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Abstract Given a triangle functor F : A → B, the authors introduce the half image hImF ,
which is an additive category closely related to F . If F is full or faithful, then hImF admits
a natural triangulated structure. However, in general, one can not expect that hImF has
a natural triangulated structure. The aim of this paper is to prove that hImF admits a
natural triangulated structure if and only if F satisfies the condition (SM). If this is the
case, hImF is triangle-equivalent to the Verdier quotient A/KerF .
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1 Introduction and Preliminaries

Comparing with general additive functors between additive categories, or exact functors

between abelian categories, triangle functors have special properties. One of the most funda-

mental results on triangle functors is that in an adjoint pair (F,G) of additive functors, F is

a triangle functor if and only if so is G (see [2, 6.7] or [3, p.179]); also, a sincere full triangle

functor is faithful (see [4, p.446]). For more information on triangle functors we refer to [5].

Let F : A → B be an additive functor between additive categories. We consider the category

hImF , called the half image of F , whose objects are the same as ones of A, and the set of

morphisms from X to Y is

HomhImF (X,Y ) := FHomA(X,Y ).

Thus HomhImF (X,Y ) = {F (f) | f ∈ HomA(X,Y )}, but we emphasize that in general

HomhImF (X,Y ) $ HomB(FX,FY ).

It is clear that hImF is an additive category. Here, “h” in hImF refers to “half ”.

Suppose that F : A → B is a triangle functor between triangulated categories. Then the

translation functor [1]A of A induces naturally an automorphism functor of hImF , denoted by
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[1]. To be precise, X[1] : = X[1]A for any object X of hImF , and (F (f))[1] : = F (f [1]A) for

any morphism F (f) : X → Y of hImF . Our main aim is to investigate when the category hImF

together with the automorphism [1] admits a natural triangulated structure (see Theorem 2.1).

In fact, this is the case provided that F is full or faithful. However, in general, one can not

expect that hImF has a natural triangulated structure. See Examples 3.2–3.3 for details.

In this paper, we show that the category hImF has a natural triangulated structure if and

only if the triangle functor F satisfies the condition (SM) (see Theorem 2.1). If this is the case,

hImF is exactly triangle-equivalent to the Verdier quotient A/KerF . Note that the condition

(SM) is weaker than that F is full or faithful. As an application, we describe when the Verdier

quotient functor is full.

All the functors in this paper are covariant and additive between additive categories. Let

F : A → B be a functor. Recall from [5, 6, Appendix] that F is objective, provided that any

morphism f : X → Y in A with F (f) = 0 factors through an object K with F (K) = 0. We

consider the following conditions (I) and (SM).

(I) For each morphism u : X → Y in A such that F (u) is an isomorphism in B, there exists

a morphism u′ : Y → X such that (F (u))−1 = F (u′).

(SM) For each morphism u : X → Y in A such that F (u) is a splitting monomorphism,

there exists a morphism u′ : Y → X such that F (u′)F (u) = idF (X).

Lemma 1.1 (see [5]) Let F : A → B be a triangle functor between triangulated categories.

If F is full or faithful, then F satisfies the condition (SM).

Let (A, [1]) be a triangulated category and K a triangulated subcategory of A. Recall that

the objects of the Verider quotient A/K are the same as ones of A, and a morphism of A/K
from X to Y is a right fraction a/s, where a : Z → Y and s : Z ⇒K X are morphisms in A
and s : Z ⇒K X means that there exists a distinguish triangle Z

s−→ X → K → Z[1] in A with

K ∈ K.

Denote by VK : A → A/K the localization functor. That is, VK(X) = X for any object X

of A, and VK(f) = f/idX for f ∈ HomA(X,Y ). Then (VK, id) : A → A/K is a dense triangle

functor, which is called the Verider functor. It has the universal property with respect to

VK(K) = 0. To be precise, if F : A → B is a triangle functor with F (K) = 0, then there exists

a unique triangle functor F̃ : A/K → B such that F = F̃ VK (see [3, 7]).

