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1 Introduction

Let (Ω,F ,Ft,P) be a probability space satisfying the usual conditions and (Wt)t≥0 be a

standard d1-dimensional Brownian motion. In this paper we are concerned with a large devia-

tion principle (LDP for short) for a family of diffusions generated by the following multivalued

stochastic differential equation (MSDE for short) perturbed with small noises:

dXn(t) ∈ b(t,Xn(t))dt +
1√
n
σ(t,Xn(t))dW (t) −A(Xn(t))dt, Xn(0) = x ∈ D(A), (1.1)

where b : Rd → R
d and σ : Rd → R

d×d1 are measurable functions, A is a multivalued map

R
d → 2R

d

with domain D(A) := {x ∈ R
d;A(x) 6= ∅} and graph Gr(A) := {(x, y) ∈ R

2d : x ∈
R

d, y ∈ A(x)}, maximal monotone.

Let us introduce the mathematical formulation of (1.1). Consider the case with n = 1. By

a solution we mean a pair (X,K) of (Ft)-adapted continuous processes satisfying:

(1) X(0) = x and for all t≥0, X(t) ∈ D(A) a.s.,

(2) K is of locally finite variation and K(0) = 0 a.s.,

(3) dX(t) = b(X(t))dt+ σ(X(t))dW (t) − dK(t), 0≤t <∞ a.s.,

(4) for any pair of continuous functions (α, β) such that (α(t), β(t)) ∈ Gr(A), ∀t ∈ [0,+∞),

〈X(t)− α(t), dK(t) − β(t)dt〉≥0 a.s.
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This type of stochastic equations has been solved by Cépa in [1] by using a fixed point method

and standard iterations. Recently Zălinescu [2] investigated the optimal control problem and es-

tablished existence and comparison principle results of viscosity solutions for the corresponding

Hamilton-Jacobi-Bellman (HJB for short) equations. Based on this result, we aim to present

a PDE approach to the large deviations for diffusions perturbed with small random noises like

(1.1). This principle was proved for the first time in [3–4] by the weak convergence approach.

Compared with the probabilistic proof in [4], the main goal of this paper is to present a vis-

cosity approach, which contributes to exploring possible applications of the recent theory of

Hamilton-Jacobi-Bellman equations with multivalued maximal monotone operators developed

in [2], and to studying in a more general context the connection between viscosity solution

theory and the LDP theory.

Using viscosity method in large deviations is not new and among the early works we mention

[5], where the analytic method is applied to asymptotic behaviors of perturbed diffusions. There

is a large literature of large deviations results using this method (see, to name a few, [6–11]).

In the book [6], Feng and Kurtz expanded the viscosity solution tool in a remarkably general

setting. We aim at carrying out the method to establish a uniform LDP for the corresponding

MSDEs in the space C([0, T ] × D(A);D(A)), which, to the best of our knowledge, has never

been done in this way before.

To prove the LDP in the path space level, according to the well developed procedure, one

needs to prove that the finite dimensional distributions satisfy an LDP and that the laws in the

path space are exponentially tight. It is in the first step that the viscosity solution comes to

play a role. Roughly speaking, the Laplace integrals of the solution processes at a single time

turn out to satisfy some nonlinear second order HJB equations in the viscosity sense. According

to the well-known equivalence between LDP and Laplace limit, to establish the LDP at a single

time of the sequence of the generated diffusions, we need to prove a result concerning the

stability of the viscosity solutions of the associated HJB equations. With the LDP at a single

time established, the finite dimensional LDP will be a consequence of the Markov property

and some convergence result (see Section 4 and Subsection 5.1). To obtain the exponential

tightness we need to prove an exponential compact containment result, which can be obtained

through using an exponential moment estimate (see Propositions 2.3–2.4). With the LDP in

finite dimensional case well established, we finally prove the LDP of the solutions processes

uniform in time and starting points in C(D(A)× [0, T ];D(A)).

