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Abstract This paper mainly concerns a tuple of multiplication operators defined on the

weighted and unweighted multi-variable Bergman spaces, their joint reducing subspaces

and the von Neumann algebra generated by the orthogonal projections onto these sub-

spaces. It is found that the weights play an important role in the structures of lattices of

joint reducing subspaces and of associated von Neumann algebras. Also, a class of special

weights is taken into account. Under a mild condition it is proved that if those multipli-

cation operators are defined by the same symbols, then the corresponding von Neumann

algebras are ∗-isomorphic to the one defined on the unweighted Bergman space.
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1 Introduction

In this paper, denote by D the unit disk in the complex plane C. Let Ω be a bounded domain

in the complex space Cd. Let H∞(Ω) denote the Banach space of all bounded holomorphic

functions on Ω. For a nonnegative continuous function ω over Ω, the weighted Bergman space

L2
a(ω,Ω) is the Hilbert space consisting of all holomorphic functions over {z ∈ Ω : ω(z) > 0}

which are square integrable with respect to the measure ω(z)dA(z), dA being the Lebesgue

measure on Ω. In particular, if ϕ ∈ H∞(Ω) and ϕ 6≡ 0, the weighted Bergman space L2
a(|ϕ|

2,Ω)

is called type-ϕ Bergman space. Specifically, letting ϕ ≡ 1 gives the ordinary Bergman space

L2
a(Ω).

Fix a bounded holomorphic function φ and a weight ω over Ω. Let Mφ denote the multipli-

cation operator with the symbol φ on L2
a(ω,Ω), given by

Mφf = φf, f ∈ L2
a(ω,Ω).

In general, for a tuple Φ = {φj : 1 ≤ j ≤ n}, let {MΦ}′ denote the commutant of {Mφj
: 1 ≤

j ≤ n}, consisting of all bounded operators commuting with each operator Mφj
(1 ≤ j ≤ n).

It should be emphasized that MΦ denotes a family of multiplication operators rather than a

single vector-valued multiplication operator. Let V∗(Φ, ω,Ω) denote the von Neumann algebra

{Mφj
, M∗

φj
: 1 ≤ j ≤ n}′,
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consisting of all bounded operators on L2
a(ω,Ω) which commutes with both Mφj

and M∗
φj

for

all j. Write W∗(Φ, ω,Ω) = V∗(Φ, ω,Ω)′, which equals the von Neumann algebra generated

by {Mφj
: 1 ≤ j ≤ n}. For ω ≡ 1, we write W∗(Φ,Ω) for W∗(Φ, ω,Ω), and V∗(Φ,Ω) for

V∗(Φ, ω,Ω)′. There is a close connection between orthogonal projections in V∗(Φ, |ϕ|2,Ω) and

all joint reducing subspaces of {Mφj
: 1 ≤ j ≤ n} (see [13–14, 17]). Precisely, the range

of an orthogonal projection in V∗(Φ, |ϕ|2,Ω) is exactly a joint reducing subspace of the tuple

{Mφj
: 1 ≤ j ≤ n}, and vice versa. We say that V∗(Φ, ω,Ω) is trivial if V∗(Φ, ω,Ω) = CI;

equivalently, {Mφj
: 1 ≤ j ≤ n} has no nonzero joint reducing subspace other than the whole

space L2
a(ω,Ω). In single-variable case, one can refer to [7–10, 12, 14–18, 20, 24–26] for work

on commutants and reducing subspaces of multiplication operators and related von Neumann

algebras. However, not much has been done for multi-variable cases. We call the reader’s

attention to [11, 19–21, 23, 27–28].

In this paper we mainly focus on the influence of the weight of the Bergman spaces on the

structures of lattices for joint reducing subspaces for some MΦ, and of related von Neumann

algebras. To be precise, for α ∈ (−1,∞)d, write L2
a(α,D

d) for the weighted Bergman space

over Dd with weight
d∏

j=1

(1− |zj |
2)αjdA(z).