Lemma 1.2 (see [5]) Let A be a triangulated category and K a triangulated subcategory of

A. Then the Verdier functor VK : A → A/K is objective.

Let F : A → B be a triangle functor between triangulated categories. We denote by KerF

the full subcategory of A consisting of all objects X of A satisfying F (X) = 0. For simplicity,

we denote by VF the Verdier functor A → A/KerF . Since F (KerF ) = 0, it follows from the

universal property that there exists a unique triangle functor F̃ : A/KerF → B such that the



Triangulated Structures Induced by Triangle Functors 57

diagram

A F //

VF ##H
HH

HH
HH

HH
B

A/KerF

F̃

;;wwwwwwwww
(1.1)

commutes. Thus F̃ (X) = F (X) for any object X of A/KerF , and

F̃ (a/s) = F (a)(F (s))−1. (1.2)

We need the following results.

Lemma 1.3 (see [5]) Let F : A → B be a triangle functor between triangulated categories.

Then F is objective if and only if the induced functor F̃ : A/KerF → B is faithful.

Lemma 1.4 (see [5]) Let F : A → B be a triangle functor between triangulated categories.

Then the following are equivalent:

(i) F satisfies the condition (SM);

(ii) F is objective and VF is full;

(iii) There is a factorization F = F2F1, where F1 is a full triangle functor and F2 is a

faithful triangle functor.

2 Main Results

Let hImF be the half image of additive functor F : A → B. Observe that if FX is the zero

object of B, then X is the zero object of hImF (note that X may not be the zero object of A);

and that the coproduct in hImF coincides with the one in A, and therefore hImF is an additive

category.

Proposition 2.1 Let F : A → B be a functor between additive categories. Then there is a

canonical factorization of functors

A F //

F ′
""F

FF
FF

FF
F B

hImF,

σ

<<yyyyyyyyy
(2.1)

where F ′ is dense and full, and σ is faithful.

Moreover, F is full if and only if σ is fully faithful, and F is faithful if and only if F ′ is an

equivalence.

Proof For X ∈ A and f ∈ HomA(X,Y ), define F ′X := X and F ′(f) := F (f); and for

X ∈ hImF and F (f) ∈ HomhImF (X,Y ), define σX := FX and σ(F (f)) := F (f). Clearly,



58 Z. B. Zhao, X. N. Du and Y. H. Bao

F ′ : A → hImF is a dense and full functor and σ : hImF → B is a faithful functor, with

F = σF ′.

Thus, if F is full, then hImF can be viewed as a full subcategory of B, and if F is faithful,

then hImF is equivalent to A.

For a triangle functor F : A → B, we have already an additive category hImF with an

automorphism functor [1]. Denote by Ω the class of all the triangles in hImF of the form

X
F (u)−−−−→ X ′ F (u′)−−−−→ X ′′ F (u′′)−−−−→ X[1],

where X
u−→ X ′ u′

−→ X ′′ u′′

−−→ X[1]A is a distinguished triangle in A. Suppose that E is the class of

all the triangles Y
F (v)−−−→ Y ′ F (v′)−−−→ Y ′′ F (v′′)−−−−→ Y [1] in hImF , such that there is an isomorphism

of triangles in hImF

Y
F (v)−−−−→ Y ′ F (v′)−−−−→ Y ′′ F (v′′)−−−−→ Y [1]

F (f)

y F (g)

y F (h)

y yF (f)[1]

X
F (u)−−−−→ X ′ F (u′)−−−−→ X ′′ F (u′′)−−−−→ X[1],

where the triangle in the second row belongs to Ω.

We say that hImF has a natural triangulated structure, provided that (hImF, [1], E) is a

triangulated category.

The main result of this paper is follows.