Compared with the usual SDEs, there is an additional multivalued maximal monotone

operator A in (1.1). A remarkable example of A is the subdifferential of a proper, convex lower

semicontinuous function ϕ defined by

∂ϕ(x) := {z ∈ R
d; 〈y − x, z〉+ ϕ(x)≤ϕ(y), ∀y ∈ R

d},

in which case (1.1) becomes a stochastic variational inequality. The singularity and unbound-
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edness of A cause quite a few tricky problems. For example, in proving exponential tightness

of the solution process, one usually uses uniform Hölder continuity modulus estimates to find

compact sets in the case of usual SDEs, but in respect of multivalued case we cannot get any

Hölder continuity result for the solutions. To overcome this difficulty, we will turn to Puhalskii’s

criterion for exponential tightness, an analogue of Aldous’s condition for tightness. Correspond-

ingly, due to the existence of A, the viscosity solution results of the HJB equations cannot be

obtained as easy extensions of those in SDEs’ case. For example, in order to prove the stability,

we need to use relaxed semi-limits of the viscosity solutions.

Compared with [12], where diffusions generated by stochastic equations with nonlinear, m-

dissipative operators are considered, here the nonlinear operator A is generally multivalued and

we do not assume that D(A) = R
d, and the method of [12] does not apply to our case.

We now give an outline of the paper. After presenting some notations and standing assump-

tions in Section 2, we present some estimates concerning the solutions of multivalued SDEs in

Section 3 and a stability result for viscosity solutions of second order HJB equations carrying

multivalued operators in Section 4, and by using these two results, the LDP of path level is

established. In Section 5 the C-exponential tightness result is established for the solution pro-

cesses starting from a fixed point and finally, with the help of this intermediate result, we obtain

the LDP uniformly in initial values. We also give a detailed proof of the comparison principle

in Section 6 for corresponding HJB equations, which have different form from that in [2].

2 Preliminaries and Estimates

2.1 Notations about A

Let us recall some definitions and properties of maximal monotone operators. For more

general details we refer the readers to [13].

A multivalued operator A : Rd → 2R
d

is called monotone if

〈y1 − y2, x1 − x2〉≥0, ∀(x1, y1), (x2, y2) ∈ Gr(A).

A monotone operator A is called maximal monotone if and only if

(x1, y1) ∈ Gr(A) ⇔ 〈y1 − y2, x1 − x2〉≥0, ∀(x2, y2) ∈ Gr(A).

Proposition 2.1 For a maximal monotone operator A on R
d, the following hold:

(1) D(A) and Int(D(A)) are convex subsets of Rd, and moreover, Int(D(A)) = Int(D(A)).

(2) A is locally bounded on Int(D(A)), i.e., for every compact subset Γ of Int(D(A)),
⋃
x∈Γ

A(x) is bounded.

Proposition 2.2 (see [1, Proposition 4.1, Proposition 4.4]) Suppose that (X,K) is a pair

of continuous and (Ft)-adapted processes satisfying (4) in Section 1, i.e., for any continuous
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functions (α, β) with

(α(t), β(t)) ∈ Gr(A), ∀t ∈ [0,+∞),

then the measure

〈X(t)− α(t), dK(t)− β(t)dt〉≥0, a.s.

Moreover, there exist γ > 0, µ≥0 such that for all 0≤s < t≤T,
∫ t

s

〈X(r), dK(r)〉≥γ|K|st − µ

∫ t

s

|X(r)|dr − γµ(t− s),

where |K|st denotes the total variation of K on [s, t].

Also, suppose if (X̃, K̃) is another such pair, then

〈X(t)− X̃(t), dK(t)− dK̃(t)〉≥0, a.s.

2.2 Large deviations

For reader’s convenience we also recall the definitions of the large deviation principle and

exponential tightness here (see [6, Chapter 4]). Let (X , d) be a separable metric space and (Yn)

a sequence of random variables on a probability space (Ω,F ,P) with values in X .

Definition 2.1 A function I : X → [0,∞] with compact level subsets {x; I(x)≤r} for every

r ∈ [0,+∞) is a rate function.

(Yn) is said to satisfy the large deviation principle with a rate function I if there exists a

measurable map I : X → [0,∞] such that for any Borel measurable set F ,

− inf
x∈F◦

I(x)≤ lim inf
n→∞

1

n
logP(Yn ∈ F )≤ lim sup

n→∞

1

n
logP(Yn ∈ F )≤− inf

x∈F

I(x).

Definition 2.2 {Yn} is said to be exponentially tight if for every r < ∞, there exists a

compact subset Γr of X such that

lim sup
n→∞

1

n
logP(Yn ∈ Γc

r)≤− r.

