N and Q−1
e is the inverse matrix of Qe. Furthermore, 〈F (x), e〉 <

〈F(a,b)Qe,r(rN), e0〉 for |x| < r.

Corollary 1.1 Let F (x) be a harmonic mapping such that F (Bn) ⊂ Bm+1 and F (0) = 0.

Then

|F (x)| ≤ U(|x|N)

for every x ∈ Bn, where U is the Poisson integral of the function that equals 1 on S+ and −1

on S−. Equality holds for some nonzero x0 ∈ B
n if and only if F (x) = U(xA)e, where A is an

orthogonal matrix such that x0A = |x0|N , and e is a unit vector in Rm+1.

Geometrically, for a harmonic mapping F ∈ Ωn,m+1, we can consider the image of Bn under

F : F (Bn) as a submanifold of Bm+1 except with possible singularity. Since F is harmonic, it is

known that F (Bn) is a minimal submanifold whenever it is smooth. (1.5) shows the distortion

of the image F (Bn).

From Theorem 1.1, we deduce the following theorem, which is called a harmonic Schwarz

lemma for F ∈ Ωn,m+1 and which resolves the problem we want to know above. Theorem 1.2

extends Theorem A and is coincident with Theorem A when n = m+ 1 = 2. Note that in the

following theorem, F(a,b)Qe,r is defined as (3.21).
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Theorem 1.2 Let F (x) be a harmonic mapping such that F (Bn) ⊂ B
m+1 and F (0) = (a, b),

where a ∈ Rm and b ∈ R. Let 0 < r < 1. Then

F (Bn
r ) ⊂ Er,(a,b), (1.6)

where

Er,(a,b) =
⋂

e∈R
m+1

|e|=1

Re,

Re = {x ∈ R
m+1 : 〈x, e〉 ≤ 〈F(a,b)Qe,r(rN), e0〉},

e0 = (1, 0, · · · , 0) ∈ Rm+1 and Qe is an orthogonal matrix such that eQe = e0.

Note that Er,(a,b) in Theorem 1.2 is a region enveloped by all the hyperplanes

Pe = {x ∈ R
m+1 : 〈x, e〉 = 〈F(a,b)Qe,r(rN), e0〉},

which is the boundary of Re. By Theorem 1.1, it is obviously that the region Er,(a,b) is sharp.

This means that under F ∈ Ωn,m+1, the image of a small ball centered at origin of radius r can

be controlled.

In Section 2, we will give two main lemmas. The proofs of the lemmas will be given in

Section 4. In Section 3, the main results of this paper and the proofs will be given.

2 The Main Lemmas

In this section, we will introduce two main lemmas, which are important for the proof of

Theorem 3.1 and which extend the related lemmas proved by Chen in [3]. Lemma 2.1 constructs

a bijection (R, I) from Rm × R+ onto the upper half ball {(a, b) : a ∈ Rm, b ∈ R, |a|2 + b2 <

1, b > 0}, which will be used to construct ua,b,r in Theorem 3.1 for the case that b > 0. Lemma

2.2 constructs a bijection R from Rm onto the ball {a : a ∈ Rm, |a| < 1}, which will be used

to construct ua,b,r in Theorem 3.1 for the case that b = 0. Now we give the two main lemmas.

The proofs of Lemmas 2.1–2.2 will be given in Section 4.

For 0 < r < 1, µ > 0, λ ∈ Rm, and l = (1, 0, · · · , 0) ∈ Rm, define

Ar,λ,µ(ω) =
1

µ

( 1

|rN − ω|n l − λ
)
, ω ∈ S (2.1)

and

R(r, λ, µ) =

∫

S

Ar,λ,µ(ω)√
1 + |Ar,λ,µ(ω)|2

dσ, I(r, λ, µ) =

∫

S

1√
1 + |Ar,λ,µ(ω)|2

dσ. (2.2)

The idea of the conformation of Ar,λ,µ(ω), R(r, λ, µ) and I(r, λ, µ) originates from (3.5) and

(3.9).

Lemma 2.1 Let 0 < r < 1 be fixed. Then there exist a unique pair of continuous mappings

λ = λ(r, a, b) ∈ R
m and µ = µ(r, a, b) > 0, defined on the upper half ball {(a, b) : a ∈ R

m, b ∈
R, |a|2 + b2 < 1, b > 0}, such that R(r, λ(r, a, b), µ(r, a, b)) = a and I(r, λ(r, a, b), µ(r, a, b)) = b

for any point (a, b) in the half ball.
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For 0 < r < 1, λ ∈ R
m and l = (1, 0, · · · , 0) ∈ R

m, define

Ar,λ(ω) =
1

|rN − ω|n l − λ, ω ∈ S (2.3)

and

R(r, λ) =

∫

S

Ar,λ(ω)

|Ar,λ(ω)|
dσ. (2.4)

The idea of the conformation of Ar,λ(ω) and R(r, λ) originates from (3.14). Note that R(r, λ)

is well defined, since |Ar,λ(ω)| 6= 0 except for a zero measure set of ω at most.

Lemma 2.2 Let 0 < r < 1 be fixed. Then there exist a unique continuous mapping λ =

λ(r, a) ∈ Rm, defined on {a : a ∈ Rm, |a| < 1}, such that R(r, λ(r, a)) = a for any point a.

3 The Main Results

Let a ∈ R
m, b ∈ R and 0 ≤ b < 1, |a|2 + b2 < 1. Let Ua,b denote the family of mappings

u ∈ (L∞(S))m satisfying the following conditions:

‖u‖∞ ≤ 1,

∫

S

u(ω)dσ = a,

∫

S

√
1− |u(ω)|2dσ ≥ b. (3.1)

Every function u ∈ (L∞(S))m defines a harmonic mapping

U(x) =

∫

S

1− |x|2
|x− ω|nu(ω)dσ for x ∈ B

n.

Let 0 < r < 1, l = (1, 0, · · · , 0) ∈ Rm and define a functional Lr on (L∞(S))m by

Lr(u) = 〈U(rN), l〉 =
∫

S

1− r2

|rN − ω|n 〈u(ω), l〉dσ. (3.2)

Obviously, Ua,b is a closed set, and Lr is a continuous functional on Ua,b. Then there exists

a extremal mapping, such that Lr attains its maximum on Ua,b at the extremal mapping. We

will claim in the following theorem that the extremal mapping is unique. In the proof of the

following theorem, we will construct a mapping u0 first, and then prove that u0 is the unique

extremal mapping, which will be denoted by ua,b,r.

Theorem 3.1 For any a, b and r satisfying the above conditions, there exists a unique

extremal mapping ua,b,r ∈ Ua,b, such that Lr attains its maximum on Ua,b at ua,b,r.

For the proof of Theorem 3.1, we need Lemmas 2.1–2.2 and the lemma as follows.

Lemma 3.1 Let x, y ∈ Rm, |x| ≤ 1 and |y| < 1. Then

√
1− |y|2 −

√
1− |x|2 =

〈x− y, y〉√
1− |y|2

+
|x− y|2(1− |ỹ|2) + |〈x− y, ỹ〉|2

2(1− |ỹ|2) 3
2

(3.3)

holds, where ỹ = y + ζ(x − y), 0 < ζ < 1.



1070 S. Y. Dai and Y. F. Pan

Proof Let x = (x1, · · · , xm), y = (y1, · · · , ym) and g(x) =
√
1− |x|2. For j = 1, · · · ,m

and k = 1, · · · ,m, denote ∂g(x)
∂xj

by gj(x), and
∂2g(x)
∂xj∂xk

by gjk(x). Then

gj(x) = − xj√
1− |x|2

, gjk(x) = −δjk(1− |x|2) + xjxk

(1 − |x|2) 3
2

, where δjk =

{
1, j = k,

0, j 6= k.

Let ϕ(t) = g(y + t(x− y)). By Taylor formula, we have

ϕ(1)− ϕ(0) = ϕ′(0) +
1

2
ϕ′′(ζ), 0 < ζ < 1. (3.4)

Note that

ϕ(0) =
√
1− |y|2, ϕ(1) =

√
1− |x|2,

ϕ′(0) =

m∑

j=1

gj(y) · (xj − yj) = − 〈x − y, y〉√
1− |y|2

,

ϕ′′(ζ) =

m∑

j,k=1

gjk(ỹ) · (xj − yj)(xk − yk)

=
m∑

j,k=1

−δjk(1 − |ỹ|2) + ỹj ỹk

(1 − |ỹ|2) 3
2

· (xj − yj)(xk − yk)

= −
|x− y|2(1− |ỹ|2) +

m∑
j,k=1

ỹj ỹk(xj − yj)(xk − yk)

(1− |ỹ|2) 3
2

= −|x− y|2(1− |ỹ|2) + |〈x − y, ỹ〉|2

(1 − |ỹ|2) 3
2

,

where ỹ = y + ζ(x − y). Then by (3.4), (3.3) is proved.

Now we give the proof of Theorem 3.1.

Proof of Theorem 3.1 Let a, b and r be fixed. First assume that b > 0. From Lemma

2.1, we have λ = λ(r, a, b) and µ = µ(r, a, b) > 0 such that R(r, λ, µ) = a and I(r, λ, µ) = b. For

the need of (3.9), let

u0(ω) =
Ar,λ,µ(ω)√

1 + |Ar,λ,µ(ω)|2
, (3.5)

where Ar,λ,µ(ω) is defined as (2.1). Then ‖u0‖∞ < 1 and by (2.2), we know

∫

S

u0(ω)dσ = R(r, λ, µ) = a,

∫

S

√
1− |u0(ω)|2dσ = I(r, λ, µ) = b. (3.6)

This means that u0 ∈ Ua,b.

