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Abstract The strong embeddability is a notion of metric geometry, which is an inter-
mediate property lying between coarse embeddability and property A. In this paper, the
permanence properties of strong embeddability for groups acting on metric spaces are
studied. The authors show that a finitely generated group acting on a finitely asymp-
totic dimension metric space by isometries whose K-stabilizers are strongly embeddable
is strongly embeddable. Moreover, they prove that the fundamental group of a graph of
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1 Introduction

The notion of coarse embeddability was introduced by Gromov [9] in relation to the Novikov

conjecture (see [8]) on the homotopy invariance of higher signatures for closed manifolds. Yu

[19] subsequently proved that the coarse Baum-Connes conjecture holds for metric spaces with

bounded geometry which are coarsely embeddable into a Hilbert space and in a particular

case when this space is a finitely generated group with the word length metric, the Novikov

conjecture holds for the group. In [19], Yu introduced a weak version of amenability for metric

spaces, which he called property A, a discrete metric space with this property may be coarsely

embeddable into a Hilbert space. Since the appearance of Yu’s work, the permanence properties

of coarse embeddability and property A have been intensively studied (see [2, 7, 13, 16–17]).

In [7], Dadarlat and Guentner showed that property A is stable under group extensions, by a

recent result of Arzhantseva and Tessera [1], coarse embeddability is not preserved under group

extensions.

Recently, the notion of strong embeddability (see Definition 2.1 below) for metric spaces

was introduced by Ji, Ogle and Ramsey [12], they showed that strong embeddability is implied

by property A and implies coarse embeddability, so strong embeddability should share many

permanence properties with coarse embeddability and property A. In [18], the authors showed
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that strong embeddability for metric spaces is coarsely invariant and it is closed under taking

subspaces, direct products, direct limits and finite unions. Moreover, they proved a permanence

property linking finite decomposition complexity and strong embeddability: A discrete metric

space with bounded geometry has weak finite decomposition complexity with respect to strong

embeddability if and only if itself is strongly embeddable.

The concept of stabilizer was introduced by Bell and Dranishnikov [3–5] for studying the

permanence properties of the asymptotic dimension. In [16], Tu proved that a discrete group

acting on a tree with finite quotient has property A if and only if the stabilizer of each vertex

group has property A. By using the equivalent characterization of property A which given by

Higson and Roe [10], Bell [2] extended this result to conclude that a group acting by isometries

on a metric space with finite asymptotic dimension whose stabilizers have property A also has

property A. As a result, Bell concluded a theorem of [16], a fundamental group of a finite

graph of groups whose vertices groups have property A also has property A. By using Bell’s

arguments, a parallel statement concerning operator norm localization property was obtained

by Chen and Wang [6] (In fact, Sako [14] proved that operator norm localization property is

equivalent to property A for metric spaces with bounded geometry). On the other hand, the

permanence property for coarse embeddability under relative hyperbolic groups was studied

by Dadarlat and Guentner [7], they proved that a finitely generated group which is hyperbolic

relative to a finite family of subgroups is coarsely embeddable if and only if each subgroup is

coarsely embeddable.

Inspired by the above works, we investigate permanence properties of strong embeddability

for groups acting on metric spaces. By using the technique of gluing spaces in [7], we first

prove that certain infinite unions property holds for strong embeddability (see Theorem 3.1).

By applying this infinite unions property, we show that a group acting on a metric space with

finite asymptotic dimension by isometries whose stabilizers are strongly embeddable is also

strongly embeddable (see Theorem 4.1). Moreover, we point out that our argument is also

suitable for property A. Thus, our approach in this paper gives an alternative proof to Bell’s.

By the works of Bell [2] and Chen-Wang [6], we conclude that the fundamental group of a finite

graph of groups whose vertices groups are strongly embeddable is also strongly embeddable (see

Proposition 5.1). As a corollary, amalgamated free products and HNN extensions of groups

from groups with strong embeddability will be strongly embeddable by the Bass-Serre Theory

(see Corollary 5.1). In [12], Ji, Ogle and Ramsey proved that if a finitely generated group is

hyperbolic relative to a finite family of subgroups, and if each subgroup is strongly embeddable,

then the group itself is strongly embeddable. The main tool in their proof is relative property

A (see [11]). In this paper, our approach to this result, which is based on the works of Osin

[13] and Dadarlat-Guentner [7], hence, is quite different from [12] (see Theorem 5.1).

