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1 Introduction

Let F(t) be a local field with nontrivial non-archimedean value, where F is a finite field with

p elements and p is a prime number. We denote the completion of algebraic closure of F(t) by

F((t)). In this paper, we study the discrete criteria and Jørgensen’s inequalities for a subgroup

of the special linear group SL(m,F((t))).

It is an important topic to study Möbius maps in non-archimedean spaces (see [1–2, 4–5, 7–

8]) especially the discrete criteria and Jørgensen inequalities for subgroups of Lie groups. In [2],

Kato discussed the discrete criteria of groups of projective general linear group PGL(2,Cp). In

[1], Armitage and Parker studied the Jørgensen inequality for discrete subgroups of SL(2,Qp),

and of SL(2,F(t)). In [6], Qiu, Yang and Yin gave the discrete criteria of SL(m,Cp). Further-

more, the development of studying the moduli space of rational maps and the Kleinian group by

arithmetic method arises our interest in studying the group SL(m,F((t))). Hence, we concern

about the discrete criteria and Jørgensen inequalities for SL(m,F((t))).

The function field is different from the p-adic number field. The main difficulties that we

should face are to estimate the distance between the primitive roots of unit and the unit, and

show that there exists a finite number of extensions of degree d ≤ n for some given positive

integer n. The character of the residue field of F((t)) is positive. We state our main theorem.

Theorem 1.1 Let G be a subgroup of SL(m,F((t))) with no parabolic element. Then the

group G is discrete if and only if any cyclic subgroup of G is discrete.

Theorem 1.2 Let K be a finite extension of F(t). If a discrete subgroup G of SL(2,K)

contains elliptic elements of finite order only, then G is a finite group.
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Jørgensen’s inequality is a necessary condition for the discreteness of subgroups of SL(2,C),

which has been widely applied in many aspects such as the algebraic and geometric convergence

of subgroups of SL(2,C) and the estimation of the volume of hyperbolic manifolds. It has been

generalized by many authors in various cases, and also plays an important role in the p-adic

analytic space. In [1], Armitage and Parker gave a version of Jørgensen’s inequality of discrete

subgroups for SL(2,F(t)). In this paper, we partially improve their results and generalize those

to SL(m,F((t))).

Theorem 1.3 Let A 6= −I be an element of SL(2,F((t))). Let B be any element in

SL(2,F((t))) such that B neither fixes nor interchanges the fixed points of A. If G = 〈A,B〉 is
discrete with no parabolic elements, then min{|tr2(A)− 4|, |tr[A,B]− 2|} ≥ 1.

Theorem 1.4 If a subgroup G of SL(m,F((t))) is discrete with no parabolic elements, then

for each g ∈ G \ {I}, ‖g − I‖ ≥ 1.

2 Some Facts in F((t))

Let p ≥ 2 be a prime number, and F(t) be the function field of the non-archimedean value,

and F((t)) be the completion of the algebraic closure of F(t), namely F((t)) =
⋃
n≥1

F((t
1
n )). We

denote the valuation group of F((t)) by |F((t))∗|, the integer ring by Op = {z | |z| ≤ 1}, and the

maximal ideal by M = {z | |z| < 1}. The absolute value satisfies the strong triangle inequality

|z − y| ≤ max{|z|, |y|}

for x, y ∈ F((t)). If x, y and z are points of F((t)) with |x− y| < |x− z|, then |x− z| = |y − z|.
Given a ∈ F((t)) and r > 0, the open and closed disks of center a and radius r are defined

by

D(a, r)− = {z ∈ F((t)) | |z − a| < r},
D(a, r) = {z ∈ F((t)) | |z − a| ≤ r}.

However, by the strong triangle inequality, topologically D(a, r)− and D(a, r) are closed and

open, and every point in disk D(a, r)− is the center. This denotes that if x ∈ D(a, r)−, then

D(a, r)− = D(x, r)− (resp. D(a, r) = D(x, r)). If two disksD1 andD2 in F((t)) have non-empty

intersection, then D1 ⊂ D2, or D2 ⊂ D1. For a set E ⊂ F((t)), denote diam(E) = sup
z,w∈E

|z−w|

the diameter of E in the non-archimedean metric. Especially, diam(D(a, r)) = r.