Let u ∈ Ua,b. By (3.1) and (3.6), we have

∫

S

〈u0(ω)− u(ω), λ〉dσ = 0, µ

∫

S

(
√
1− |u0(ω)|2 −

√
1− |u(ω)|2)dσ ≤ 0. (3.7)
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By Lemma 3.1, we have

√
1− |u0(ω)|2 −

√
1− |u(ω)|2

=
〈u(ω)− u0(ω), u0(ω)〉√

1− |u0(ω)|2
+

|u(ω)− u0(ω)|2(1− |ũ(ω)|2) + |〈u(ω)− u0(ω), ũ(ω)〉|2
2(1− |ũ(ω)|2) 3

2

, (3.8)

where ũ(ω) = u0(ω) + ζ(u(ω)− u0(ω)), 0 < ζ < 1. By (3.5) and (2.1), we have

1

|rN − ω|n l − λ− µu0(ω)√
1− |u0(ω)|2

= 0. (3.9)

Then by (3.2) and (3.7)–(3.9), we obtain

Lr(u0)− Lr(u)

1− r2

=

∫

S

〈u0(ω)− u(ω), l〉
|rN − ω|n dσ

≥
∫

S

〈u0(ω)− u(ω), l〉
|rN − ω|n dσ −

∫

S

〈u0(ω)− u(ω), λ〉dσ

+ µ

∫

S

(
√
1− |u0(ω)|2 −

√
1− |u(ω)|2)dσ

=

∫

S

〈
u0(ω)− u(ω),

1

|rN − ω|n l − λ− µu0(ω)√
1− |u0(ω)|2

〉
dσ

+ µ

∫

S

|u(ω)− u0(ω)|2(1 − |ũ(ω)|2) + |〈u(ω)− u0(ω), ũ(ω)〉|2
2(1− |ũ(ω)|2) 3

2

dσ

= µ

∫

S

|u(ω)− u0(ω)|2(1− |ũ(ω)|2) + |〈u(ω)− u0(ω), ũ(ω)〉|2
2(1− |ũ(ω)|2) 3

2

dσ.

Note that

‖ũ(ω)‖ = ‖u0(ω)(1− ζ) + ζu(ω)‖ ≤ ‖u0(ω)‖(1− ζ) + ‖u(ω)‖ζ < 1− ζ + ζ = 1.

Thus Lr(u0) ≥ Lr(u) with equality if and only if u(ω) = u0(ω) almost everywhere on S. This

shows that u0(ω) is the unique extremal mapping, which will be denoted by ua,b,r(ω).

Next we consider the case that b = 0. Let

u0(ω) =
Ar,λ(r,a)(ω)

|Ar,λ(r,a)(ω)|
, (3.10)

where λ(r, a) and Ar,λ(r,a)(ω) are defined in Lemma 2.2. Obviously, ‖u0‖∞ ≤ 1,

∫

S

√
1− |u0(ω)|2dσ = 0, (3.11)

and by Lemma 2.2,

∫

S

u0(ω)dσ = R(r, λ(r, a)) = a. (3.12)

This means that u0 ∈ Ua,0.
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Let u ∈ Ua,0. By (3.1) and (3.12), we have

∫

S

〈u0(ω)− u(ω), λ(r, a)〉dσ = 0. (3.13)

By (2.3), we have

1

|rN − ω|n l − λ(r, a) = Ar,λ(r,a)(ω). (3.14)

By ‖u‖∞ ≤ 1, we have

|〈u(ω),Ar,λ(r,a)(ω)〉| ≤ |u(ω)||Ar,λ(r,a)(ω)| ≤ |Ar,λ(r,a)(ω)| (3.15)

and

|Ar,λ(r,a)(ω)| = 〈u(ω),Ar,λ(r,a)(ω)〉 if and only if u(ω) =
Ar,λ(r,a)(ω)

|Ar,λ(r,a)(ω)|
= u0(ω). (3.16)

Then by (3.2), (3.10) and (3.13)–(3.16), we obtain

Lr(u0)− Lr(u)

1− r2
=

∫

S

〈u0(ω)− u(ω), l〉
|rN − ω|n dσ

=

∫

S

〈u0(ω)− u(ω), l〉
|rN − ω|n dσ −

∫

S

〈u0(ω)− u(ω), λ(r, a)〉dσ

=

∫

S

〈
u0(ω)− u(ω),

1

|rN − ω|n l − λ(r, a)
〉
dσ

=

∫

S

〈u0(ω)− u(ω),Ar,λ(r,a)(ω)〉dσ

=

∫

S

〈 Ar,λ(r,a)(ω)

|Ar,λ(r,a)(ω)|
− u(ω),Ar,λ(r,a)(ω)

〉
dσ

=

∫

S

(|Ar,λ(r,a)(ω)| − 〈u(ω),Ar,λ(r,a)(ω)〉)dσ ≥ 0

with equality if and only if u(ω) = u0(ω) almost everywhere on S. Thus Lr(u0) ≥ Lr(u) with

equality if and only if u(ω) = u0(ω) almost everywhere on S. The theorem is proved.

Let a ∈ Rm, b ∈ R, |a|2+b2 < 1, and 0 < r < 1. If b ≥ 0, ua,b,r has been defined in Theorem

3.1. Now, define

va,b,r(ω) =
√
1− |ua,b,r(ω)|2 for ω ∈ S, (3.17)

Ua,b,r(x) =

∫

S

1− |x|2
|x− ω|nua,b,r(ω)dσ, (3.18)

Va,b,r(x) =

∫

S

1− |x|2
|x− ω|n va,b,r(ω)dσ. (3.19)

For b < 0, let

Ua,b,r(x) = Ua,−b,r(x), Va,b,r(x) = −Va,−b,r(x). (3.20)
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Then for any a ∈ R
m, b ∈ R and |a|2 + b2 < 1, let

Fa,b,r(x) = (Ua,b,r(x), Va,b,r(x)) for x ∈ B
n. (3.21)

The harmonic mapping Fa,b,r(x) satisfies Fa,b,r(0) = (a, b) and Fa,b,r(B
n) ⊂ Bm+1, since we

will show |Ua,b,r(x)|2 + |Va,b,r(x)|2 < 1. By the convexity of the square function,

|Ua,b,r(x)|2 + |Va,b,r(x)|2 ≤
∫

S

1− |x|2
|x− ω|n (|ua,b,r(ω)|2 + v2a,b,r(ω))dσ = 1

with equality if and only if ua,b,r,1(ω), ua,b,r,2(ω), · · · , ua,b,r,m(ω) and va,b,r(ω) are constants

almost everywhere on S, where

ua,b,r(ω) = (ua,b,r,1(ω), ua,b,r,2(ω), · · · , ua,b,r,m(ω)).

However ua,b,r,1(ω), ua,b,r,2(ω), · · · , ua,b,r,m(ω) are not possiblely constants almost everywhere

on S. Thus |Ua,b,r(x)|2 + |Va,b,r(x)|2 < 1.

The mappings Fa,b,r are the extremal mappings in the following theorem. Theorem 3.2

extends Theorem B to F ∈ Ωn,m+1, and when n = m+ 1 = 2, Theorem 3.2 is coincident with

Theorem B. Note that in the following theorem, Ua,b,r is defined as (3.18) and (3.20), Fa,b,r is

defined as (3.21).

Theorem 3.2 Let F (x) = (U(x), V (x)) be a harmonic mapping such that F (Bn) ⊂ Bm+1

and F (0) = (a, b), where U(x) ∈ Rm, V (x) ∈ R, a ∈ Rm and b ∈ R. Let l = (1, 0, · · · , 0) ∈ Rm.

Then, for 0 < r < 1 and ω ∈ S,

〈U(rω), l〉 ≤ 〈Ua,b,r(rN), l〉

with equality at some point rω if and only if F (x) = Fa,b,r(xA), where A is an orthogonal

matrix such that ωA = N . Further, 〈U(x), l〉 < 〈Ua,b,r(rN), l〉 for |x| < r.

Proof Step 1 First the case that rω = rN will be proved. Let 0 < r̃ < 1 be fixed.

Construct mapping G(x) = F (r̃x) for x ∈ B
n
. G(x) is harmonic on B

n
and G(0) = (a, b). Let

G(x) = (u(x), v(x)), where u(x) ∈ Bm. Then ‖u‖∞ ≤ 1,
∫
S
u(ω)dσ = a and

∫

S

√
1− |u(ω)|2dσ ≥

∫

S

|v(ω)|dσ ≥
∣∣∣
∫

S

v(ω)dσ
∣∣∣ = |b|. (3.22)

So by (3.1), we know u ∈ Ua,|b|. By Theorem 3.1, we have 〈u(rN), l〉 ≤ 〈Ua,|b|,r(rN), l〉 with

equality if and only if u(ω) = ua,|b|,r(ω) almost everywhere on S. For ua,|b|,r(ω), by (3.6) and

(3.11) we have
∫

S

√
1− |ua,|b|,r(ω)|2dσ = |b|. (3.23)

If u(ω) = ua,|b|,r(ω) almost everywhere on S, then by (3.18) and (3.20), we have

u(x) = Ua,|b|,r(x) = Ua,b,r(x) for x ∈ Bn,

and by (3.17), we have

va,|b|,r(ω) =
√
1− |ua,|b|,r(ω)|2 =

√
1− |u(ω)|2. (3.24)
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Note that by (3.22)–(3.24) we have

|b| =
∫

S

va,|b|,r(ω)dσ ≥
∫

S

|v(ω)|dσ ≥
∣∣∣
∫

S

v(ω)dσ
∣∣∣ = |b|.

Then v(ω) = va,|b|,r(ω) almost everywhere on S when b ≥ 0, and v(ω) = −va,|b|,r(ω) almost

everywhere on S when b < 0. So v(x) = Va,b,r(x) for x ∈ Bn.

For G(x) = (u(x), v(x)), it is proved that 〈u(rN), l〉 ≤ 〈Ua,b,r(rN), l〉 with equality if and

only if G(x) = Fa,b,r(x). Now let r̃ → 1. Note that lim
r̃→1

G(x) = lim
r̃→1

F (r̃x) = F (x) and

lim
r̃→1

u(rN) = U(rN). Then by the result for G(x), we have 〈U(rN), l〉 ≤ 〈Ua,b,r(rN), l〉 with

equality if and only if F (x) = Fa,b,r(x).