On one hand, we construct a concrete tuple of functions Φ and prove that for almost every

α = (α1, · · · , αd) ∈ (−1,∞)d, MΦ has no nontrivial joint reducing subspace and for some α,

MΦ has. This shows that weights play an important role on the structure of lattices for joint

reducing subspaces. On another hand, we consider type-ϕ Bergman spaces. It is shown under

a mild condition that the von Neumann algebra V∗(Φ, |ϕ|2,Ω) is ∗-isomorphic to V∗(Φ,Ω). As

an application, this gives an interesting corollary in single-variable case.

This paper is arranged as follows. Section 2 presents some preliminaries, including the

notion of local inverse. In Section 3, a concrete example is given to show that for different

weights the joint reducing subspaces for some MΦ can differ a lot. Section 4 shows that on

distinct type-ϕ Bergman spaces the structure of the joint reducing subspaces for MΦ is just the

same under a mild condition.

2 Some Preliminaries

In this section, we will introduce some basic notations and give some preliminaries.

The notion of analytic continuation is important (see [22, Chapter 16]). A function element

is an ordered pair (f,D), whereD is a simply-connected domain and f is a holomorphic function

on D. Two function elements (f0, D0) and (f1, D1) are called direct continuations if D0 ∩ D1

is not empty and f0 = f1 holds on D0 ∩D1. A curve is a continuous map from [0, 1] into Cd.

Given a function element (f0, D0) and a curve γ with γ(0) ∈ D0, if there is a partition of [0, 1] :

0 = s0 < s1 < · · · < sn = 1

and function elements (fj , Dj) (0 ≤ j ≤ n) such that

(1) (fj , Dj) and (fj+1, Dj+1) are direct continuations for all j with 0 ≤ j ≤ n− 1;

(2) γ[sj, sj+1] ⊆ Dj (0 ≤ j ≤ n− 1) and γ(1) ∈ Dn,
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then (fn, Dn) is called an analytic continuation of (f0, D0) along γ, and (f0, D0) is called to

admit an analytic continuation along γ. In this case, we write f0 ∼ fn. Clearly, ∼ defines an

equivalence and we write [f ] for the equivalent class of f.

Let Ω ⊆ Cd. For a holomorphic mapping Φ = (φ1, · · · , φd) : Ω → Cd and a subdomain ∆ of

Ω, a holomorphic function ρ : ∆ → Ω is called a local inverse of Φ if Φ ◦ ρ = Φ.

Recall that a subset E of Ω is called a zero variety of Ω if there is a nonconstant holomorphic

function ϕ on Ω such that E = {z ∈ Ω : ϕ(z) = 0}. A relatively closed subset E of Ω is called

L2
a-removable in Ω if each function in L2

a(Ω − E) extends analytically to a function in L2
a(Ω)

(see [4, 6]). It is known that for a zero variety E of a domain Ω, E is L2
a-removable in Ω (see

[3, 5]).

A zero variety E of Ω is called good if for each point λ ∈ Ω, there is an open ball U centered

at λ such that

U ∩ E = {z ∈ U ∩ Ω : ψ(z) = 0},

where ψ is a holomorphic function on U (see [20]). Clearly, if ϕ is a nonconstant holomorphic

function over Ω, the zero variety Z(ϕ) is good. The following lemma comes from [20, Theorem

1.3].

Lemma 2.1 Suppose that E is a good zero variety of a domain Ω in Cd and F : Ω → Cd

is holomorphic on Ω such that the image of F contains an interior point. Then both F (E) and

F−1(F (E)) are L2
a-removable.

The following proposition is contained in [20, Proposition 3.5].

Proposition 2.1 Suppose that E is a good zero variety of a domain Ω in Cd. If F : Ω → Cd

is holomorphic on Ω such that the image of F has an interior point. Then Ω \ F−1(F (E)) is

connected.