2 Preliminaries

Let X be a metric space, and let |BS(x)| denote the number of points of the ball BS(x).
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Then X is said to have bounded geometry if for every S > 0 there exists a number N > 0 such

that for every x ∈ X we have |BS(x)| ≤ N . The strong embeddability is defined for the metric

spaces with bounded geometry, therefore, throughout this paper, all metric spaces are assumed

to be discrete with bounded geometry.

Let B be a Banach space and B1 = {ξ ∈ B | ∥ξ∥ = 1}. For every R > 0 and ϵ > 0, a

map α : X → B1 defined by x 7→ αx will be said to have (R, ϵ) variation if d(x, y) ≤ R implies

∥αx − αy∥ ≤ ϵ.

Definition 2.1 (see [12]) Let X be a metric space. Then X is strongly embeddable if and

only if for every R, ϵ > 0, there exists a map β : X → ℓ2(X)1 satisfying

(1) β has (R, ϵ) variation;

(2) lim
S→∞

sup
x∈X

P
z/∈BS(x)

|βx(z)|2 = 0.

We give an equivalent formulation of strong embeddability which will be useful to prove the

main theorem.

Lemma 2.1 Let X be a metric space. Then X is strongly embeddable if and only if for

every R, ϵ > 0, there exists a Hilbert space H and a map ξ : X → ℓ2(X,H )1 satisfying

(1) ξ has (R, ϵ) variation;

(2) lim
S→∞

sup
x∈X

P
z/∈BS(x)

∥ξx(z)∥2 = 0.

Proof Suppose that X is strongly embeddable. Let H = C, where C is the set of all

complex numbers. We can conclude the result by the fact that ℓ2(X) ∼= ℓ2(X,C).
Conversely, let R, ϵ > 0 be given. By assumption, there exists a Hilbert space H and a

map ξ from X to ℓ2(X,H )1 satisfying (1) and (2).

Define

β : X → ℓ2(X)

by βx(w) = ∥ξx(w)∥ for any x,w ∈ X.

Notice that for each x ∈ X,

∥βx∥2 =
X
w∈X

|βx(w)|2 =
X
w∈X

∥ξx(w)∥2 = ∥ξx∥2 = 1.

For any x, x′ ∈ X, if d(x, x′) ≤ R,

∥βx − βx′∥2 =
X
w∈X

|βx(w)− βx′(w)|2 =
X
w∈X

|∥ξx(w)∥ − ∥ξx′(w)∥|2

≤
X
w∈X

∥ξx(w)− ξx′(w)∥2

= ∥ξx − ξx′∥2.

By (1), we have ∥βx − βx′∥ ≤ ϵ. Moreover, by (2) we also have

lim
S→∞

sup
x∈X

X
z/∈BS(x)

|βx(z)|2 = lim
S→∞

sup
x∈X

X
z/∈BS(x)

∥ξx(z)∥2 = 0.
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Definition 2.2 (see [12]) A family of metric spaces (Xi)i∈I is equi-strongly embeddable if

for every R, ϵ > 0 there exists a family of maps ξi : Xi → ℓ2(Xi)1 satisfying

(1) for any i ∈ I, ξi has (R, ϵ) variation;

(2) lim
S→∞

sup
i∈I

sup
x∈Xi

P
z/∈BS(x)

|ξix(z)|2 = 0.

Definition 2.3 Let X be a metric space and let U = (Ui)i∈I be a cover of X. A partition

of unity is a family of continuous functions ϕi : X → [0, 1] such that for every x ∈ X there is a

neighborhood V of x for which ϕi|V ̸= 0 only for finitely many i ∈ I and
P
i∈I

ϕi(x) = 1 for every

x ∈ X. A partition of unity (ϕi)i∈I is said to be subordinated to U if each ϕi vanishes outside

Ui and
P
i∈I

ϕi(x) = 1 for any x ∈ X. A partition of unity (ϕi)i∈I is subordinated to a cover U

will be denoted by (ϕU )U∈U .