Step 2 Now we prove the case that rω 6= rN . Construct mapping F̃ (x) = F (xA−1) for

x ∈ Bn, where A is an orthogonal matrix such that rωA = rN and A−1 is the inverse matrix of

A. By [2], we know that F̃ (x) is also a harmonic mapping. Let F̃ (x) = (Ũ(x), Ṽ (x)). Note that

F̃ (0) = F (0) = (a, b). Then by the result of Step 1, we have 〈Ũ(rN), l〉 ≤ 〈Ua,b,r(rN), l〉 with
equality if and only if F̃ (x) = Fa,b,r(x). Note that Ũ(rN) = U(rNA−1) = U(rω) and F̃ (x) =

F (xA−1). Thus 〈U(rω), l〉 ≤ 〈Ua,b,r(rN), l〉 with equality if and only if F (xA−1) = Fa,b,r(x).

It is just that 〈U(rω), l〉 ≤ 〈Ua,b,r(rN), l〉 with equality if and only if F (x) = Fa,b,r(xA).

Step 3 We will show that 〈U(x), l〉 < 〈Ua,b,r(rN), l〉 for |x| < r. Let

g(x) = 〈U(x), l〉 for x ∈ Bn. (3.25)

Then g(x) is a real-valued harmonic function. By the result of Step 2, we know that g(rω) ≤
〈Ua,b,r(rN), l〉. Then by the maximum principle, we have g(x) ≤ 〈Ua,b,r(rN), l〉 for |x| ≤ r.

If there exists a point x0 with |x0| < r such that g(x0) = 〈Ua,b,r(rN), l〉, then

g(x) ≡ 〈Ua,b,r(rN), l〉 for |x| ≤ r. (3.26)

Then g(rN) = 〈Ua,b,r(rN), l〉. Since (3.25) holds, we have g(rN) = 〈U(rN), l〉. Then 〈U(rN), l〉
= 〈Ua,b,r(rN), l〉. Then by the result of Step 1, we have U(x) = Ua,b,r(x). Thus by (3.25)–(3.26),

we obtain

〈Ua,b,r(x), l〉 ≡ 〈Ua,b,r(rN), l〉 for |x| ≤ r.

However, it is impossible since 〈Ua,b,r(x), l〉 is not a constant for |x| ≤ r. Therefore, for any x

with |x| < r, we have g(x) < 〈Ua,b,r(rN), l〉. The proof of the theorem is complete.

Consequently, we have a corollary as follows.

Corollary 3.1 Let F (x) be a harmonic mapping such that F (Bn) ⊂ Bm+1 and F (0) =

(a, b), where a ∈ Rm and b ∈ R. Let e0 = (1, 0, · · · , 0) ∈ Rm+1. Then, for 0 < r < 1 and ω ∈ S,

〈F (rω), e0〉 ≤ 〈Fa,b,r(rN), e0〉

with equality at some point rω if and only if F (x) = Fa,b,r(xA), where A is an orthogonal matrix

such that ωA = N , and Fa,b,r is defined as (3.21). Furthermore, 〈F (x), e0〉 < 〈Fa,b,r(rN), e0〉
for |x| < r.
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Generally, we have Theorem 1.1 in Section 1. Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1 For x ∈ Bn, we have

〈F (x), e〉 = F (x)eT = F (x)(e0Q
−1
e )T = F (x)(e0Q

T
e )

T = F (x)Qee
T
0 = 〈F (x)Qe, e0〉,

where T is the transpose symbol. Let F̃ (x) = F (x)Qe for x ∈ Bn. Then F̃ (x) is a harmonic

mapping by [2], and F̃ (Bn) ⊂ Bm+1, F̃ (0) = F (0)Qe = (a, b)Qe. Applying Corollary 3.1 to

F̃ (x), we have for 0 < r < 1 and ω ∈ S, 〈F̃ (rω), e0〉 ≤ 〈F(a,b)Qe,r(rN), e0〉 with equality at

some point rω if and only if F̃ (x) = F(a,b)Qe,r(xA), where A is an orthogonal matrix such that

rωA = rN . Furthermore, 〈F̃ (x), e0〉 < 〈F(a,b)Qe,r(rN), e0〉 for |x| < r. Note that for x ∈ Bn,

F̃ (x) = F (x)Qe, 〈F̃ (x), e0〉 = 〈F (x)Qe, e0〉 = 〈F (x), e〉 and 〈F̃ (rω), e0〉 = 〈F (rω), e〉. Then the

theorem is proved.

From Theorem 1.1, we obtain Corollary 1.1 in Section 1. Now we give the proof of Corollary

1.1.

Proof of Corollary 1.1 We will prove the corollary by three steps.

Step 1 We claim that for 0 < r < 1,

F0,0,r(x) = (U(x), 0, · · · , 0), (3.27)

where U is the Poisson integral of the function that equals 1 on S+ and −1 on S−.

By Theorem 3.1, (3.10), (2.3) and Lemma 2.2, we have

u0,0,r(ω) =

{
(1, 0, · · · , 0), ω ∈ S+,

(−1, 0, · · · , 0), ω ∈ S−.

Then by (3.17)–(3.19), we obtain that U0,0,r(x) = (U(x), 0, · · · , 0) and V0,0,r(x) ≡ 0. Thus

F0,0,r(x) = (U0,0,r(x), V0,0,r(x)) = (U(x), 0, · · · , 0). The claim is proved.

Step 2 For any x ∈ Bn, let |x| = r, x = rω. Since F (0) = 0, by Theorem 1.1, we have

that for e0 = (1, 0, · · · , 0) ∈ Rm+1 and any unit vector e ∈ Rm+1, 〈F (rω), e〉 ≤ 〈F0,0,r(rN), e0〉.
That is

〈F (x), e〉 ≤ 〈F0,0,|x|(|x|N), e0〉. (3.28)

If F (x) = 0, then obviously |F (x)| ≤ U(|x|N) since U(|x|N) ≥ 0. If F (x) 6= 0, then let

e = F (x)
|F (x)| and consequently by (3.27)–(3.28), we have |F (x)| ≤ U(|x|N).

Step 3 For some x0 ∈ Bn, let |x0| = r0. By Step 2 and Theorem 1.1, we have that

|F (x0)| = U(|x0|N) if and only if F (x) = F0,0,r0(xA)Q
−1
e , where A is an orthogonal matrix

such that x0A = r0N , e = F (x0)
|F (x0)|

, Qe is an orthogonal matrix such that eQe = e0, and Q−1
e

is the inverse matrix of Qe. By (3.27), we have F0,0,r0(xA) = (U(xA), 0, · · · , 0). Note that

(U(xA), 0, · · · , 0) = (U(xA), 0, · · · , 0)eT0 e0, where T is the transpose symbol. Then

F (x) = (U(xA), 0, · · · , 0)Q−1
e = ((U(xA), 0, · · · , 0)eT0 )(e0Q−1

e ) = U(xA)e.

The corollary is proved.
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4 The Proofs of Lemmas 2.1–2.2

For the proofs of Lemmas 2.1–2.2, we need the following two lemmas.

Lemma 4.1 Let the matrix An = (aij)n×n
, where n ≥ 2 and aij = −cicj except for a11.

Let Qn = bIn +An, where b is a real number and In is n× n unit matrix. Then

detQn = bn + bn−1(a11 + a22 + · · ·+ ann)

+ bn−2

(∣∣∣∣
a11 a12
a21 a22

∣∣∣∣+
∣∣∣∣
a11 a13
a31 a33

∣∣∣∣+ · · ·+
∣∣∣∣
a11 a1n
an1 ann

∣∣∣∣
)
. (4.1)

Proof Note that




a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann


 =




−c2
...

−cn




(
−c1 −c2 · · · −cn

)
,

the rank ofAn is no more than 2, and An is a symmetric matrix. Then there exists an orthogonal

matrix P such that

PAnP
−1 = diag(λ1, λ2, 0, · · · , 0),

where λ1 and λ2 are some real numbers. Then

detQn = det(PQnP
−1) = det(bIn + PAnP

−1)

= bn + bn−1(λ1 + λ2) + bn−2λ1λ2. (4.2)

Since λ1 +λ2 is the trace of An and λ1λ2 is the sum of all the level 2 principal minor of An, by

(4.2), we know

detQn = bn + bn−1(a11 + a22 + · · ·+ ann) + bn−2
∑

1≤i<j≤n

∣∣∣∣
aii aij
aji ajj

∣∣∣∣ .

Note that ∣∣∣∣
aii aij
aji ajj

∣∣∣∣ =
∣∣∣∣
−cici −cicj
−cjci −cjcj

∣∣∣∣ = 0 for 1 < i < j ≤ n.

Thus (4.1) holds. Then the lemma is proved.

Lemma 4.2 Fixed integer k ≥ 1, let matrices

A = (aij)k×k
, x =




x1

x2

...

xk


 , b =




b1
b2
...

bk


 , c = (c1, c2, · · · , ck), B =

(
A b

c ck+1

)
.

Suppose Ax+ b = 0 and detA 6= 0. Then

cx+ ck+1 =
detB

detA
. (4.3)
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Proof Let I be the level k unit matrix. Note that −x = A−1b and detA 6= 0. Then

detB

detA
= detA−1 · detB = det

[(
A−1

1

)(
A b

c ck+1

)]

= det

(
I −x

c ck+1

)
= cx+ ck+1.

Thus (4.3) is proved.

Now we give the proof of Lemma 2.1.

Proof of Lemma 2.1 We will prove Lemma 2.1 by six steps, where Step 2 is only for the

case that m = 1, and Step 3–Step 5 are only for the case that m ≥ 2.

Step 1 We give some denotation and calculation. Write

Ar,λ,µ(ω) = A(ω) = (A1(ω), A2(ω), · · · , Am(ω)),

R(r, λ, µ) = (R1(r, λ, µ), R2(r, λ, µ), · · · , Rm(r, λ, µ)),

l = (l1, · · · , lm), λ = (λ1, λ2, · · · , λm) and a = (a1, a2, · · · , am).

