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Abstract The author proves that there are at most two meromorphic mappings of C™
into P"(C) (n > 2) sharing 2n-+2 hyperplanes in general position regardless of multiplicity,
where all zeros with multiplicities more than certain values do not need to be counted. He
also shows that if three meromorphic mappings f*, f2, f> of C™ into P"(C) (n > 5) share
2n+1 hyperplanes in general position with truncated multiplicity, then the map f! x f2x f3
is linearly degenerate.
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1 Introduction

In 1926, Nevanlinna [4] showed that two distinct nonconstant meromorphic functions f and
g on the complex plane C cannot have the same inverse images for five distinct values, and that
g is a special type of linear fractional transformation of f if they have the same inverse images
counted with multiplicities for four distinct values. These results are usually called the five
values and the four values theorems of Nevanlinna. After that, many authors have extended
and improved the results of Nevanlinna to the case of meromorphic mappings into complex
projective spaces. These theorems are called uniqueness theorems or finiteness theorems. To
state some of them, first of all we recall the following.

For a divisor v on C™, which is regarded as a function with values in Z, and for a positive
integer k or k = oo, we set

ver(z) = {O, if v(z) >k,
=R v(z), ifv(z) <k.

Similarly, we define vs(z). The zero divisor of a meromorphic ¢ will be denoted by v,.
Let f be a nonconstant meromorphic mapping of C™ into P*(C) with a reduced representa-

tion f = (fo:--+: fn), and H be a hyperplane in P*(C) given by H = {aowo+ - - - + anw, = 0},
where (ag, -+ ,an) # (0,---,0). Set (f,H) = > a;f;. We see that vy gy does not depend on
i=0

the choice of the reduced representation of f and the representation of H.
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Let Hy,--- , Hy be q hyperplanes of P (C) in general position and let k1, - - - , k4 be g positive
integers or +00. Assume that f is linearly nondegenerate and satisfies

dim{z; v ), <k, (2) - Vg, <h; (2) >0 <m =2, 1<i<j<q

Let d be an integer. We consider the set F(f, {H;, k;}{_,,d) of all meromorphic maps g : C™ —
P™(C) satisfying the conditions:

(a) min (V(f,qu)7§qu7 d) = min (V(g,qu)7§k7:ad)a 1<j<g,
q

(b) f(z) = g(z) on U {z:v(pm),<n,(2) > 0}

Ifhki ==k = +oo we will write F(f, {H;}{_,.d) for F(f,{H;,00}] ;,d). We see
that conditions ( ) and (b) mean the sets of all intersecting points with multiplicity at most k;
(truncated to level d) of f and g with the hyperplane H; are the same, and two mappings f
and g are identify on these sets.

Denote by #S the cardinality of the set S. There have been many results on uniqueness
problem for the case of k1 = -+ = k, = +oo. Firstly, in 1983, Smiley [9] proved that
tF(f,{H;}]_,,1) = 1 for ¢ = 3n + 2. In 2006, Thai and Quang [10] showed that the re-
sult of Smiley is still valid for ¢ = 3n 4+ 1 and n > 2. In 2009, Dethloff and Tan [2] proved
that this result still holds for ¢ = [2.75n] with n big enough, and then Chen and Yan in [1]
reduced the number ¢ to 2n + 3. After that, in 2011 Quang [6] improved these results to the
caseof g =2n+3 and ky =--- = k; > %’j_;” As far as we known, there is still no
uniqueness theorem for meromorphlc mappings sharing less than 2n + 3 hyperplanes regardless
of multiplicities.

For the case ¢ = 2n+2, in 2011 Yan and Chen [11] proved a degeneracy theorem as follows.

Theorem A If ¢ = 2n+ 2, then the map f' x f? x f3 of C™ into P"(C) x P*(C) x P"(C)
is linearly degenerate for every three maps f, f2, f3 € F(f, {H;}_,,2).

The first finiteness theorem for the case of meromorphic mappings sharing 2n+2 hyperplanes
is given by Quang [7] in 2012 and its correction [8] as follows.

Theorem B Ifn >3 and ¢ = 2n+ 2, then § F(f,{H;}_;,1) <2.

We would also like to emphasize here that in the above two results, all intersecting points
of the mappings and the hyperplanes are considered, i.e., k; = 400 for all i. The techniques
used in the proofs of Theorems A and B are based on the estimation of the counting function
of the Cartan’s auxiliary function. But they do not work for the case where k; < +o0o0. Our
first purpose in this paper is to improve the above result by considering that case (including
the case of n = 2). Namely, we will prove the following.

Theorem 1.1 Let f be a linearly nondegenerate meromorphic mapping of C™ into P™(C)
(n > 2). Let Hy,- - ,Hopyo be 2n + 2 hyperplanes of P™*(C) in general position and let
k1, ,knto be positive integers or +o0o. Assume that

dim{z;y(f,Hi),Ski(Z) “V(f,Hy),<k; (Z) > O} <m-2, 1<i<j<2n+42

and

< mi { n+1 5n—9 n®>—1 }
— — < min
— ki+1 3n2 +n’ 24n + 127 10n? + Sn

Then $F (f, {Hi, k:}7"F%,1) < 2.
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In order to prove this theorem, We ﬁrst prove that f1 A f2 A f3 = 0 for every three maps

FU 2 3 i F(f {Hy ki y2n201) if Z =7 < 525 (see Lemma 3.2). And then, we improve

3n2+n

the estimate of the counting functlon of the Cartan’s auxiliary function (see Lemma 3.6).

The last purpose of this paper is to prove a degeneracy theorem for three mappings sharing
2n + 1 hyperplanes. Namely, we will proved the following.

