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Abstract Let R be a ring with involution. It is well-known that an EP element in R is a
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1 Introduction

The core inverse and the dual core inverse for a complex matrix were introduced by Baksalary

and Trenkler in [1]. Recently, Rakić et al. in [12] generalized core inverse of a complex matrix

to the case of an element in a ring. For a, x ∈ R, if

axa = a, xR = aR, Rx = Ra∗,

then x is called a core inverse of a and if such an element x exists, then it is unique and denoted

by a#©. The set of all core invertible elements of R will be denoted by R#©.

In [12], Rakić et al. gave several equivalent conditions for a core invertible element in a ring

with involution to be an EP element. In Section 3, we will present more equivalent conditions

which ensure that a core invertible element in a ring with involution is an EP element. Star-

dagger element was introduced by Hartwig and Spindelböck [5]. In [8–9], Mosić and Djordjević

investigated various equivalent conditions for an element to be star-dagger element, normal

element, Hermitian element and partial isometry in the setting of rings. Motivated by [8–9], we

give the definition of a star-core element. The results in [8–9] are under the hypothesis a ∈ R†.

In Section 4, we will give several equivalent conditions which ensure that an element a of a ring
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E-mail: dijana@pmf.ni.ac.rs

∗This work was supported by the National Natural Science Foundation of China (Nos. 11201063,
11771076) and the Ministry of Education and Science, Republic of Serbia (No. 174007).



66 S. Z. Xu, J. L. Chen and D. Mosić

with involution R is a star-core, normal, Hermitian element or a∗ = a#©, under the hypothesis

a ∈ R#©.

2 Definitions and Notations

Let R be a ring with involution, that is a ring with unity 1 and an involution a 7→ a∗

satisfying (a∗)∗ = a, (ab)∗ = b∗a∗ and (a+ b)∗ = a∗ + b∗.

An element a ∈ R is called normal if aa∗ = a∗a. An element a ∈ R is called Hermitian if

a∗ = a. An element a ∈ R (R is not necessary to be a ring with involution) is said to be group

invertible if there exists b ∈ R such that the following equations equations hold:

aba = a, bab = b, ab = ba.

The element b which satisfies the above equations is called a group inverse of a. If such an

element b exists, then it is unique and denoted by a#. The set of all group invertible elements

of R will be denoted by R#. We say that b ∈ R is the Moore-Penrose inverse of a ∈ R, if the

following equations hold:

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.

There is at most one b such that above four equations hold. If such an element b exists, then it

is denoted by a†. The set of all Moore-Penrose invertible elements of R will be denoted by R†.

An element a ∈ R is said to be an EP element if a ∈ R† ∩R# and a† = a#. The set of all EP

elements of R will be denoted by REP.

An element b ∈ R is an inner inverse of a ∈ R if aba = a holds. The set of all inner inverses

of a will be denoted by a{1}. Set a{1, 2} = {b ∈ R : aba = a and bab = b}. An element ã ∈ R

is called a {1, 3}-inverse of a if we have aãa = a, (aã)∗ = aã. Let a{1, 3} = {ã ∈ R : aãa =

a and (aã)∗ = aã}. The set of all {1, 3}-invertible elements of R will be denoted by R{1,3}.

Similarly, an element â ∈ R is called a {1, 4}-inverse of a if aâa = a, (âa)∗ = âa. The set of all

{1, 4}-invertible elements of R will be denoted by R{1,4}. Also, denote by a{1, 4} = {â ∈ R :

aâa = a and (âa)∗ = âa}.

We will also use the following notations: aR = {ax | x ∈ R}, Ra = {xa | x ∈ R},
◦a = {x ∈ R | xa = 0}, a◦ = {x ∈ R | ax = 0} and [a, b] = ab− ba.

3 When a Core Invertible Element is an EP Element

It is well-known that an EP element in R is a core invertible element, but the question when

a core invertible element is an EP element, we answer in this section. Let us begin this section

with three lemmas which will be used in the rest of the paper.

Lemma 3.1 (cf. [7, Theorem 7.3], [12, Theorem 3.1]) Let a ∈ R. Then the following

statements are equivalent:

(i) a ∈ REP;

(ii) a ∈ R#© and [a, a#©] = 0;
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(iii) a ∈ R† ∩R# and a† = a#©;

(iv) a ∈ R#© and a# = a#©;

(v) a ∈ R# and a#a is Hermitian (cf. [7, Theorem 7.3]).

Lemma 3.2 (cf. [13, Theorem 2.6, Theorem 3.1]) Let a ∈ R. Then the following conditions

are equivalent:

(i) a ∈ R#©;

(ii) a ∈ R# ∩R{1,3};

(iii) There exists x ∈ R such that (ax)∗ = ax, xa2 = a and ax2 = x.