For i, j = 1, 2, · · · ,m, we denote
∂Rj(r,λ,µ)

∂λi
= Rji,

∂Rj(r,λ,µ)
∂µ

= Rjµ,
∂I(r,λ,µ)

∂λj
= Ij and

∂I(r,λ,µ)
∂µ

= Iµ. Then a simple calculation gives

Rjj = − 1

µ

∫

S

1 + |A(ω)|2 −A2
j(ω)

(1 + |A(ω)|2) 3
2

dσ for j = 1, 2, · · · ,m, (4.4)

Rji = − 1

µ

∫

S

−Ai(ω)Aj(ω)

(1 + |A(ω)|2) 3
2

dσ for i 6= j, i, j = 1, 2, · · · ,m, (4.5)

Rjµ = − 1

µ

∫

S

Aj(ω)

(1 + |A(ω)|2) 3
2

dσ for j = 1, 2, · · · ,m, (4.6)

Ij =
1

µ

∫

S

Aj(ω)

(1 + |A(ω)|2) 3
2

dσ for j = 1, 2, · · · ,m, (4.7)

Iµ =
1

µ

∫

S

|A(ω)|2
(1 + |A(ω)|2) 3

2

dσ. (4.8)

It is easy to see that

(i) By (4.4), for j = 1, 2, · · · ,m, Rjj < 0 for any λ ∈ Rm and µ > 0, and Rj(r, λ, µ) is

strictly decreasing as a function of λj for fixed the other components of λ and µ;

(ii) By (2.1)–(2.2), for j = 1, 2, · · · ,m, fixing µ and the components of λ expect λj ,

Rj(r, λ, µ) → −1 or 1 according to λj → +∞ or λj → −∞;

(iii) By (2.1)–(2.2), 0 < I(r, λ, µ) < 1 for any λ ∈ Rm and µ > 0.

In addition, let

Γk =

∣∣∣∣∣∣∣∣∣

R11 R12 · · · R1k

R21 R22 · · · R2k

...
...

...
...

Rk1 Rk2 · · · Rkk

∣∣∣∣∣∣∣∣∣

, Θ =

∣∣∣∣∣∣∣∣∣∣∣

R11 R12 · · · R1m R1µ

R21 R22 · · · R2m R2µ

...
...

...
...

Rm1 Rm2 · · · Rmm Rmµ

I1 I2 · · · Im Iµ

∣∣∣∣∣∣∣∣∣∣∣

.
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We claim that

Γk+1

Γk

< 0 for integer k with 1 ≤ k ≤ m− 1 when m ≥ 2 (4.9)

and

Θ

Γm

> 0 when m ≥ 1. (4.10)

Now we will prove the two claims above.

For (4.4)–(4.8), let dσ̃ =
(

1

(1+|A(ω)|2)
3
2

)
dσ, T =

∫
S
dσ̃, dξ =

(
1
T

)
dσ̃, b̃ =

∫
S
(1 + |A(ω)|2)dξ,

and for i, j = 1, 2, · · · ,m, ãij =
∫
S
−Ai(ω)Aj(ω)dξ, cj =

∫
S
Aj(ω)dξ. Then T > 0,

∫
S
dξ = 1,

and

Rjj = −T

µ
(̃b+ ãjj) for j = 1, 2, · · · ,m, (4.11)

Rji = −T

µ
ãij for i 6= j, i, j = 1, 2, · · · ,m, (4.12)

Rjµ = −T

µ
cj for j = 1, 2, · · · ,m, (4.13)

Ij =
T

µ
cj for j = 1, 2, · · · ,m, (4.14)

Iµ =
T

µ
(̃b − 1), (4.15)

b̃+ ã11 + ã22 + · · ·+ ãjj ≥ b̃+ ã11 + ã22 + · · ·+ ãmm = 1 for j = 1, 2, · · · ,m. (4.16)

Since A1(ω) =
1
µ

(
1

|rN−ω|n − λ1

)
by (2.1) and

∫
S
dξ = 1, we have

−ã11 − c21 =

∫

S

A2
1(ω)dξ −

( ∫

S

A1(ω)dξ
)2

=

∫

S

[
A1(ω)−

∫

S

A1(ω)dξ
]2
dξ > 0. (4.17)

When m ≥ 2, since
∫
S
dξ = 1 and Aj(ω) = −λj

µ
for j = 2, · · · ,m by (2.1), we have

ãij = −
∫

S

Ai(ω)dξ

∫

S

Aj(ω)dξ = −cicj for i 6= 1 or j 6= 1, i, j = 1, 2, · · · ,m, (4.18)

and by (4.17), we have
∣∣∣∣
ã11 ã1j
ãj1 ãjj

∣∣∣∣ =
∣∣∣∣

ã11 −c1cj
−cjc1 −cjcj

∣∣∣∣ = c2j (−ã11 − c21) ≥ 0 for j = 2, · · · ,m. (4.19)

For integer 1 ≤ p ≤ m, let

Qp =

∣∣∣∣∣∣∣∣∣∣

b̃+ ã11 ã12 · · · ã1p

ã21 b̃ + ã22 · · · ã2p
...

...
...

ãp1 ãp2 · · · b̃+ ãpp

∣∣∣∣∣∣∣∣∣∣

. (4.20)

By (4.16), we have that when p = 1, Q1 = b̃+ ã11 > 0. By (4.18) and Lemma 4.1, we have that

when p ≥ 2,

Qp = b̃p + b̃p−1

p∑

j=1

ãjj + b̃p−2

p∑

j=2

∣∣∣∣
ã11 ã1j
ãj1 ãjj

∣∣∣∣ = b̃p−1



b̃ +

p∑

j=1

ãjj



+ b̃p−2

p∑

j=2

∣∣∣∣
ã11 ã1j
ãj1 ãjj

∣∣∣∣ .
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Consequently, by (4.16), (4.19) and b̃ > 0, we obtain that when p ≥ 2, Qp > 0.

Let

Qm+1 =

∣∣∣∣∣∣∣∣∣∣∣∣

b̃+ ã11 ã12 · · · ã1m −c1

ã21 b̃+ ã22 · · · ã2m −c2
...

...
...

...

ãm1 ãm2 · · · b̃+ ãmm −cm

−c1 −c2 · · · −cm b̃− 1

∣∣∣∣∣∣∣∣∣∣∣∣

. (4.21)

If m = 1, then Qm+1 = b̃(̃b + ã11 − 1) + (−ã11 − c21). Qm+1 > 0, since (4.16)–(4.17) hold. If

m ≥ 2, then by (4.18), −cj = −cj × 1, −1 = −1× 1 and Lemma 4.1, we have

Qm+1 = b̃m+1 + b̃m
( m∑

j=1

ãjj − 1
)
+ b̃m−1




m∑

j=2

∣∣∣∣
ã11 ã1j
ãj1 ãjj

∣∣∣∣ +
∣∣∣∣
ã11 −c1
−c1 −1

∣∣∣∣





= b̃m
(
b̃+

m∑

j=1

ãjj − 1
)
+ b̃m−1




m∑

j=2

∣∣∣∣
ã11 ã1j
ãj1 ãjj

∣∣∣∣+
∣∣∣∣
ã11 −c1
−c1 −1

∣∣∣∣


 ,

and Qm+1 > 0 since (4.16)–(4.17), (4.19) and b̃ > 0 hold.

By (4.11)–(4.12) and (4.20), we have for integer k with 1 ≤ k ≤ m − 1 when m ≥ 2,
Γk+1

Γk
=

(
−T

µ

)
Qk+1

Qk
. Note that T > 0, µ > 0, Qk > 0, Qk+1 > 0. Then the first claim (4.9) is

proved.

By (4.11)–(4.15) and (4.20)–(4.21), we have when m ≥ 1, Θ
Γm

= T
µ

Qm+1

Qm
. Note that T >

0, µ > 0, Qm > 0, Qm+1 > 0. Then the second claim (4.10) is proved.

Step 2 Step 2 is only for the case that m = 1. By (i)–(ii) in Step 1, we know that for fixed

µ, R(r, λ, µ) is strictly decreasing from 1 to −1 as λ is increasing from −∞ to +∞. Then for

any −1 < a < 1 and fixed µ, there exists a unique real number λ(µ, a) such that

R(r, λ, µ)
∣∣
λ=λ(µ,a) = a.

Further, using the implicit function theorem, we have that the function λ = λ(µ, a) defined on

{(µ, a) : µ > 0,−1 < a < 1} is a continuous function and ∂λ(µ,a)
∂µ

exists.

Step 3 Step 3 is only for the case that m ≥ 2. By (i)–(ii) in Step 1, we know that for

fixed λ2, · · · , λm and µ, R1(r, λ, µ) is strictly decreasing from 1 to −1 as λ1 is increasing from

−∞ to +∞. Then for any −1 < a1 < 1 and fixed λ2, · · · , λm and µ, there exists a unique real

number λ1(λ2, · · · , λm, µ, a1) such that

R1(r, λ, µ)
∣∣
λ1=λ1(λ2,··· ,λm,µ,a1) = a1.

Further, using the implicit function theorem, we have that the function λ1 = λ1(λ2, · · · , λm, µ,

a1) defined on {(λ2, · · · , λm, µ, a1) : λ2 ∈ R, · · · , λm ∈ R, µ > 0,−1 < a1 < 1} is a continuous

function and ∂λ1(λ2,··· ,λm,µ,a1)
∂λ2

, · · · , ∂λ1(λ2,··· ,λm,µ,a1)
∂λm

,
∂λ1(λ2,··· ,λm,µ,a1)

∂µ
exist.

Step 4 For the case that m ≥ 2, we will prove the following result.