Theorem 1.2 Let f be a linearly nondegenerate meromorphic mapping of C™ into P™(C)
(n > 5). Let Hy, -+ ,Hopny1 be 2n + 1 hyperplanes of P*(C) in general position and let
ki, ,kopy1 be positive integers or +o0o such that

dim{z;y(f,Hi),Ski(z) “V(f,H;),<k; (Z) > O} <m-2, 1<i<j<2n+42.
If there exists a positive integer p with p < n and

1 - np—3n—p
ki+1 ~4n?243np—n’

i=1

then the map f! x f2 x f3 of C™ into P*(C) x P*(C) x P*(C) is linearly degenerate for every
three maps .fla f27 f3 S ‘F(fa {H’La kl}?ﬁi‘rlvp)

2 Basic Notions in Nevanlinna Theory

In this paper, we will use the standard notation from Nevanlinna theory due to [6-8]. As
usual, we denote by Ni: ]( ), NLMJR(T) and Ng}/gk(r) the counting functions of the divisors
Vo, Vo, <k and v, >p respectively, where ¢ is a meromorphic function on C™. For brevity we
will omit the superscript M if M = co.

For a set S C C™, we define the characteristic function of S by

(2) 1, ifzes,
Z) =
s 0, ifzgS.

If the closure S of S is an analytic subset of C™, then we denote by N(r,S) the counting
function of the reduced divisor whose support is the union of all irreducible components of S
with codimension one.

For a meromorphic mapping f of C into P™(C) and a hyperplane H in P"(C) with f(C™) ¢
H, we denote by T¢(r) the characteristic function of f and my g (r) the proximity function of f
with respect to H (if f(C™) ¢ H). The proximity function of a nonzero meromorphic function
@ is defined by

m(r, ¢) = / logmax (], 1)os
S(r)
As usual, by the notation “||P” we mean the assertion P holds for all r € [0, 00) excluding

a Borel subset E of the interval [0, c0) with [, dr < oc.
The following results play essential roles in Nevanlinna theory (see [5]).

Theorem 2.1 (The First Main Theorem) Let f : C™ — P™(C) be a linearly nondegenerate
meromorphic mapping and H be a hyperplane in P"(C). Then

N(f_’H)(T)-i-mf,H(T):Tf(T), r> 1.
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Theorem 2.2 (The Second Main Theorem) Let f : C™ — P"(C) be a linearly nondegen-
erate meromorphic mapping and let Hy,--- ,H, be hyperplanes in general position in P™(C).
Then

g =n = DTp(r) < 37Ny () + 0Ty ),

For meromorphic functions F,G,H on C™ and a = (a1, ,q,) € Z7, we define the
Cartan’s auxiliary function as follows:

1 1 1
1 1 L
o (F,G,H):=F-G-H-| F G o
1 1 1
7 (@) ()
(7) (@) (7
Lemma 2.1 (see [3, Proposition 3.4]) If ®*(F,G,H) = 0 and ®*(+, 5, %) = 0 for all o
with |a| <1, then one of the following assertions holds:

()F G G=HorH=F,
(i) £ el H and = are all constants.

Lemma 2.2 Let f!, f2 f? be three maps in F(f,{H; ki}l_,,1). Assume that f* has a
representation f* = (fi : D fi), 1 <i < 3. Suppose that there exist s,t,1 € {1,---,q} such

that
’ (flﬂHS) (flaHt) (flaHl)
P:=det | (f? Hs) (f%H,) (f%H) | #0.
(fS?HS) (fgaHt) (fgaHl)

Then we have
Tr)> > (N, min (e my<i ) = N < () +2ZN§}]H r) + o(T(r)),

1<u<3
i=s,t,l

s

where T(r) = 23: Tpu(r).

u=1
Proof Denote by S the closure of the set
U 10mu U {=svgm),<n @) vim),<x (2) > 0}
1<u<3 1<i<j<2n+2

Then S is an analytic subset of codimension at least two of C™.

For z ¢ S, we consider the following two cases.

Case 1 =z is a zero of (f, H;) with multiplicity at most k;, where i € {s,¢,1}. For instance,
we suppose that i = s. We set

m = min{l/(f17Hs)7§ks (Z), V(f2,Hs),Sks (Z), I/(fs,Hs),Sks (Z)}

Then there exists a neighborhood U of z and a holomorphic function h defined on U such that
Zero(h) = UNZero(f, Hs) and dh has no zero on Zero(h). Then the functions ¢, = (fl;—mH) (1<
u < 3) are holomorphic in a neighborhood of z. On the other hand, since f! = f2 = f3 on
Supp v(y,1,),<k,, We have

Py, = (futh)(fval) - (fule)(fvat) =0 on Suppy(.f7Hs)7§ks7 I<u<v<3.
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Therefore, there exist holomorphic functions 1), on a neighborhood of z such that Py, = ht),,.
Then we have

P = R (p11has — @ath13 + @3th12)
on a neighborhood of z. This yields that

q

1 1

vp(z) 2m+ 1= 37 (min {vipemy e (2} =Y <, () +2D v <, (2)
i=s,t,l i=1

Case 2 z is a zero point of (f, H;) with multiplicity at most k;, where i & {s,t,1}. There
exists an index v such that (f!, H,)(z) # 0. Since fl(2) = f2(2) = f3(z), we have that
(f* Hy)(z) 20 (1 <u<3) and

(fYHy)  (fLHy) o (f H
, (fYHo) (fY Ho)  (f'Hy)
(f% Hs) (f2Hy) (£ H)
"= 1;[1 A ) (R H) ()
(f°,Hs)  (f°Hy)  (f° H)
(f37Hv) (f37Hv) (f37Hv)
(f', Hy) (', He) (/' H)
, (f', Hy) (f* Hy) (f* Hy)
~ 0 qet | U HS (L H) o (P H) (FLHY) (7 H)) (f1 Hl)
e (f%H,)  (fLH) (P H) (L H) (2 H) (FY H)
(f°Ho) (fYHs) (f°H) (S H) (P H) (f H
(f%H,)  (fLH) (B H) (fLH) (P H) (FLH)

vanishes at z with multiplicity at least two. Therefore, we have

vp(z)22=Y (13333{u(fu ek (2}~ v (z))—|—ZZV([;]7H”)SM(2').

i=s,t,l i=1

Thus, from the above two cases we have

_ (1]
vp(z) > Zl(lgngg{v (ot ()} = v )+2ZVW>
1=s,t,
for all z outside the analytic set S. Integrating both sides of the above inequality, we get
. 1] (1
Np(r) > ZI(N(T’ 12223{’/(.7‘“,H7:),§k¢}) N(fH ) +2ZN(fH)<k r) +o(T(r)).
i=s,t, ==

By Jensen’s formula and the definition of the characteristic function we have

Np(r) = /S . JoalPlow +0()

3
: uz::l /S(r) log | f*[lom +O(1) =T(r) + o(T(r)).