Let P1(F((t))) be the projective space over F((t)) which can be viewed as P1(F((t))) =

F((t)) ∪ {∞}. The chordal distance on P1(F((t))) can be defined by

ρv(z, w) =
|z − w|

max{1, |z|}max{1, |w|}

for z, w ∈ F((t)),

ρv(z, w) =
1

max{1, |w|}
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for w ∈ F((t)) and z = ∞, and

ρv(z, w) = 0

for z = w = ∞.

By the definition of the chordal distance and the strong triangle inequality, it is easy to show

that if |z| ≤ 1, |w| ≤ 1, then ρv(z, w) = |z−w|, and if |z| > 1, |w| ≤ 1, then ρv(z, w) =
|z−w|
|z| = 1,

and if |z| > 1, |w| > 1, then ρv(z, w) =
|z−w|
|z||w| =

∣∣ 1
z
− 1

w

∣∣.

Lemma 2.1 The residue field Op/M ∼= F.

Proof For any x in the finite extension of F(t), we can expand x =
∑
i≥k

ait
i
s , k ∈ Z, and ai

in some finite extension of F. If |x| = 1, then x =
∑
i≥0

ait
i
s . Then x ≡ a0 modM. If x ∈ F((t)),

then there exists a sequence {xn} convergent to x, where each xn is in some finite extension

of F(t). Without loss of generality, we can assume that |xn − xm| < 1 for any n,m ≥ 1. Let

xn =
∑
i≥k

ai,nt
i
s , k ∈ Z and xm =

∑
i≥k

ai,mt
i
s , k ∈ Z. Thus a0,n = a0,m. This implies that

|x− a0,n| < 1, namely x ≡ a0,n modM.

Lemma 2.2 Let d be an positive integer, and ζ be the primitive d-th root of unity, then

|ζ − 1| = 1.

Proof By Lemma 2.1, ζ = a+ u, a ∈ F p, |u| < 1. Since

ζd = ad +

(
d

1

)
ad−1u+ · · ·+

(
d

d

)
ud = 1,

we have ad ≡ 1modM. This implies that |a− 1| = 1.

Lemma 2.3 Let x ∈ F((t)) with |x| = 1. Then the sequence {xpn} has a convergent

subsequence.

Proof If xd = 1 for some positive integer d, then we draw the conclusion. If xd 6= 1 for

any positive integer d, let x = a+ u, where a ∈ F, |u| < 1. By the structure of the finite field,

there exists a positive integer N such that ap
N

= a. Since the character of F is p, we have

xpNk

= ap
Nk

+ upNk

= a+ upNk

. Thus |xpNk − a| = |u|pNk

tends to 0, as k → ∞.

Lemma 2.4 Let g(z) = zn + an−1z
n−1 + · · · + a0 be a polynomial in F((t))[z]. Given a

fixed r > 0, if coefficients of g(z) satisfy |ai| < rn−i, then all roots of the polynomial g(z) are

in the closed disk D(0, r).

Proof If α /∈ D(0, r), then |aiαi| < rn−i|αi| < |αn|. By the ultrametric property, |g(α)| =
|αn + an−1α

n−1 + · · ·+ a0| = |αn| > 0. Then all roots of the polynomial are in the closed disk

D(0, r).

Lemma 2.5 Let

gn(z) = zm +

m−1∑

i=0

ainz
i (2.1)

be a sequence of polynomials in F((t))[z]. If all coefficients ain tend to zero as n → ∞, where

0 ≤ i ≤ m− 1, then all roots of gn(z) tend to zero as n → ∞.
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Proof For any r > 0, we can find a sufficiently large positive integer N such that for any

n > N , |ain| < rn−i, since ain tends to zero as n → ∞, where 0 ≤ i ≤ m− 1. By Lemma 2.4 ,

all roots of gn(z) are in the closed disk D(0, r). Since r > 0 is arbitrary, all roots of gn(z) tend

to zero as n → ∞.

3 Discrete Subgroups of SL(m,F((t)))

Since the product of all eigenvalues of g ∈ SL(m,F((t))) is one, either the absolute value of

each eigenvalue of g is one or there exists at least one eigenvalue whose absolute value is larger

than 1. Thus each non-unit element g ∈ SL(m,F((t))) falls into the following three classes:

(a) g is said to be parabolic if

(1) the absolute value of any eigenvalue of g is 1, and

(2) g can not be conjugated to a diagonal matrix.

(b) g is said to be elliptic if

(1) the absolute value of any eigenvalue of g is 1, and

(2) g can be conjugated to a diagonal matrix.

(c) g is said to be loxodromic if there exists at least one eigenvalue of g whose absolute value

is larger than 1.