For an integer k with 1 ≤ k ≤ m− 1, if
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(1) There exists a unique continuous function λ1 = λ1(λ2, · · · , λm, µ, a1), which defined on

{(λ2, · · · , λm, µ, a1) : λ2 ∈ R, · · · , λm ∈ R, µ > 0, −1 < a1 < 1}, such that

R1(r, λ, µ)
∣∣
λ1=λ1(λ2,··· ,λm,µ,a1) = a1,

and ∂λ1(λ2,··· ,λm,µ,a1)
∂λ2

, · · · , ∂λ1(λ2,··· ,λm,µ,a1)
∂λm

,
∂λ1(λ2,··· ,λm,µ,a1)

∂µ
exist;

(2) There exists a unique continuous function λ2 = λ2(λ3, · · · , λm, µ, a1, a2), which defined

on

{(λ3, · · · , λm, µ, a1, a2) : λ3 ∈ R, · · · , λm ∈ R, µ > 0, a1 ∈ R, a2 ∈ R, a21 + a22 < 1}, such that

R2(r, λ, µ)

∣∣∣∣∣λ1=λ1(λ2,··· ,λm,µ,a1)
λ2=λ2(λ3,··· ,λm,µ,a1,a2)

= a2,

and ∂λ2(λ3,··· ,λm,µ,a1,a2)
∂λ3

, · · · , ∂λ2(λ3,··· ,λm,µ,a1,a2)
∂λm

,
∂λ2(λ3,··· ,λm,µ,a1,a2)

∂µ
exist;

· · ·

(k) There exists a unique continuous function λk = λk(λk+1, · · · , λm, µ, a1, · · · , ak), which
defined on {(λk+1, · · · , λm, µ, a1, · · · , ak) : λk+1 ∈ R, · · · , λm ∈ R, µ > 0, a1 ∈ R, · · · , ak ∈
R, a21 + · · ·+ a2k < 1}, such that

Rk(r, λ, µ)

∣∣∣∣∣∣∣∣∣∣∣

λ1=λ1(λ2,··· ,λm,µ,a1)
λ2=λ2(λ3,··· ,λm,µ,a1,a2)...
λk=λk(λk+1,··· ,λm,µ,a1,··· ,ak)

= ak,

and ∂λk(λk+1,··· ,λm,µ,a1,··· ,ak)
∂λk+1

, · · · , ∂λk(λk+1,··· ,λm,µ,a1,··· ,ak)
∂λm

,
∂λk(λk+1,··· ,λm,µ,a1,··· ,ak)

∂µ
exist, then

(1) If k ≤ m− 2, there exists a unique continuous function

λk+1 = λk+1(λk+2, · · · , λm, µ, a1, · · · , ak+1),

which defined on {(λk+2, · · · , λm, µ, a1, · · · , ak+1) : λk+2 ∈ R, · · · , λm ∈ R, µ > 0, a1 ∈
R, · · · , ak+1 ∈ R, a21 + · · ·+ a2k+1 < 1}, such that

Rk+1(r, λ, µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1=λ1(λ2,··· ,λm,µ,a1)
λ2=λ2(λ3,··· ,λm,µ,a1,a2)...
λk=λk(λk+1,··· ,λm,µ,a1,··· ,ak)
λk+1=λk+1(λk+2,··· ,λm,µ,a1,··· ,ak+1)

= ak+1,

and ∂λk+1(λk+2,··· ,λm,µ,a1,··· ,ak+1)
∂λk+2

, · · · , ∂λk+1(λk+2,··· ,λm,µ,a1,··· ,ak+1)
∂λm

,
∂λk+1(λk+2,··· ,λm,µ,a1,··· ,ak+1)

∂µ

exist;

(2) If k = m− 1, there exists a unique continuous function λm = λm(µ, a1, · · · , am), which
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defined on {(µ, a1, · · · , am) : µ > 0, a1 ∈ R, · · · , am ∈ R, a21 + · · ·+ a2m < 1}, such that

Rk+1(r, λ, µ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1=λ1(λ2,··· ,λm,µ,a1)
λ2=λ2(λ3,··· ,λm,µ,a1,a2)
...

λm−1=λm−1(λm,µ,a1,··· ,am−1)
λm=λm(µ,a1,··· ,am)

= am.

Now we will prove the result above. For 1 ≤ k ≤ m− 1, let

λ∗ = (λ∗
1, λ

∗
2, · · · , λ∗

k, λk+1, · · · , λm) = λ

∣∣∣∣∣∣∣∣∣∣∣

λ1=λ1(λ2,··· ,λm,µ,a1)
λ2=λ2(λ3,··· ,λm,µ,a1,a2)...
λk=λk(λk+1,··· ,λm,µ,a1,··· ,ak)

,

where

λ∗
1 = λ1

∣∣∣∣∣∣∣∣∣∣∣

λ1=λ1(λ2,··· ,λm,µ,a1)
λ2=λ2(λ3,··· ,λm,µ,a1,a2)...
λk=λk(λk+1,··· ,λm,µ,a1,··· ,ak)

, λ∗
2 = λ2

∣∣∣∣∣∣∣∣
λ2=λ2(λ3,··· ,λm,µ,a1,a2)...
λk=λk(λk+1,··· ,λm,µ,a1,··· ,ak)

, · · · ,

λ∗
k = λk

∣∣
λk=λk(λk+1,··· ,λm,µ,a1,··· ,ak) .

Consider the function Rk+1(r, λ
∗, µ). A simple calculation gives

∂Rk+1(r, λ
∗, µ)

∂λk+1
=

(
R(k+1)1

∂λ∗
1

∂λk+1
+R(k+1)2

∂λ∗
2

∂λk+1
+ · · ·

+R(k+1)k
∂λ∗

k

∂λk+1
+R(k+1)(k+1)

)∣∣∣
λ=λ∗

. (4.22)

By the condition (1)–(k), we have for j = 1, 2, · · · , k, Rj(r, λ
∗, µ) = aj and consequently

∂Rj(r,λ
∗,µ)

∂λk+1
= 0, which is

(
Rj1

∂λ∗
1

∂λk+1
+Rj2

∂λ∗
2

∂λk+1
+ · · ·+Rjk

∂λ∗
k

∂λk+1
+Rj(k+1)

)∣∣∣
λ=λ∗

= 0 for j = 1, 2, · · · , k. (4.23)

By (4.22)–(4.23) and Lemma 4.2, we have
∂Rk+1(r,λ

∗,µ)
∂λk+1

=
Γk+1

Γk

∣∣∣
λ=λ∗

. Then by (4.9), we obtain

∂Rk+1(r,λ
∗,µ)

∂λk+1
< 0, which shows that Rk+1(r, λ

∗, µ) is strictly decreasing as a function of λk+1.

Note that −1 < Rk+1(r, λ
∗, µ) < 1 and Rk+1(r, λ

∗, µ) is bounded by (i) and (ii) in Step 1.

Thus, Rk+1(r, λ
∗, µ), as a function of λk+1, respectively has finite limit as λk+1 → +∞ and as

λk+1 → −∞.

We claim that Rk+1(r, λ
∗, µ) → −

√
1− a21 − · · · − a2k as λk+1 → +∞, and

Rk+1(r, λ
∗, µ) →

√
1− a21 − · · · − a2k as λk+1 → −∞.
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As λk+1 → +∞. Note that for j = 1, 2, · · · , k + 1,

− λj

λk+1√
k+1∑
i=1

(
λi

λk+1

)2

∣∣∣∣∣∣∣∣∣∣
λ=λ∗

is bounded since

∣∣∣∣∣∣∣

−
λj

λk+1√
k+1∑
i=1

(
λi

λk+1

)2

∣∣∣∣∣∣∣
λ=λ∗

∣∣∣∣∣∣∣
≤ 1. Then there exists a subsequence (λk+1)p → +∞,

such that for j = 1, 2, · · · , k + 1,
−

λj
λk+1√

k+1∑
i=1

(
λi

λk+1

)2

∣∣∣∣∣∣∣
λ=λ∗|

λk+1=(λk+1)p

has a finite limit tj . Let

(λ∗)p = λ∗|λk+1=(λk+1)p
. Then we have

lim
p→∞

− λj

λk+1√
k+1∑
i=1

(
λi

λk+1

)2

∣∣∣∣∣∣∣∣∣∣
λ=(λ∗)

p

= tj for j = 1, 2, · · · , k + 1. (4.24)

We only need to prove that Rk+1(r, (λ
∗)p , µ) → −

√
1− a21 − · · · − a2k as p → ∞. Let (A(ω))p =

((A1(ω))p, · · · , (Am(ω))p) = Ar,(λ∗)p,µ
(ω). By (2.1) and (4.24), we obtain for j = 1, 2, · · · , k+1,

lim
p→∞

(Aj(ω))p√
1 + |(A(ω))p|2

= lim
p→∞

1
|rN−ω|n

lj
λk+1

− λj

λk+1√
µ2

λ2
k+1

+
m∑
i=1

(
1

|rN−ω|n
li

λk+1
− λi

λk+1

)2

∣∣∣∣∣∣∣∣∣∣
λ=(λ∗)

p

= lim
p→∞

− λj

λk+1√
k+1∑
i=1

(
λi

λk+1

)2

∣∣∣∣∣∣∣∣∣∣
λ=(λ∗)p

= tj (4.25)

uniformly for ω ∈ S. By the Lebesgue’s dominated convergence theorem and (2.2), (4.25), we

have for j = 1, 2, · · · , k + 1,

lim
p→∞

Rj(r, (λ
∗)p , µ) = lim

p→∞

∫

S

(Aj(ω))p√
1 + |(A(ω))p|2

dσ

=

∫

S

lim
p→∞

(Aj(ω))p√
1 + |(A(ω))p|2

dσ = tj . (4.26)

Note that Rj(r, (λ
∗)p , µ) ≡ aj for j = 1, 2, · · · , k by the conditions (1)–(k), and

k+1∑
j=1

t2j =

1, tk+1 ≤ 0 by (4.25). Then by (4.26) we have tj = aj for j = 1, 2, · · · , k, and tk+1 =



A Schwarz Lemma for Harmonic Mappings 1083

−
√
1− a21 − · · · − a2k. Consequently lim

p→∞
Rk+1(r, (λ

∗)p , µ) = −
√
1− a21 − · · · − a2k. The first

claim is proved.

Using the method of the proof of the first claim, we can prove the second claim. It is

proved that Rk+1(r, λ
∗, µ) is continuous and strictly decreasing from

√
1− a21 − · · · − a2k to

−
√
1− a21 − · · · − a2k as λk+1 is increasing from−∞ to +∞. Thus, for any−

√
1− a21 − · · · − a2k

< ak+1 <
√
1− a21 − · · · − a2k and a21 + · · ·+ a2k < 1, we have

(1) If k ≤ m−2, then there exists a unique real number λk+1(λk+2, · · · , λm, µ, a1, · · · , ak+1)

such that

Rk+1(r, λ
∗, µ)|λk+1=λk+1(λk+2,··· ,λm,µ,a1,··· ,ak+1) = ak+1.

