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Abstract In this paper, the authors generalize the concept of asymptotically almost

negatively associated random variables from the classic probability space to the upper ex-

pectation space. Within the framework, the authors prove some different types of Rosen-

thal’s inequalities for sub-additive expectations. Finally, the authors prove a strong law of

large numbers as the application of Rosenthal’s inequalities.
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1 Introduction

In recent decades, nonlinear probabilities and nonlinear expectations play crucial roles in the

study of statistical uncertainties, risk measuring, and nonlinear stochastic calculus. Peng [9–

13] extended the classical linear expectation and introduced the general sublinear expectation

by replacing the linear property with the sub-additivity and positive homogeneity. Peng also

defined the independence of random variables in the setting of sublinear expectations. Several

definitions of dependence in the classical framework can also be extended to nonlinear cases.

Joag-Dev and Proschan [7] and Block et al. [1] brought up the concept of negative association

(NA for short) in 1982 and it led to numerous applications in reliability theory, percolation

theory and multivariate statistical analysis. Chandra and Ghosal [2] extended this concept

and introduced asymptotically almost negative association (AANA, for short) by noticing the

fact that maximal inequality for the NA random variables in Matula [8] can also hold when

small negative correlations are considered. Then some convergence theorems for NA and AANA

random variables were achieved by scholars, such as Zhang [18]. The concepts of NA and AANA

can be well defined in the setting of nonlinear expectations by replacing linear expectations with

nonlinear ones.

Within the framework of nonlinear expectations, numerous results of the limit theory were

gained. Recently, Chen and Hu [3] investigated a law of the iterated logarithm for bounded IID
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random variables according to Peng’s definition under upper expectations. Zhang [20] obtained

a law of the iterated logarithm for NA random variables. Inspecting the proofs of the two results,

we can find that the estimate of moments and maximum for partial sums is the key step in the

proofs. There are various elegant results of estimations for NA and AANA random variables in

both linear and nonlinear settings. Matula [8] first derived the Kolmogorov type inequality and

Shao [14] obtained Rosenthal’s inequalities for NA random variables and a comparison theorem

on moment inequalities between negatively associated and independent random variables (see

[15]) in classical setting. Zhang [19–20] achieved Kolmogorovs exponential inequalities and

Rosenthal’s inequalities for NA random variables under sublinear expectations. For AANA

random variables, Yuan and An [17] deduced Rosenthal’s inequalities and investigated their

applications within linear framework.

However, we find that Rosenthal’s inequalities for AANA random variables under the non-

linear expectation is still not available, which is the main motivation of this paper. Our purpose

of this paper is to fill in this blank. The paper is organized as below: In Section 2, we introduce

some preliminaries about upper expectations and ANNA random variables. Then the main

results of Rosenthal’s inequalities for ANNA random variables are derived in Section 3. In

Section 4, we will prove a strong law of large numbers as the application of our Rosenthal’s

inequality.

2 Preliminary

Let (Ω,F) be a measurable space and P be a set of probability measures on Ω. We define

a pair (V, v) of upper-lower probabilities by

V(A) := sup
P∈P

P (A), v(A) := inf
P∈P

P (A), ∀A ∈ F .

It is easy to check that V(A) + v(Ac) = 1 and V satisfies the following properties:

(i) V(∅) = 0, V(Ω) = 1;

(ii) V(A) ≤ V(B), whenever A ⊂ B and A,B ∈ F ;

(iii) V(An) ↑ V(A), if An ↑ A, where An, A ∈ F .

Now we define the upper expectation E[·] and the lower expectation E [·] on (Ω,F) generated

by P . For each random variable X such that EP [X ] exists for each P ∈ P , we define

E[X ] := sup
P∈P

EP [X ], E [X ] := inf
P∈P

EP [X ].

(Ω,F ,P ,E) is called an upper expectation space. It is obvious that E [X ] := −E[−X ] and E is

a sublinear expectation. In other words, E have the following properties.

Proposition 2.1 For random variables X and Y on the upper expectation space (Ω,F ,P ,E),

we have

(1) monotonicity: X ≥ Y implies E[X ] ≥ E[Y ];

(2) constant preserving: E[c] = c, ∀c ∈ R;

(3) sub-additivity: E[X + Y ] ≤ E[X ] + E[Y ];

(4) positive homogeneity: E[λX ] = λE[X ], ∀λ ≤ 0.

In addition, by the definition of E and E , we get the following proposition.
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Proposition 2.2 For random variables X and Y on the upper expectation space (Ω,F ,P ,E),

we have

(1) E[X ] ≥ E [X ];

(2) E[aX ] = a+E[X ] + a−E[−X ], ∀a ∈ R;

(3) E[X ]− E[Y ] ≤ E[X − Y ];

(4) E[X + c] = E[X ] + c, ∀c ∈ R.

Remark 2.1 Here and the sequel, x+ = max{x, 0} and x− = max{−x, 0}, x can be real

numbers or random variables.

Next, we will list some inequalities under upper expectations, which can be regarded as an

extension of inequalities of classic probability theory.