In this case, x = a#© = a#aa(1,3) for arbitrary a(1,3) ∈ a{1, 3}.

In the following theorem, we present 24 necessary and sufficient conditions for an element a

of a ring with involution to be EP in the case that a ∈ R#©. By Lemma 3.2, a ∈ R#© if and only

if a ∈ R# ∩ R{1,3}. Thus, the next characterizations of EP elements involve the assumption

a ∈ R{1,3} instead of stronger condition a ∈ R† which appears in characterizations proved in

[10–11].

Theorem 3.1 Let m,n ∈ N . An element a ∈ R is EP if and only if a ∈ R#© and one of

the following equivalent conditions holds:

(i) a#©a is Hermitian;

(ii) (a#)n+m−1 = (a#)n−1(a#©)m;

(iii) a(a#)n(a#©)m = a#©a(a#)n+m−1;

(iv) (a∗)na#©a = (a∗)n;

(v) a#©a(a∗)n = (a∗)n;

(vi) a#©a(a∗)n = (a∗)na#©a;

(vii) (a#©)2(a#)n = a#©(a#)na#©;

(viii) (a#)n+1a(1,3) = a#a(1,3)(a#)n for arbitrary a(1,3) ∈ a{1, 3};

(ix) (a#)n = (a#©)n;

(x) a∗(a#©)n = a∗(a#)n;

(xi) a#©(a#)n = (a#)na#©;

(xii) (a#©)n+1 = a#©(a#)n;

(xiii) aa(1,3)(a∗)n = (a∗)n for arbitrary a(1,3) ∈ a{1, 3};

(xiv) aa(1,3)(a∗)nam = (a∗)namaa(1,3) for arbitrary a(1,3) ∈ a{1, 3};

(xv) aa(1,3)(am(a∗)n− (a∗)nam) = (am(a∗)n− (a∗)nam)aa(1,3) for arbitrary a(1,3) ∈ a{1, 3};

(xvi) (a∗)na#a+ aa#(a∗)n = 2(a∗)n;

(xvii) a#©(a#)na+ aa#(a#©)n = 2(a#©)n;

(xviii) anaa#© + a#©aan = 2an;

(xix) anaa(1,3) + (anaa(1,3))∗ = an + (a∗)n for arbitrary a(1,3) ∈ a{1, 3};

(xx) an = anaa(1,3) for arbitrary a(1,3) ∈ a{1, 3};

(xxi) ana#© = a#©an;

(xxii) [(a#©)∗]n = [(a#©)∗]na#©a;

(xxiii) a ∈ Ra#©;
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(xxiv) a ∈ R−1a#©.

Proof If a is EP, then a#© = a# = a† by Lemma 3.1 and aa† = aa(1,3) for arbitrary

a(1,3) ∈ a{1, 3}. It is not difficult to verify that conditions (i)–(xxiii) hold. Also, we have that

a = (a2 + 1 − a#©a)a#©, where a2 + 1− a#©a ∈ R−1 and a2 + 1− a#©a = ((a#©)2 + 1 − a#©a))−1.

So, (xxiv) is satisfied.

Conversely, we suppose that a ∈ R#∩R{1,3}. To conclude that a is EP, we show that one of

the conditions of Lemma 3.1 is satisfied, or that the element a is subject to one of the preceding

already established conditions of this theorem.

(i) Because a#©a is Hermitian, then aa# = a#©a2a# = a#©a is Hermitian. By Lemma 3.1, we

deduce that a is EP.

(ii) From (a#)n+m−1 = (a#)n−1(a#©)m, we get

aa# = an+m−1(a#)n+m−1 = an+m−1(a#)n−1(a#©)m

= an+m−1(a#)n−1(a#©)maa#© = an+m−1(a#)n+m−1aa#© = aa#©.

Since aa#© is Hermitian, we have that aa# is Hermitian too.

(iii) Multiplying the equality a(a#)n(a#©)m = a#©a(a#)n+m−1 by a#a from the left side, we

obtain that (ii) holds.

(iv) As in part (i), a#©a = aa# = an(a#)n. By the hypothesis (a∗)na#©a = (a∗)n, we obtain

(a#©a)∗ = [(a#)n]∗(a∗)n = [(a#)n]∗(a∗)na#©a = (a#©a)∗a#©a. Since (a#©a)∗a#©a is Hermitian, we

conclude that a#©a is Hermitian too, i.e., (i) is satisfied.

(v) Similarly as (iv).

(vi) The hypothesis a#©a(a∗)n = (a∗)na#©a implies

(a∗)n = (a∗)naa#© = ((a∗)na#©a)aa#© = a#©a(a∗)naa#© = a#©a(a∗)n.