Definition 2.3 A sequence of stochastic processes Xn that is exponentially tight in D([0, T );X )

(the Skorohod space of càdlàg functions over [0, T )) is called C-exponentially tight if for each

ǫ > 0 and T > 0,

lim sup
n→∞

1

n
logP(sup

t≤T

d(Xn(t), Xn(t−))≥ǫ) = −∞,

where d is the metric on X .

2.3 Assumptions

Throughout the paper we make the following assumptions:

(H1) σ and b are continuous and satisfy that for all x, y ∈ R
d, t, s≥0,

|σ(t, x) − σ(s, y)| ∨ |b(t, x)− b(s, y)|≤L(|t− s|+ |x− y|),
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|σ(t, x)| ∨ |b(t, x)|≤L′(1 + |x|),

where L,L′ > 0 are constants.

(H2) 0 ∈ Int(D(A)).

Note that (H2) is not a real restriction since the general case Int(D(A)) 6= ∅ can be reduced

to this one by a linear transformation (see [2]).

2.4 Some estimates about the solution

As is noted in Section 1, to pass from finite dimensional distribution LDP to the path

space level LDP, we need to prove the exponential tightness. To this aim we first establish an

exponential moment estimate for the solutions, which may be of independent interest.

Proposition 2.3 Let Xn(t, x; s) be the solution to (1.1) and set Xn(s) := Xn(0, x; s). Then

there exist constants c1, c2 > 0 independent of n such that for all n,

E sup
s≤T

enc1
(
log(e+|Xn(s)|

2)
)2

≤enc2 .

Proof Take β > 0, α > 0 and

g(x) := (log(e + x2))2.

Set

τR := inf{t≤T ; |Xn(t)| > R}.

Then by Itô’s formula and Proposition 2.2,

enβe
−α(s∧τR)g(|Xn(s∧τR)|)

= enβg(|x|) − α

∫ s∧τR

0

nβe−αrg(|Xn(r)|)enβe
−αrg(|Xn(r)|)dr

+ 4

∫ s∧τR

0

nβe−αrenβe
−αrg(|Xn(r)|) log(e + |Xn(r)|2)

1

e + |Xn(r)|2

·
(
〈Xn(r), b(r,Xn(r))〉dr +

1√
n
〈Xn(r), σ(r,Xn(r))〉dW (r) − 〈Xn(r), dKn(r)〉

)

+ 8

∫ s∧τR

0

nβ2e−2αrenβe
−αrg(|Xn(r)|)g(|Xn(r)|)

1

e + |Xn(r)|2
tr(σσ∗(r,Xn(r)))dr

+ 6

∫ s∧τR

0

βe−αrenβe
−αrg(|Xn(r)|)tr(σσ∗(r,Xn(r)))

(Xn(r) ⊗Xn(r)

(e + |Xn(r)|2)2

+ log(e + |Xn(r)|2)
e + |Xn(r)|2 − 2Xn(r) ⊗Xn(r)

2(e + |Xn(r)|2)2
)
dr

≤enβg(|x|) − α

∫ s∧τR

0

nβe−αrg(|Xn(r)|)enβe
−αrg(|Xn(r)|)dr

+ 6L′

∫ s∧τR

0

nβe−αrenβe
−αrg(|Xn(r)|) log(e + |Xn(r)|2)dr
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+ 4

∫ s∧τR

0

√
nβe−αrenβe

−αrg(|Xn(r)|)
log(e + |Xn(r)|2)

e + |Xn(r)|2
〈Xn(r), σ(r,Xn(r))〉dW (r)

+ C(γ, µ)

∫ s∧τR

0

nβe−αrenβe
−αrg(|Xn(r)|) log(e + |Xn(r)|2)dr

+ 8L′2

∫ s∧τR

0

nβ2e−2αrenβe
−αrg(|Xn(r)|)g(|Xn(r)|)dr

+ 6L′2

∫ s∧τR

0

βe−αrenβe
−αrg(|Xn(r)|)[1 + log(e + |Xn(r)|2)]dr

=:

6∑

i=1

Ii(s).