Proposition 2.3 Let X,Y be two random variables on the upper expectation space (Ω,F ,P ,

E). Then

(1) Hölder’s inequality. For p, q > 1 with 1
p
+ 1

q
= 1, we have

E[|XY |] ≤ (E[|X |p])
1
p · (E[|Y |q])

1
q .

(2) Jensen’s inequality. Let f(·) be a convex function on R. Suppose that E[X ] and E[f(X)]

exist. Then

E[f(X)] ≥ f(E[X ]).

(3) Minkowski’s inequality. For p > 1, we have

(E[|X + Y |p])
1
p ≤ (E[|X |p])

1
p + (E[|Y |p])

1
p .

(4) Cr inequality. For any r ≥ 1, we have

E[|X + Y |r] ≤ 2r−1(E[|X |r] + E[|Y |r]).

The proofs of these inequalities can be found in [5] and [13].

Proposition 2.4 Let X,Y be two random variables on the upper expectation space (Ω,F ,P ,

E). Then

(1) (E[X ])2 ≤ E[X2];

(2) for any 1 ≤ p ≤ p′, there is (E[|X |p])
1
p ≤ (E[|X |p

′

])
1
p′ .

Proof The proof of this proposition also can be found in [13]. We outline the proof for the

convenience of readers.

Since f(x) = x2 is a convex function, (1) is directly deduced by Proposition 2.3 (Jensen’s

inequality).

Set Y = Zp, X = 1, q = p′

p
. By Proposition 2.3 (Hölder’s inequality), we have

E[|Z|p] ≤ (E[|Z|p·
p′

p ])
p

p′ ,

that is

E[|Z|p] ≤ (E[|Z|p
′

])
p

p′ .

Since p ≥ 1, then we have (E[|X |p])
1
p ≤ (E[|X |p

′

])
1
p′ .
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We denote the norm of random variable X on the upper expectation space (Ω,F ,P ,E) by

‖X‖p = (E[|X |p])
1
p .

It is easy to prove the following lemma.

Lemma 2.1 For random variables X and Y on the upper expectation space (Ω,F ,P ,E),

we have

(1) E[XY ] ≤ E[X+Y +] + E[X−Y −];

(2) E[(X − E[X ])2] ≤ 4E[X2].

Proof (1) By monotonicity and sub-additivity of E, we have

E[XY ] = E[(X+ −X−)(Y + − Y −)]

= E[X+Y + +X−Y − −X+Y − −X−Y +]

≤ E[X+Y + +X−Y −]

≤ E[X+Y +] + E[X−Y −].

(2) By sub-additivity of E and Proposition 2.4, we have

E[(X − E[X ])2] = E[X2 − 2XE[X ] + (E[X ])2]

≤ E[X2] + 2|E[X ]|E[| −X |] + (E[X ])2

≤ 3E[X2] + (E[X ])2

≤ 4E[X2].

Now, we will extend the concept of asymptotically almost negatively associated sequence of

random variables to the upper expectation space.

Definition 2.1 A sequence {Xn}∞n=1 of random variables is called asymptotically almost

negatively associated (AANA) under E if there exists a nonnegative sequence {η(n)}∞n=1 such

that lim
n→∞

η(n) = 0 and

E[f(Xn)g(Xn+1, Xn+2, · · · , Xn+k)]− E[f(Xn)]E[g(Xn+1, Xn+2, · · · , Xn+k)]

≤ η(n){E[(f(Xn)− E[f(Xn)])
2]}

1
2

· {E[(g(Xn+1, Xn+2, · · · , Xn+k)− E[g(Xn+1, Xn+2, · · · , Xn+k)])
2]}

1
2

for all n, k ≥ 1 and for all coordinatewise nondecreasing or nonincreasing continuous functions

f and g whenever the expectations exist. And {η(n)}∞n=1 are called mixing coefficients.

3 Rosenthal’s Inequalities

Lemma 3.1 Let {Xn}∞n=1 be an AANA sequence of random variables with mixing coeffi-

cients {η(n)}∞n=1. Then {fn(Xn)}∞n=1 is also an AANA sequence with the same coefficients

{η(n)}∞n=1, where {fn(·)}
∞
n=1 are all nondecreasing or nonincreasing functions.
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Lemma 3.2 Let p > 1, q > 1, 1
p
+ 1

q
= 1 and {Xn}

∞
n=1 be an AANA sequence of random

variables with mixing coefficients {η(n)}∞n=1, then

E[Xng(Xn+1, · · · , Xn+k)]− E[Xn]E[g(Xn+1, · · · , Xn+k)]

≤ 15η
2
q
∧ 2

p (n)‖Xn‖p‖g(Xn+1, · · · , Xn+k)‖q

for all n, k ≥ 1 and coordinatewise nondecreasing or coordinatewise nonincreasing functions.