Let U = (Ui)i∈I be a cover of a metric space X. The Lebesgue number for U is a number

L > 0 with the property that any subset B ⊂ X of diameter less than L is contained in some

Ui ∈ U . The multiplicity of U is the smallest integer n such that every point x ∈ X is

contained in at most n elements of U . We call U is L-disjoint if d(U, V ) > L for all U, V ∈ U

with U ̸= V .

Definition 2.4 Let X be a metric space. Then X has asymptotic dimension at most k

if and only if for every R > 0 there exists a uniformly bounded cover U of X with Lebesgue

number at least R and multiplicity at most k + 1.

The following lemma states that given a cover of a metric space with multiplicity at most

k + 1 and Lebesgue number L, we can construct a partition of unity with Lipschitz properties

subordinated to the cover. The proof can be found in [2, 5].

Lemma 2.2 Let U be a cover of a metric space X with multiplicity at most k+1 (k ≥ 0),

and Lebesgue number L > 0. For U ∈ U , define

ϕU (x) =
d(x,X\U)X

V ∈U

d(x,X\V )
.

Then (ϕU )U∈U is a partition of unity on X subordinated to the cover U . Moreover each ϕU

satisfies

|ϕU (x)− ϕU (y)| ≤
2k + 3

L
d(x, y), ∀ x, y ∈ X,

and the family (ϕU )U∈U satisfies

X
U∈U

|ϕU (x)− ϕU (y)| ≤
(2k + 2)(2k + 3)

L
d(x, y), ∀ x, y ∈ X.

Let Γ be a countable discrete group. We can view Γ as a metric space if we endow Γ with

a length function.

Definition 2.5 Let Γ be a countable discrete group. A length function on Γ is a non-negative

real-valued function, denoted by l, satisfying that for all x, y ∈ Γ,
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(1) l(xy) ≤ l(x) + l(y),

(2) l(x−1) = l(x),

(3) l(x) = 0 if and only if x = e, where e is the identity element in Γ.

This defines a metric on Γ by dΓ(f, g) = lΓ(f
−1g). If Γ is a finitely generated group and

its generating set S is symmetric, i.e., S = S−1, then the length lΓ(g) of an element g ∈ Γ

is defined to be the length of the shortest word in S representing g. In this case, dΓ is left

invariant in the sense that dΓ(hf, hg) = dΓ(f, g) for any h ∈ Γ.

3 Infinite Unions

In this section, we prove the following infinite unions property for strong embeddability by

using the gluing technique in [7].

Theorem 3.1 Let X be a metric space. Suppose that for all R, ϵ > 0 there is a partition

of unity (ϕi)i∈I on X such that

(1) for any x, y ∈ X, if d(x, y) ≤ R, then
P
i∈I

|ϕi(x)− ϕi(y)| ≤ ϵ;

(2) (ϕi)i∈I is subordinated to an equi-strongly embeddable cover U = (Ui)i∈I of X. Then

X is strongly embeddable.

To prove this, we will use the following lemma. Given R > 0, let U = (Ui)i∈I be a cover of

a metric space X and UR = (Ui(R))i∈I be R-neighbourhood of U .

Lemma 3.1 Let U be a cover of a metric space X. If U is equi-strongly embeddable, so

is UR.

Proof First, we construct a map from Ui(R) to Ui for each i ∈ I. To do this, we define

f : Ui(R) → Ui by

f(x) =

§
x, x ∈ Ui,
y, x ∈ Ui(R) \ Ui,

where y is any point in ωi(x) and ωi(x) = {z ∈ Ui | d(x, z) ≤ R}.
By triangle inequality, for each i ∈ I and all x, y ∈ Ui(R), we have

d(f(x), f(y)) ≤ d(f(x), x) + d(x, y) + d(y, f(y)) ≤ d(x, y) + 2R.