Thus, we have

q
T0)= Y (N(r min (Mo i) = N e () 230 N o, () +0(T0)).

i=s,t,l == i=1

The lemma is proved.
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3 Proof of Main Theorems

Let f be a linearly nondegenerate meromorphic mapping of C™ into P"(C). Let Hy, - - , Hapto
be 2n + 2 hyperplanes of P"(C) in general position and let k; > n (1 <1 < 2n + 2) be positive
integers or +oo with

dim{z; vs,m),<hi (2) V(). <hy (2) > 0 Sm =2, 1 <i<j<2n+2.

In order to prove Theorem 1.1, we need the following lemmas.

2n+2

Lemma 3.1 If Y. = < L1 then every mapping g € F(f, {Hi,ki}ﬁ#,l) is linearly
i=1

ki+1 n?
nondegenerate and
1 Ty(r) = O(Ty(r)) and |[|Ty(r) = O(Ty(r)).

Proof Suppose that there exists a hyperplane H satisfying g(C™) C H. We assume that

J and g have reduce representations f = (fo : --- : fn) and g = (go : -+ : gn), respectively.
Assume that H = {(wo D twy) Wi = 0}. Since f is linearly nondegenerate, (f, H) # 0.
2n+2

On the other hand, (f, H)(z) = (g9, H)(z) =0 for all z € U {v(f,m,),<k, }, hence
i=1

2n+2
fH) Z NfH)<k
It yields that
2n+2 2n+-2
1 1
[[T¢(r) = Npmy(r) ZNfH)<k Z(N([f]H)() N([f]H)>k())
=1

2n+2 2n+2 2n+2

2 30 TN = 3 ) 2 (M = 3 g )T ety
=1

Letting » — +o00, we get

3=

i=1 k
This is a contradiction. Hence g(C™) cannot be contained in any hyperplanes of P"(C). There-

fore g is linearly nondegenerate.
Also by the Second Main Theorem (see Theorem 2.2), we have

2n+2 2n+42
lI(n + 1)1, Z NEL @)+ o(Ty(r) < 37 n NELL () + o(Ty ()
=1
2n+2
1 1
= > nWNighy <, () + Nig gy s, (1) + 0Ty (1))
=1
2n+2 ] 1
1
: ; (N0, 20,0+ g To(r)) + olTy(0)
2n+2

IN

S (110 4 1 Taln) + 0Ty 0) 4 150
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Thus
2n+2

(n+ 1— Z k:k 1)T9(7‘) < n(2n+2)Ty(r) + o(Ty(r) + Ty(r)).

We note that
2n+2

n+1-— Zl kij—l

Hence ||T,(r) = O(T¢(r)). Similarly, we get ||T¢(r) = O(T,(r)).

Lemma 3.2 Assume that n > 2 and

< .
~ ki+1 n@Bn+1)

Then for three maps f, f2, f> € F(f, {H;, ki}:"F%,1) we have f* A f2A f3 = 0.

Proof By Lemma 3.1, we have that f° is linearly nondegenerate and ||Tys(r) = O(T¢(r))
and ||Ty(r) = O(Ty=(r)) for all s =1,2,3.
Suppose that f1 A f2 A f3 £ 0. For each 1 < i < 2n 4+ 2, we set

1
ZN[f“H)<k (r) = (2n+1)N([f]H)<k (r).

Here, we note that for positive integers a,b,c¢ we have (min{a,b,c} — 1) > min{a,n} +
min{a,n} + min{a,n} — 2n — 1. Then
i g (1]
12323{V(f“H) (z)} VirH,< Z fu Hy),<k; () = (2n+ 1)y, Ve Hy), <k (2)

for all z € Supp v(f,1,),<k,- This yields that

N(r mln {V(fu Hy), <k (2 )}) - N([}{Hi)éki(r)

1<u
n 1
ZN([fL (r) = (2n+1)N([f]H) (1) = Ni(r).

We denote by Z the set of all permutations of the (2n 4 2)-tuple (1,---,2n + 2), i.e

T=A{I= (i1, iont2) © {i1, - ,long2} ={1,---,2n+2}}.

For each I = (i1, ,i2n42) € Z we define a subset E; of [1,+00) as
Er={r>1: Ny(r)>---> Niy,.,(r)}.
It is clear that |J E; = [1,+00). Therefore, there exists an element of Z, for instance it is
Iy=(1,2,--- ,27116—12— 2), satisfying
/ dr = +o0.
Er,

Then, we have Ny(r) > Na(r) > --+ > Nay1o(r) for all r € Ey,.
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We consider M? as a vector space over the field M. For each i = 1,---,2n + 2, we set
= ((f' Hi), (f* Hy), (f°, Hy)) € MP.

We put
s=min{i : Vi AV; £ 0}.

Since fLA f2A f3#0, we have 1 < s < n+ 1. Also again by f* A f2 A f3 # 0, there exists an
index t € {s+1,--- ,n+ 1} such that Vj A V5 A V; # 0. This means that

P = det(V1, Vi, V;) 2 0.