Proof Case 1 Assume 1 < p ≤ 2 and denote Xn by Z and g(Xn+1, · · · , Xn+k) by Y for

convenience. Set Z1 = (−C)∨ (Z ∧C) and Z2 = Z −Z1, where C is a positive constant whose

value will be defined later. At first, we will prove that

E[ZY ]− E[Z]E[Y ] ≤ E[Z1Y ]− E[Z1]E[Y ] + E[Z2Y ] + E[|Z2|]E[|Y |]. (3.1)

If E[Y ] ≥ 0, we get

E[ZY ]− E[Z]E[Y ] = E[(Z1 + Z2)Y ]− E[Z1 − (−Z2)]E[Y ]

≤ E[Z1Y ] + E[Z2Y ]− (E[Z1]− E[−Z2])E[Y ]

= E[Z1Y ] + E[Z2Y ]− E[Z1]E[Y ] + E[−Z2]E[Y ]

≤ E[Z1Y ]− E[Z1]E[Y ] + E[Z2Y ] + E[|Z2|]E[|Y |].

Otherwise, if E[Y ] < 0, we achieve

E[ZY ]− E[Z]E[Y ] = E[(Z1 + Z2)Y ]− E[Z1 + Z2]E[Y ]

≤ E[Z1Y ] + E[Z2Y ]− (E[Z1] + E[Z2])E[Y ]

= E[Z1Y ] + E[Z2Y ]− E[Z1]E[Y ]− E[Z2]E[Y ]

≤ E[Z1Y ]− E[Z1]E[Y ] + E[Z2Y ] + E[|Z2|]E[|Y |].

Therefore, we prove that (3.1) holds. Next, we will split the right side of (3.1) into three

parts and estimate them respectively.

(i) By the monotonicity of E and Proposition 2.4, we have

E[|Z2|]E[|Y |] ≤ E[|Z|I|Z|≥C ](E[|Y |q])
1
q

≤ E

[

|Z|
( |Z|

C

)p−1]

(E[|Y |q])
1
q

≤ E[|Z|p]C1−p‖Y ‖q

= C− p

q ‖Z‖pp‖Y ‖q.

(ii) Applying Lemma 2.1 and Lemma 3.1, since fn(Z) = (−C)∨ (Z ∧C) is a nondecreasing

continuous function, we have

E[Z1Y ]− E[Z1]E[Y ] ≤ η(n)(E[(Z1 − E[Z1])
2])

1
2 (E[(Y − E[Y ])2])

1
2

≤ 4η(n)((E[|Z1|
p|Z1|

2−p])
1
p )

p

2 (E[|Y |q])
1
q

≤ 4η(n)C1− p

2 ((E[|Z1|
p])

1
p )

p

2 ‖Y ‖q

≤ 4η(n)C1− p

2 ||Z1‖
p

2
p ‖Y ‖q.
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(iii) From Lemma 2.1, we achieve E[Z2Y ] ≤ E[Z+
2 Y +] +E[Z−

2 Y −]. Then applying Proposi-

tion 2.3 (Hölder′s inequality), we have

E[Z+
2 Y +] = E[(Z+

2 )
p(q−2)

q ((Z+
2 )1−

p(q−2)
q Y +)]

≤ (E[|(Z+
2 )

p(q−2)
q |

q

q−2 ])
q−2
q (E[|(Z+

2 )1−
p(q−2)

q Y +|
q
2 ])

2
q

= (E[|Z+
2 |p])1−

2
q (E[|Z+

2 |
p
2 |Y +|

q
2 ])

2
q .

Again by Lemma 3.1, we get

E[|Z+
2 |

p

2 |Y +|
q

2 ]− E[(Z+
2 )

p

2 ]E[(Y +)
q

2 ]

≤ η(n)(E[((Z+
2 )

p

2 − E[(Z+
2 )

p

2 ])2])
1
2 (E[((Y +)

q

2 − E[(Y +)
q

2 ])2])
1
2

≤ η(n)(E[(2(Z+
2 )

p
2 )2])

1
2 (E[(2(Y +)

q
2 )2])

1
2

= 4η(n)(E[(Z+
2 )p])

1
2 (E[(Y +)q])

1
2 .

Therefore, we have

E[Z+
2 Y +]

≤ (E[|Z+
2 |p])1−

2
q (E[(Z+

2 )
p

2 ]E[(Y +)
q

2 ] + 4η(n)(E[(Z+
2 )p])

1
2 (E[(Y +)q])

1
2 )

2
q

≤ (E[|Z|p])1−
2
q (E[|Z|

p
2 I|Z|>C ]E[|Y |

q
2 ] + 4η(n)(E[|Z|p])

1
2 (E[|Y |q])

1
2 )

2
q

≤ (E[|Z|p])1−
2
q

(

E

[

|Z|
p

2

( |Z|

C

)

p

2
]

E[|Y |
q

2 ] + 4η(n)(E[|Z|p])
1
2 (E[|Y |q])

1
2

)
2
q

≤ (E[|Z|p])1−
2
q (C− p

2 E[|Z|p]E[|Y |
q

2 ] + 4η(n)(E[|Z|p])
1
2 (E[|Y |q])

1
2 )

2
q

≤ (E[|Z|p])1−
2
q (C− p

q (E[|Z|p])
2
q (E[|Y |

q

2 ])
2
q + 4

2
q η

2
q (n)(E[|Z|p])

1
q (E[|Y |q])

1
q )

= C− p

q ‖Z‖pp‖Y ‖ q

2
+ 4

2
q η

2
q (n)‖Z‖p‖Y ‖q

≤ C− p

q ‖Z‖pp‖Y ‖q + 4
2
q η

2
q (n)‖Z‖p‖Y ‖q.