Let L, ϵ > 0 be given. Since U = (Ui)i∈I is equi-strongly embeddable, there exists a family

of maps

βi : Ui → ℓ2(Ui)1

such that

(1) for each i ∈ I, βi has (L+ 2R, ϵ) variation;

(2) for every δ > 0, any i ∈ I and any x ∈ Ui(R), there exists an S0 > 0 such that if

S > S0,
P

z/∈BS(x)

|βi
x(z)|2 < δ.
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Now, for each i ∈ I, we define an isometry

g : ℓ2(Ui) → ℓ2(Ui(R))

by g(ξ) = η for each ξ ∈ ℓ2(Ui), where

η(x) =

§
ξ(x), x ∈ Ui,
0, x ∈ Ui(R) \ Ui.

Finally, for each i ∈ I, we define

αi : Ui(R) → ℓ2(Ui(R))

by taking αi = g ◦ βi ◦ f according to the following diagram:

Ui(R)
f−→ Ui

βi

−→ ℓ2(Ui)
g−→ ℓ2(Ui(R)).

Notice that for each x ∈ Ui(R),

∥αi
x∥ = ∥g ◦ βi ◦ f(x)∥ = ∥g ◦ βi

f(x)∥ = ∥βi
f(x)∥ = 1.

For each i ∈ I and any x, y ∈ Ui(R), if d(x, y) ≤ L, then d(f(x), f(y)) ≤ L+ 2R. So by (1)

we have

∥αi
x − αi

y∥ = ∥g ◦ βi ◦ f(x)− g ◦ βi ◦ f(y)∥ = ∥βi
f(x) − βi

f(y)∥ ≤ ϵ.

Moreover, let S1 = S0 + 2R. For every δ > 0, each i ∈ I and all x ∈ Ui(R), by (2) we also

have: If S > S1,

X
z/∈BS(x)

|αi
x(z)|2 =

X
z/∈BS(x)

|g ◦ βi ◦ f(x)(z)|2

≤
X

z/∈BS−R(f(x))

|βi
f(x)(z)|

2

≤ δ.

Thus, a such family of maps (αi)i∈I is as desired. We complete the proof.

Proof of Theorem 3.1 Let R, ϵ > 0 be given. By assumption, there is an equi-strongly

embeddable cover U = (Ui)i∈I of X and a partition of unity (ϕi)i∈I subordinated to U such

that for any x, y ∈ X, if d(x, y) ≤ R, then
P
i∈I

|ϕi(x)− ϕi(y)| ≤ ϵ2

4 .

By Lemma 3.1, we know that UR is equi-strongly embeddable. Thus, there exists a family

of maps ξi : Ui(R) → ℓ2(Ui(R))1 satisfying

(1) for any i ∈ I, ξi has (R, ϵ
2 ) variation;

(2) ∀δ > 0, ∀i ∈ I, ∀x ∈ Ui(R), ∃S0 > 0, if S > S0,
P

z/∈BS(x)

|ξix(z)|2 ≤ δ.

Next, we will construct a map θ from X to ℓ2(X, ℓ2(I))1 such that θ satisfies the standards

of Lemma 2.1, then we conclude the result.
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For any x ∈ Ui(R), each i ∈ I, we can extend each ξix to X by setting ξix(z) = 0 for

z ∈ X \ Ui(R). Thus, ξix ∈ ℓ2(X) for any x ∈ Ui(R), i ∈ I.

Firstly, define

η : X →
M
i∈I

ℓ2(X)

by taking ηx = (ηix)i∈I, ηix = ϕi(x)
1
2 ξix for each x ∈ X.

Now, define

σ :
M
i∈I

ℓ2(X) → ℓ2(X, ℓ2(I))

by σ(µ) = g, g(z) = ν(z, ·), ν(z, i) = µi(z), where µ = (µi)i∈I ∈
L
i∈I

ℓ2(X), z ∈ X.

Finally, define

θ : X → ℓ2(X, ℓ2(I))

by θ = σ ◦ η.
We first check that ∥θx∥ = 1. Notice that for any x ∈ X, ∥ηx∥2 =

P
i∈I

∥ηix∥2 =
P
i∈I

ϕi(x)∥ξix∥2 =
P
i∈I

ϕi(x) = 1. Hence, we have

∥θx∥2 =
X
z∈X

∥θx(z)∥2ℓ2(I) =
X
z∈X

∥νx(z, ·)∥2ℓ2(I) =
X
z∈X

X
i∈I

|νx(z, i)|2

=
X
z∈X

X
i∈I

|ηix(z)|2 = ∥ηx∥2 = 1.