3
Set T'(r) = > Tyu(r). By Lemma 2.2, for r € E;, we have

q

. 1

T(r) > (N(Ta 1<m51<13{y(f“,H7:)7§k7:}) ([f]H ),<k; (r ) + 22 N([f],Hi),gki (r) +o(T(r))
i=1,s,t == i=1

> Ni(r) + Nao(r) + 2D N ) 2, () + o(T(r)

i=1
2n+2 2n+2
[
)42 3 Nz 0, 7) +0(T()
1 Int2 3 ] 2n+2 n
1
- (ZNf“H><k 2) = @nA NG, (2 )+2ZN<f,Hi>,§ki(’")
=1 u=l i=1
1 A2 3 in] 2nt2 3
A iy B
1 1 2n+2 [ ]
B (1 + 3_) n+1 ; uX::l N(fu-,Hi)>§ki (T)
1 1 2n+2 3 [ ] [ ]
= (1 i %) nt1 ;(Nw 1) (1) = Nige )55, (1)
1 1 3 2n+2 n
> (1 —) ( 1-— )Tu T
_(+3n n+1uX::1 n ;kz 1 pu(r) +o(T'(r))

1 3n+1 1
= 1 _ T T )
(1+5 3(n+1) ; kﬁl) (r) +o(T(r))
Letting  — 400 (r € Ep,), we get

1 3n+1
1>14— —
=ty Bn+1) & kit

This is a contradiction.
Hence, f* A f2 A f3 = 0. The lemma is proved.

Now for three mappings f', f2, f3 € F(f, {Hi, ki}?"12,1), we define

,F;azg}‘kgg (0<k<2,1<i,j<2n+2),
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= ((f*, Ha), (% H:), (f?, Hy)) Eg\/lf’m
o Ty ={z;v(s,1,),<k,(2) > 0}, Si = U {2,105k (2) >0},

u=1

3
o Ri= N {= v, 1) >k (2) > 0},

u=1

o v = {2,k > vipu p)(2) = Vipo 1) (2) = Vg, m,)(2) for a permutation (u,v,t) of (1,2,3).
We write V; 2V if V; AV = 0, otherwise we write V; 2 Vj. For V; 2V}, we wirte V; ~ Vj
if there exist 1 < u < v < 3 such that Féj = Fjj, otherwise we write V; ¢ V.

Lemma 3.3 With the assumption of Theorem 1.1, let h and g be two elements of the family
F(f, {Hyi kY272 ,1). If there exists a constant X and two indices i,j such that
(h,H;) (g, Hj)

then A = 1.

Proof By Lemma 3.1, we see that h and g are linearly nondegenerate and have the

characteristic functions of the same order with the characteristic function of f. Set H =

(h>Hi) i ( ;Hi)
on and G = —(g)Hj) and

St ={zvmn,m,),58 (2) > 0} U {209 1,),5k,(2) >0}, 1<t <2n+2.

Then H = AG. Supposing that A # 1, since H = G on the set |J T3\ (S; U S%), we have

t#i,j
U T C S{US). Thus
t#i,j
1
0> N([f]Ht) 2 (1) = (N(r,8]) + N(r, 8}))
t#4,7
1 1 1
> 5 2 Nisz,< (1) + Nig <1, (1) = (N (. 5) + N(r, 57)
t#i,j
1 (] il O l )
n n 1
2 5 2 N w (1) + Nig ) (1) = > Nty e )+ Nigly 5, (1)
t#i,j t=1
n— 1 2n+2 1
2 = (Tn(r) +Ty(r) — oy 7 (Tn(r) +Ty(r) + o(Ts ().
t=1
Letting » — 400, we get
n—1 plasy 1

This is a contradiction. Therefore A = 1. The lemma is proved.

Lemma 3.4 Let f', 2, f3 be three elements of F(f, {H;, ki}2"2,1), where k; (1 < i <
2n + 2) are positive integers or +o0o. Suppose that f1' A f2A f3 =0 and V; ~ V; for some
distinct indices i and j. Then f1, f2, f? are not distinct.

Proof Suppose that f!, f2, f2 are distinct. Since V; ~ Vj, we may suppose that F7 =
Fy #+ FY. Since fYA f2A f3 =0 and f! # f2, there exists a meromorphic function a such
that

FY =aF +(1-a)FY, 1<t<2n+2.
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This implies that F: = Flij = ng . This is a contradiction. Hence f!, 2, 2 are not distinct.
The lemma is proved.
Lemma 3.5 With the assumption of Theorem 1.1, let f1, f2, f3 be three maps in F(f,{H;,
}f"fz, 1). Suppose that f*, f2, 3 are distinct and there are two indices i,7 € {1,2,---,2n +
2} (i # j) such that V; 2V} and

D% = 0 (FY, Fy \Fy) =0

for every o = (o, -+ , ) € ZI with |a| = 1. Then for every t € {1,---,2n+ 2} \ {i}, the
following assertions hold:

(i) % =0 for all |af <1,

(ii) if V; & Vi, then FY Fi FY are distinct and

Ny <n (1) 2 D0 N iy <0, () = Nl <4, (1) = 2N (r, 53) + N (1, 51))
SsF#ULt
(1] [1]
> D Niim,er (1) = N < (1) QZZNWku ().
s#i,t u=1s=1i,t

Proof By V; 2V, we may assume that FJ" — FI" 0.
(a) For all a € Z1* with |a| = 1, we have ®¢; = 0, and hence

(L) = ———— (' — F") DY(FJ’ — F]") — (F}' — F{") - D*(F§' - F}’
() = G (B = HO - DR = B = (B = F) - (B = )
. 1 1 1
Fi]'L F‘2]l Fg]l :O,

T (F R o ( i o g o i
F = FO° | peqrf) po(Ff) DR
Since the above equality holds for all || = 1, then there exists a constant ¢ € C such that

ji ji
By —Ff
Ji Ji
By — Fy

By Lemma 3.2, we have f' A f2 A f3 = 0. Then for each index t € {1,---,2n + 2} \ {i,j}, we
have
(flvHi) (f17 ) (flth

0=det | (f2,Hi) (fo,H ) (f2, Hy
(fs,Hi) (fs,Hj) (fs,He

)
)
)
1 F” F“)

H det [ 1 F” Fii

1 1_7‘.7Z th
e
F{'—F]" Fy - F/'

—

u=

ﬁ

u=1

Thus
(F' = ') (R = B = (Ff' = F") - (Ff* = FIY).