The penultimate inequality is from the fact that for any a > 0, b > 0 and 0 < t < 1, (a+ b)t ≤

at + bt always holds. Similarly, we also have

E[Z−
2 Y −] ≤ C− p

q ‖Z‖pp‖Y ‖q + 4
2
q η

2
q (n)‖Z‖p‖Y ‖q.

Consequently, we achieve that

E[Z2Y ] ≤ 2C− p

q ‖Z‖pp‖Y ‖q + 2
4
q
+1η

2
q (n)‖Z‖p‖Y ‖q.

Then by (i),(ii) and (iii) we have

E[ZY ]− E[Z]E[Y ] ≤ 4C1− p
2 η(n)‖Z1‖

p

2
p ‖Y ‖q + 3C−p

q ‖Z‖pp‖Y ‖q + 2
4
q
+1η

2
q (n)‖Z‖p‖Y ‖q.

Setting C = η−
2
p (n)‖Z‖p, then we get

E[ZY ]− E[Z]E[Y ]

≤ 4η
2
q (n)‖Z‖

1−p

2
p ‖Z1‖

p

2
p ‖Y ‖q + 3η

2
q (n)‖Z‖

−p

q
p ‖Z‖pp‖Y ‖q + 2

4
q
+1η

2
q (n)‖Z‖p‖Y ‖q

≤ 15η
2
q (n)‖Z‖p‖Y ‖q.

Case 2 When p > 2, denoting Xn by Y and g(Xn+1, · · · , Xn+k) by Z, setting Z1 =

(−C) ∨ (Z ∧C), Z2 = Z − Z1, then by the same method of Case 1, we obtain that

E[ZY ]− E[Z]E[Y ] ≤ 15η
2
p (n)‖Xn‖p‖g(Xn+1, · · · , Xn+k)‖q.
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Theorem 3.1 Let 1
p
+ 1

q
= 1, 1 < p ≤ 2 and {Xn}

∞
n=1 be an AANA sequence of random

variables under E with E[Xn] = E [Xn] = 0. And {η(n)}∞n=1 are the corresponding mixing

coefficients. Then there exists a positive constant Cp depending only on p such that for any

n ≥ 1, we have

E

[

max
1≤i≤n

|Si|
p
]

≤ Cp

{

n
∑

i=1

‖Xi‖
p
p +

(

n−1
∑

i=1

η
2
q (i)‖Xi‖p

)p}

. (3.2)

In particular, if
∞
∑

n=1
η2(n) < ∞, then for any n ≥ 1, we have

E

[

max
1≤i≤n

|Si|
p
]

≤ Cp

n
∑

i=1

‖Xi‖
p
p.

Proof For a fixed n, set Ui = max(Xi, Xi+Xi+1, · · · , Xi+ · · ·+Xn), for all 1 ≤ i ≤ n. It is

obvious that Ui = Xi+U+
i+1. By elementary inequality |x+y|p ≤ 22−p|x|p+ |y|p+px|y|p−1sgny

for any x, y ∈ R and 1 < p ≤ 2, we obtain for 1 ≤ i ≤ n− 1,

E[|Ui|
p] = E[|Ui|

pI{Ui+1≤0} + |Ui|
pI{Ui+1>0}]

= E[|Xi|
pI{Ui+1≤0} + |Xi + Ui+1|

pI{Ui+1>0}]

≤ E[|Xi|
pI{Ui+1≤0} + (22−p|Xi|

p + |Ui+1|
p + pXi|Ui+1|

p−1sgnUi+1)I{Ui+1>0}]

= E[|Xi|
pI{Ui+1≤0} + 22−p|Xi|

pI{Ui+1>0} + |Ui+1|
p + pXi|Ui+1|

p−1I{Ui+1>0}]

≤ 22−p
E[|Xi|

p] + E[|Ui+1|
p] + pE[Xi|Ui+1|

p−1I{Ui+1>0}].

It is easy to show that g(Xi+1, · · · , Xn) := (U+
i+1)

p−1 is a coordinatewise nondecreasing func-

tion. Since E[Xi] = 0, by Lemma 3.2, we have

E[Xi|Ui+1|
p−1I{Ui+1>0}] ≤ 15η

2
q (i)‖Xi‖p(E[(|Ui+1|

p−1I{Ui+1>0})
q])

1
q

≤ 15η
2
q (i)‖Xi‖p(E[|Ui+1|

p])
1
q

= 15η
2
q (i)‖Xi‖p‖Ui+1‖

p

q
p .

Therefore, we have

‖Ui‖
p
p ≤ 22−p‖Xi‖

p
p + ‖Ui+1‖

p
p + 15pη

2
q (i)‖Xi‖p‖Ui+1‖

p

q
p .

Next, we will establish a sequence of numbers by the following rules. Let

ξ
p
i =

{

22−p‖Xi‖pp + ξ
p
i+1 + 15pη

2
q (i)‖Xi‖pξ

p

q

i+1, 1 ≤ i ≤ n− 1,

22−p‖Xn‖pp, i = n.