For g = (aij) in the matrix ring M(m,F((t))), the norm of g is defined by ‖g‖ = max
1≤i≤m,1≤j≤m

{|aij |}. Obviously, ‖g‖ = 0 implies that each aij = 0. It is easy to verify that ‖αg‖ = |α|‖g‖,
‖g + h‖ ≤ max{‖g‖, ‖h‖} and ‖gh‖ ≤ ‖g‖‖h‖.

We say that a subgroup G of SL(m,F((t))) is discrete if there exists δ = δ(G) > 0 such that

each element g ∈ G \ {I} satisfies ‖g − I‖ > δ, where I denotes the identity.

Obviously, a subgroup G of SL(m,F((t))) is discrete if and only if any sequence consisting

of distinct elements gn ∈ G is not a Cauchy sequence. Since ‖h−1gnh− h−1gh‖ ≤ ‖h−1‖‖gn −
g‖‖h‖, we have ‖h−1gnh−h−1gh‖ → 0, when gn → g, as n → ∞. This means that conjugation

does not change the discreteness.

We show that if G is a discrete subgroup of SL(m,F((t))), then the elliptic element in G is

of finite order.

Lemma 3.1 Let I denote the unit matrix and J denote a nilpotent matrix in M(m,F((t))).

Let λ ∈ F((t)) with |λ| = 1. If f = λI+J , then the sequence 〈fpn〉 has a convergent subsequence.

Especially, if λ = 1, then 〈fpn〉 is a periodic sequence.

Proof Since J is a nilpotent matrix, there exists a positive integer N such that JN = 0.

Thus for any positive integer k > N , we have

fk = (λI + J)k = λkI +

(
k

1

)
λk−1J + · · ·+

(
k

N

)
λk−NJN .

Choose k = pnm > N , then

fpnm

= (λI + J)p
nm

= λpnm

I.

By Lemma 2.3, {λpn} has a convergent subsequence. Therefore the sequence 〈fpn〉 has a

convergent subsequence.
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Theorem 3.1 If the subgroup G of SL(m,F((t))) is discrete, then there is no elliptic

element of infinite order in G.

Proof Suppose that g is an elliptic element of infinite order in SL(m,F((t))). We can

assume that

g =



λ1

. . .

λm


 ,

where λi ∈ F((t)) are eigenvalues of g with |λi| = 1, 1 ≤ i ≤ m.

Therefore λs
i 6= λt

i for any positive integers s, t. By Lemma 2.3, the sequence {λpn

i } has

the convergent subsequence. Thus {gpn} is the sequence consisting of distinct elements and

a convergent sequence. This contradicts the hypothesis. Thus there is no elliptic element of

infinite order in G.

Lemma 3.2 If gn ∈ SL(m,F((t))) → I, as n → ∞, then all eigenvalues of gn tend to 1, as

n → ∞.

Proof The eigenpolynomial fn(λ) = |λI − gn| tends to polynomial (λ− 1)m, since gn tends

to I. By Lemma 2.5, all eigenvalues λn tend to 1.

Lemma 3.3 If there exists a positive number δ = δ(G) such that for any g ∈ G, max{|λ1−
1|, |λ2 − 1|, · · · , |λm − 1|} ≥ δ, where λ1, λ2, · · · , λm are eigenvalues of g, then G is discrete.

Proof If G is not discrete, then there exists a sequence {gn} tending to I, as n → ∞. By

Lemma 3.2, we know that eigenvalues λ1,n, λ2,n, · · · , λm,n of gn tend to 1 which implies that G

is discrete.

Theorem 3.2 Let G be a subgroup of SL(m,F((t))) with no parabolic elements. Then G

is discrete if and only if any cyclic subgroup of G is discrete.

Proof ⇒ It is obviously true.

⇐ By Theorem 3.1, we know that a subgroup G containing any elliptic element of infinite

order is not discrete, which yields that there only exist loxodromic elements or elliptic elements

of finite order.

If g is a loxodromic element, then let λ be the eigenvalue of g with |λ| > 1. By the ultrametric

property, we have |λ− 1| > 1. If g is a elliptic element of the order n, namely gn = I, where n

is the smallest positive integer, then we can assume that g has the form

g =



λ1

. . .

λm


 ,

where λi is an eigenvalue of g, 1 ≤ i ≤ m.

Since gn = I, namely each eigenvalue λi of g satisfies λn
i = 1, by Lemma 2.2, we know that

|λ− 1| = 1. By Lemma 3.3, we can see that G is discrete.