Further, using the implicit function theorem, we have that the function λk+1(λk+2, · · · , λm, µ,

a1, · · · , ak+1) defined on {(λk+2, · · · , λm, µ, a1, · · · , ak+1) : λk+2 ∈ R, · · · , λm ∈ R, µ > 0, a1 ∈
R, · · · , ak+1 ∈ R, a21 + · · ·+ a2k+1 < 1} is a continuous function, and

∂λk+1(λk+2, · · · , λm, µ, a1, · · · , ak+1)

∂λk+2
, · · · , ∂λk+1(λk+2, · · · , λm, µ, a1, · · · , ak+1)

∂λm

,

∂λk+1(λk+2, · · · , λm, µ, a1, · · · , ak+1)

∂µ

exist;

(2) If k = m− 1, then there exists a unique real number λm(µ, a1, · · · , am) such that

Rk+1(r, λ
∗, µ)|λm=λm(µ,a1,··· ,am) = am.

Further, using the implicit function theorem, we have that the function λm(µ, a1, · · · , am)

defined on {(µ, a1, · · · , am) : µ > 0, a1 ∈ R, · · · , am ∈ R, a21 + · · · + a2m < 1} is a continuous

function.

Step 5 For the case that m ≥ 2, by Step 3 and Step 4, we have that there exists a unique

continuous mapping

λ(µ, a) = λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1=λ1(λ2,··· ,λm,µ,a1)...
λk=λk(λk+1,··· ,λm,µ,a1,··· ,ak)...
λm=λm(µ,a1,··· ,am)

defined on {(µ, a) : µ > 0, a ∈ Rm, a = (a1, · · · , am), |a|2 < 1}, such that

Rj(r, λ(µ, a), µ) = aj for j = 1, 2, · · · ,m,

and ∂λ1(µ,a)
∂µ

, · · · , ∂λm(µ,a)
∂µ

exist, where (λ1(µ, a), · · · , λm(µ, a)) = λ(µ, a).

Step 6 For m ≥ 1, by Step 2 and Step 5, we know that there exists a unique continuous

mapping λ(µ, a) defined on {(µ, a) : µ > 0, a ∈ Rm, |a|2 < 1}, such that

R(r, λ(µ, a), µ) = a, (4.27)

and ∂λ1(µ,a)
∂µ

, · · · , ∂λm(µ,a)
∂µ

exist, where (λ1(µ, a), · · · , λm(µ, a)) = λ(µ, a).
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In the following, we consider the function I(r, λ(µ, a), µ).

For a fixed a = (a1, · · · , am) ∈ Rm with |a|2 < 1, write λ(µ, a) = λ(µ) = (λ1(µ), · · · , λm(µ)).

Then

dI(r, λ(µ), µ)

dµ
=

(
I1

dλ1(µ)

dµ
+ I2

dλ2(µ)

dµ
+ · · ·+ Im

dλm(µ)

dµ
+ Iµ

)∣∣∣
λ=λ(µ)

. (4.28)

By (4.27), we know that

Rj(r, λ(µ), µ) = aj for j = 1, 2, · · · ,m (4.29)

and

(
Rj1

dλ1(µ)

dµ
+Rj2

dλ2(µ)

dµ
+ · · ·+Rjm

dλm(µ)

dµ
+Rjµ

)∣∣∣
λ=λ(µ)

= 0

for j = 1, 2, · · · ,m. (4.30)

Then by (4.30), (4.28) and Lemma 4.2, we have dI(r,λ(µ),µ)
dµ = Θ

Γm

∣∣∣
λ=λ(µ)

. By (4.10), we have

dI(r,λ(µ),µ)
dµ > 0, which shows that I(r, λ(µ), µ) is strictly increasing as a function of µ. By (iii)

in Step 1, we know that I(r, λ(µ), µ) respectively has finite limit as µ → 0 and as µ → +∞.

We claim that I(r, λ(µ), µ) → 0 as µ → 0, and I(r, λ(µ), µ) →
√
1− |a|2 as µ → +∞.

As µ → 0, there exists a subsequence µk → 0, such that λ1(µk) has a finite limit t or

tends to ∞. We only need to prove that I(r, λ(µk), µk) → 0 as k → ∞. Since I(r, λ(µk), µk) =∫
S

1√
1+|Ar,λ(µk),µk

(ω)|2
dσ, we only need to prove that |Ar,λ(µk),µk

(ω)| → +∞ almost everywhere

on S. Note that

|Ar,λ(µk),µk
(ω)| = 1

µk

∣∣∣
1

|rN − ω|n l − λ(µk)
∣∣∣ ≥ 1

µk

∣∣∣
1

|rN − ω|n − λ1(µk)
∣∣∣

and
1

(1 + r)n
≤ 1

|rN − ω|n ≤ 1

(1− r)n
.

If λ1(µk) → t as k → ∞, then 1
|rN−ω|n − λ1(µk) is bounded and 1

|rN−ω|n − λ1(µk) 6= 0 almost

everywhere on S. Thus |Ar,λ(µk),µk
(ω)| → +∞ almost everywhere on S. If λ1(µk) → ∞ as

k → ∞, then it is obvious that |Ar,λ(µk),µk
(ω)| → +∞ uniformly for ω ∈ S. The first claim is

proved.

As µ → +∞, 1
µ

1
|rN−ω|n → 0 uniformly for ω ∈ S. For j = 1 or j = 2 or · · · or j = m , if there

exists a subsequence µk → +∞ such that
λj(µk)

µk
→ ∞, then |Ar,λ(µk),µk

(ω)| → +∞ uniformly

for ω ∈ S, and I(r, λ(µk), µk) → 0, a contradiction. This shows that for j = 1, 2, · · · ,m,
λj(µ)

µ

are bounded as µ → +∞. Thus there exists a subsequence µk → +∞ such that −λj(µk)
µk

tend

to a finite limit tj for j = 1, 2, · · · ,m. That is,

lim
k→∞

−λj(µk)

µk

= tj for j = 1, 2, · · · ,m. (4.31)

We only need to prove that I(r, λ(µk), µk) →
√
1− |a|2 as k → ∞. Let

(A(ω))k = ((A1(ω))k, · · · , (Am(ω))k) = Ar,λ(µk),µk
(ω).
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By (2.1) and (4.31), we obtain for j = 1, 2, · · · ,m,

lim
k→∞

(Aj(ω))k√
1 + |(A(ω))k|2

= lim
k→∞

−λj(µk)
µk√

1 +
m∑
i=1

(
λi(µk)

µk

)2
=

tj√
1 +

m∑
i=1

t2i

(4.32)

uniformly for ω ∈ S, and

lim
k→∞

1√
1 + |(A(ω))k|2

= lim
k→∞

1√
1 +

m∑
i=1

(
λi(µk)

µk

)2
=

1√
1 +

m∑
i=1

t2i

(4.33)

uniformly for ω ∈ S. By the Lebesgue’s dominated convergence theorem and (2.2), (4.32)–

(4.33), we have for j = 1, 2, · · · ,m,

lim
k→∞

Rj(r, λ(µk), µk) =

∫

S

lim
k→∞

(Aj(ω))k√
1 + |(A(ω))k|2

dσ =
tj√

1 +
m∑
i=1

t2i

(4.34)

and

lim
k→∞

I(r, λ(µk), µk) =

∫

S

lim
k→∞

1√
1 + |(A(ω))k|2

dσ =
1√

1 +
m∑
i=1

t2i

. (4.35)

Note that Rj(r, λ(µk), µk) ≡ aj for j = 1, 2, · · · ,m by (4.29), and

m∑

j=1




tj√
1 +

m∑
i=1

t2i




2

+




1√
1 +

m∑
i=1

t2i




2

= 1.

Then by (4.34), we obtain that
tj√

1+
m∑

i=1

t2
i

= aj for j = 1, 2, · · · ,m, and 1√
1+

m∑
i=1

t2
i

=
√
1− |a|2.

Consequently by (4.35), lim
k→∞

I(r, λ(µk), µk) =
√
1− |a|2. The second claim is proved.

It is proved that I(r, λ(µ), µ) is continuous and strictly increasing from 0 to
√
1− |a|2 as µ

is increasing from 0 to +∞. Thus, for any 0 < b <
√
1− |a|2 and |a| < 1, there exists a unique

real number µ(a, b) such that I(r, λ(µ(a, b)), µ(a, b)) = b. Further, using the implicit function

theorem, we have the function µ(a, b) defined on {(a, b) : a ∈ Rm, b ∈ R, |a| < 1, 0 < b <√
1− |a|2} is a continuous function.

Denote λ(µ(a, b)) by λ(r, a, b). Denote µ(a, b) by µ(r, a, b). We have proved that there

exists a unique pair of continuous mappings λ = λ(r, a, b) and µ = µ(r, a, b), such that

R(r, λ(r, a, b), µ(r, a, b)) = a and I(r, λ(r, a, b), µ(r, a, b)) = b on the upper half ball. The

lemma is proved.

Now we give the proof of Lemma 2.2.
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Proof of Lemma 2.2 We will prove Lemma 2.2 by two cases: m = 1 and m ≥ 2. The

case that m = 1 will be proved in Step 1. The case that m ≥ 2 will be proved in Step 2–Step 5.

Step 1 For the case that m = 1, we have

R(r, λ) =

∫

S

1
|rN−ω|n − λ

| 1
|rN−ω|n − λ| dσ =






1, λ ∈ (−∞, 1
(1+r)n ],∫

S

1
|rN−ω|n

−λ

| 1
|rN−ω|n

−λ|
dσ, λ ∈ ( 1

(1+r)n ,
1

(1−r)n ),

−1, λ ∈ [ 1
(1−r)n ,+∞).

Obviously R(r, λ) ≡ 1 when λ ≤ 1
(1+r)n , R(r, λ) ≡ −1 when λ ≥ 1

(1−r)n , and R(r, λ) is

continuous and strictly decreasing from 1 to −1 as λ is increasing from 1
(1+r)n to 1

(1−r)n . Then

for any −1 < a < 1, there exists a unique real number λ(a) such that

R(r, λ)
∣∣
λ=λ(a) = a.