Since Un = Xn, there is ‖Un‖pp = ‖Xn‖pp ≤ 22−p‖Xn‖pp = ξpn. Therefore, we achieve

‖Un−1‖
p
p ≤ 22−p‖Xn−1‖

p
p + ‖Un‖

p
p + 15pη

2
q (n− 1)‖Xn−1‖p‖Un‖

p

q

p

≤ 22−p‖Xn−1‖
p
p + ξpn + 15pη

2
q (n− 1)‖Xn−1‖pξ

p

q
n

= ξ
p
n−1.
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Then we can deduce that ‖Ui‖p ≤ ξi for any 1 ≤ i ≤ n by analogy. And it is easy to prove that

{ξi}ni=1 is a decreasing sequence. Therefore, for any 1 ≤ i ≤ n− 1, we have

{

ξ
p
i ≤ 22−p‖Xi‖

p
p + ξ

p
i+1 + 15pη

2
q (i)‖Xi‖pξ

p

q

1 , 1 ≤ i ≤ n− 1,

ξpn = 22−p‖Xn‖pp.

Substituting sequentially, we conclude that

ξ
p
1 ≤ 22−p

n
∑

i=1

‖Xi‖
p
p + 15pξ

p

q

1

n−1
∑

i=1

η
2
q (i)‖Xi‖p

= 22−p

n
∑

i=1

‖Xi‖
p
p + (ξp1 )

1
q

((

15p
n−1
∑

i=1

η
2
q (i)‖Xi‖p

)p) 1
p

≤ 22−p

n
∑

i=1

‖Xi‖
p
p + q−1ξ

p
1 + p−1

(

15p
n−1
∑

i=1

η
2
q (i)‖Xi‖p

)p

.

The last inequality is from an elementary inequality aαbβ ≤ αa + βb for nonnegative real

numbers a, b, α, β with α+ β = 1. Therefore, we have

ξ
p
1 ≤ 22−pp

n
∑

i=1

‖Xi‖
p
p +

(

15p

n−1
∑

i=1

η
2
q (i)‖Xi‖p

)p

.

Since ‖U1‖p ≤ ξ
p
1 , we obtain that

E

[∣

∣

∣
max
1≤i≤n

Si

∣

∣

∣

p]

≤ 22−pp

n
∑

i=1

‖Xi‖
p
p + (15p)p

(

n−1
∑

i=1

η
2
q (i)‖Xi‖p

)p

.

By Lemma 3.1, {−Xn}∞n=1 is also an AANA sequence of random variables with the same

mixing coefficients {η(n)}∞n=1. Consequently, similarly as above steps, we can achieve that

E

[
∣

∣

∣
max
1≤i≤n

(−Si)
∣

∣

∣

p]

≤ 22−pp

n
∑

i=1

‖Xi‖
p
p + (15p)p

(

n−1
∑

i=1

η
2
q (i)‖Xi‖p

)p

.

Thus, by Proposition 2.3 (Cr Inequality), we have

E

[

max
1≤i≤n

|Si|
p
]

= E

[(

max
1≤i≤n

|Si|
)p]

≤ E[{max(0, S1, · · · , Sn) + max(0,−S1, · · · ,−Sn)}
p]

≤ E[2p−1{max(0, S1, · · · , Sn)}
p + 2p−1{max(0,−S1, · · · ,−Sn)}

p]

≤ E

[

2p−1
∣

∣

∣
max
1≤i≤n

Si

∣

∣

∣

p

+ 2p−1
∣

∣

∣
max
1≤i≤n

(−Si)
∣

∣

∣

p]

≤ 2p−1
E

[∣

∣

∣
max
1≤i≤n

Si

∣

∣

∣

p]

+ 2p−1
E

[∣

∣

∣
max
1≤i≤n

(−Si)
∣

∣

∣

p]

≤ 4p

n
∑

i=1

‖Xi‖
p
p + 2p(15p)p

(

n−1
∑

i=1

η
2
q (i)‖Xi‖p

)p

.
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Therefore, Inequality (3.2) is proved. In addition, by classic Hölder’s inequality, we get

n−1
∑

i=1

η
2
q (i)‖Xi‖p =

n−1
∑

i=1

(η2(i))
1
q (‖Xi‖

p
p)

1
p

≤
(

n−1
∑

i=1

η2(i)
)

1
q
(

n−1
∑

i=1

‖Xi‖
p
p

)
1
p

.

Combining with the assumption that
∞
∑

n=1
η2(n) < ∞, we get

E

[

max
1≤i≤n

|Si|
p
]

≤ 4p

n
∑

i=1

‖Xi‖
p
p + 2p(15p)p

(

n−1
∑

i=1

η2(i)
)

p

q

n−1
∑

i=1

‖Xi‖
p
p

≤
(

4p+ 2p(15p)p
(

n−1
∑

i=1

η2(i)
)

p

q
)

n
∑

i=1

‖Xi‖
p
p

= Cp

n
∑

i=1

‖Xi‖
p
p,

where Cp = 4p+ 2p(15p)p
(

∞
∑

i=1

η2(i)
)

p

q is a constant depending only on p. Therefore, the proof

is complete.

From the above proof, it is easy to achieve the following corollary.