So, the condition (v) is satisfied.

(vii) Applying (a#©)2(a#)n = a#©(a#)na#©, we get

a#©(a#)na#© = (a#©)2(a#)n = ((a#©)2(a#)n)aa#

= a#©(a#)naa# = a#©(a#)n+1aa#©aa#

= a#©(a#)n+1

implying

aa#© = an+1aa#©a(a#)n+1a#© = an+2(a#©(a#)na#©)

= an+2a#©(a#)n+1 = an+1aa#©a(a#)n+2 = aa#.

Hence, the element aa# is Hermitian and, by Lemma 3.1, a is EP.

(viii) Multiplying (a#)n+1a(1,3) = a#a(1,3)(a#)n from the left side by an+2, we get aa(1,3) =

an+1a(1,3)a(a#)n+1 = aa#, that is, aa# is Hermitian.

(ix) Assume that (a#)n = (a#©)n. Then aa# = an(a#)n = an(a#©)n = aa#© is Hermitian

and so a is EP.
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(x) Using a∗(a#©)n = a∗(a#)n, we have that condition (ix) is satisfied:

(a#©)n = aa#©(a#©)n = (a#©)∗a∗(a#©)n = (a#©)∗a∗(a#)n

= aa#©a(a#)n+1 = (a#)n.

(xi) The equality a#©(a#)n = (a#)na#© gives

aa# = anaa#©a(a#)n+1 = an+1(a#©(a#)n) = an+1(a#)na#© = aa#©,

i.e., aa# is Hermitian.

(xii) Multiplying (a#©)n+1 = a#©(a#)n by a∗a from the left side, we obtain (x).

(xiii) Applying involution to aa(1,3)(a∗)n = (a∗)n, we have anaa(1,3) = an. Multiplying the

last equality by (a#)n from the left side, we get aa(1,3) = a#a and a#a is Hermitian.

(xiv) Multiplying aa(1,3)(a∗)nam = (a∗)namaa(1,3) by a(a#)m from the right side, we get

aa(1,3)(a∗)na = (a∗)na. If we multiply the last equality by a(1,3) from the right side, the

condition (xiii) aa(1,3)(a∗)n = (a∗)n is satisfied.

(xv) From aa(1,3)(am(a∗)n − (a∗)nam) = (am(a∗)n − (a∗)nam)aa(1,3), we observe that

am(a∗)n − aa(1,3)(a∗)nam = am(a∗)n − (a∗)namaa(1,3),

that is, aa(1,3)(a∗)nam = (a∗)namaa(1,3). So, the equality (xiv) holds.

(xvi) Multiplying the hypothesis (a∗)na#a+aa#(a∗)n = 2(a∗)n by aa#© from the right side,

we get (a∗)n = aa#(a∗)n = a#©a(a∗)n, i.e., (v) is satisfied.

(xvii) If we multiply a#©(a#)na + aa#(a#©)n = 2(a#©)n by a#a from the left side, we get

(a#©)n = a#©a(a#)n = aa#(a#)n = (a#)n. Thus, the condition (ix) holds.

(xviii) Multiplying anaa#© + a#©aan = 2an by (a#)n from the left side, we have that a#a =

aa#© is Hermitian.

(xix) When we multiply anaa(1,3) +(anaa(1,3))∗ = an +(a∗)n by aa(1,3) from the right side,

we obtain aa(1,3)(a∗)n = (a∗)n, that is, condition (xiii) holds.

(xx) Applying involution to an = anaa(1,3), we get (xiii).

(xxi) The assumption ana#© = a#©an yields

a#a = (a#)nan = (a#)na(a#©an) = (a#)naana#© = aa#©.

So, a#a is Hermitian.

(xxii) Applying involution to [(a#©)∗]n = [(a#©)∗]na#©a, note that (a#©)n = (a#©a)∗(a#©)n

which gives a#©a = (a#©)nan = (a#©a)∗(a#©)nan = (a#©a)∗a#©a. Since (a#©a)∗a#©a is Hermitian

and so is a#©a.

(xxiii) Since a ∈ Ra#©, a = aaa#© gives that a#a = aa#© is Hermitian.

(xxiv) The conditions a ∈ R−1a#© implies (xxiii).

Recall that, for a ∈ R, if there exists x ∈ R such that axa = a, xR = a∗R and Rx = Ra,

then the element x is the dual core inverse of a (cf. [12]). The dual core inverse of a is unique,

if it exists and will be denoted by a#©. If we denote by R#© the set of all dual core invertible

elements of R, observe that a ∈ R#© if and only if a ∈ R# ∩R{1,4} (cf. [13]). Similarly as in the

proof of Theorem 3.1, we can get new equivalent conditions for an element a ∈ R# ∩R{1,4} to

be EP.
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4 Star-Core, Normal and Hermitian Elements in Rings

In this section, some fundamental properties and characterizations of star-core, normal and

Hermitian elements in rings are obtained. Let us start this section with an example.