Further, using the implicit function theorem, we have that the function λ = λ(a) defined on

{a : −1 < a < 1} is a continuous function. Write λ(a) = λ(r, a). Then the case that m = 1 is

proved.

Step 2 For the case that m ≥ 2, we give some denotation and calculation. Let

Ar,λ(ω) = A(ω) = (A1(ω),A2(ω), · · · ,Am(ω)),

R(r, λ) = (R1(r, λ),R2(r, λ), · · · ,Rm(r, λ)),

l = (l1, · · · , lm), λ = (λ1, λ2, · · · , λm) and a = (a1, a2, · · · , am).

By (2.3), |A(ω)| =
√(

1
|rN−ω|n − λ1

)2

+ λ2
2 + · · ·+ λ2

m. So if set

H = {λ = (λ1, · · · , λm) ∈ R
m : λ2 = · · · = λm = 0},

then obviously for i, j = 1, 2, · · · ,m,
∂Rj(r,λ)

∂λi
exist for λ ∈ Rm\H . We denote

∂Rj(r,λ)
∂λi

= Rji

for i, j = 1, 2, · · · ,m. Then a simple calculation gives that for λ ∈ Rm\H ,

Rjj = −
∫

S

|A(ω)|2 −A2
j (ω)

|A(ω)|3 dσ for j = 1, 2, · · · ,m, (4.36)

Rji = −
∫

S

−Ai(ω)Aj(ω)

|A(ω)|3 dσ for i 6= j, i, j = 1, 2, · · · ,m. (4.37)

It is easy to see that

(1) By (2.3)–(2.4), for j = 1, 2, · · · ,m, Rj(r, λ) is a continuous function for any λ ∈ Rm;

(2) By (2.3)–(2.4), for j = 1, 2, · · · ,m, fixing the components of λ expect λj , Rj(r, λ) → −1

or 1 according to λj → +∞ or λj → −∞;

(3) By (2.3) and (4.36), R11 < 0 for any λ ∈ Rm\H , and R1(r, λ) is strictly decreasing as

a function of λ1 for fixed λ2, · · · , λm with λ2, · · · , λm being not all 0;

(4) By (2.4), for fixed λ2 = · · · = λm = 0,

R1(r, λ) =

∫

S

1
|rN−ω|n − λ1

| 1
|rN−ω|n − λ1|

dσ =






1, λ1 ∈ (−∞, 1
(1+r)n ],∫

S

1
|rN−ω|n − λ1

| 1
|rN−ω|n − λ1|

dσ, λ1 ∈ ( 1
(1+r)n ,

1
(1−r)n ),

−1, λ1 ∈ [ 1
(1−r)n ,+∞);
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(5) By (2.3) and (4.36), for j = 2, · · · ,m, Rjj < 0 for any λ ∈ R
m, and Rj(r, λ) is strictly

decreasing as a function of λj for the other fixed component of λ.

In addition, let the matrix Γk = (Rij)k×k. For λ ∈ Rm\H , we claim that

Γk+1

Γk

< 0 for integer k with 1 ≤ k ≤ m− 1. (4.38)

Now we will prove the claim above.

For (4.36)–(4.37), let dσ̃ =
(

1
|A(ω)|3

)
dσ, T =

∫
S
dσ̃, dξ =

(
1
T

)
dσ̃, b̃ =

∫
S
|A(ω)|2dξ, and for

i, j = 1, 2, · · · ,m, ãij =
∫
S
−Ai(ω)Aj(ω)dξ, cj =

∫
S
Aj(ω)dξ. Then T > 0,

∫
S
dξ = 1, and

Rjj = −T

µ
(̃b+ ãjj) for j = 1, 2, · · · ,m, (4.39)

Rji = −T

µ
ãij for i 6= j, i, j = 1, 2, · · · ,m. (4.40)

Since A1(ω) =
1

|rN−ω|n − λ1 by (2.3) and
∫
S
dξ = 1, we have

−ã11 − c21 =

∫

S

A2
1(ω)dξ −

( ∫

S

A1(ω)dξ
)2

=

∫

S

[
A1(ω)−

∫

S

A1(ω)dξ
]2
dξ > 0. (4.41)

Since
∫
S
dξ = 1 and Aj(ω) = −λj for j = 2, · · · ,m, by (2.3), we have

ãij = −
∫

S

Ai(ω)dξ

∫

S

Aj(ω)dξ

= −cicj for i 6= 1 or j 6= 1, i, j = 1, 2, · · · ,m, (4.42)
∣∣∣∣
ã11 ã1j
ãj1 ãjj

∣∣∣∣ =
∣∣∣∣

ã11 −c1cj
−cjc1 −cjcj

∣∣∣∣ = c2j(−ã11 − c21)

= λ2
j (−ã11 − c21) for j = 2, · · · ,m. (4.43)

For integer 1 ≤ p ≤ m, let

Qp =

∣∣∣∣∣∣∣∣∣∣

b̃+ ã11 ã12 · · · ã1p

ã21 b̃ + ã22 · · · ã2p
...

...
...

ãp1 ãp2 · · · b̃+ ãpp

∣∣∣∣∣∣∣∣∣∣

. (4.44)

Since λ ∈ Rm\H , we have that when p = 1, Q1 = b̃ + ã11 > 0. By (4.42) and Lemma 4.1, we

have that when p ≥ 2,

Qp = b̃p + b̃p−1

p∑

j=1

ãjj + b̃p−2

p∑

j=2

∣∣∣∣
ã11 ã1j
ãj1 ãjj

∣∣∣∣

= b̃p−1
(
b̃+

p∑

j=1

ãjj

)
+ b̃p−2

p∑

j=2

∣∣∣∣
ã11 ã1j
ãj1 ãjj

∣∣∣∣ .

Consequently, by (4.43), (4.41), b̃ > 0 and λ ∈ R
m\H , we obtain that when p ≥ 2, Qp > 0.

By (4.39)–(4.40) and (4.44), we have for integer k with 1 ≤ k ≤ m− 1,
Γk+1

Γk
= (−T )

Qk+1

Qk
.

Note that T > 0, Qk > 0, Qk+1 > 0. Then the claim (4.38) is proved.
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Step 3 For the case that m = 2, by (1)–(3) in Step 2, we know that for fixed λ2, · · · , λm

with λ2, · · · , λm being not all 0, R1(r, λ) is strictly decreasing from 1 to −1 as λ1 is increasing

from −∞ to +∞. By (4) in Step 2, we know that for fixed λ2 = · · · = λm = 0, R1(r, λ) ≡ 1

when λ1 ≤ 1
(1+r)n , R1(r, λ) ≡ −1 when λ1 ≥ 1

(1−r)n , and R1(r, λ) is continuous and strictly

decreasing from 1 to −1 as λ1 is increasing from 1
(1+r)n to 1

(1−r)n . Then for any −1 < a1 < 1

and any fixed λ2, · · · , λm, there exists a unique real number λ1(λ2, · · · , λm, a1) such that

R1(r, λ)
∣∣
λ1=λ1(λ2,··· ,λm,a1) = a1.

Further, using the implicit function theorem, we have that the function λ1 = λ1(λ2, · · · , λm, a1)

defined on {(λ2, · · · , λm, a1) : λ2 ∈ R, · · · , λm ∈ R, −1 < a1 < 1} is a continuous function, and
∂λ1(λ2,··· ,λm,a1)

∂λ2
, · · · , ∂λ1(λ2,··· ,λm,a1)

∂λm
exist for (λ2, · · · , λm, a1) with λ2, · · · , λm being not all 0.

Step 4 For the case that m ≥ 2, we will prove the following result.

For an integer k with 1 ≤ k ≤ m− 1, if

(1) There exists a unique continuous function λ1 = λ1(λ2, · · · , λm, a1), which defined on

{(λ2, · · · , λm, a1) : λ2 ∈ R, · · · , λm ∈ R, −1 < a1 < 1}, such that

R1(r, λ)
∣∣
λ1=λ1(λ2,··· ,λm,a1) = a1,

and ∂λ1(λ2,··· ,λm,a1)
∂λ2

, · · · , ∂λ1(λ2,··· ,λm,a1)
∂λm

exist for (λ2, · · · , λm, a1) with λ2, · · · , λm being not

all 0;

(2) There exists a unique continuous function λ2 = λ2(λ3, · · · , λm, a1, a2), which defined on

{(λ3, · · · , λm, a1, a2) : λ3 ∈ R, · · · , λm ∈ R, a1 ∈ R, a2 ∈ R, a21 + a22 < 1}, such that

R2(r, λ)

∣∣∣∣∣λ1=λ1(λ2,··· ,λm,a1)
λ2=λ2(λ3,··· ,λm,a1,a2)

= a2,

and ∂λ2(λ3,··· ,λm,a1,a2)
∂λ3

, · · · , ∂λ2(λ3,··· ,λm,a1,a2)
∂λm

exist for (λ3, · · · , λm, a1, a2) with λ3, · · · , λm be-

ing not all 0;
...