Theorem 2.1 Let F : A → B be a triangle functor between triangulated categories. Then

the following are equivalent:

(i) hImF has a natural triangulated structure;

(ii) hImF has a natural triangulated structure, and there is a unique triangle-equivalence

(F̃ ′, id) : A/KerF → hImF , such that the diagram

A F ′
//

VF ##G
GG

GG
GG

GG
hImF

σ // B

A/KerF

F̃ ′

OO

F̃

;;wwwwwwwww
(2.2)

commutes, where VF and F̃ are the same as in (1.1), F ′ and σ are the same as in (2.1);

(iii) there is an equivalence F̃ ′ : A/KerF → hImF as categories, such that F ′ = F̃ ′VF ;

(iv) F is objective and the Verdier functor VF is full;

(v) F satisfies the condition (SM).

In order to prove Theorem 2.1, we need some preparations. The following fact is well known

and the proof is straightforward.

Lemma 2.1 Let F : A → B be a functor between additive categories. Suppose that (A, [1]A)

is a triangulated category and B has an automorphism, denoted by [1]B, such that there is a
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natural isomorphism ξ : F ◦ [1]A → [1]B ◦ F . If F is an equivalence of categories, then (B, [1]B)
admits a unique triangulated structure such that (F, ξ) : A → B is a triangle-equivalence.

Lemma 2.2 Let F : A → B be a triangle functor between triangulated categories. Then F

satisfies the condition (I) if and only if the functor F̃ : A/KerF → B in (1.1) induces a dense

and full functor F̃ ′ : A/KerF → hImF such that the diagram (2.2) commutes.

Proof Assume that F satisfies the condition (I). For any a/s : X → Y in A/KerF with

a : Z → Y and s : Z ⇒KerF X, F (s) is an isomorphism since there exists a distinguished triangle

Z
s−→ X → K → Z[1] with F (K) = 0 in B (see [1, Lemma 1.7]). By the condition (I), there

exists s′ : X → Z such that (F (s))−1 = F (s′). By (1.2) we have F̃ (a/s) = F (a)(F (s))−1 =

F (as′). Define F̃ ′ : A/KerF → hImF as follows: F̃ ′(X) = X for any object X of A/KerF ,

and F̃ ′(a/s) = F (as′) for any morphism a/s : X → Y of A/KerF . Since F̃ : A/KerF → B
is well-defined, it follows that F̃ ′ is also a well-defined functor, and it is dense and full. By a

direct calculation we have σF̃ ′ = F̃ and F̃ ′VF = F ′, i.e., the diagram (2.2) commutes.

Conversely, suppose that F̃ : A/KerF → B induces a dense and full functor F̃ ′ : A/KerF →
hImF such that the diagram (2.2) commutes. Let s : Z → X be a morphism in A such that F (s)

is an isomorphism in B. Since by construction σ fixes morphisms (see the proof of Proposition

2.1), by (1.2) we have

F̃ ′(idZ/s) = σF̃ ′(idZ/s) = F̃ (idZ/s) = (F (s))−1 : F (X) → F (Z).

By Proposition 2.1 we know that F ′ is full. It follows that there exists s′ : X → Z such that

F (s′) = F ′(s′) = (F (s))−1, and hence F satisfies the condition (I).

Proof of Theorem 2.1 (ii) ⇒ (iii) is trivial, and (iv)⇔ (v) follows from Lemma 1.4.

(i) ⇒ (ii) Assume that hImF has a natural triangulated structure. Then by construction

F ′ : A → hImF is a full triangle functor and σ : hImF → B is a faithful triangle functor. It

follows from Lemma 1.4 that F = σF ′ is objective. Hence F̃ : A/KerF → B is faithful by

Lemma 1.3.