Example 4.1 Let R be the ring of all 2 × 2 matrices over the real field with involution as

transpose. Taking M =
[

1
2

1
2

0 0

]
∈ R, then M #© =

[
2 0
0 0

]
, M #©M∗ =

[
1 0
0 0

]
and M∗M #© =

[
1 0
1 0

]
.

Thus M #©M∗ 6= M∗M #©.

Since the equality a#©a∗ = a∗a#© is not true in general, we introduce a star-core element in

the following definition.

Definition 4.1 Let a ∈ R#©. Then a is called a star-core (SC for short) element if a#©a∗ =

a∗a#©.

Lemma 4.1 (cf. [2, Corollary 3.4]) Let a ∈ R#© and b ∈ R such that [a, b] = 0 and

[a∗, b] = 0. Then [a#©, b] = 0.

From [2, Corollary 3.4, Theorem 3.5], we have the following proposition. For the convenience

to readers, here we give the proof.

Proposition 4.1 Let a, b ∈ R#© such that [a, b] = 0 and [a∗, b] = 0. Then [a#©, b] =

[a#©, b∗] = [a, b#©] = [a∗, b#©] = [a#©, b#©] = 0.

Proof Suppose that a, b ∈ R#© satisfy [a, b] = 0 and [a∗, b] = 0. Then, by Lemma 4.1, we

deduce that [a#©, b] = 0. Taking involution on [a, b] = 0 and [a∗, b] = 0, we get [a∗, b∗] = 0 and

[a, b∗] = 0, respectively. From [a, b] = 0, [a, b∗] = 0 and Lemma 4.1, we obtain [a, b#©] = 0. By

[a∗, b∗] = 0, [a, b∗] = 0 and Lemma 4.1, notice that [a#©, b∗] = 0. So, by [a∗, b∗] = 0, [a∗, b] = 0

and Lemma 4.1, we have [a∗, b#©] = 0.

Under assumption a ∈ R#©, we now characterize normal elements of rings with involution.

Theorem 4.1 Let a ∈ R#©. Then the following conditions are equivalent:

(i) a is normal;

(ii) a ∈ REP and a is SC;

(iii) a ∈ R{1,4} and [aa∗, (a#©)2a] = 0;

(iv) a ∈ R{1,4} and [a∗, (a#©)2a] = 0.

Proof (i) ⇒ (ii). If a is normal, then [a, a] = [a∗, a] = 0. Thus, by Proposition 4.1,

[a, a#©] = 0, notice that a ∈ REP, by Lemma 3.1. Taking involution on [a, a] = [a∗, a] = 0, we

get [a∗, a∗] = [a∗, a] = 0. By Proposition 4.1, we have [a∗, a#©] = 0, that is, a is SC.

(ii) ⇒ (iii). Suppose that a ∈ REP and a is SC. Then, by Lemma 3.1, we observe that

a† = a# = a#©. Thus

aa∗(a#©)2a = aa∗(a#)2a = aa∗a# = aa∗a#© = aa#©a∗ = a∗,

a∗ = (aa†a)∗ = a†aa∗ = a#©aa∗ = (a#©)2a2a∗ = ((a#©)2a)aa∗.

Hence, a ∈ R{1,4} and [aa∗, (a#©)2a] = 0.
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(iii) ⇒ (iv). The assumptions a ∈ R{1,4} and [aa∗, (a#©)2a] = 0 yield aa∗(a#©)2a =

(a#©)2a2a∗ = a#©aa∗ and for a(1,4) ∈ a{1, 4},

a(1,4)a2a∗ = a(1,4)a2(aa#©a)∗ = a(1,4)a2a∗aa#© = a(1,4)a2a∗aa#©aa#©

= a(1,4)a2a∗a(a#©)2a2a#© = a(1,4)a2a∗(a#©)2a3a#©

= a(1,4)a(aa∗(a#©)2a)a2a#© = a(1,4)a(a#©aa∗)a2a#©

= a(1,4)aa∗a2a#© = a∗a2a#©,

that is, a(1,4)a2a∗ = a∗a2a#©. Then

a∗aa#© = a∗ = a(1,4)aa∗ = a(1,4)aa#©aa∗ = a(1,4)a(a#©aa∗)

= a(1,4)a(aa∗(a#©)2a) = (a(1,4)a2a∗)(a#©)2a

= a∗a2a#©(a#©)2a = a∗a(a#©)2a = a∗a#©a.