Example 3.1 Let G be generated by elements fn = z + tn, n ≥ 0. Then G is not discrete

but any cyclic group of G is discrete.
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Proof Obviously, fn = z + tn → z, as n → ∞. We see that G is not discrete. Each cyclic

group is generated by element z +
∑
i≥0

ait
i, ai ∈ Fp. Since each element fn is parabolic, we

know that fn is of finite order which implies that the cyclic group generated by 〈fn〉 is discrete.

Lemma 3.4 The finite extension K of degree n of F(t) is Kn(t
1
m ), where Kn is a finite

extension of F of degree ≤ n, and m ≤ n.

Proof Since K is a finite extension of F(t), we see that K is also a local field. We denote

the integer ring, maximal ideal and residue field of K by OK = {z | |z| ≤ 1}, MK = {z | |z| < 1}
and FK = OK/MK respectively.

By the proof of Lemma 2.1, we see that FK is congruent to some finite extension of F. We

claim that FK is some finite extension of F.

For any x ∈ FK, we can write x = a+ u, a ∈ F, |u| < 1. There exists a positive integer N

such that ap
N

= a and xpN

= x. Hence xpNk

= ap
Nk

+ upNk

= a+ upNk

= a+ u which implies

that u = 0. Hence FK ⊂ F, namely FK is some finite extension of F.

Since K is a finite extension of F(t) of degree n, we see that OK = FK(π), where π is the

uniformization element, and |π| = |t| 1
m . We claim that we can choose a uniformization element

π as t
1
n .

Firstly, if we can expand π = t
1
m + a2t

2
m + · · · , then π − a2π

2 = t
1
m + u, where |u| ≤ |t| 3

m .

We write π1 = π−a2π
2 = t

1
m +a3t

3
m . Following this algorithm, let π2 = π1−a3π

3, · · · , πk+1 =

πk − ak+2π
k+2, · · · . This implies that |πk+1 − t

1
m | < |t| k+3

nm . Letting k → ∞, we see that

πk → t
1
m , namely t

1
m ∈ K.

If π = t
1
m +u, where |u| ≤ |t| 2

m , m is prime to p, then there exists a positive integer N such

that m | pN − 1. We consider πpNk

= (t
pNk

m + upNk

). Since
∣∣ upNk

t
pNk

−1
m

∣∣ < |t|P
Nk

−1
m , we see that

t
1
m + upNk

t
pNk

−1
m

= xpNk

t(p
Nk

−1)
∈ OK. This implies that t

1
m + upNk

t
pNk

−1
m

→ t
1
m , k → ∞, t

1
m ∈ K.

If π =
( pr−1∑

i=1

t
i

pr
)
u + at

k
psm + v, where u ∈ OK, |v| < |t| k

psm , m is prime to p, we see that

xpr+s

=
( pr−1∑

i=1

tip
s)
u+ap

r+s

tk(
pr

m
)+ vp

r+s

. This yields that tk(
pr

m
)+ v(p

s+r) ∈ OK. Furthermore,

by the proof above, we know that t
1
m ∈ OK. This implies that p | m, since K is discrete valued

field. However, this is a contradiction.

Let π = t
1

prm + u, where m is prime to p with |u| < |t| 1
prm . Hence πpr

= t
1
m + upr

. By the

proof above, we know that t
1
m ∈ MK. This implies that p | m, since K is discrete valued field.

However, this is also a contradiction.

In the end, we see that K = FK(t
1
m ). Since [K : Fp(t)] = n, we see that n = [K : Fp(t)] =

m[FK : Fp] which yields m ≤ n, [FK : Fp] ≤ n.

Lemma 3.5 Given a positive integer n, there exists a finite number of extensions of degree

≤ n.

Proof Following Lemma 3.4, it is obvious.

Lemma 3.6 There exist only finitely many primitive roots of unity in Km(t
1
n ), where Km

is a finite extension of F of degree m.
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Proof Let λ = a+u ∈, |u| < 1, a ∈ F be a primitive root in Km(t
1
n ). If λs = 1, where s is

a positive integer which is prime to p, then there exists a positive integer N such that s | pN −1

and ap
N

= a.

Hence

λpNk = (a+ u)p
Nk = ap

Nk

+ upNk

= a+ upNk

= λ = a+ u.

Let k → ∞, and then u = upNk

= 0, since |u| < 1.

Lemma 3.7 If λ is the eigenvalue of the elliptic element g of finite order, then ≤ |tr(g)−2| =
1, where tr(g) denotes the trace of g.