Note that

I1(s) = −α
∫ s∧τR

0

nβe−αrg(|Xn(r)|)enβe
−αrg(|Xn(r)|)dr,

I2(s)≤6L′

∫ s∧τR

0

nβe−αrenβe
−αrg(|Xn(r)|)g(|Xn(r)|)dr,

I4(s)≤C(γ, µ)
∫ s∧τR

0

nβe−αrenβe
−αrg(|Xn(r)|)g(|Xn(r)|)dr,

I5(s)≤8L′2

∫ s∧τR

0

nβ2e−2αrenβe
−αrg(|Xn(r)|)g(|Xn(r)|)dr,

I6(s)≤12L′2

∫ s∧τR

0

βe−αrenβe
−αrg(|Xn(r)|)g(|Xn(r)|)dr.

Thus by taking expectations we get

Eenβe
−α(s∧τR)g(|Xn(s∧τR)|)

≤enβg(|x|) − αE

∫ s∧τR

0

nβe−αrg(|Xn(r)|)enβe
−αrg(|Xn(r)|)dr

+
(
6L′ + 8βL′2 + C(γ, µ) +

12L′2

n

)
E

∫ s∧τR

0

nβe−αrg(|Xn(r)|)enβe
−αrg(|Xn(r)|)dr.

Taking

α = (6 + 8βL′ + 12L′)L′ + C(γ, µ) + 1,

we have

Eenβe
−α(s∧τR)g(|Xn(s∧τR)|) +E

∫ s∧τR

0

nβe−αrg(|Xn(r)|)enβe
−αrg(|Xn(r)|)dr≤enβg(|x|). (2.1)

Now take α satisfying (2.1) for β = 2. With this α it is trivial to see that (2.1) holds for β = 1

as well. Applying BDG’s inequality to I3(s) with the same α and β = 1 gives

E sup
s≤T

I3(s)≤
8L′

√
2

(
E

∫ T∧τR

0

2ne−2αre2ne
−αrg(|Xn(r)|)g(|Xn(r)|)dr

) 1
2

≤8L′eng(|x|),
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where the last inequality follows from (2.1) with β = 2.

Hence we have

E sup
s≤T

ene
−α(s∧τR)g(|Xn(s∧τR)|)≤(8L′ + 1)en(log(e+|x|2))2 .

Letting R → ∞ gives

E sup
s≤T

ene
−α(s)g(|Xn(s)|)≤(8L′ + 1)en(log(e+|x|2))2 .

Now by taking c1 = e−αT and c2 sufficiently large we complete the proof.

From this result we deduce easily the following proposition.

Proposition 2.4 For every M > 0, there exists a compact set ΓM ⊂ D(A) such that

lim sup
n→∞

1

n
logP(∃t ∈ [0, T ], s.t. Xn(t) /∈ ΓM )≤−M.

Proof Take

ΓM := {|x|≤r} ∩D(A)

where r will be specified later. Note that for every t, Xn(t) ∈ D(A) a.e. Applying the above

proposition we get

1

n
logP(∃t ∈ [0, T ], s.t. Xn(t) /∈ ΓM )

≤ 1

n
logP

(
sup

t∈[0,T ]

|Xn(t)| > r
)

≤ 1

n
logP

(
sup

t∈[0,T ]

enc1(log(e+|Xn(t)|
2))2 > enc1(log(e+r2))2

)

≤ 1

n
log e−nc1(log(e+r2))2enc2

= c2 − c1(log(e + r2))2≤−M

provided that

r = exp
{1

2

√
M + c2
c1

}
.

The next result follows from standard calculations and we omit the proof.

Proposition 2.5 Suppose that Xn(t, x; s) and Xn(t, y; s) are solutions to (1.1) with initial

values x, y at t respectively. Then under (H1)–(H2), there exists a constant C > 0 independent

of n such that

E sup
s∈[t,T ]

|Xn(t, x; s)−Xn(t, y; s)|2≤C|x− y|2.
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3 HJB Equations and Viscosity Solutions

Now we prepare some materials about the viscosity solution of second order HJB equa-

tions with multivalued maximal monotone operators. Given a multivalued maximal monotone

operator A with domain D(A) and a Hamiltonian

H : [0, 1]× R
d × R× R

d × S
d 7→ R,

suppose that H is elliptic, i.e.,

M,N ∈ S
d, M≥N ⇒ H(t, x, r, p,M)≤H(t, x, r, p,N), ∀(t, x, p),

where S d stands for the space of all real positively definite matrices. Consider the Cauchy

problem




∂u

∂t
+H(t, x, u,Du,D2u) ∈ 〈A(x), Du〉 in (0, T )×D(A),

u(T, ·) = h(·) on D(A).