So, a∗aa#© = a∗a#©a = a∗a(a#©)2a, i.e., a∗a(a#© − (a#©)2a) = 0 implying

aa#© − a#©a = aa#©a(a#© − (a#©)2a) = (a#©)∗a∗a(a#© − (a#©)2a) = 0.

Hence, aa#© = a#©a and, by Lemma 3.1, a ∈ REP and a# = a#©. Now

a∗a = aa#©a∗a = a#©aa∗a = (aa∗(a#©)2a)a = aa∗a#©a = aa∗aa#© = aa∗

gives a∗(a#©)2a = a∗(a#)2a = a∗a# = a#a∗ = (a#)2aa∗ = (a#©)2aa∗, that is, [a∗, (a#©)2a] = 0.

(iv) ⇒ (i). From a ∈ R{1,4} and [a∗, (a#©)2a] = 0, we have a∗(a#©)2a = (a#©)2aa∗. Pre-

multiplication of previous equation by a now yields

aa∗(a#©)2a = a(a#©)2aa∗ = a#©aa∗ = (a#©)2a2a∗ = (a#©)2a(aa∗),

i.e., [aa∗, (a#©)2a] = 0. As in part (iii) ⇒ (iv), we get a∗a = aa∗ and so a is normal.

Some characterizations of Hermitian elements are proved in the next results in the cases

that a ∈ R{1,3} or a ∈ R#©.

Lemma 4.2 Suppose that a ∈ R{1,3}. Then a is Hermitian if and only if aaa(1,3) = a∗ for

arbitrary a(1,3) ∈ a{1, 3}.

Proof If a = a∗ and a(1,3) ∈ R{1,3}, then aaa(1,3) = a∗aa(1,3) = a∗. Conversely, applying

involution to aaa(1,3) = a∗ for a(1,3) ∈ a{1, 3}, we obtain a = aa(1,3)a∗ = aa(1,3)aaa(1,3) =

aaa(1,3) = a∗.

Theorem 4.2 Let a ∈ R# ∩R{1,3} and m ∈ N . Then a is Hermitian if and only if one of

the following equivalent conditions holds:

(i) aam = a∗am;

(ii) a(a#©)m = a∗(a#©)m;

(iii) a∗(a#)m = a(a#©)m;

(iv) a∗(a#©)m+1 = (a#©)m;

(v) a(a#)m = a∗(a#)m;
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(vi) a∗ama#© = am;

(vii) a∗(a#)m+1 = (a#)m;

(viii) a∗a∗a# = a∗;

(ix) a∗a#©a#© = a#;

(x) a∗a#©a# = a#©;

(xi) a∗a#©a# = a#;

(xii) a∗a#a# = a#;

(xiii) a#a∗a# = a#©;

(xiv) aa∗a#© = a;

(xv) a2a#© = a∗;

(xvi) a#©a∗ = a#©a.

Proof If a is Hermitian, then it commutes with its core inverse by Lemma 4.1 and a#© =

a# = a†. It is not difficult to verify that conditions (i)–(xvi) hold.

Conversely, we show that a satisfies the equality a = a∗ or the conditions of Lemma 4.2, or

one of the preceding, already established conditions of this theorem.

(i) The assumption aam = a∗am implies

aaa(1,3) = (aam)(a#)m−1a(1,3) = a∗am(a#)m−1a(1,3) = a∗aa(1,3) = a∗

for arbitrary a(1,3) ∈ a{1, 3}. Thus, a is Hermitian by Lemma 4.2.

(ii) Applying a(a#©)m = a∗(a#©)m, we get (i):

aam = aa#©aam = (a(a#©)m)a2m = a∗(a#©)ma2m = a∗am.

(iii)–(v) Similarly as (ii).

(iv) If we multiply a∗(a#©)m+1 = (a#©)m by am+1 from the right side, we obtain a∗a#©a =

a#©a2 = a. Multiplying the last equality by (a#©)m, we have that (ii) holds.

(vi) Multiplying the equality a∗ama#© = am by a from the right side, we obtain that condition

(i) is satisfied.

(vii) In the same way as (iv).

(viii) Using the hypothesis a∗a∗a# = a∗, we observe that

aa#© = (a#©)∗a∗ = (a#©)∗a∗a∗a# = aa#©a∗a# = aa#©a∗a#aa# = aa#©aa# = aa#,

that is, aa# is Hermitian. By Lemma 3.2, a is EP and

a = (aa#©)a = (aa#©)a∗(a#a) = a†aa∗aa† = a∗.