On the other hand, if X ∈ KerF , then X is a zero object of hImF and hence F ′X := X = 0

in hImF . That is F ′(KerF ) = 0. By the universal property of the Verdier quotient, there exists

a unique triangle functor F̃ ′ : A/KerF → hImF such that the diagram

A F ′
//

VF ##H
HH

HH
HH

HH
hImF

A/KerF
F̃ ′

99ssssssssss

commutes. Thus by (1.1) and (2.1) we have

F̃ VF = F = σF ′ = (σF̃ ′)VF ,

and by the uniqueness we have F̃ = σF̃ ′. So we get the commutative diagram (2.2).
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Since F̃ is faithful and F̃ = σF̃ ′, it follows that F̃ ′ is faithful. Similarly, since F ′ is full and

F ′ = F̃ ′VF , it follows that F̃ ′ is full. Clearly F̃ ′ is dense and thus F̃ ′ : A/KerF → hImF is a

triangle-equivalence.

(iii) ⇒ (i) Assume that there is an equivalence F̃ ′ : A/KerF → hImF as categories such

that F ′ = F̃ ′VF . Note that an equivalence between additive categories is always additive.

By the definitions of A/KerF and hImF , we have F̃ ′(X[1]A) = F̃ ′(X)[1] for any object X of

A/KerF . It follows from Lemma 2.1 that (hImF, [1]) has a triangulated structure such that

(F̃ ′, id) : A/KerF → hImF is a triangle functor. This means that the triangulated structure of

hImF is exactly the natural one.

(ii) ⇒ (iv) By the commutative diagram (2.2), we have F ′ = F̃ ′VF , where F̃ ′ : A/KerF →
hImF is a triangle-equivalence. By construction F ′ : A → hImF is a full triangle functor, since

hImF has a natural triangulated structure. It follows that VF is also full. On the other hand,

as in the proof of (i) ⇒ (ii) we have known that F is objective.

(v) ⇒ (iii) Assume that F satisfies the condition (SM). So F satisfies the condition (I). By

Lemma 2.2, the functor F̃ : A/KerF → B induces a dense and full functor F̃ ′ : A/KerF → hImF

such that the diagram (2.2) commutes.

On the other hand, by Lemma 1.4, F is objective. It follows from Lemma 1.3 that F̃ is

faithful. Since F̃ = σF̃ ′, F̃ ′ is also faithful, and hence F̃ ′ is an equivalence.

This completes the proof.

3 Consequences and Examples

Recall that a functor F is sincere, provided that F sends non-zero objects to non-zero

objects. Clearly, a functor is faithful if and only if it is objective and sincere. By Theorem 2.1,

we immediately get the follwing result.

Corollary 3.1 Let (F, ξ) : A → B be a sincere triangle functor. Then the following are

equivalent:

(i) hImF has a natural triangulated structure;

(ii) F satisfies the condition (SM);

(iii) F is faithful.

Let F : A → B be a triangle functor between triangulated categories. If F is full or faithful,

then F satisfies the condition (SM) (see Lemma 1.1), and hence hImF admits the natural

triangulated structure.

The following examples show that the condition (SM) is weaker than that F is full (resp.

faithful), and hence Theorem 2.1 really provides category hImF , which has a natural triangu-

lated structure, but F is not full (resp. faithful).

Example 3.1 Let T × T be the product of a triangulate category T with itself. Then
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T ×T is again triangulated. Let F : T → T ×T be the triangle functor given by F (X) = (X,X)

and F (f) = (f, f), for any X in T and for any f ∈ HomT (X,Y ). Then (F, id) is a faithful

triangle functor but not full. It follows from Lemma 1.1 that F satisfies the condition (SM).

Let G : T × T → T be the triangle functor given by G(X,Y ) = X and G(f, g) = f . Then

(G, id) is a full triangle functor but not faithful. It follows from Lemma 1.1 that G satisfies the

condition (SM).

Consider the triangle functor F ◦G : T × T → T × T . By Lemma 1.4 we know that F ◦G
satisfies the condition (SM), since F is faithful and G is full. But F ◦ G is neither full nor

faithful.

The functor in the following example does not satisfy the conditions (SM), and therefore

hImF has no the natural triangulated structure.

Example 3.2 (see [5]) Let A be the path algebra of the quiver (b◦ → ◦a) over a field

k and B the semisimple algebra given by the quiver with the two vertices a, b and no arrow.