(k) There exists a unique continuous function λk = λk(λk+1, · · · , λm, a1, · · · , ak), which

defined on {(λk+1, · · · , λm, a1, · · · , ak) : λk+1 ∈ R, · · · , λm ∈ R, a1 ∈ R, · · · , ak ∈ R, a21 + · · ·+
a2k < 1}, such that

Rk(r, λ)

∣∣∣∣∣∣∣∣∣∣∣

λ1=λ1(λ2,··· ,λm,a1)
λ2=λ2(λ3,··· ,λm,a1,a2)...
λk=λk(λk+1,··· ,λm,a1,··· ,ak)

= ak,

and ∂λk(λk+1,··· ,λm,a1,··· ,ak)
∂λk+1

, · · · , ∂λk(λk+1,··· ,λm,a1,··· ,ak)
∂λm

exist for (λk+1, · · · , λm, a1, · · · , ak) with
λk+1, · · · , λm being not all 0,

then

(1) If k ≤ m − 2, there exists a unique continuous function λk+1 = λk+1(λk+2, · · · , λm,

a1, · · · , ak+1), which defined on {(λk+2, · · · , λm, a1, · · · , ak+1) : λk+2 ∈ R, · · · , λm ∈ R, a1 ∈
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R, · · · , ak+1 ∈ R, a21 + · · ·+ a2k+1 < 1}, such that

Rk+1(r, λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1=λ1(λ2,··· ,λm,a1)
λ2=λ2(λ3,··· ,λm,a1,a2)...
λk=λk(λk+1,··· ,λm,a1,··· ,ak)
λk+1=λk+1(λk+2,··· ,λm,a1,··· ,ak+1)

= ak+1,

and
∂λk+1(λk+2,··· ,λm,a1,··· ,ak+1)

∂λk+2
, · · · , ∂λk+1(λk+2,··· ,λm,a1,··· ,ak+1)

∂λm
exist for (λk+2, · · · , λm, a1, · · · ,

ak+1) with λk+2, · · · , λm being not all 0;

(2) If k = m − 1, there exists a unique continuous function λm = λm(a1, · · · , am), which

defined on {(a1, · · · , am) : a1 ∈ R, · · · , am ∈ R, a21 + · · ·+ a2m < 1}, such that

Rm(r, λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1=λ1(λ2,··· ,λm,a1)
λ2=λ2(λ3,··· ,λm,a1,a2)...
λm−1=λm−1(λm,··· ,λm,a1,··· ,am−1)
λm=λm(a1,··· ,am)

= am.

Now we will prove the result above. For 1 ≤ k ≤ m− 1, let

λ∗ = (λ∗
1, λ

∗
2, · · · , λ∗

k, λk+1, · · · , λm) = λ

∣∣∣∣∣∣∣∣∣∣∣

λ1=λ1(λ2,··· ,λm,a1)
λ2=λ2(λ3,··· ,λm,a1,a2)...
λk=λk(λk+1,··· ,λm,a1,··· ,ak)

,

where

λ∗
1 = λ1

∣∣∣∣∣∣∣∣∣∣∣

λ1=λ1(λ2,··· ,λm,a1)
λ2=λ2(λ3,··· ,λm,a1,a2)...
λk=λk(λk+1,··· ,λm,a1,··· ,ak)

, λ∗
2 = λ2

∣∣∣∣∣∣∣∣
λ2=λ2(λ3,··· ,λm,a1,a2)...
λk=λk(λk+1,··· ,λm,a1,··· ,ak)

, · · · ,

λ∗
k = λk

∣∣
λk=λk(λk+1,··· ,λm,a1,··· ,ak) .

Consider the function Rk+1(r, λ
∗). A simple calculation gives for λ∗ with λk+1, · · · , λm being

not all 0,

∂Rk+1(r, λ
∗)

∂λk+1
=

(
R(k+1)1

∂λ∗
1

∂λk+1
+R(k+1)2

∂λ∗
2

∂λk+1
+ · · ·

+R(k+1)k
∂λ∗

k

∂λk+1
+R(k+1)(k+1)

)∣∣∣
λ=λ∗

. (4.45)

By the conditions (1)–(k), we have for j = 1, 2, · · · , k, Rj(r, λ
∗) = aj and consequently

∂Rj(r,λ
∗)

∂λk+1

= 0 for λ∗ with λk+1, · · · , λm being not all 0, which is

(
Rj1

∂λ∗
1

∂λk+1
+Rj2

∂λ∗
2

∂λk+1
+ · · ·+Rjk

∂λ∗
k

∂λk+1
+Rj(k+1)

)∣∣∣
λ=λ∗

= 0 for j = 1, 2, · · · , k. (4.46)
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By (4.45)–(4.46) and Lemma 4.2, we have

∂Rk+1(r, λ
∗)

∂λk+1
=

Γk+1

Γk

∣∣∣∣
λ=λ∗

for λ∗ with λk+1, · · · , λm being not all 0. Then by (4.38), we obtain

∂Rk+1(r, λ
∗)

∂λk+1
< 0

for λ∗ with λk+1, · · · , λm being not all 0, which shows that when λk+1 6= 0, Rk+1(r, λ
∗) is

strictly decreasing as a function of λk+1. Since Rk+1(r, λ
∗) is continuous as a function of λk+1

by the conditions (1)–(k) and (1) in Step 2, for λk+1 ∈ R, Rk+1(r, λ
∗) is strictly decreasing

as a function of λk+1. Note that −1 < Rk+1(r, λ
∗) < 1 and Rk+1(r, λ

∗) is bounded since (2)

and (5) in Step 2 hold. Thus Rk+1(r, λ
∗), as a function of λk+1, respectively has finite limit as

λk+1 → +∞ and as λk+1 → −∞.

We claim that Rk+1(r, λ
∗) → −

√
1− a21 − · · · − a2k as λk+1 → +∞, and Rk+1(r, λ

∗) →√
1− a21 − · · · − a2k as λk+1 → −∞.

As λk+1 → +∞, note that for j = 1, 2, · · · , k + 1,

− λj

λk+1√
k+1∑
i=1

(
λi

λk+1

)2

∣∣∣∣∣∣∣∣∣∣
λ=λ∗

is bounded since

∣∣∣∣∣∣∣

−
λj

λk+1√
k+1∑
i=1

(
λi

λk+1

)2

∣∣∣∣∣∣∣
λ=λ∗

∣∣∣∣∣∣∣
≤ 1. Then there exists a subsequence (λk+1)p → +∞,

such that for j = 1, 2, · · · , k + 1,
−

λj
λk+1√

k+1∑
i=1

(
λi

λk+1

)2

∣∣∣∣∣∣∣
λ=λ∗|

λk+1=(λk+1)p

have a finite limit tj . Let

(λ∗)p = λ∗|λk+1=(λk+1)p
. Then we have

lim
p→∞

− λj

λk+1√
k+1∑
i=1

(
λi

λk+1

)2

∣∣∣∣∣∣∣∣∣∣
λ=(λ∗)

p

= tj for j = 1, 2, · · · , k + 1. (4.47)

We only need to prove that Rk+1(r, (λ
∗)p) → −

√
1− a21 − · · · − a2k as p → ∞. Let

(A(ω))p = ((A1(ω))p, · · · , (Am(ω))p) = Ar,(λ∗)
p
(ω).
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By (2.3) and (4.47), we obtain for j = 1, 2, · · · , k + 1,

lim
p→∞

(Aj(ω))p
|(A(ω))p|

= lim
p→∞

1
|rN−ω|n

lj
λk+1

− λj

λk+1√
m∑
i=1

(
1

|rN−ω|n
li

λk+1
− λi

λk+1

)2

∣∣∣∣∣∣∣∣∣∣
λ=(λ∗)

p

= lim
p→∞

− λj

λk+1√
k+1∑
i=1

(
λi

λk+1

)2

∣∣∣∣∣∣∣∣∣∣
λ=(λ∗)

p

= tj (4.48)

uniformly for ω ∈ S. By the Lebesgue’s dominated convergence theorem and (2.4), (4.48), we

have for j = 1, 2, · · · , k + 1,

lim
p→∞

Rj(r, (λ
∗)p) = lim

p→∞

∫

S

(Aj(ω))p
|(A(ω))p|

dσ =

∫

S

lim
p→∞

(Aj(ω))p
|(A(ω))p|

dσ = tj . (4.49)

Note that Rj(r, (λ
∗)p) ≡ aj for j = 1, 2, · · · , k by the condition, and

k+1∑
j=1

t2j = 1, tk+1 ≤ 0 by

(4.48). Then by (4.49), we have tj = aj for j = 1, 2, · · · , k, and tk+1 = −
√
1− a21 − · · · − a2k.

Consequently lim
p→∞

Rk+1(r, (λ
∗)p) = −

√
1− a21 − · · · − a2k. The first claim is proved.

Using the method of the proof of the first claim, we can prove the second claim. It

is proved that Rk+1(r, λ
∗) is continuous and strictly decreasing from

√
1− a21 − · · · − a2k to

−
√
1− a21 − · · · − a2k as λk+1 is increasing from −∞ to +∞. Therefore, for any

−
√
1− a21 − · · · − a2k < ak+1 <

√
1− a21 − · · · − a2k

with a21 − · · · − a2k < 1, we obtain

(1) If k ≤ m− 2, then there exists a unique real number λk+1(λk+2, · · · , λm, a1, · · · , ak+1)

such that

Rk+1(r, λ
∗)|λk+1=λk+1(λk+2,··· ,λm,a1,··· ,ak+1) = ak+1.

Further, using the implicit function theorem, we have that the function λk+1(λk+2, · · · , λm, a1,

· · · , ak+1) defined on {(λk+2, · · · , λm, a1, · · · , ak+1) : λk+2 ∈ R, · · · , λm ∈ R > 0, a1 ∈ R, · · · ,
ak+1 ∈ R, a21 + · · ·+ a2k+1 < 1} is a continuous function, and

∂λk+1(λk+2, · · · , λm, a1, · · · , ak+1)

∂λk+2
, · · · , ∂λk+1(λk+2, · · · , λm, a1, · · · , ak+1)

∂λm

exist;

(2) If k = m− 1, then there exists a unique real number λm = λm(a1, · · · , am) such that

Rm(r, λ∗)|λm=λm(a1,··· ,am) = am.

Further, using the implicit function theorem, we have that the function λm = λm(a1, · · · , am)

defined on {(a1, · · · , am) : a1 ∈ R, · · · , am ∈ R, a21 + · · ·+ a2m < 1} is a continuous function.
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Step 5 For the case that m ≥ 2, by Step 3 and Step 4, we have that there exists a unique

continuous mapping

λ(a) = λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1=λ1(λ2,··· ,λm,a1)...
λk=λk(λk+1,··· ,λm,a1,··· ,ak)...
λm=λm(a1,··· ,am)

defined on {a = (a1, · · · , am) ∈ Rm : |a| < 1} such that R(r, λ(a)) = a. Write λ(a) = λ(r, a).

Then the case that m ≥ 2 is proved.
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