(ix) From a∗a#©a#© = a#, we conclude that

aa# = aa∗a#©a#© = a(a∗a#©a#©)aa#© = aa#aa#© = aa#©

is Hermitian and a is EP. Now a = a#a2 = a∗a#©a#©a2 = a∗a#©a = a∗aa#© = a∗.

(x) Multiplying a∗a#©a# = a#© by am+2 from the right side, we see that (i) holds.
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(xi)–(xii) Similarly as (x).

(xiii) Assume that a#a∗a# = a#©. Then aa# = aa#©aa# = aa#a∗a#aa# = a(a#a∗a#) =

aa#© is Hermitian, which implies that a is EP. Therefore

a = aa#©a = aa#a∗a#a = a†aa∗aa† = a∗.

(xiv) The hypothesis aa∗a#© = a gives a#a = a#aa∗a#© = a#(aa∗a#©)aa#© = a#aaa#© = aa#©,

i.e., a is EP. Thus, a = a#a2 = a†aa∗a#©a = a∗.

(xv) By a2a#© = a∗, we get a = (a∗)∗ = (a2a#©)∗ = aa#©a∗ = aa#©a2a#© = a2a#© = a∗.

(xvi) Since a#©a∗ = a#©a, (xv) holds: a∗ = (aa#©a)∗ = (aa#©a∗)∗ = a2a#©.

Necessary and sufficient conditions for an element a ∈ R#© to satisfy the equality a∗ = a#©

are given in the following result.

Theorem 4.3 Suppose that a ∈ R# ∩ R{1,3} and let n ∈ N . Then a∗ = a#© if and only if

one of the following equivalent conditions holds:

(i) a∗an = a#©an;

(ii) a∗(a#)n = a#©(a#)n;

(iii) a is EP and a partial isometry;

(iv) a∗an = ana#©;

(v) a∗an = ana#;

(vi) a∗(a#©)n = a#©(a#)n;

(vii) a∗(a#©)n = (a#)na#©;

(viii) a∗(a#)n = (a#)na#©;

(ix) a∗(a#©)n = (a#)n+1;

(x) a∗(a#)n = (a#©)n+1;

(xi) a∗(a#)n = (a#)n+1;

(xii) a∗an+1 = an;

(xiii) an+1a∗ = an;

(xiv) a∗(a#©)na = (a#)n;

(xv) a(a#©)na∗ = (a#)n;

(xvi) a∗(a#©)n = (a#©)n+1;

(xvii) a#©a∗a = a#©.

Proof If a∗ = a#©, it is not difficult to check that conditions (i)–(ii) hold. Since a#©a = a∗a

is Hermitian, a is EP, by Theorem 3.1, and a∗ = a#© = a# = a†. Thus, a is a partial isometry

and (iii)–(xvii) are satisfied.

(i) Multiplying a∗an = a#©an by (a#©)n from the right side, we obtain a∗aa#© = a#©aa#©, i.e.,

a∗ = a#©.

(ii) If we multiply the assumption a∗(a#)n = a#©(a#)n by an+1a#© from the right side, we

get a∗aa#© = a#©aa#©, that is, a∗ = a#©.

(iii) Obviously, a∗ = a† = a#©.

(iv) Using a∗an = ana#©, we obtain

a∗ = a∗aa#© = (a∗an)(a#©)n = ana#©(a#©)n = an(a#©)na#© = a(a#©)2 = a#©.
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(v) The equality a∗an = ana# gives

a∗ = a∗aa#© = (a∗an)(a#©)n = ana#a(a#©)n+1 = an(a#©)n+1 = a#©.

(vi) Multiplying a∗(a#©)n = a#©(a#)n by an+1 from the right side, we observe that a∗a#©a2 =

a#©a which yields a∗ = a∗aa#© = (a∗a#©a2)a#© = a#©aa#© = a#©.

(vii) From the hypothesis a∗(a#©)n = (a#)na#©, we get

a∗ = (a∗(a#©)n)an+1a#© = (a#)na#©an+1a#© = a#aa#© = a#©aa#© = a#©.

(viii) Applying a∗(a#)n = (a#)na#©, notice that (vii) is satisfied:

(a#)na#© = ((a#)na#©)aa#© = a∗(a#)naa#© = a∗(a#)nan(a#©)n

= a∗a#a(a#©)n = a∗a#©a(a#©)n = a∗(a#©)n.

(ix) Multiplying a∗(a#©)n = (a#)n+1 by aa#© from the right side, we see that (vii) holds.

(x) If we multiply a∗(a#)n = (a#©)n+1 by an+1a#© from the right side, we obtain a∗ = a#©.

(xi) Multiplying a∗(a#)n = (a#)n+1 by a2n from the right side, we have that (v) is satisfied.

(xii) Multiplying a∗an+1 = an by a# from the right side, we obtain (v).