(3.1)

Identify A∗ (resp.A∗) as the lower (resp. upper) semi-continuous envelope of A. The follow-

ing definition is adjusted from [2].

Definition 3.1 Let A be a multivalued maximal monotone operator with domain D(A).

Define for any x ∈ D(A) and y ∈ R
d,

A∗(x, y) := lim
ε↓0

sup
(z,w)∈Dε(x,y)

〈z, w〉,

A∗(x, y) := lim
ε↓0

inf
(z,w)∈Dε(x,y)

〈z, w〉,

where Dε(x, y) := {(z, w); z ∈ A(x′), x′ ∈ D(A), |x− x′| < ε, |y − w| < ε}.

Definition 3.2 (1) u ∈ USC([0, T ]×D(A)) (the space of upper semicontinuous functions

on [0, T ]×D(A)) is called a viscosity subsolution of (3.1) if u(T, ·)≤h(·) on D(A) and for any

ϕ ∈ C1,2([0, T )×D(A)),

∂ϕ

∂t
(t, x) +H(t, x, u,Dϕ(t, x), D2ϕ(t, x))≥A∗(x,Dϕ(t, x))

provided that (t, x) ∈ (0, T )×D(A) is a local maximizer of u− ϕ.

(2) u ∈ LSC([0, T ]×D(A)) (the space of lower semicontinuous functions on [0, T ]×D(A))

is called a viscosity supersolution of (3.1) if u(T, ·)≥h(·) on D(A) and for any ϕ ∈ C1,2((0, T )×
D(A)),

∂ϕ

∂t
(t, x) +H(t, x, u,Dϕ(t, x), D2ϕ(t, x))≤A∗(x,Dϕ(t, x))

provided that (t, x) ∈ (0, T )×D(A) is a local minimizer of u− ϕ.

(3) u is called a viscosity solution if it is both a subsolution and a supersolution.
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Remark 3.1 As usual, the term local maximizer (resp. local minimizer) in the above defi-

nition can be replaced by global strict maximizer (resp. global strict minimizer).

We will need the following stability result.

Theorem 3.1 Suppose that Hn, H ∈ C([0, T ] ×D(A) × R × R
d × S d), hn, h ∈ C(D(A)),

n ∈ N, and un is a subsolution (resp. supersolution) of (3.1) with the Hamiltonian Hn, and final

value hn, with {un(t, x), (t, x) ∈ [0, T ]×D(A), n ∈ N} being uniformly bounded. Suppose that

lim
n→∞

Hn = H in C([0, T ]×D(A) × R× R
d × S

d).

Let u∗ and u∗ be the superior and inferior relaxed semi-limit of u respectively, i.e.,

u∗(t, x) := lim
n→∞

sup{um(s, y) : |s− t|+ |y − x| < n−1, (s, y) ∈ [0, T ]×D(A), m≥n}

u∗(t, x) := lim
n→∞

inf{um(s, y) : |s− t|+ |y − x| < n−1, (s, y) ∈ [0, T ]×D(A), m≥n}.

Similarly we define h∗ and h∗. Then u
∗ (resp. u∗) is a subsolution (resp. supersolution) of (3.1)

with Hamiltonian H and final value function h∗ (resp. h∗).

Moreover, if the comparison principle holds for the limit equation (i.e., any subsolution is

less than any supersolution) and un is a solution of (3.1), then u∗ = u∗ =: u is continuous and

is a solution of (3.1).

Proof Suppose that ϕ ∈ C1,2((0, T )×D(A)) and (t0, x0) ∈ (0, T )×D(A) are such that

0 = (u∗ − ϕ)(t0, x0) > (u∗ − ϕ)(t, x), ∀(t, x) ∈ (0, T )×D(A) \ (t0, x0).

Then it is clear by [14, Lemma 2.10] that there exists a sequence (tn, xn) in a compact subset

Ur(t0, x0) ⊂ [0, T ]×D(A) such that

lim
n→∞

(tn, xn) = (t0, x0), lim
n→∞

un(tn, xn) = u∗(t0, x0),

and for all n,

(un − ϕ)(tn, xn) = max
(t,x)∈Ur(t0,x0)

(un − ϕ)(t, x).