Corollary 3.1 Let 1
p
+ 1

q
= 1, 1 < p ≤ 2 and {Xn}∞n=1 be an AANA sequence of random

variables under E with E[Xn] = 0. And {η(n)}∞n=1 are the corresponding mixing coefficients.

Then there exists a positive constant Cp depending only on p such that for any n ≥ 1, we have

E

[
∣

∣

∣
max
1≤i≤n

Si

∣

∣

∣

p]

≤ Cp

{

n
∑

i=1

‖Xi‖
p
p +

(

n−1
∑

i=1

η
2
q (i)‖Xi‖p

)p}

.

In particular, if
∞
∑

n=1
η2(n) < ∞, then for any n ≥ 1, we have

E

[
∣

∣

∣
max
1≤i≤n

Si

∣

∣

∣

p]

≤ Cp

n
∑

i=1

‖Xi‖
p
p.

Theorem 3.2 Let 1
p
+ 1

q
= 1, p ≥ 2 and {Xn}∞n=1 be an AANA sequence of random variables

under E with E[Xn] = E [Xn] = 0. And {η(n)}∞n=1 are the corresponding mixing coefficients.

Then there exist positive constants Cp and C′
p depending only on p such that for any n ≥ 1, we

have

E

[

max
1≤i≤n

|Si|
p
]

≤ Cp

{

n
∑

i=1

‖Xi‖
p
p +

(

n−1
∑

i=1

η
2
p (i)‖Xi‖p

)p}

+ C′
pn

p

2−1
n−1
∑

i=1

‖Xi‖
p
p. (3.3)

In particular, if
∞
∑

n=1
η

q

p (n) < ∞, then for any n ≥ 1, we have

E

[

max
1≤i≤n

|Si|
p
]

≤ (Cp + C′
pn

p

2−1)

n
∑

i=1

‖Xi‖
p
p.
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Proof Let Ui be defined as in the proof of Theorem 3.1, then Ui = Xi+U+
i+1. By elementary

inequality |x + y|p ≤ 2p|x|p + |y|p + px|y|p−1sgny + 2pp2x2|y|p−2 for any x, y ∈ R, p ≥ 2 and

Lemma 3.2, we obtain for 1 ≤ i ≤ n− 1,

E[|Ui|
p] ≤ E[2p|Xi|+ (U+

i+1)
p + pXi(U

+
i+1)

p−1 + 2pp2X2
i (U

+
i+1)

p−2]

≤ 2pE[|Xi|
p] + E[|Ui+1|

p] + pE[Xi(U
+
i+1)

p−1] + 2pp2E[X2
i (U

+
i+1)

p−2]

≤ 2pE[|Xi|
p] + E[|Ui+1|

p] + 15pη
2
p (i)‖Xi‖p‖Ui+1‖

p

q
p + 2pp2E[X2

i |Ui+1|
p−2].

Therefore, we have

‖Ui‖
p
p ≤ 2p‖Xi‖

p
p + ‖Ui+1‖

p
p + 15pη

2
p (i)‖Xi‖p‖Ui+1‖

p

q
p + 2pp2E[X2

i |Ui+1|
p−2].

Next, we will establish a sequence of numbers by the following rules. Let

ζ
p
i =

{

2p‖Xi‖pp + ζ
p
i+1 + 15pη

2
p (i)‖Xi‖pζ

p

q

i+1 + 2pp2E[X2
i |Ui+1|p−2], 1 ≤ i ≤ n− 1,

2p‖Xn‖pp, i = n.

It is clear that ‖Ui‖ ≤ ζi and ζi+1 ≤ ζi for any 1 ≤ i ≤ n− 1. Therefore, we have

{

ζ
p
i ≤ 2p‖Xi‖pp + ζ

p
i+1 + 15pη

2
p (i)‖Xi‖pζ

p
q

1 + 2pp2E[X2
i |Ui+1|p−2], 1 ≤ i ≤ n− 1,

ζpn = 2p‖Xn‖pp, i = n.

Similar as the proof of Theorem 3.1, we conclude that

ζ
p
1 ≤ 2p

n
∑

i=1

‖Xi‖
p
p + 15pζ

p

q

1

n−1
∑

i=1

η
2
p (i)‖Xi‖p + 2pp2

n−1
∑

i=1

E[X2
i |Ui+1|

p−2]

= 2p
n
∑

i=1

‖Xi‖
p
p + (ζp1 )

1
q

((

15p
n−1
∑

i=1

η
2
p (i)‖Xi‖p

)p) 1
p

+ 2pp2
n−1
∑

i=1

(E[(X2
i )

p

2 ])
2
p (E[(|Ui+1|

p−2)
p

p−2 ])
p−2
p

≤ 2p
n
∑

i=1

‖Xi‖
p
p + q−1ζ

p
1 + p−1

(

15p
n−1
∑

i=1

η
2
p (i)‖Xi‖p

)p

+ 2pp2
n−1
∑

i=1

(E[(X2
i )

p

2 ])
2
p (E[|Ui+1|

p])1−
2
p .