Degeneracy and Finiteness Theorems for Meromorphic Mappings in Several Complex Variables 261

If F3' — F{" = 0, then Fi' — F{" = 0, and hence ®¢; = 0 for all & € Z7" with |a| < 1. Otherwise,
we have ) , g .
O
Fi —F R 7

This also implies that

1 1 1
o4 =F'-Fyt-Fit | FF Fl Fli
De(F{') D(F3') D*(F)
. . . Fti _ pti Fti_ pti
_ it | it it 2 1 3 1
_Fl F2 F3 Da(Fth_Fltz) Da(ng—Ffl) ‘

- Fi (P = F)

— it | pit | it ; ; i '
=F"-Fy - Fy «Da(Fth_Fltl) c'DO‘(FQtZ_Fltl)

o

Then one always has ®% = 0 for all ¢ € {1,---,2n + 2} \ {i}. The first assertion is proved.
(b) We suppose that V; % V;. From the above part, we have

cF5i 4 (1 —e)F = F5',  s#i.

By the supposition that f!, 2, f3 are distinct, we have ¢ ¢ {0, 1}. This implies that F}, F§¢, Fit
are distinct.

We see that the second inequality is clear, then we prove the remain first inequality. We
consider the meromorphic mapping F* of C™ into P*(C) with a reduced representation

F' = (Ff'hy : Fi'hy),

where h; is a meromorphic function on C™. We see that

te

TFt(r):T( §t1)<T( Fl“)+T( th)+0()

<T(r, F{Y) +T(r, F3') + O(1) < Tpa(r) + Ty2(r) + O(1) = O(T(r)).

For a point z ¢ I(F')US; U S; which is a zero of some functions Fl'h; (1 <u < 3), z must
be either zero of (f, H;) with multiplicity at most k; or zero of (f, H;) with multiplicity at most
k¢, and hence

_ (1]
ZUF“’H =l=v (f,Hi)-,Ski(Z)+V(f=Ht)-,Skt(Z)'

This implies that

1 1
ZUF“ht f]H) (2)+ U([,f]7Ht)7§kt (2) + xs:(2) + xs,(2)

outside an analytic subset of codimension two. By integrating both sides of this inequality, we
get

ZNEJ% <N < )+ NGy <4, () + N, S0) + N (7, S0). (3.1)
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By the second main theorem, we also have

3

[ Te(r) <D Nipk,, () + o(T(r)). (3.2)

On the other hand, applying the first main theorem to the map F? and the hyperplane
{wog —wy = 0} in P1(C), we have

2n+2
Tpe(r) > Npsi_pgipn, ( Z Ny < () = N(r,8;) = N(r, S)). (3.3)
il t
Therefore, from (3.1)—(3.3) we have
2n+2
1 1 1
ING 1< §:M5E ) =N () = 2AN(r, Si) + N(r, 1) + o(T(1)).
Pl t

The second assertion of the lemma is proved.

Lemma 3.6 With the assumption of Theorem 1.1, let f1, 2, f3 be three meromorphic map-
pings in F(f,{H; k; 12"#,1). Assume that there exist i,j € {1,2,---,2n+ 2} (i # j) and
a € 21 with |a| =1 such that ®f; # 0. Then we have

3 2n+2
T)ZZN&ZLHM +2kaH)<k () +2 3 Nl <, (7)
v =t tirj
—@n+ DN o () = e+ NG () + N wy)
- N(r, S;) — N(r,S;) — (2n—2)N(r,R;) — (n —1)N(r,R;) + o(T(1))
3 2n+2
Z Z N(fo .2 (1) D Ng}lLHj),s%cj () +2 37 N2, (1)
u=1 k=1 t=1
t#4,j

— @+ DN < () =+ DNGL () + N wy)

—z((

Proof The second inequality is clear. We remain to prove the first inequality. We have

(1] 2n — 1]
)N(f“ Hj).>k; + (1 + 3 )N(f“ H;), >k (r )) +o(T(r)).

1 1 1
o =F7 By -FY | B F R
DY(F{") D(Fy") D(F3")

Fl Fy FY

FEDA(F) FYDR(F) YD)
D) DU | (DU DU
ng szz 2 Fljz ng

D (FY') Da(Flji))
Fj’ )

~ i

+F§j(
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By the Logarithmic Derivative Lemma, it follows that

3 Do‘ Fﬂ) 3
m(r, %) < S m(r, ) +22 (— o ) +0) < Y mlr FY) + oy (r).
u=1 u=1

Therefore, we have

3 3 3
T(r)> ) T(rF7) =Y (m(r,FJ)+ N (r) =m(r,®%) + > N__(r)+o(T(r))
u=1 u=1 Fu u=1 i
3
> T(95) = Ny o+ 30N ()4 o(T(r)
3 3
> Nao (1) =N+ > N (r)+0o(T(r)) = N(r,ves ) + Y _ N1 (r) +o(T(r))
7 R u=1 il u=1 Fu
Then, in order to prove the lemma, it is sufficient for us to prove
3 n 2n+2 ]
1
N(r.vag) 2 3 N(ph g < +ZkaH]><k +QZN(th <h (1)
u=1
t;éug
3
1 1
— @+ DON{ ) ) =+ DN () - N () + N(r,v)
u=1 “

—N(r,S;) = N(r,S;) — (2n —2)N(r,R;) — (n —1)N(r,R;) + o(T(r)).  (3.5)
Denote by S the set of all singularities of f~1(H;) (1 <t < ). Then S is an analytic subset
of codimension at least two in C". We set
I=SU U{z, V(£ H,) <ks (2) V(5 HY) <k (2) > 0}
s#t

Then [ is also an analytic subset of codimension at least two in C™.
In order to prove the inequality (3.5), it is sufficient for us to show that the inequality

3 2n+2
et Z qu)<k +ZV([?]’€H <kj+2ZXTt—(Zn‘Fl)XTi—(n"‘l)XTj
o 171,
- Z Vpis T Xu; = X8, — Xs; — 2(n = 1)xr, — (n = L)xr, < vag (3.6)

holds outside the set I.
Indeed, for z & I, we distinguish the following cases.