Next, we verify that θ satisfies the remaining two conditions of Lemma 2.1. If x, y ∈ X with

d(x, y) ≤ R, we have

∥ηx − ηy∥2 =
X
i∈I

∥ϕi(x)
1
2 ξix − ϕi(y)

1
2 ξiy∥2

=
X
i∈I

X
z∈X

|ϕi(x)
1
2 ξix(z)− ϕi(y)

1
2 ξiy(z)|2

≤ 2
X
i∈I

X
z∈X

|ϕi(x)
1
2 (ξix(z)− ξiy(z))|2 + 2

X
i∈I

X
z∈X

|(ϕi(x)
1
2 − ϕi(y)

1
2 )ξiy(z)|2

= 2
X
i∈I

ϕi(x)∥ξix − ξiy∥2 + 2
X
i∈I

|ϕi(x)
1
2 − ϕi(y)

1
2 |2.

If x ∈ Ui, then y ∈ Ui(R), so by (1), ∥ξix − ξiy∥ ≤ ϵ
2 for each i ∈ I. Thus

2
X
i∈I

ϕi(x)∥ξix − ξiy∥2 ≤ ϵ2

2
.

By the inequality |x 1
2 − y

1
2 |2 ≤ |x− y|, we have

2
X
i∈I

|ϕi(x)
1
2 − ϕi(y)

1
2 |2 ≤ 2

X
i∈I

|ϕi(x)− ϕi(y)| ≤
ϵ2

2
.
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Therefore ∥ηx − ηy∥ ≤ ϵ. Since

∥θx − θy∥2 =
X
z∈X

∥θx(z)− θy(z)∥2ℓ2(I) =
X
z∈X

∥νx(z, ·)− νy(z, ·)∥2ℓ2(I)

=
X
z∈X

X
i∈I

|νx(z, i)− νy(z, i)|2 =
X
z∈X

X
i∈I

|ηix(z)− ηiy(z)|2

= ∥ηx − ηy∥2,

we have ∥θx − θy∥ ≤ ϵ.

Moreover, for above δ > 0 and any x ∈ X, if S > S0, then by (2) we have

X
z/∈BS(x)

∥θx(z)∥2ℓ2(I) =
X

z/∈BS(x)

X
i∈I

∥νx(z, ·)∥2ℓ2(I) =
X

z/∈BS(x)

X
i∈I

|νx(z, i)|2

=
X

z/∈BS(x)

X
i∈I

|ηix(z)|2 =
X

z/∈BS(x)

X
i∈I

ϕi(x)|ξix(z)|2

=
X
i∈I

ϕi(x)
X

z/∈BS(x)

|ξix(z)|2 ≤ δ.

Thus, the proof is completed.

The following result is immediate from Theorem 3.1, and relative versions for property A,

asymptotic dimension and coarse embeddability were proved in [2–3, 7], respectively.

Corollary 3.1 Let X =
S
i∈I

Xi be a metric space with {Xi}i∈I being equi-strongly em-

beddable. If for every L > 0 there exists a strongly embeddable subspace Y of X such that

{Xi \ Y }i∈I is L-disjoint. Then X is strongly embeddable.

Proof Let R, ϵ be given and let L > 0 such that 20R
L ≤ ϵ. By assumption,

U =
[
i∈I

(Xi \ Y ) ∪ Y

is a cover of X. Let V = (Vj)j be the L-neighborhood of U .

By Lemma 3.1, V is an equi-strongly embeddable cover of X, with multiplicity at most 2

and Lebesgue number at least L. Moreover, Lemma 2.2 tells us that there exists a partition of

unity (ϕVj )Vj∈V on X subordinate to V with the following property:

X
Vj∈V

|ϕVj (x)− ϕVj (y)| ≤
(2 + 2)(2 + 3)

L
d(x, y) =

20d(x, y)

L
, ∀ x, y ∈ X.

For all x, y ∈ X with d(x, y) ≤ R, we have
P

Vj∈V

|ϕVj (x) − ϕVj (y)| ≤ 20R
L ≤ ϵ. Thus, we

complete the proof by Theorem 3.1.