Since




∂ϕ

∂t
(tn, xn) +Hn(tn, xn, un(tn, xn), Dϕ(tn, xn), D

2ϕ(tn, xn))≥A∗(xn, Dϕ(tn, xn)),

un(T, ·)≤hn(·) on D(A).
(3.2)

By sending n→ ∞, we get

∂ϕ

∂t
(t0, x0) +H(t0, x0, u

∗(t0, x0), Dϕ(t0, x0), D
2ϕ(t0, x0))≥A∗(x0, Dϕ(t0, x0)) (3.3)

and

u∗(T, ·)≤h∗(·) on D(A).

This proves that u∗ is a subsolution with final value function h∗. A similar argument shows

that u∗ is a supersolution. If moreover the comparison principle holds, then u∗≤u∗. But u∗≥u∗
by definition. Hence u∗ = u∗ = u and the proof is completed.
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4 LDP in Time

Consider the following equation

{
dX(s) ∈ b(s,X(s))ds+ σ(s,X(s))dW (s)−A(X(s))ds, s ∈ [t, T ],

X(t) = x ∈ D(A).
(4.1)

We denote by (X(t, x; s),K(t, x; s)) its unique solution. Let h be a bounded continuous function

on D(A). Then by [2, Theorem 4] the function

u(t, x) := E[h(X(t, x;T ))], (t, x) ∈ [0, T ]×D(A)

is the unique viscosity solution of the following PDE:





∂u

∂t
+H(t, x,Du,D2u) ∈ 〈A(x), Du〉 in (0, T )×D(A),

u(T, ·) = h(·) on D(A)
(4.2)

with

H(t, x, q,M) :=
1

2
tr(σσ∗(t, x)M) + 〈b(t, x), q〉.

Consequently if h > 0 then the logarithmic transformation of u,

v := c log u,

is a viscosity solution of (4.2) with

H(t, x, q,M) :=
1

2
tr(σσ∗(t, x)M) +

1

2c
|σ∗q|2 + 〈b(t, x), q〉

and the final value condition v(T, ·) = c log h(·).
Applying the above observation to the solution Xn(t, x; s) of




dXn(s) ∈ b(s,Xn(s))ds+

1√
n
σ(s,Xn(s))dW (s) −A(Xn(s))ds, s ∈ [t, T ],

Xn(t) = x ∈ D(A),

(4.3)

we see that if h is a bounded continuous function defined on D(A) then the function

un(t, x) := − 1

n
logE[exp{−nh(Xn(t, x;T ))}] (4.4)

is the unique viscosity solution to






∂u

∂t
+Hn(t, x,Du,D

2u) ∈ 〈A(x), Du〉 in (0, T )×D(A),

u(T, ·) = h(·) on D(A),
(4.5)

where

Hn(t, x, q,M) :=
1

2n
tr(σσ∗(t, x)M) − 1

2
|σ∗(t, x)q|2 + 〈b(t, x), q〉.
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Applying Proposition 2.5, we get that for every n≥1 and every (t, x) ∈ [0, T ] × D(A), there

exists a constant L > 0 satisfying

|un(t, x)− un(t, y)|≤L|x− y|. (4.6)

Moreover, it is obvious that for each n, un is a viscosity supersolution of (4.5) with n replaced

by n+1. Thus un+1≤un by the comparison principle of (4.5) (see Section 6) when σ is bounded.

Similarly, un≥u for all n where u is the viscosity solution of





∂u

∂t
+H(t, x,Du) ∈ 〈A(x), Du〉 in (0, T )×D(A),

u(T, ·) = h(·) on D(A)

(4.7)

with

H(t, x, q) := −1

2
|σ∗(t, x)q|2 + 〈b(t, x), q〉.

Hence the function ũ = lim
n→∞

un is well defined.

Note that the comparison principle holds for the equation when σ is bounded (c ≡ 0 in

Section 6). By Theorem 3.1 ũ is a viscosity solution of (4.7). Since the viscosity solution to

(4.7) is unique, we have u = ũ and therefore have proved the following proposition.

Proposition 4.1 Suppose ‖σ‖≤M for some constant M > 0. Let un be defined in (4.4)

and u be the unique viscosity solution of (4.7). Then for every (t, x) ∈ [0, T ]×D(A),

lim
n→∞

un(t, x) = u(t, x).