Case 1 z€Ti\S;US; (t#1i,j5). We see that P(z) = 2. We write ®; in the form

(F' —F") (' —F)

o =FY  Fy - Fy x i : TR
2 73 DY(F" — FJ") D(F{' - Fy")

Then by the assumption that f', f2, f3 coincide on T}, we have F/* = FJ' = FJ* on T} \ S;.
The property of the wronskian implies that vee (2) = 2 = P(2).
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Case 2 z €Ty N (S;US;) (t #i,5). We note that z & T; U Tj. Therefore, since f!(z) =
f2(z) = f3(2), if z € S; (resp. z € S;) then z is a common zero of (f*, H;), (f?, H;), (f3, H;)
with multiplicity more than k;, i.e., z € R; (resp. z € R;).

Firstly, we suppose that z € S;, and hence z € R;. Then we have

ZVF” +2-1-2(n-1) ZVF”

From (3.4) we see that
voe (2) = min{VFlij (z) — 1, Vi (z) — 1, Vi (z) =1} > P(z).

Now, if z ¢ S; then z € §; and z € R;. In this case we note that z will be zero of all
(f*, Hj),1 <u < 3, with multiplicity more than k;, but not be zero of any (f*, H;),1 < u < 3.
Therefore

Z v (2) € min{vpi (2), v (2), vy (2)} = 2(k; + 1),
Similarly as above, we have
voe (2) = min{VFlij (z) — 1, Vi (z) — 1, Vi (z) =1} > P(z).

Case 3 z € T;\ S;. We have

ZV([?]“H)Q (2) — (2n+1)<351<1{y(f“H)<k()}_1.

We may assume that v(s1 g,)(2) < vip2 m,)(2) < vigs m,)(2). We write
8, = FYIES(R — B YD (5 — B - FJ (B — E Do () — FY).

It is easy to see that Fy/ (F/* — FJ"), F3?(FJ* — FJ") are holomorphic on a neighborhood of z,
and

IN

L,
1.

oo
Vsipa(rii—pg)(2)

IN

o0
Ve ey -ri ()

Therefore, it implies that

vag (2) > ([f]lH)<k,i(Z)_12P(2)'

Case 4 z € T; N S;. The assumption that f!, f2, /3 coincide on T} yields that z € R;. We

have
3

3
Zl/f Y, e, ( Zl/u —2n+1)—n<— Zl/u )—1.

u=1 u=1

Thus

Vvog, () 2 min{VFfj (2) = 1,1/F2ij( z)—1 I/Fu -1} > - Zy i (2) — 1> P(z).
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Case 5 z € T;. We may assume that
I/Flj"i (Z) = dl Z I/szi (Z) = d2 Z I/ng (Z) = dg.

Choose a holomorphic function A on C™ with the multiplicity of zero at z equal to 1 such that
FJi = hdug, (1<u<3), where ¢, are meromorphic on C™ and holomorphic on a neighborhood
of z. Then

- - » It ot gl gt
P = Y Y 2 1 3 41
b= VBB paeg CR) DR - B
0 i | i | pdatd iy hdl_dzfl d Py = h e
:Fll 1—7‘2Z F; . pl2tas 'Da(h 2— 3¢2_h 1— 3@1) N 3
dz—ds D(p3 — h ds(ﬂl)

This yields that

Vpe (2) > Z I/F”( 2) + do + d3 — max{0, min{1, ds — ds3}}.

3
If 2 ¢ S;, then P(z) =— > v ;O (z) + Z min{n,d,} — (n+ 1) 4 x,,, and hence

u=1 u=1

ves (2) > =Y vis(z —I—Zu,] 2) 4 dy+ds—1+x,
> = vi(2) +da+ds — 1+ x, > P(2).

u=1

Otherwise, if z € S; then z € R;, and hence

3
P(2) £ 3 Wy ch, — Do Vo (2) =30+ X, < = ZVFU 2+,

and

V<Da Zy,] —I—ZVF” 2)+do +d3s — 1+ x,,

= —Zy 3 (2) + max{0, —d; } +max{dz,0} + max{ds,0} — 1+ x,, > P(z2).

2n+2
Case 6 z € (S;US;)\ ( U Tt>. Similarly as Case 5, we have
t=1

Voo (2) > — Z Vi (2) + max{0, —d; } + max{ds, 0} + max{dz,0} — 1

3
Z—Zu;‘zj(z)— Z —Xs; — Xs; = P(2).

From the above six cases, the inequality (3.6) holds. The lemma is proved.
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Proof of Theorem 1.1 Suppose that there exist three distinct meromorphic mappings
fUF2 3 i F(f, {H;, ki }27721). By Lemma 3.2, we have f' A f2 A f3 = 0. Without loss of
generality, we may assume that

Vi 2V, 2V 2 2V, E Vg 22V, %RV, 22,
| S —

group 1 group 2 group 3 group s

where [, = 2n + 2.

Denote by P the set of all i € {1,---,2n + 2} satisfying that there exist j € {1,---,2n +
2} \ {i} such that V; 2 V; and @, = 0 for all a € ZT' with |a| < 1. We consider the following
three cases.

Case 1 §P > 2. Then P contains two elements ¢,j. Then we have @7, = @7 = 0 for all
a € Z7 with |a| < 1. By Lemma 2.1, there exist two functions, for 1nstance they are F}’ and
Ep, and a constant \ such that Fj7 = AF’. This yields that Ffj = F¥ (by Lemma 3.3). Then
by Lemma 3.5(ii), we easily see that V; =V}, i.e., V; and V; belong to the same group in the
above partition.

Without loss of generality, we may assume that i = 1 and j = 2. Since f!, f?, f3 are
supposed to be distinct, the number of each group in the above partition is less than n + 1.