4 Groups Acting on Metric Spaces

In this section, we will prove the following theorem.
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Theorem 4.1 Let Γ be a finitely generated group acting on metric space X by isometries.

If X has asymptotic dimension less than k and there exists x0 ∈ X such that WK(x0) is strongly

embeddable for every K > 0. Then Γ is strongly embeddable.

We first recall the concept of the K-stabilizers. Let Γ be a group acting on a metric space

X. For every K > 0, the K-stabilizer WK(x0) of x0 ∈ X is defined to be the set of all g ∈ Γ

such that gx0 ∈ BK(x0).

Proof of Theorem 4.1 We define a map π : Γ → X by π(γ) = γx0 for all γ ∈ Γ. Let S

be the finite symmetric generating set in the definition of the word metric for Γ and let

λ = max
s∈S

d(sx0, x0).

It is easy to see that π is λ-Lipschitz.

Let L > 0 be given and take a uniformly bounded cover U = (Ui)i∈I of X with Lebesgue

number L and multiplicity k + 1 such that the L-neighbourhood V = (Vi)i∈I of U is also a

cover of X with multiplicity k + 1.

Now, take K > 0 and xi ∈ X such that Vi ⊂ BK(xi) for each i ∈ I, then take γi ∈ Γ such

that xi = γix0.

By the definition of K-stabilizer, it is clear that WK(x0) = π−1(BK(x0)). Moreover, by

the isometric action of Γ, we have γπ−1(BK(x0)) = π−1(BK(γx0)) for all γ ∈ Γ. Since

π−1(BK(γx0)) is isometric to π−1(BK(x0)) and π−1(BK(x0)) = WK(x0) is strongly embed-

dable, we know that π−1(BK(γix0)) is strongly embeddable.

Since π−1(Ui) ⊂ π−1(Vi) ⊂ π−1(BK(xi)), by the closure of taking subgroups, we conclude

that π−1(Ui) is strongly embeddable for each i ∈ I. Thus, we obtain an equi-strongly embed-

dable cover D = (Di)i∈I of Γ, where Di = π−1(Ui).

Next, we will construct a partition of unity (φDi)i∈I on Γ satisfying the conditions of

Theorem 3.1, then we will conclude the result.

Let R, ϵ > 0 be given and let L be sufficiently large such that

λ(2k + 2)(2k + 3)R

L
≤ ϵ

2
. (4.1)

By the equi-strong embeddability of {π−1(Vi)}i∈I , there exists a family of maps

ξi : π−1(Vi) → ℓ2(π−1(Vi))1

such that each ξi has (R, ϵ
4 ) variation.

Since U is a uniformly bounded cover of X with Lebesgue number L and multiplicity k+1,

Lemma 2.2 tells us that there exists a partition of unity (ϕUi)Ui∈U subordinated to it with the

property: For all x, y ∈ X,

X
Ui∈U

|ϕUi(x)− ϕUi(y)| ≤
(2k + 2)(2k + 3)

L
d(x, y). (4.2)
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Finally, for any γ ∈ Γ, we define

φDi(γ) =
X

v∈π−1(Vi)

ϕUi(π(γ))|ξiγ(v)|2.

Notice first that for each γ ∈ Γ,

X
i∈I

φDi(γ) =
X
i∈I

X
v∈π−1(Vi)

ϕUi(π(γ))|ξiγ(v)|2 =
X
i∈I

ϕUi(π(γ))∥ξiγ∥2 = 1.

Since each ϕUi vanishes outside Ui, each φDi vanishes outsideDi. This implies that {φDi}i∈I

is a partition of unity on Γ and subordinated to D .