Then B is a subalgebra of A and we consider the forgetful functor F0 : A-mod→ B-mod, which

is induced by the inclusion B ↪→ A.

The functor F0 sends SA(x) to SB(x) for x = a, b, and it sends PA(b) to SB(a) ⊕ SB(b),

where SA(x) and SB(x) are the simple A-module and B-module corresponding to vertex x,

respectively, and PA(x) is the indecomposable projective A-module corresponding to vertex x.

Then F0 is an exact and faithful functor.

The induced functor F : Db(A) → Db(B) sends SA(x)[i] to SB(x)[i] for x = a, b, and sends

PA(b)[i] to SB(a)[i] ⊕ SB(b)[i] for all i ∈ Z. Since SA(a) is a submodule of PA(b), we can

consider the inclusion map u : SA(a) → PA(b). Applying the functor F , we obtain the inclusion

map

F (u) : SB(a) ↪→ SB(a)⊕ SB(b),

which is a splitting monomorphism. In fact, we have a projection map

u′ : SB(a)⊕ SB(b) → SB(a)

such that u′F (u) = 1SB(a). Since there is no non-zero map PA(b) → SA(a), such a map u′ is

not in the image of F . It follows that the functor F does not satisfy the condition (SM).

Let (A, [1]) be a triangulated category, K a triangulated subcategory of A, and K the full

subcategory of A consisting of all the direct summands of objects of K. Then K is the smallest

thick subcategory of A containing K, which is called the thick closure of K. Then

KerVK = K = KerVK (3.1)

and there is a triangle-equivalence

φ : A/K ∼= A/K, (3.2)
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such that

VK = φVK. (3.3)

Thus KerVK = K if and on if K is a thick subcategory.

Applying Theorem 2.1 to the Verdier functor VK : A → A/K, by Lemma 1.2 together with

Lemma 1.4 and (3.3) we know the following result.

Corollary 3.2 Let K be a triangulated subcategory of triangulated category A, and VK : A →
A/K the Verdier functor. Then hImVK has a natural triangulated structure if and only if VK

is full.

Example 3.3 Let A be an Artin algebra, A-mod the category of finitely generated left

A-modules, K−(A) the homotopy category of the upper bounded complexes over A-mod,

K−
ac(A) the full subcategory of K−(A) consisting of the upper bounded acyclic complexes,

and D−(A) := K−(A)/K−
ac(A) the derived category of the upper bounded complexes over A-

mod. We have the Verdier quotient functor V : K−(A) → D−(A). It is well known that V is

full if and only if A is semisimple.

For convenience we include a justification. If A is semi-simple, then each A-module is

projective, and hence V is an equivalence. Conversely, assume that A is not semi-simple. Let

M be a simple A-module which is not projective, and π : P → M with

P : · · · → P 2 d2

−→→ P 1 d1

−→ P 0 → 0

be a minimal projective resolution. Then π : P → M is a quasi-isomorphism. We claim that

idP /π ∈ HomD−(A)(M,P ) is not of the form a/idM with a ∈ HomK−(A)(M,P ), and hence V

is not full. In fact, if otherwise, by the calculation of the right fractions there exists morphism

t : Z → P such that πt : Z → M is a quasi-isomorphism, and aπt = t in K−(A). Then t

and hence a is a quasi-isomorphism. But a : M → P is a quasi-isomorphism means that a

is a splitting epimorphism, i.e., there is g : P → M such that ag is homotopic to idP . Since

Imd1 ⊂ radP 0, it follows that a : M → P 0 is surjective, which contradicts the assumption of

M .

Now, let A be an Artin algebra which is not semisimple. Then the Verdier functor V : K−(A)

→ D−(A) is not full. By Corollary 3.2, hImV has no natural triangulated structure.

Finally, we include a direct proof for the implication (v) ⇒ (i) in Theorem 2.1. That is,

if a triangle functor F satisfies the condition (SM), then hImF has the natural triangulated

structure.