We also need a result from operator theory in [14]. For the special case of Λ being a singlet,

it is first proved in [2, Proposition 5.1] or [1, Proposition A.1].

Lemma 2.2 Let H be a Hilbert space and let ekλ, f
k
µ (1 ≤ k ≤ n and λ, µ ∈ Λ) be vectors in

H satisfying
n∑

k=1

ekλ ⊗ ekµ =

n∑

k=1

fk
λ ⊗ fk

µ , λ, µ ∈ Λ.

Then there is an n× n numerical unitary matrix W such that

W




e1λ
...

enλ


 =




f1
λ
...

fn
λ


 , λ ∈ Λ.

3 An Example

Throughout this paper, we write z = (z1, · · · , zd) and α = (α1, · · · , αd). Let L
2
a(α,D

d)

denote the Bergman space with the weight
d∏

j=1

(1− |zj |
2)αjdA(z).

In this section we mainly prove the following proposition.
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Proposition 3.1 Let (α1, · · · , αd) ∈ (−1,∞)d, and write

Φ(z1, · · · , zd) =
(
z1 + z2 + · · ·+ zd,

∑

1≤i<j≤d

zizj, · · · ,
∏

1≤j≤d

zj

)
.

If there is no nonzero polynomial P ∈ Z[z] satisfying P (α1, · · · , αd) = 0, then

V∗(Φ, α,Dd) = CI.

Equivalently, MΦ has no nontrivial joint reducing subspace on L2
a(α,D

d).

Proof Note that the d-th coordinate of Φ is
∏

1≤j≤d

zj. In short, we write Mz =
∏

1≤k≤d

Mzk .

Then

M∗
zMz(z

J) =
∏

1≤i≤d

1 + jk

αj + 2 + jk
zJ , J ∈ Zd

+.

Write

λ(J) =
∏

1≤i≤d

1 + jk

αj + 2 + jk
,

and we claim that λ(J) = λ(J ′) if and only if J = J ′.

In the case of d = 1, rewrite J = j and J ′ = j′. Then λ(J) = λ(J ′) can be written as

1 + j

α+ 2 + j
=

1 + j′

α+ 2 + j′
,

which holds if and only if j = j′. We will prove the claim by induction on d. Suppose that the

claim is true for d = m−1 (m ≥ 2) and we proceed to check it for d = m. Write J = (j1, · · · , jm)

and J ′ = (j′1, · · · , j
′
m). Assume λ(J) = λ(J ′), and we have

1 + jm

αm + 2 + jm

∏

1≤k≤m−1

1 + jk

αk + 2 + jk
=

1 + j′m
αm + 2 + j′m

∏

1≤k≤m−1

1 + j′k
αk + 2 + j′k

. (3.1)

If jm = j′m, then
∏

1≤i≤m−1

1 + jk

αk + 2 + jk
=

∏

1≤i≤m−1

1 + j′k
αk + 2 + j′k

.

By induction hypothesis we immediately get J = J ′. Now assume jm 6= j′m and we will derive a

contradiction. In fact, by (3.1) αm can be written as a rational function in α1, · · · , αm−1, with

integer coefficients. That is, there exists polynomials P1 and P2 in Z[z1, · · · , zm−1] satisfying

αm =
P1(α1, · · · , αm−1)

P2(α1, · · · , αm−1)
.

Thus P1(α1, · · · , αm−1)− αmP2(α1, · · · , αm−1) = 0. Since P2 6≡ 0, this derives a contradiction

to finish the proof of the claim.

Let PJ denote the orthogonal projection from L2
a(α,D

d) onto C[zJ ]. Since λ(J) = λ(J ′) if

and only if J = J ′, by spectrum theory we have

PJ ∈ W∗(Φ, α,Dd).
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Based on this, one can show that there is no nontrivial joint reducing subspace for MΦ. In fact,

for each nonzero joint reducing subspace M for MΦ one can pick a nonzero function h in M.