Proof Let λ be the eigenvalue of the elliptic element g of finite order, namely λ is the

primitive root of unity. By Lemma 2.2, |λ− 1| = 1. Since trace is invariant by conjugation, we

have tr(g) = a+ d = λ+ λ−1 which implies that |tr(g)− 2| = |λ+ λ−1 − 2| = |λ−1|2

|λ| = 1.

If an eigenvalue of g is −1, then the other eigenvalue is also −1, since the determinant is 1.

Thus g can be conjugated to the diagonal matrix −I, and thus g = h(−I)h−1 = −hh−1 = −I.

Theorem 3.3 Let K be a finite extension of SL(2,F(t)). If a discrete subgroup G of

SL(2,K) contains elliptic elements of finite order only, then G is a finite group.

Proof Let K̃ be a finite extension of K with [K̃ : K] ≤ 2. Then K̃p is also a finite extension

of Fp(t). Since Fp(t) is locally compact, we know that K̃ is locally compact. By Lemma 3.4,

we see that K̃ ⊂ Kp(t
1
n ).

For some fixed element g ∈ G\{I}, we can assume that there exists an element h ∈ G which

can not commutate with g 6= ±I, namely λ2 6= 1. Thus g, h can be respectively conjugated to

g =

(
λ 0
0 λ−1

)
, h =

(
a b
c d

)
∈ SL(2,K(λ)).

Then the commutator

[g, h] = ghg−1h
−1

=

(
ad− bcλ−2 −abλ2 + ab
cd− cdλ−2 −bcλ2 + ad

)
.

Therefore tr[g, h] = 2ad− bc
(
λ2 + 1

λ2

)
= 2− bc

[(
λ+ 1

λ
)2 − 4

]
= 2− bc

(
λ− 1

λ

)2
. By Lemma

3.7,
∣∣bc

(
λ− 1

λ

)2∣∣ = 1. Since λ2 is also a primitive root of unity and λ2 6= 1, we have |λ2−1|
|λ| = 1.

Therefore |bc| = 1.

Suppose that there exist infinitely many distinct elements hn which can not commutate with

g, and let hn have the following form

hn =

(
an bn
cn dn

)
.

Since andn − bncn = 1 and |bncn| = 1, we see that andn is also bounded. We also have

an, dn are bounded, since an + dn is bounded.

Assuming that bn, cn are bounded. Then an, dn, bn, cn are all bounded. Since Fp(t) is locally

compact, the sequence {an, dn, bn, cn} has convergent subsequences, Then hn has the convergent

subsequence, which contradicts the discreteness of G.
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Suppose that {bn} or {cn} is unbounded. Without loss of generality, we suppose that

bn → ∞, as n → ∞. Since |bncn| = 1, cn → 0, as n → ∞. Consider the sequence {h1hn}.
Since

h1hn =

(
a1an + b1cn a1bn + b1dn
anc1 + d1cn bnc1 + d1dn

)
,

we have tr[h1hn] = a1an+b1cn+bnc1+d1dn. Since b1, c1 are nonzero and an, dn are bounded, it

follows a1an+b1cn+bnc1+d1dn → ∞, as n → ∞. Therefore when n is sufficiently large, h1hn is

a loxodromic element which contradicts the fact that G has elliptic elements only. Hence there

do not exist infinitely many elements which can not commutate with g. Suppose that h ∈ G

can commutate with g. Then h and g can be conjugated to diagonal matrices simultaneously.

Since eigenvalues of h ∈ G are primitive roots of unity in K̃, by Lemma 3.4, there exist finitely

many such h. Summing up, there are only finitely many elements in G.

But the result we proved above is not true for F((t)), even for F, since they are infinite

extensions of F(t).

Example 3.2 The group SL(2,F) is discrete.

Proof Since each |x − 1| = 1, for any 1 6= x ∈ F, and the determinant of any element g is

1, we know that G is discrete.

4 Jørgensen’s Inequality for SL(m,F((t)))

In [1], Armitage and Parker gave a version of Jørgensen’s inequality in the non-archimedean

metric space, especially for SL(2,F(t)).

Theorem 4.1 (see [1, Theorem 4.2]) Let A be an element of SL(2,F(t)) conjugate to a

diagonal matrix. Let B be any element of SL(2,F(t)) so that, when acting on F(t) ∪ {∞} via

Möbius transformations, B neither fixes nor interchanges the fixed points of A. If G = 〈A,B〉
is discrete, then max{|tr2(A) − 4|, |tr([A,B])− 2|} ≥ 1.