Hence we have V; =V, 2 V; for allt € {n+1,---,2n+ 2}. By Lemma 3.5(ii), we have

1] 1] 0 0
NGy )+ Nipay <0 2 D0 NG i) <, QZ > Ny s (1)
s#1,t u=1s=1,t
1] 1] 0 0
Nipty.<re ™+ Ny e 1) 2 Y N <, 22 > Ny sn (1)-
s#2,t u=1s=2,t

Summing up both sides of the above two inequalities, we get

3
ING e ) =2 3 N ) =23 (N ) 2 ()
s#1,2,t u=1
NG5, 1) 2N([f]“ 1.5k (7))
After summing-up both sides of the above inequalities over all ¢t € {n+1,---,2n+2}, we easily
obtain
3 2n+2
5 (00 DOV s s 1)+ N s 2 32 N, )
- 2n+2 -
=z (n+2 ZN(}]Ht) i )+ D7 Nl 4, ()
2n+2 3 ;:;rl
> N iy <k, (1) %Z > Nighsr < (1)
g t;b’ e } :_1 t=3
>2>0 D Ngomy =32 Z (et o (1)
5 o ' o
Z3 > Ny () - 3 D> Ny sk (1)

u=1 t=3 u=1 t=3
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3
n—l
> Z NG st 5k, (1) + (T ().
u=1 t=3
Therefore, we have
1 3 2n+42 " 3 242 4
1
T < (04 2) 325Ny 0 < 04 S 3 om0
u=1 t=1 u=1 t=1
2n+2

<m+2) Y ktilT(T).

Letting » — 400, we get

This is a contradiction.

Case 2 #P = 1. We assume that P = {1}. We easily see that V; 2 V; for all i =2,--- |
2n + 2 (otherwise i € P, this contradicts fP = 1). Then by Lemma 3.5(ii), we have

(1] (1] (1] [
Ntz ™) = D0 Ny <o () = Nipy <o (0 2ZZNf“H () + o(T(r)).
s#1,i u=1s=1,1
Summing up both sides of the above inequality over all ¢ =2, --- | 2n + 2, we get
2n+2 3 2n+2
@+ DNG ) <, (1) = Cn = 1) D7 NG 00 =237 37 NG g o, (1)
=2 u=1 =2
3
1
=220+ 1) Y N ) () + o(T(r)). (3.7)
u=1

We also see that i ¢ P for all 2 < ¢ < 2n+ 2. Set

. i+mn, ifi<n+2,
ofi) =9 . . :
i—n, fn+2<i<2n+2.

Then i and o (i) belong to two distinct groups, i.e., V; 22 V) for all i € {2,---,2n + 2}, and
hence ®F ) # 0 for some o € ZT' with la] < 1. By Lemma 3.6 we have

3
[n] 1 (1
N2 D Niumyen ) = @+ NGy o, () = (n+ DN Ho )<k ()

u=1t=1,0(1)

2n+2 3

1] 2n + 1 [1] n+2 )

+2 > Ny ()= ( 5 Vom0, sk ) T 5= N 0 5k

t=1 u=1

t#i,0(1)
+ o(T'(r)).
Summing up both sides of the above inequalities over all i € {2,--- ,2n 4 2}, we get
2n+2 3 2n+2

(@n+1T() 22 30 D NG g0, () + (0= 4) 30 Nl 1, (07

i=2 u=1 =2
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3 2n+2
1
+22n+ DN, ) =+ )T ST NG L+ o(T()
u=1 1=2
2n+2 3 [] 6 3 2n+2
223 Y Ny <) + (o), <he (7)
1=2 u=1 u=1 =2
3 2n+2
) YN o ()~ 93 3 N o)
u=1 u=1 1=2
3 2n+2
qu)<k (r)
u=1 1=2
3 2n+2
1
—(8n+4)ZN([f]qu)>k1 n+5ZZNqu7 o Fo(T(r))
u=1 1=2
3 2n+2 3
ZZNqu) —(8n+4) ZN<qu1>>k1()
u=1 1=2 u=1
3 2n+2
14n+9
> ZNW? ok, To(T(r)
u=1 1=2
+
11n—6
> = —T(r) o(T(r)).

Letting r — 400, we get 5335 < Z 77 This is a contradiction.

Case 3 P = (). Then for all 4 7é ], by Lemma 3.6 we have

3 2n+2
[n] [1]
ZNquq +ZkaHj>7§k +QZNth <k, (7)
u=1
t;ﬁm

— @+ DN g <, (1) = (A DNy o () + N(rvy)

) i (14 55 )0 o, 0+ (14 52V ) (00) 0T )

u=

Summing up both sides of the above inequalities over all pairs (i, j), we get

3 2n+2 2n+2 2n—+2
@n+2T(r) 22> > N ) o, )+ (0 =2) D NGy Z N(r,ve)
u=1 t=1 t=1
3 2n+2
1
— (DY NG ) ok, () +o(T()). (3.8)
u=1 t=1

On the other hand, by Lemma 3.4, we see that V; o V; for all j # [. Hence, we have
Def s s .
Pl = (f% Hy)(f' H) = (fS H)(F5 H) # 0, s #t4 §# L.
Claim 3.1 With i # j # 1 # i for every z € T;, we have

Z Vpit (2) > 4x1,(2) = X0 (2)-

1<s<t<3
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Indeed, for z € T; \ v, we may assume that v(s1 g,)(2) < v m,)(2) < vgs,m,)(2). Since
YA F2 A f3 =0, we have det(V;, V;, V) = 0, and hence

(f', Hi)Pgs = (f*, Hi)Pls — (f°, Hi) Ply.
This yields that

and hence > vpi(z) >4 =4x7,(2) — X0, (2).
1<s<t<3 = °*
Now, for z € v, we have > vpi(2) > 3 = 4x1,(2) — X1, (2). Hence, the claim is proved.
1<s<t<3 ~°F

I/sz?l’ (2) >2

On the other hand, with i = j or i = [, for every z € {v(f u,),<k,(2) > 0} we see that

Vpit(2) 2 min{v(pe ;) <k, (2)s V(g m), <k (2)}
n n 1
> ng]s Hy),< (z) + V([f]t7Hi))Ski (2) — nl/([f{Hi);Ski (2),

and hence

3
[1]
Z I/P]z Z f Y, (z) — 3nu(in))Ski(z).