Moreover, for all γ, γ′ ∈ Γ with d(γ, γ′) ≤ R, if γ ∈ π−1(Ui), then γ′ ∈ π−1(Vi). So we have

X
i∈I

|φDi(γ)− φDi(γ
′)| =

X
i∈I

��� X
v∈π−1(Vi)

ϕUi(π(γ))|ξiγ(v)|2 −
X

v∈π−1(Vi)

ϕUi(π(γ
′))|ξiγ′(v)|2

���

=
X
i∈I

��� X
v∈π−1(Vi)

(ϕUi(π(γ))|ξiγ(v)|2 − ϕUi(π(γ
′))|ξiγ′(v)|2)

���

≤
X
i∈I

X
v∈π−1(Vi)

|ϕUi(π(γ))|ξiγ(v)|2 − ϕUi(π(γ
′))|ξiγ′(v)|2|

≤
X
i∈I

ϕUi(π(γ))
X

v∈π−1(Vi)

|(ξiγ(v))2 − (ξiγ′(v))2|

+
X
i∈I

|ϕUi(π(γ))− ϕUi(π(γ
′))|.

For the second term, by (4.1)–(4.2) we have

X
i∈I

|ϕUi(π(γ))− ϕUi(π(γ
′))| ≤ (2k + 2)(2k + 3)

L
d(π(γ), π(γ′))

≤ λ(2k + 2)(2k + 3)

L
d(γ, γ′)

≤ ϵ

2
.

For the first term, we have

X
v∈π−1(Vi)

|(ξiγ(v))2 − (ξiγ′(v))2| ≤
X

v∈π−1(Vi)

|ξiγ(v) + ξiγ′(v)||ξiγ(v)− ξiγ′(v)|

≤
� X

v∈π−1(Vi)

|ξiγ(v) + ξiγ′(v)|2
� 1

2
� X

v∈π−1(Vi)

|ξiγ(v)− ξiγ′(v)|2
� 1

2

= ∥ξiγ + ξiγ′∥∥ξiγ − ξiγ′∥

≤ 2∥ξiγ − ξiγ′∥.

This term is bounded by ϵ
2 since each ξi has (R, ϵ

4 ) variation. Therefore
P
i∈I

|φDi(γ)−φDi(γ
′)| ≤

ϵ. Thus, we complete the proof by Theorem 3.1.
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Remark 4.1 Bell [2] proved that a group acting by isometries on a metric space with finite

asymptotic dimension whose R-stabilizers have property A also has property A. We point out

that our argument of Theorem 4.1 is also suitable for Bell’s result. In fact, the partition of

unity constructed in this result coincides with Theorem 4.1. Thus, our approach in this paper

has given an alternative proof to Bell’s.

In [7], the infinite unions property for coarse embeddability and exactness (it is equivalent to

property A for the metric spaces with bounded geometry) were shown by Dadarlat-Guentner.

Proposition 4.1 (see [7]) Let X be a metric space. Suppose that for all R, ϵ > 0 there is

a partition of unity (ϕi)i∈I on X such that

(1) for any x, y ∈ X, if d(x, y) ≤ R, then
P
i∈I

|ϕi(x)− ϕi(y)| ≤ ϵ;

(2) (ϕi)i∈I is subordinated to an equi-coarsely embeddable (resp. equi-exact) cover.

Then X is coarsely embeddable (resp. exact).

The following result is natural.

Proposition 4.2 Let Γ be a finitely generated group which acts on the metric space X

by isometries. If X has asymptotic dimension less than k and there exists x0 ∈ X such that

WK(x0) is coarsely embeddable for every K > 0. Then Γ is coarsely embeddable.

Proof The proof is analogous to Theorem 4.1 with the partition of unity constructed by

φDi(γ) = ϕUi(π(γ))∥αi(γ)∥2,

where {αi}i∈I is similarly defined by the coarse embeddability of each π−1(Vi) in the proof of

Theorem 4.1.

5 Graph of Groups and Relative Hyperbolic Groups

In this section, we will focus on particular examples: Graph of groups and relative hyperbolic

groups.

In [2], Bell proved that a fundamental group of a finite graph of groups whose vertex groups

have property A, also has property A, and a same statement concerning operator norm local-

ization property was obtained by Chen-Wang [6]. In their both proofs, the relative versions of

Theorem 4.1 for property A and operator norm localization property play an important role.

Hence, we have the following parallel result for strong embeddability in the same way.

Proposition 5.1 Let (G,Y ) be a finite graph of groups with finitely generated vertex group-

s {GP }P which is equi-strongly embeddable. Then for any vertex P0 the fundamental group

π1(G, Y, P0) is strongly embeddable.

Proof For the proof we refer to [2, Lemma 3] and [6, Theorem 4.6].