Write

h =
∑

J∈Z
d
+

cJz
J ,

and assume cJ0
6= 0. Noting

PJ0
(h) = cJ0

zJ0 ∈ M,

we have zJ0 ∈M. Then by a bit effort one will get 1 ∈M, and by induction one can prove that

zJ ∈ M, J ∈ Zd
+.

Hence M = L2
a(α,D

d). That is, MΦ has only trivial joint reducing subspace. Equivalently,

V∗(Φ, α,Dd) ∼= CI.

The proof is complete.

Corollary 3.1 Let (α1, · · · , αd) ∈ (−1,∞)d, and write

Φ(z1, · · · , zd) =
(
z1 + z2 + · · ·+ zd,

∑

1≤i<j≤d

zizj, · · · ,
∏

1≤j≤d

zj

)
.

Then for almost everywhere α ∈ (−1,∞)d, MΦ has no nontrivial joint reducing subspace on

L2
a(α,D

d).

Proof Let E denote the set of all α ∈ (−1,∞)d, so that there is a nonzero polynomial

F ∈ Z+[z] satisfying F (α) = 0. Let ZF denote all α ∈ Rd satisfying F (α) = 0. If we can show

that each set ZF is of zero measure, then so is E since E is contained in a union of countably

many ZF . Then by Proposition 3.1 we get the desired conclusion. Thus it suffices to show the

following claim:

For each nonzero polynomial F ∈ Z+[z], ZF has zero measure.

For this, we use induction. For d = 1, ZF is a finite set and obviously is of measure zero in

R. Suppose that the claim is true for d = m− 1 (m ≥ 2) and we proceed to check it for d = m.

Without loss of generality, assume ∂F
∂zm

6≡ 0. Write z′ = (z1, · · · , zm−1) and put

F (z) = an(z
′)znm + · · ·+ a1(z

′)zm + a0(z
′), an 6= 0.

By induction hypothesis, Zan
is of measure zero in Rm−1. Thus for almost everywhere z′ ∈

Rm−1, we have that {zm ∈ R : F (z) = 0} is a finite set, and for such z′,

∫

R

χZF
(z′, zm)dA(zm) = 0.

Since ZF is a closed set, by applying Fubini’s theorem one can get that

∫

Rm

χZF
(z)dA(z) = 0,

namely, ZF has zero measure. Thus we finish the proof of the claim as desired.
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Let Φ be defined in Proposition 3.1 The following example shows that, for some α ∈ Zd,

V∗(Φ, α,Dd) 6= CI,

and especially, V∗(Φ,Dd) 6= CI.

Example 3.1 Write α = (α1, · · · , αd) with d ≥ 3 and assume

α1 = α2.

As done above, set

Φ(z1, · · · , zd) =
(
z1 + z2 + · · ·+ zd,

∑

1≤i<j≤d

zizj, · · · ,
∏

1≤j≤d

zj

)
.

Fix t > 0, and let Mt denote the closed subspace generated by

{(tz1 + z2)z
J : J ∈ Zd

+}.

Note that Mt is invariant under {Mz1+z2 ,Mz1z2} and {M∗
z1+z2

,M∗
z1z2

}, as well as under

{Mzj ,M
∗
zj

: 2 < j ≤ d}. Since Φ can be written as a function in z1+z2, z1z2, and z3, · · · , zd, Mt

is invariant under the tuple of operators MΦ and M∗
Φ. Hence Mt is a joint nontrivial reducing

subspace of MΦ. Equivalently, for such α with α1 = α2,

V∗(Φ, α,Dd) 6= CI.

4 The Main Result

In this section, one will see that under a mild condition the multiplication operatorsMΦ with

the same symbols can induce ∗-isomorphic von Neumann algebras on distinct ϕ-type Bergman

space. This is stated as below.