The last inequality is from an elementary inequality aαbβ ≤ αa + βb for nonnegative real

numbers a,b,α,β with α+ β = 1. Therefore, we have

ζ
p
1 ≤ 2pp

n
∑

i=1

‖Xi‖
p
p +

(

15p

n−1
∑

i=1

η
2
p (i)‖Xi‖p

)p

+ 2pp3
n−1
∑

i=1

(E[(X2
i )

p

2 ])
2
p (E[|Ui+1|

p])1−
2
p .

Set An = max
i≤n

E[|Ui|p]. Then we have

An ≤ 2pp

n
∑

i=1

‖Xi‖
p
p +

(

15p

n−1
∑

i=1

η
2
p (i)‖Xi‖p

)p

+
(

2pp3
n−1
∑

i=1

(E[(X2
i )

p

2 ])
2
p

)

A
1− 2

p
n .
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Consequently

An ≤ 2p−1p2
n
∑

i=1

‖Xi‖
p
p +

p

2

(

15p

n−1
∑

i=1

η
2
p (i)‖Xi‖p

)p

+
(

2pp3
n−1
∑

i=1

(E[(X2
i )

p

2 ])
2
p

)

p

2

.

From the fact that E
[∣

∣ max
1≤i≤n

Si

∣

∣

p]
= E[|U1|p] ≤ An, we obtain

E

[
∣

∣

∣
max
1≤i≤n

Si

∣

∣

∣

p]

≤ 2p−1p2
n
∑

i=1

‖Xi‖
p
p +

p

2

(

15p

n−1
∑

i=1

η
2
p (i)‖Xi‖p

)p

+ 2
p2

2 p
3p
2

(

n−1
∑

i=1

(E[(X2
i )

p
2 ])

2
p

)

p

2

.

Applying classic Hölder’s inequality, we have

E

[∣

∣

∣
max
1≤i≤n

Si

∣

∣

∣

p]

≤ 2p−1p2
n
∑

i=1

‖Xi‖
p
p +

p

2

(

15p

n−1
∑

i=1

η
2
p (i)‖Xi‖p

)p

+ 2
p2

2 p
3p
2 n

p

2−1
n−1
∑

i=1

‖Xi‖
p
p.

Similar to the proof of Theorem 3.1, we have

E

[∣

∣

∣
max
1≤i≤n

(−Si)
∣

∣

∣

p]

≤ 2p−1p2
n
∑

i=1

‖Xi‖
p
p +

p

2

(

15p

n−1
∑

i=1

η
2
p (i)‖Xi‖p

)p

+ 2
p2

2 p
3p
2 n

p
2−1

n−1
∑

i=1

‖Xi‖
p
p.

Therefore

E

[

max
1≤i≤n

|Si|
p
]

≤ 2p−1
E

[∣

∣

∣
max
1≤i≤n

Si

∣

∣

∣

p]

+ 2p−1
E

[∣

∣

∣
max
1≤i≤n

(−Si)
∣

∣

∣

p]

≤ 22p−1p2
n
∑

i=1

‖Xi‖
p
p + 2p−1p

(

15p

n−1
∑

i=1

η
2
p (i)‖Xi‖p

)p

+ 2
p2+p

2 p
3p
2 n

p

2−1
n−1
∑

i=1

‖Xi‖
p
p.

Therefore, Inequality (3.3) is proved. In addition, by classic Hölder’s inequality and with the

assumption that
∞
∑

n=1
η

q

p (n) < ∞, we get

E

[

max
1≤i≤n

|Si|
p
]

≤ 22p−1p2
n
∑

i=1

‖Xi‖
p
p + 2p−1p(15p)p

(

n−1
∑

i=1

η
2q
p (i)

)

p

q

n−1
∑

i=1

‖Xi‖
p
p + 2

p2+p
2 p

3p
2 n

p
2−1

n−1
∑

i=1

‖Xi‖
p
p

≤ (Cp + C′
pn

p

2−1)
n
∑

i=1

‖Xi‖
p
p,

where Cp = 22p−1p2 + 2p−1p(15p)p
(

∞
∑

i=1

η
2q
p (i)

)

p

q and C′
p = 2

p2+p

2 p
3p
2 are constants depending

only on p. Therefore, the proof is complete.

Corollary 3.2 Let 1
p
+ 1

q
= 1, p ≥ 2 and {Xn}∞n=1 be an AANA sequence of random

variables under E with E[Xn] = 0. And {η(n)}∞n=1 are the corresponding mixing coefficients.
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Then there exist positive constants Cp and C′
p depending only on p such that for any n ≥ 1, we

have

E

[∣

∣

∣
max
1≤i≤n

Si

∣

∣

∣

p]

≤ Cp

{

n
∑

i=1

‖Xi‖
p
p +

(

n−1
∑

i=1

η
2
p (i)‖Xi‖p

)p}

+ C′
pn

p

2−1
n−1
∑

i=1

‖Xi‖
p
p.

In particular, if
∞
∑

n=1
η

q

p (n) < ∞, then for any n ≥ 1, we have

E

[∣

∣

∣
max
1≤i≤n

Si

∣

∣

∣

p]

≤ (Cp + C′
pn

p

2−1)

n
∑

i=1

‖Xi‖
p
p.