Let Ω and E be defined as in Section 2. In order to say that (hImF, [1], E) is a triangulated

category, it suffices to show that Ω and E satisfy (tr1), (tr2), (tr3) and (tr4) in Lemma 1.4.4 in

[8].

Note that Ω and E trivially satisfy (tr1), (tr2) and (tr4) even without the assumption that

F satisfies the condition (SM). We only need to show that Ω satisfies (tr3).
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Given two triangles X
F (u)−−−→ Y

F (v)−−−→ Z
F (w)−−−→ X[1] and X ′ F (u′)−−−→ Y ′ F (v′)−−−→ Z ′ F (w′)−−−−→ X ′[1]

in Ω, and given a commutative diagram

X
F (u)−−−−→ Y

F (f)

y yF (g)

X ′ F (u′)−−−−→ Y ′

in hImF, since F satisfies the condition (SM), by Lemma 1.4, F is objective, and hence

F̃ : A/KerF → B is faithful by Lemma 1.3. From 0 = F (gu − u′f) = F̃ VF (gu − u′f) we

know that VF (gu − u′f) = (gu − u′f)/idX = 0 in A/KerF . This means that there exists a

morphism t : W ⇒KerF X in A such that

(gu− u′f)t = 0, (3.4)

where t : W ⇒KerF X means that there exists a distinguished triangle W
t−→ X → K → W [1]

with K ∈ KerF . Therefore, F (t) is an isomorphism in B by [8, Lemma 1.3.7] or [1, Lemma

1.7].

Since X
F (u)−−−→ Y

F (v)−−−→ Z
F (w)−−−→ X[1] is in Ω, by the definition of Ω we know that X

u−→
Y

v−→ Z
w−→ X[1] is a distinguished triangle in A. Embedding ut into a distinguished triangle

W
ut−→ Y −→ Z̃ −→ W [1] in A, by using (TR3) for A, we get the following morphism of

distinguished triangles in A:

W
ut−−−−→ Y −−−−→ Z̃ −−−−→ W [1]

t

y ∥∥∥ a

y yt[1]A

X
u−−−−→ Y

v−−−−→ Z
w−−−−→ X[1].

(3.5)

Applying the functor F , we get F (a) : F (Z̃) → F (Z) is an isomorphism since F (t) is an

isomorphism in B. By assumption, F satisfies the condition (SM) and hence satisfies the

condition (I). So there exist t′ : X → W and a′ : Z → Z̃ such that F (t)−1 = F (t′) and F (a)−1 =

F (a′), respectively.

Similarly, we get the following morphism of distinguished triangles by (3.4):

W
ut−−−−→ Y −−−−→ Z̃ −−−−→ W [1]

ft

y g

y b

y y(ft)[1]A

X ′ u′

−−−−→ Y ′ v′

−−−−→ Z ′ w′

−−−−→ X ′[1].

(3.6)

Combining (3.5) and (3.6), we get the following morphism of distinguished triangles in hImF :
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X
F (u)−−−−→ Y

F (v)−−−−→ Z
F (w)−−−−→ X[1]

F (t′)

y ∥∥∥ F (a′)

y yF (t′[1]A)=F (t′)[1]

W
F (ut)−−−−→ Y −−−−→ Z̃ −−−−→ W [1]

F (ft)

y F (g)

y F (b)

y yF (ft[1]A)=F (ft)[1]

X ′ F (u′)−−−−→ Y ′ F (v′)−−−−→ Z ′ F (w′)−−−−→ X ′[1].

Finally, we get the following morphism of distinguished triangles in hImF :

X
F (u)−−−−→ Y

F (v)−−−−→ Z
F (w)−−−−→ X[1]

F (f)

y F (g)

y F (ba′)

y yF (f)[1]

X ′ F (u′)−−−−→ Y ′ F (v′)−−−−→ Z ′ F (w′)−−−−→ X ′[1].

This completes the proof.
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