Theorem 4.1 Suppose that the interior of Ω equals Ω, Φ : Ω → Cd is holomorphic on Ω

and the image of Φ has an interior point. If ϕ is a nonconstant function holomorphic over Ω,

then V∗(Φ, |ϕ|2,Ω) is a finite dimensional von Neumann algebra. Furthermore, V∗(Φ, |ϕ|2,Ω)

is ∗-isomorphic to V∗(Φ,Ω).

The von Neumann algebra V∗(Φ,Ω) is characterized in [20].

Proof Suppose that the interior of Ω equals Ω, Φ : Ω → Cd is holomorphic on Ω and Φ(Ω)

contains an interior point. As follows, for a holomorphic map F : Ω → Cd, denote by JF the

determinant of the Jacobian of F.

First we prove that V∗(Φ, |ϕ|2,Ω) is a finite dimensional von Neumann algebra. The main

idea is borrowed from [14] and [20]. For this, we have JΦ 6≡ 0. Otherwise the complex dimension

of Φ(Ω) would be at most d− 1, which leads to a contradiction. Write

Z = {z ∈ Ω : JΦ(z) = 0}.

For each point λ ∈ Ω \ Φ−1(Φ(Z)), there exists a ball ∆ (∆ ⊆ Ω) centered at λ satisfying

Φ(∆) ∩ Φ(Z) = ∅,
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and Φ|∆ is biholomorphic. Therefore, we have

JΦ(w) 6= 0, w ∈ Φ−1(Φ(∆)) ∩ Ω,

and there is an open ball Uw of w such that

Φ : Uw → Φ(Uw)

is biholomorphic. Note that Φ−1(Φ(∆)) ∩ Ω is compact, and the union of all such balls Uw

covers Φ−1(Φ(∆)) ∩ Ω. By a simple application of Henie-Borel’s theorem, there exists finitely

many of them: U1, · · · , Un satisfying

n⋃

j=1

Uj ⊇ Φ−1(Φ(∆)) ∩ Ω,

and Φ|Uj
is biholomorphic for each j. Suppose that Φ is holomorphic on a domain Ω̃ such that

Ω̃ ⊇ Ω. Writing

U ′
j = Uj ∩ Ω̃ ∩ Φ−1(Φ(∆)), j = 1, · · · ,K,

we still have

n⋃

j=1

U ′
j ⊇ Φ−1(Φ(∆)) ∩ Ω. (4.1)

Since Φ|U ′

j
are all biholomorphic, Φ(λ) is attained by Φ in U ′

j at most once. Then by shrinking

∆, (4.1) shows that there are finitely many disjoint domains ∆1, · · · ,∆N and biholomorphic

maps ρ1, · · · , ρN such that
N⊔

j=1

∆j = Φ−1(Φ(∆)) ∩ Ω

and

ρj(∆1) = ∆j , Φ ◦ ρj = Φ, 1 ≤ j ≤ N,

where ρ1(z) ≡ z and ∆1 = ∆. Again by shrinking ∆, we may require that all these U ′
j have no

intersection with ∂Ω. In fact, recall that the interior of Ω equals Ω. Then by analysis, one can

prove that for each point ζ ∈ ∂Ω and any open neighborhood O(ζ) of ζ, O(ζ) \ Ω contains an

open ball. Based on this, we may replace ∆ with an open subset of ∆ to ensure that U ′
1 have

no intersection with ∂Ω. Note that U ′
2, · · · , U

′
n will shrink automatically. By shrinking ∆ again,

U ′
2 has no intersection with ∂Ω. After finite steps, each U ′

j has no intersection with ∂Ω : Some

of them become smaller, and some of them vanish. Besides, it is worthwhile to emphasize that

if

Φ−1(Φ(λ)) ∩ ∂Ω = ∅,

then ∆ can be replaced with a smaller ball centered at λ.