1<s<t<3

Combining this inequality and the above claim, we have

PETOED M vauH><k 2) =3 () + D @A ) () = X (2).

1<s<t<3 i=j, 0 u=1 i#5,l

This yields that

On the other hand, by Jensen formula, we easily see that
Npit (2) ST (r) + Ty (r) +0(T(r)), 1<s<t<3.
Then the inequality (3.9) implies that
3
n 1 1
2T(r) 2 Z (2ZN([fL,Hi),§k r) = 3nN([f]H ), <k; (r )) + Z(ZLN([J‘])HI.))S]%(T) = N(r,vs)).
i=jl  u=1 i,

Summing up both sides of the above inequalities over all pair (j,1), we obtain

3 2n+42 3 2n+2

2T > =0 37 3 Ny, 0+ 3xn+1ZZNquq <, (1)
u=1 =1 =1 =1
2n+2

— Z N(r,v;) + o(T(r)).
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Thus
In+42 o B 242 3 2n42
ZN(TaVzZEZZNqu)<k ZZNf“H)<k ")
i=1 u=1 i=1 u=1 i=1
2(n+1
=20 D7) 4 o).
Using this estimate, from (3.8) we have
3 2n42 . 3 2n42
(2n +2)T(r) (2+ _) DD Nz Z Z met <k (T)
u=1 t=1 u=1 t=1
2(n+1) 3 2n42 :
- 2 (n+ 133 NG o (1) +0(T(r)
u=1 t=1
3 2n42
—1 [n] 2(7”L—|— 1)
( n ) Z tz NGRS ()= n ()
3 2n42
1
—(n+1)Y ST NG o (1) +0(T(1)
u=1 t=1
3 2n42
—1 [n] 2(Tl + 1)
(2+ + )Z;Nmm - S
1\ B 22
1]
— (3n 43+ 55=) 30 N i () + 0(T())
u=1 t=1
2 1 2(n + 1)
2 ) Hrr)—- —=T
(242 +5—)m+ DI() - =——=1(r)
12012
(30 +8+75=) 3 g T0) +o(T()
Letting » — 400, we get
2n+2
2 -1 2 1 -1 1
o +2> (2+—+"—)(n+1)—w— (3n+3+"
n 3n 3 — ki+1
2n+2
Thus Z F— +1 > 10’;2:_18 This is a contradiction.

Hence the supposition is impossible. Therefore, #F(f, {H;, k;i}7"1%,1) < 2. We complete
the proof of the theorem.

Proof of Theorem 1.2 Let f1, f2, f3 € F(f,{Hi, k:}7*]",p). Suppose that f!x f2x f3:
C™ — P*(C) x P*(C) x P*(C) is linearly nondegenerate, where P*(C) x P™*(C) x P*(C) is
embedded into P("+D°~1(C) by Segre embedding. Then for every s, ¢, we have

P :=det((f, Hy), (f', Hy), (f', Hy);1 <i<3)#0.

By Lemma 2.2 we have

T(r)> > (N(rmin{v(pe ) <l Su<3)) = Ny ()

i=s,t,l



Degeneracy and Finiteness Theorems for Meromorphic Mappings in Several Complex Variables 271

2n+1

+2 3 N () + (T (),
=1

3
where T'(r) = Y Tu(r). Summing up both sides of the above inequality over all (s,t,1), we
u=1

obtain
1 2n+1
T(’f’) 2 o+ 1 ; (3N(’f’, min{l/(fu)Hi)_,Ski; 1 S u S 3})
1
+(dn = N ) 2 (7)) +o(T(r)). (3.10)
Now, for positive integers a, b, ¢ with min{a, p} = min{b, p} = min{e, p}, we will show that
dn—1+3
3min{a,b,c} + (4n — 1) > %(min{a, n} 4+ min{b,n} + min{c,n}). (3.11)
n-p

Indeed, by replacing a, b, ¢ by min{a,n}, min{b, n}, min{c, n} respectively, without loss of gene-
rality we may suppose that n > a > b > c. If ¢ > p, we have

n—1+3
3min{a,b,c} + (4n —1) — ZT_;p(min{a, n} 4+ min{b,n} + min{c,n})
dn—-14+3 2 1)(c—
S3eq (dn—1)— I Z1H g, g CrEle=p)
2n+p 2n+p
Otherwise, if ¢ < p then a = b = ¢, and hence
4n—-143
3min{a,b,c} + (dn—1) — %(min{a, n} 4+ min{b,n} + min{c,n})
n+p
dn —1 an —1)(2 - -
=3c+(4n—1)—3cn +3p:(n )(2n +p — 3¢) + 6¢(n p)ZO.
2n+p 2n+p
Hence the inequality (3.11) holds.
From (3.11), we have
3N (r,min{v(ju g,y <31 <u < 3}) + (4n — 1)N([}]H7) <k (r)
4n -1+ 3p .
> 2n+p Z fH)<k ), 1<i<2n+1.
Therefore, the inequality (3.10) implies that
2n+1
1 dn—1+3p
T(r) > T
(T)*Zn—l—l; 2n+p Zl fH)<k r) +o(T(r))
2n+1 3
dn — 14 3p [n] [n]
@+ +p) z; uzl Nigro () = Nig 5, (7)) + 0T(1)
2n-+1

dn— 14 3p n
= (2n+1)(2n+p) (n— ; ki+1)T(T)+0(T(7’))'

Letting » — 400, we get
2n-+1

dn — 1+ 3p n
= (2n+1)(2n+p)(n_ ; ki+1)’
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ie.,

1 . np—3n—p
ki+1 = 4n?243np—n’

This is a contradiction.
Hence, the map f' x f2 x f2 is linearly degenerate. The theorem is proved.
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