(xiv) If we multiply a∗(a#©)na = (a#)n by a#© from the right side, we have that (vii) holds.

(xiii) and (xv) Similarly as (xii) and (xiv), respectively.

(xvi) The assumption a∗(a#©)n = (a#©)n+1 implies that (i) holds:

a∗an = a∗a#©an+1 = a∗(a#©)na2n = (a#©)n+1a2n = a#©an.

(xvii) Using a#©a∗a = a#©, we obtain a∗ = (aa#©a)∗ = a∗aa#© = a∗aa#©a∗a = a∗a∗a, which

gives a = (a∗)∗ = (a∗a∗a)∗ = a∗a2. Therefore, a#© = a(a#©)2 = a∗a2(a#©)2 = a∗.

Example 4.2 Neither the implication a is normal implies a ∈ REP nor a ∈ REP implies a

is normal is valid in general rings.

(I) In Z12, taking the identity map as involution, then a = 2 is normal and a = 2 is not an

EP element.
(II) Let M2(F) be the ring of all 2 × 2 matrices over the real field F . Taking conjugate

transpose as involution, if we consider the following matrixM =
[
1 1
0 1

]
, then M † = M# = M−1.

Thus M is an EP matrix. Yet, we have MM∗ =
[
2 1
1 1

]
6=

[
1 1
1 2

]
= M∗M.

In the next result, for a ∈ R#© which satisfies a∗ = a#©, notice that a is EP if and only if a

is normal.

Corollary 4.1 Let a ∈ R#© such that a∗ = a#©. Then the following conditions are equivalent:

(i) a ∈ REP;

(ii) a is normal;

(iii) a∗ = (a#©)2a.

Proof (i) ⇒ (ii) and (i) ⇒ (iii). Suppose that a∗ = a#© and a ∈ REP. Then by Lemma 3.1,

we have a∗ = a# = a#©. Thus, (ii) and (iii) hold.
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(ii) ⇒ (i). It is easy to see by Theorem 4.1.

(iii) ⇒ (i). The hypothesis a∗ = (a#©)2a yields

aa∗ = a(a#©)2a = a#©a = (a#©)2a2 = ((a#©)2a)a = a∗a.

Several sufficient conditions for an element a to be star-core are considered now.

Proposition 4.2 Let a ∈ R#©. Then each of the following conditions is sufficient for a to

be SC:

(i) a∗ = a;

(ii) a∗ = a∗a#©;

(iii) a#© = (a#©)2;

(iv) a∗ = (a#©)2;

(v) a#© = (a∗)2.

Proof (i) If a∗ = a, we deduce that a is normal and, by Theorem 4.1, a is a SC.

(ii) Assume that a∗ = a∗a#©. Then a∗a#© = a∗ = (aa#©a)∗ = a∗aa#© implies

a∗aa#© = a∗a#© = (aa#©a)∗a#© = a∗aa#©a#©.

Since a ∈ R#©, a is ∗-cancellable. Therefore, aa#© = a(a#©)2 = a gives that a is Hermitian and

the condition (i) is satisfied.

(iii) By a#© = (a#©)2, we conclude that (ii) holds:

a∗(1− a#©) = (aa#©a)∗(1− a#©) = a∗aa#©(1 − a#©) = a∗a(a#© − (a#©)2) = 0.

(iv) The equality a∗ = (a#©)2 yields a∗a#© = (a#©)3 = a#©(a#©)2 = a#©a∗.

(v) From a#© = (a∗)2, we get a∗a#© = (a∗)3 = (a∗)2a∗ = a#©a∗.

Definition 4.2 (cf. [5]) An element a ∈ R† satisfying [a∗, a†] = 0 is called star-dagger (SD

for short).

An infinite matrix M is said to be bi-finite if it is both row-finite and column-finite.

Example 4.3 If a is SD, then a need not to be SC in general rings. Let R be the ring

of all bi-finite matrices over field F with transpose as involution and ei,j be the matrix in R

with 1 in the (i, j) position and 0 elsewhere. Consider the following matrices A and B over

R: A =
∞∑
i=1

ei,i+1 and B = A∗, then BA =
∞∑
i=2

ei,i and AB = I. So, ABA = A, BAB = B

(AB)∗ = AB and (BA)∗ = BA. Thus, A∗A† = B2 = A†A∗, that is, A is SD. Since A is not

group invertible, A is not core invertible, which yields A is not SC.

Lemma 4.3 (cf. [14, Theorem 2.16]) Let a ∈ R. Then the following conditions are

equivalent:

(i) a ∈ R†;

(ii) a ∈ aa∗aR;

(iii) a ∈ Raa∗a.