4 Strong Law of Large Numbers

In this section, we will come up with a version of strong law of large numbers as the

application of our Rosenthal’s inequality which is an extension of the classic case (see [6, 16]).

Firstly, we will give the concept of ‘quasi-surely’ under upper expectations, which is derived

from the concept of ‘almost surely’ in classic probability (see [4–5]).

Definition 4.1 If a property holds on a set D, such that V(Dc) = 0, then we called this

property holds ‘quasi-surely’ (q.s. for short).

Lemma 4.1 Let β1, · · · , βn be a nondecreasing sequence of positive numbers and α1, · · · , αn

be nonnegative numbers. Let r be a fixed positive number. Assume that for each 1 ≤ m ≤ n,

E
[

max
1≤l≤m

|Sl|r
]

≤
m
∑

l=1

αl. Then

E

[

max
1≤l≤n

∣

∣

∣

Sl

βl

∣

∣

∣

r]

≤ 4

n
∑

l=1

αl

βr
l

.

Proof Without loss of generality, assume that β1 = 1. Consider the sets Ai = {k :

2
i
r ≤ βk < 2

i+1
r }, i = 1, 2, · · · . Denote the index of the last nonempty Ai by Im. Let

k(i) = max{k, k ∈ Ai}, if Ai is nonempty, while k(i) = k(i − 1) if Ai is empty, and let

k(−1) = 0. And denote δl =
k(l)
∑

j=k(l−1)+1

αj , l = 0, 1, 2, · · · , where δl = 0 if Al is empty. Then

E

[

max
1≤l≤n

∣

∣

∣

Sl

βl

∣

∣

∣

r]

≤ E

[

Im
∑

i=0

max
j∈Ai

∣

∣

∣

Sj

βj

∣

∣

∣

r]

≤
Im
∑

i=0

E

[

max
j∈Ai

∣

∣

∣

Sj

βj

∣

∣

∣

r]

≤
Im
∑

i=0

2−i
E

[

max
j∈Ai

|Sj |
r
]

≤
Im
∑

i=0

2−i
E

[

max
j≤k(i)

|Sj |
r
]

≤
Im
∑

i=0

2−i

k(i)
∑

j=1

αj =

Im
∑

i=0

2−i

i
∑

l=0

δl

=

Im
∑

l=0

δl

Im
∑

i=l

2−i ≤
Im
∑

l=0

δl

∞
∑

i=l

2−i ≤
Im
∑

l=0

2−l+1δl

=

Im
∑

l=0

2−l+1

k(l)
∑

j=k(l−1)+1

αj ≤ 4

Im
∑

l=0

k(l)
∑

j=k(l−1)+1

αjβ
−r
j = 4

n
∑

i=1

αl

βr
l

.



Rosenthal’s Inequalities for AANA R.V. Under Upper Expectations 129

Lemma 4.2 Let b1, b2, · · · be a nondecreasing unbounded sequence of positive numbers,

α1, α2, · · · be nonnegative numbers and r be fixed positive number. For each n ≤ 1, we have

E
[

max
1≤l≤n

|Sl|r
]

≤
n
∑

l=1

αl. If
∞
∑

l=1

αl

br
l

< ∞, then lim
n→∞

Sn

bn
= 0 q.s.

Proof If there exists a numberN such that αn = 0 for any n ≥ N . Then E
[

max
n≥1

|Sn|r
]

< ∞.

Then our result follows. Therefore, we only consider the case that αn > 0 for infinite numbers.

Set γn =
∞
∑

k=n

αk

br
k

and βn = max
1≤k≤n

bkγ
1
2r

k . Obviously 0 < γn < ∞. And it can be proved that

∞
∑

n=1

αn

brnγ
1
2
n

< ∞. Therefore, the sequence βn satisfy the following properties:

(1) βk ≤ βk+1, k = 1, 2, · · · ;

(2)

∞
∑

k=1

αk

βr
k

< ∞;

(3) lim
k→∞

βk

bk
= 0.

Then from (2) and Lemma 4.1, we have E
[

max
1≤l≤n

∣

∣

Sl

βl

∣

∣

r]
≤ 4

n
∑

l=1

αl

βr
l

< ∞. Consequently,

sup
l≥1

∣

∣

Sl

βl

∣

∣ < ∞ q.s. Therefore, we obtain

0 ≤
∣

∣

∣

Sl

bl

∣

∣

∣
=

∣

∣

∣

Sl

βl

∣

∣

∣

βl

bl
≤

{

sup
l≥1

∣

∣

∣

Sl

βl

∣

∣

∣

}βl

bl
→ 0 q.s. as l → ∞.

Theorem 4.1 Let 1 < p ≤ 2, b1, b2, · · · be a nondecreasing unbounded sequence of posi-

tive numbers and {Xn}∞n=1 be an AANA sequence of random variables under E with E[Xn] =

E [Xn] = 0. And {η(n)}∞n=1 are the corresponding mixing coefficients. If
∞
∑

n=1
η2(n) < ∞ and

∞
∑

n=1

E[|Xn|
p]

b
p
n

< ∞, then lim
n→∞

Sn

bn
= 0 q.s.

The theorem can be deduced from Theorem 3.1 and Lemma 4.2 immediately. So we omit

the proof here.
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