Next we will use the method in [14] to give the representation of those operators in the von

Neumann algebra V∗(Φ, |ϕ|2,Ω) and the details are as follows. Let S be a unitary operator in

V∗(Φ, |ϕ|2,Ω). Given any function g and h in L2
a(|ϕ|

2,Ω), put

g̃ = Sg, h̃ = Sh.
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Then for any multivariate polynomials P and Q,

〈P (Φ)g,Q(Φ)h〉 = 〈P (Φ)g̃, Q(Φ)h̃〉.

That is
∫

Ω

((PQ) ◦ Φ(w)g(w)h(w) − (PQ) ◦ Φ(w)g̃(w)h̃(w))|ϕ(w)|2dA(w) = 0. (4.2)

Now set

X = span {pq : p, q are polynomials in d variables}.

By the Stone-Weierstrass theorem, a continuous function on Φ(Ω) can be uniformly approxi-

mated by a sequence of functions in X. Thus by (4.2),

∫

Ω

(u(Φ(w))g(w)h(w) − u(Φ(w))g̃(w)h̃(w))|ϕ(w)|2dA(w) = 0, u ∈ C(Φ(Ω)). (4.3)

By Lebesgue’s dominated convergence theorem, (4.3) holds for all u in L∞(Φ(Ω)). Let ∆ be

the ball in the above paragraph. For each u in L∞(Φ(∆)), (4.3) gives that

∫

Φ−1(Φ(∆))

u(Φ(w))g(w)h(w)|ϕ(w)|2dA(w)

=

∫

Φ−1(Φ(∆))

u(Φ(w))g̃(w)h̃(w)|ϕ(w)|2dA(w),

and hence by requirements on ∆ below (4.1),

∫

∆

u(Φ(z))
N∑

j=1

(gh) ◦ ρj(z)|(Jρj)(z)|
2|ϕ(ρj(z))|

2dA(z)

=

∫

∆

u(Φ(z))

N∑

j=1

(g̃h̃) ◦ ρj(z)|(Jρj)(z)|
2|ϕ(ρj(z))|

2dA(z).

Noting that Φ is univalent on ∆ and u can be an arbitrary function in L∞(Φ(∆)), we immedia-

tely have that for z ∈ ∆,

N∑

j=1

(gh) ◦ ρj(z)|(Jρj)(z)|
2|ϕ(ρj(z))|

2 =

N∑

j=1

(g̃h̃) ◦ ρj(z)|(Jρj)(z)|
2|ϕ(ρj(z))|

2. (4.4)

Let H be the Bergman space over ∆. For 1 ≤ j ≤ N, g ∈ L2
a(Ω), set

ejg = g(ρj(z))(Jρj)(z)ϕ(ρj(z)) and f j
g = g̃(ρj(z))(Jρj)(z)ϕ(ρj(z)),

all ejg and f j
g lie in H. By (4.4), the Berezin transforms of

N∑
j=1

ekg ⊗ ekh and
N∑
j=1

fk
g ⊗ fk

h are equal.

By the property of Berezin transform,

N∑

k=1

ekg ⊗ ekh =

N∑

k=1

fk
g ⊗ fk

h , g, h ∈ L2
a(Ω).
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Then applying Lemma 2.2 gives that there is an N ×N unitary numerical matrix W satisfying

W




g(ρ1(w))Jρ1(w)ϕ(ρ1(z))
...

g(ρN (w))JρN (w)ϕ(ρN (z))


 =




g̃(ρ1(w))Jρ1(w)ϕ(ρ1(z))
...

g̃(ρN (w))JρN (w)ϕ(ρN (z))


 , w ∈ ∆.

By expanding the first raw of W , we get N constants c1, · · · , cN satisfying

g̃(ρ1(w))Jρ1(w)ϕ(ρ1(z)) =

N∑

j=1

cjg(ρj(w))(Jρj)(w)ϕ(ρj(z)).