In this case, a† = (ar)∗ara∗ = a∗sa(sa)∗, where a = aa∗ar = saa∗a for some r, s ∈ R.
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Lemma 4.4 Let a ∈ R. Then we have a ∈ R#© if and only if a∗ ∈ R#©. In this case,

(a∗)#© = (a#©)∗.

Proof Let a ∈ R#© with core inverse x, then

axa = a, xax = x, (ax)∗ = ax, xa2 = a, ax2 = x. (4.1)

Taking involution on the equality (4.1), we have a∗x∗a∗ = a∗, x∗a∗x∗ = x∗, x∗a∗ = ax =

(x∗a∗)∗, a∗ = (a∗)2x∗, x∗ = (x∗)2a∗, hence a#© = x∗.

By related characterizations and equivalent conditions of Moore-Penrose inverse, group in-

verse, (dual) core inverse and EP element in [2–6, 9, 11] etc. Some of the equivalences in the

following lemma were proved for matrices, operators and elements of rings. We collect these

results here.

Lemma 4.5 Let a ∈ R. If a∗ = a, then the following conditions are equivalent:

(i) a ∈ REP;

(ii) a ∈ R†;

(iii) a ∈ R#;

(iv) a ∈ R#©;

(v) a ∈ R#©;

(vi) [a, a(1,2)] = 0 for some a(1,2) ∈ a{1, 2};

(vii) [a, a(1)] = 0 for some a(1) ∈ a{1};

(viii) Ra ⊆ Ran for all choices n > 2;

(ix) aR ⊆ anR for all choices n > 2;

(x) a2n ∈ R† for all choices n > 1;

(xi) a2n ∈ R# for all choices n > 1;

(xii) a2n ∈ R#© for all choices n > 1;

(xiii) a2n ∈ R#© for all choices n > 1;

(xiv) a ∈ R{1,3};

(xv) a ∈ R{1,4}.

Corollary 4.2 Let a ∈ R and n > 2. Then the following conditions are equivalent:

(i) a ∈ R†;

(ii) aa∗ ∈ R#© and a is right ∗-cancellable;

(iii) aa∗ ∈ R#© and a = aa∗(aa∗)#©a;

(iv) aa∗ ∈ R#© and a ∈ R{1,4};

(v) a∗a ∈ R#© and a is left ∗-cancellable;

(vi) a∗a ∈ R#© and a = a(a∗a)#©a∗a;

(vii) a∗a ∈ R#© and a ∈ R{1,3};

(viii) a∗a ∈ R(a∗a)n and a is left ∗-cancellable;

(ix) a∗a ∈ (a∗a)nR and a is left ∗-cancellable;

(x) aa∗ ∈ R(aa∗)n and a is left ∗-cancellable;

(xi) aa∗ ∈ (aa∗)nR and a is left ∗-cancellable;
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(xii) a∗a ∈ R(a∗a)n and a is right ∗-cancellable;

(xiii) a∗a ∈ (a∗a)nR and a is right ∗-cancellable;

(xiv) aa∗ ∈ R(aa∗)n and a is right ∗-cancellable;

(xv) aa∗ ∈ (aa∗)nR and a is right ∗-cancellable.

In this case, a† = a∗(aa∗)#© = (aa∗)#©a∗.

Proof (i) ⇒ (ii)–(vii). If a ∈ R†, then aa∗, a∗a ∈ REP and (aa∗)† = (aa∗)#©, (a∗a)† =

(a∗a)#© by [12, Theorem 3.1]. By [7, Theorem 5.4], we deduce that (i) ⇒ (ii)–(vii).

(ii)–(vii) ⇒ (i). Since (aa∗)∗ = aa∗, we have aa∗, a∗a ∈ REP by Lemma 4.5 and (aa∗)† =

(aa∗)#©, (a∗a)† = (a∗a)#© by [12, Theorem 3.1]. Therefore, (ii)–(vii) ⇒ (i) by [7, Theorem 5.4].

By Lemma 4.5 and the conditions (ii) and (xv), the equivalences between (viii)–(xv) and

(ii) are obvious.

In the ring of square complex matrices, since every complex matrix has a Moore-Penrose

inverse and therefore a {1, 3}-inverse, we only need to assume that a is a group invertible and

we obtain that results of this paper are valid. Also, for Hilbert space operators and elements

of C∗-algebras, only regular operators and elements of C∗-algebras possess the Moore-Penrose

inverse. Thus, anything with a group inverse automatically has a Moore-Penrose inverse and

{1, 3}-inverse. So, the results presented in this paper hold in a C∗-algebra A with the conditions

that a ∈ A# instead of a ∈ A#©. In rings with involution the regularity is not enough to ensure

the existence of a Moore-Penrose inverse.
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