According to the results, the discrete subgroup does not contain any parabolic element

which yields that a generator A ∈ SL(2,F((t))) can be conjugated to a diagonal matrix. If the

subgroup G generated by −I and B ∈ SL(2,F((t))), then the group G = {(−1)iBj} is very

trivial. Hence we do not consider −I as the generator.

The Jørgensen’s inequality is built for SL(2,F((t))).

Theorem 4.2 Let A 6= −I be an element of SL(2,F((t))). Let B be any element in

SL(2,F((t))) such that B neither fixes nor interchanges the fixed points of A. If G = 〈A,B〉 is
discrete with no parabolic elements, then min{|tr2(A)− 4|, |tr[A,B]− 2|} ≥ 1.

Proof If [A,B] = I, then ABA−1B−1 = I. This implies that AB = BA, which means that

B can fix or interchange the fixed point of A. This contradicts the hypothesis.

We assume that [A,B] 6= I. Let λ and 1
λ
be eigenvalues of A. If A is a loxodromic element,

we can assume that |λ| > 1. Hence
∣∣λ− 1

λ

∣∣ = |λ| > 1, and then |tr2(A)− 4| =
∣∣(λ+ 1

λ

)2 − 4
∣∣ =∣∣λ− 1

λ

∣∣2 = |λ| > 1. If A is an elliptic element of finite order, then |λ− 1| = 1.
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Let ζ and ζ−1 be the eigenvalues of the [A,B], and then ζ 6= 1. If [A,B] is a loxodromic

element, we can assume that |ζ| > 1. Hence
∣∣ζ− 1

ζ

∣∣ = |ζ| > 1 which implies that |tr[A,B]−2| =
∣∣(ζ + 1

ζ

)
− 2

∣∣ = |ζ−1|2

|ζ| = |ζ| > 1. If [A,B] is an elliptic element of finite order, then |ζ − 1| = 1.

In [3], Martin discussed the group generated by finitely many elements, and estimated the

maximum distance between the generator and the identity, and gave a version of Jørgensen’s

inequality for the real Möbius transform in higher dimensions.

Theorem 4.3 (see [3, Theorem 4.5]) Let f and g be Möbius transformations of Sn.

If f and g together generate a discrete non-elementary group, then max{‖gifg−i − I‖ : i =

0, 1, 2, · · · , n} > 2−
√
3.

Lemma 4.1 If g ∈ SL(m,F((t))) and ‖g−I‖ < 1, then all eigenvalues of g are in D(1, 1)−.

Proof Let g = (bij) ∈ SL(m,F((t))). Since ‖g − I‖ < 1, we have |bij − δij | < 1, where

δij = 1, if i = j; otherwise δij = 0, if i 6= j.

Then eigenpolynomial

|λI − g| =

∣∣∣∣∣∣∣∣∣

λ− b11 −b12 · · · −b1m
−b21 λ− b22 · · · −b2m
...

...
...

...
· · · · · · −bm(m−1) λ− bmm

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

(λ − 1) + 1− b11 −b12 · · · −b1m
−b21 (λ− 1) + 1− b22 · · · −b2m
...

...
...

...
· · · · · · −bm(m−1) (λ − 1) + 1− bmm

∣∣∣∣∣∣∣∣∣

.

The eigenpolynomial can be expressed as G(λ− 1) = (λ− 1)m + am−1(λ− 1)m−1 + · · ·+ a0,

where the coefficient ai of eigenpolynomial G(λ − 1) is a combination of the cij = δij − bij

by product or addition. By the ultrametric property, we have |ai| ≤ max{|cij |} < 1. Since

|ai|
1

m−i < 1, there exists a positive number r satisfying 0 < r < 1 such that |ai| < rm−i. By

Lemma 2.4, each eigenvalue of g is in D(1, 1)−.

Theorem 4.4 If a subgroup G of SL(m,F((t))) is discrete with no parabolic elements, then

for each g ∈ G \ {I}, ‖g − I‖ ≥ 1.

Proof By Theorem 3.1, we know that each element in G is either a loxodromic element or

an elliptic element of finite order. If g in G is a loxodromic element, then at least one eigenvalue

λ whose absolute value is larger than 1. Hence |λ − 1| = |λ| > 1. If g is an elliptic element of

finite order, then each eigenvalue λ satisfies |λ− 1| = 1.
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