Noting ρ1(w) ≡ w,

ϕ(w)Sg(w) =
N∑

j=1

cjg(ρj(w))(Jρj)(w)ϕ(ρj(w)), w ∈ ∆. (4.5)

In the beginning we assume that S is a unitary operator in V∗(Φ, |ϕ|2,Ω). Since each

operator in a von Neumann algebra is the linear span of finitely many unitary operators, an

operator T in V∗(Φ, |ϕ|2,Ω) has the same form as (4.5). Note that all such vectors (c1, · · · , cN )

span a linear subspace of CN with dimension not larger than N and T is uniquely determined

by the formula (4.5) on ∆. Therefore,

dimV∗(Φ,Ω) ≤ N <∞.

Some comments are in order. If in (4.5) cj 6= 0 for some operator S, then ρj is called a

representing local inverse for V∗(Φ, |ϕ|2,Ω). By the above proof, if there is a point w ∈ ∆ such

that ρk(w) 6∈ Ω, then ρk does not appear in any representation (4.5) of S, that is, ρk is not

representing. The same is true for each analytic continuation for ρk.

Next we will determine the generators of V∗(Φ, |ϕ|2,Ω). Write

Z = {z ∈ Ω : ϕ(z)JΦ(z) = 0},

and then Φ−1(Φ(Z)) is relatively closed in Ω. Let us call a local inverse ρ of Φ : Ω → Cd ϕ-

admissible if for each curve γ in Ω\Φ−1(Φ(Z)), ρ admits analytic continuation with values in Ω.

By Proposition 2.1, Ω \Φ−1(Φ(Z)) is connected. Then one can show that if ρ is a representing

local inverse for V∗(Φ, |ϕ|2,Ω), then ρ is ϕ-admissible (see [26] or [17]). In the sequel, for a

local inverse ρ of Φ, ρ− always denotes the inverse of ρ. The proof of the theorem in [26, p. 526]

shows that the class of all ϕ-admissible local inverses of Φ is closed under composition. If ρ is

a ϕ-admissible local inverse, then its inverse ρ− is also ϕ-admissible.

Rewrite

A0 = Φ−1(Φ(Z)).

Fix a representing local inverse ρ of Φ. As done in [13] or [16], define

E[ρ]h(w) =
∑

σ∈[ρ]

ϕ(σ(w))

ϕ(w)
h ◦ σ(w)Jσ(w), w ∈ Ω \A0, (4.6)

where h is an arbitrary function over Ω\A0 or Ω. The right-hand side of (4.6) is a finite sum as

Φ is holomorphic over Ω. Also by the above paragraph, σ(z) ∈ Ω \A0 if z ∈ Ω \A0 and σ ∈ [ρ].
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Then the formula (4.6) makes sense. By the proof of [16, Lemma 6.3], we naturally get that

E[ρ] maps each function in L2
a(|ϕ|

2,Ω) to a function in L2
a(|ϕ|

2,Ω \ A0), and E[ρ] is bounded.

Since Z is a good zero variety, by Lemma 2.1, A0 is L2
a-removable. Then

E[ρ] : L
2
a(|ϕ|

2,Ω) → L2
a(|ϕ|

2,Ω)

is a well-defined linear bounded operator. Furthermore, following the proof of [16, Lemma 6.3]

yields that E∗
[ρ] = E[ρ−]. Since both E[ρ] and E[ρ−] commute with the tuple of operatorsMΦ, they

both lie in V∗(Φ, |ϕ|2,Ω). Furthermore, it is not difficult to see that V∗(Φ, |ϕ|2,Ω) is generated

by E[ρ] where ρ runs over ϕ-admissible local inverses of Φ. Recall that 1-admissible local inverses

are ordinary admissible ones.