Corollary 5.1 Any amalgamated free products and HNN extensions of groups from groups

with strong embeddability will be strongly embeddable.
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Proof They are both the special graph of groups according to Bass-Serre Theory (see

[15]). In fact, if Y is the graph with two vertices P,Q and one edge y, then

π1(G,Y, P ) = π1(G, Y,Q) = GP ∗Gy GQ

is the free product of GP and GQ amalgamated over Gy.

If Y is the graph with one vertex P and one edge y, then π1(G,Y, P ) is the HNN extension

of Gp over the subgroup ϕȳ(Gy) by means of ϕyϕ
−1
ȳ .

So we conclude the result by Proposition 5.1.

Let Γ be a finitely generated group which is hyperbolic relative to a finite family of subgroups

{H1, · · · ,Hn}. We will prove that Γ is strongly embeddable if and only if each subgroup Hk is

strongly embeddable.

If A is a symmetric set of finite generators of Γ, we denote by dA the corresponding left

invariant metric on Γ. If B is another such set with A ⊂ B, then the identity map p : (Γ, dA) →
(Γ, dB) is equivariant and dB(p(γ), p(γ

′)) ≤ dA(γ, γ
′).

Let S be a finite symmetric set generating Γ. Denote

H =
[
k

(Hk − e).

Let dS and dS∪H be the left invariant metrics on Γ induced by S and S ∪H, respectively.

For n ≥ 1, denote

B(n) = {γ ∈ Γ | dS∪H(γ, e) ≤ n}.

In this section, we always view B(n) as a subspace of Γ equipped with the metric dS . The

following useful recursive decomposition of B(n) is contained in the proof of theorem in [13]:

B(1) = S ∪
�[

k

Hk

�
, (5.1)

B(n) =
�[

k

B(n− 1)Hk

�
∪
� [

x∈S

B(n− 1)x
�
, (5.2)

B(n− 1)Hk =
G

g∈R(n−1)

gHk, (5.3)

where (5.3) represents a partition of B(n − 1)Hk into disjoint cosets according to a fixed set

R(n− 1) of coset representative, R(n− 1) ⊂ B(n− 1).

Proposition 5.2 (see [7, 13]) For every L > 0 there exists C(L) > 0 such that if

Y = {γ ∈ Γ | dS(γ,B(n− 1)) ≤ C(L)},

then for each k,

B(n− 1)Hk ⊂ Y ∪
� [

g∈R(n−1)

gHk \ Y
�

(5.4)

and the subspaces gHk \ Y , g ∈ R(n− 1), are L-disjoint with the metric dS.
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Proposition 5.3 If each Hk is strongly embeddable, so is B(n).

Proof The proof is by induction. For the basis, observe that B(1) is strongly embeddable

by (5.1) and the finite union theorem of strong embeddability. For the induction step, assume

that B(n − 1) is strongly embeddable. Using again the finite union theorem and (5.2) we

are reduced to verifying that each B(n − 1)Hk is strongly embeddable. This follows from the

Corollary 3.1 and Proposition 5.2.

The following proposition is contained in [7], proved by Osin in [13].

Proposition 5.4 (see [7, 13]) The metric space (Γ, dS∪H) has finite asymptotic dimension.

Now we can prove the following theorem which was also obtained by Ji, Ogle and Ramsey

[12, Corollary 4.8].

Theorem 5.1 Let Γ be a finitely generated group which is hyperbolic relative to a finite

family {H1, · · · ,Hn} of subgroups. Then Γ is strongly embeddable if and only if each subgroup

Hk is strongly embeddable.

Proof If Γ is strongly embeddable, then so are its subgroups Hk by the closure of taking

subspaces. For the inverse, assume that each subgroup Hk is strongly embeddable. Let X =

(Γ, dS) and Y = (Γ, dS∪H). We choose x0 = e to be the unit in Γ and define

π : X → Y, γ 7→ γx0.

Then Wn(x0) = B(n) = π−1(BY (e, n)) is strongly embeddable by Proposition 5.3. Note that

X acts isometrically on Y . The conclusion follows from Theorem 4.1.

Acknowledgement The authors are indebted to referees for their useful comments.
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