Moreover, since {un} is a sequence of decreasing functions, the convergence holds uniformly on

compact subsets of D(A) with respect to x.

Since

−1

2
|σ∗(x)q|2 = inf

z∈Rd

{
〈q, σ(x)z〉 + 1

2
|z|2

}
,

by [15, Theorem 4] (note that a time reversible is necessary to use this result), we have

u(t, x) = inf
{1

2

∫ T

t

|zs|2ds+ h(Xz
t,x(T )), z ∈ L2([0, T ],Rd1)

}

= inf
y∈Rd

{
inf

{1

2

∫ T

t

|zs|2ds; z ∈ L2([0, T ],Rd1) s.t. Xz
t,x(T ) = y

}
+ h(y)

}
,

where Xz is the unique solution of
{
dXz

t,x(s) ∈ b(s,Xz
t,x(s))ds + σ(s,Xz

t,x(s))zsds−A(Xz
t,x(s))ds, s ∈ [t, T ],

Xz
t,x(t) = x ∈ D(A).

(4.8)

Theorem 4.1 Let 0 < t < t2 and x ∈ D(A) be fixed. Then under (H1)–(H2), {Xn(t, x; t2)}
satisfies the LDP with a good rate function I given by

It,t2(x; y) := inf
{1

2

∫ t2

t

|zs|2ds; z ∈ L2([0, T ],Rd1) s.t. Xz
t,x(t2) = y

}
.

Here It,t2(x; y) is considered as a function of y, which depends on the parameters t, t2 and x.
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Proof It will be convenient to use the notations

un(t, x) = Vn(T − t, h;x), u(t, x) = V (T − t, h;x).

By Proposition 2.4, for every t ∈ [0, T ], {Xn(t)} is exponentially tight. Hence by Bryc

formula (see, e.g., [16, Corollary 1.2.5, 6, Proposition 3.8]), the theorem is proved when ‖σ‖≤M
for some constant M > 0.

Now we aim to prove the theorem without the assumption ‖σ‖≤M . It is clear that for

|x|≤r, r > 0, ‖σ(t, x)‖≤m(r) for some m(r) > 0. Denote by X
(m)
n the solution to (4.3) in this

case, and respectively by u
(m)
n , u(m) in place of un, u.

Trivially, for every (t, x) ∈ [0, T ]×D(A),

sup
s∈[t,T ]

|Xz(t, x; s)|2≤C(1 + |x|2).

Then as we have seen in Proposition 4.1, for every r > 0, ∃m0(r) such that for m≥m0(r),

lim
n→∞

u(m)
n (t, x) = u(m)(t, x) = u(t, x) uniformly on compact subsets of D(A).

Thus it suffices to prove

lim
n→∞

sup
|x|≤r

|un(t, x) − u(m)
n (t, x)| = 0. (4.9)

Set Ω1 :=
{
ω; sup

s∈[t,T ]

|Xn(t, x; s)| > m
}
. Then on Ω− Ω1,

Xn(t, x; ·) = X(m)
n (t, x; ·) on [t, T ]

and thus for 0 < t < t2≤T ,

E[e−nh(X(m)
n (t,x;t2))] = E[e−nh(Xn(t,x;t2))]−E[e−nh(Xn(t,x;t2))χΩ1 ] +E[e−nh(X(m)

n (t,x;t2))χΩ1 ].

This yields that

− 1

n
log(E[e−nh(Xn(t,x;t2))] +E[e−nh(X(m)

n (t,x;t2))χΩ1 ])

≤− 1

n
logE[e−nh(X(m)

n (t,x;t2))] = u(m)
n (t, x)

≤− 1

n
log(E[e−nh(Xn(t,x;t2))]−E[e−nh(Xn(t,x;t2))χΩ1 ])

and further,

Vn(t2 − t, h;x)− 1

n
log

(
1 +

E[e−nh(X(m)
n (t,x;t2))χΩ1 ]

E[e−nh(Xn(t,x;t2))]

)

≤u(m)
n (t, x)

≤Vn(t2 − t, h;x)− 1

n
log

(
1− E[e−nh(Xn(t,x;t2))χΩ1 ]

E[e−nh(Xn(t,x;t2))]

)
.
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But by Proposition 2.3, for every r > 0, there exists m≥m0(r) sufficiently large such that

P(Ω1)≤e−3n‖h‖,

which implies that for such m,

E[e−nh(X(m)
n (t,x;t2))χΩ1 ]

E[e−nh(Xn(t,x;t2))]
≤e−n‖h‖,

E[e−nh(Xn(t,x;t2))χΩ1 ]

E[e−nh(Xn(t,x;t2))]
≤e−n‖h‖.