It remains to prove that V∗(Φ, |ϕ|2,Ω) is ∗-isomorphic to V∗(Φ,Ω). Let us compare V∗(Φ,

|ϕ|2,Ω) with V∗(Φ,Ω). Note that by Lemma 2.1, a ϕ-admissible local inverse ρ also defines an

operator E[ρ] in V∗(Φ,Ω). Thus ϕ-admissible local inverses are representing for V∗(Φ,Ω), and

hence they are exactly 1-admissible local inverses; they also have the same equivalent classes.

We now write Eϕ

[ρ] and E[ρ] to distinguish them:

Eϕ

[ρ] ∈ V∗(Φ, |ϕ|2,Ω), E[ρ] ∈ V∗(Φ,Ω).

This gives a one-to-one correspondence Θ from V∗(Φ, |ϕ|2,Ω) to V∗(Φ,Ω):

Θ : V∗(Φ, |ϕ|2,Ω) → V∗(Φ,Ω),
∑

j

cjE
ϕ

[ρj ]
7→

∑

j

cjE[ρj ],

where two sums are finite. It is straightforward to check that Θ is a linear bijection and for

each S ∈ V∗(Φ, |ϕ|2,Ω) we have Θ(S∗) = Θ(S)∗.

For two admissible local inverses ρ and σ, for z 6∈ Φ−1(Φ(Z)) and f in L2
a(|ϕ|

2,Ω),

ϕ(z)(Eϕ

[ρ]E
ϕ

[σ]f)(z) =
∑

ρj∈[ρ]

(Eϕ

[σ]f) ◦ ρj(z)ϕ(ρj(z))Jρj(z)

=
∑

σk∈[σ]

[ϕ(σk(w))
ϕ(w)

f ◦ σk(w)Jσk(w)
]
◦ ρj(z)ϕ(ρj(z))Jρj(z)

=
∑

j,k

ϕ(σk ◦ ρj(z))f(σk ◦ ρj(z))(Jσk)(ρj(z))Jρj(z)

=
∑

j,k

ϕ(σk ◦ ρk(z))f(σk ◦ ρk(z))J(σk ◦ ρj)(z).

By (4.5) this can be written as

Eϕ

[ρ]E
ϕ

[σ] = Eϕ

[σ]◦[ρ],

and similarly,

E[ρ]E[σ] = E[σ]◦[ρ].

Then we have

Θ(Eϕ

[ρ]E
ϕ

[σ]) = Θ(Eϕ

[ρ])Θ(Eϕ

[σ]).

By linearity of Θ,

Θ(ST ) = Θ(S)Θ(T ), S, T ∈ V∗(Φ, |ϕ|2,Ω).
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Hence Θ defines an ∗-isomorphism between V∗(Φ, |ϕ|2,Ω) and V∗(Φ,Ω). The proof is finished.

Example 4.1 Fix k = 1, 2, · · · . The Bergman space L2
a(|z|

2k,D) has a orthogonal basis

z−k, z−k+1, · · · .

Let φ be a nonconstant function and φ is holomorphic over D. Then by Theorem 4.1,

V∗(φ, |z|2k,D) ∼= V∗(φ,D), k = 1, 2, · · · .

But it is known that there exists a finite Blaschke product B such that φ can be written as a

function of B and {Mφ}′ = {MB}′ (see [26]). Hence

V∗(φ,D) = V∗(B,D).

In particular, for a finite Blaschke product B0,

V∗(B0, |z|
2k,D) ∼= V∗(B0,D), k = 1, 2, · · · .

The idea of the above example gives the following corollary of Theorem 4.1.

Corollary 4.1 Suppose that both φ and ϕ are holomorphic functions over D and they are

not constant. Then there is a finite Blaschke product B and a function φ̃ ∈ H∞(D) such that

φ = φ̃(B) and

V∗(φ, |ϕ|2,D) = V∗(B, |ϕ|2,D).

Furthermore, V∗(B, |ϕ|2,D) is ∗-isomorphic to V∗(B,D).
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