Therefore for small s > 0,

Vn(t2 − t, h;x)− 1

n
e−n‖h‖≤u(m)

n (t, x)≤Vn(t2 − t, h;x) + e−2n‖h‖,

and (4.9) follows.

Before approaching to finite dimensional case, we now state the following proposition, which,

similar to [11, Proposition 7.7], can be proved by using exponential tightness and Proposition

4.1.

Proposition 4.2 For every (t, x) ∈ [0, T ] × D(A) and every n≥1, 0≤t < t2≤T , Vn(t2 −
t, h; ·) is continuous on D(A). Moreover, suppose that {hn} is a sequence of uniformly bounded

continuous functions converging to a continuous bounded function h. Then

lim
n
Vn(t2 − t, hn;x) = V (t2 − t, h;x)

uniformly on compact subset of D(A).

Starting from the above results, we can go by Markovian property from one dimensional

distributions to finite dimensional distributions. More precisely we have the following theorem.

Theorem 4.2 Assume that (H1)–(H2) hold. Letm be an integer and 0 < t1 < t2 < · · · < tm

be arbitrarily fixed numbers. Then the sequence {Xx
n(t1), X

x
n(t2), · · · , Xx

n(tm)}, where Xx
n is the

solution of (4.3) with initial value x starting at 0, satisfies the large deviation principle with a

good rate function given by

It1,t2,··· ,tm(x; y1, y2, · · · , ym)

:= inf
{1

2

∫ tm

0

|zs|2ds; zs ∈ R
d s.t. Xz

ti,yi
(ti+1) = yi+1, i = 0, 1, · · · ,m− 1

}
.

Here we have set t0 = 0 and y0 = x.

Proof Let f(x1, x2, · · · , xm) be a bounded Lipschitz function on (Rd)m. For every n define

inductively by

fn,m(x1, · · · , xm) = f(x1, x2, · · · , xm),

fn,k(x1, · · · , xk) := − 1

n
logE[e−nfn,k+1(x1,···xk,X

x
n(tk+1)) | Xx

n(tk) = xk], k = 1, · · · ,m− 1.
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By the Markov property we have

− 1

n
logE(e−n[f(Xx

n(t1),··· ,X
x
n(tm))]) = Vn(t1, fn,1, x).

Define again fk successively by

fm(x1, · · · , xm) = f(x1, x2, · · · , xm),

fk(x1, · · · , xk) := V (tk+1 − tk, fk+1(x1, · · · , xk, ·), xk), k = m− 1,m− 2, · · · , 1.

Since fn,m−1 and fm−1 are respectively viscosity solutions to (4.5) and (4.7) with final value

functions fn,m and fm, by the comparison principle we know that {fn,m−1}n is a decreasing

sequence of uniformly bounded and continuous functions, and converges uniformly on compact

subsets of D(A) to fm−1 according to Proposition 4.2. This in turn implies that {fn,m−2}n is a

decreasing sequence of uniformly bounded, continuous functions, and that for every n, fn,m−2 is

the viscosity solution to (4.5) with final value function fn,m−1. Thus again by Proposition 4.2,

{fn,m−2} converges to fm−2 uniformly on compact subsets of D(A). Continuing this process

we finally have that

lim
n→∞

− 1

n
logE(e−n[f(Xx

n(t1),··· ,X
x
n(tm))]) = V (t, f1;x) =: f0(x),

from which we deduce easily

f0(x) = inf
x1,x2,··· ,xm

{
inf
z

{1

2

∫ tm

0

|zs|2ds;Xz
x(ti) = xi

}
+ f(x1, · · · , xm)

}
.

Now we can obtain the conclusion by [16, Theorem 1.2.3].

To prove the LDP of {Xn} in D([0, T ], D(A)), we need to prove the following C-exponential

tightness result. This is obtained through the use of the exponential compact containment

proved in Section 3.

Theorem 4.3 The sequence {Xn} is C-exponentially tight in D([0, T ], D(A)), the Skorohod

space over [0, T ].

Proof Since almost all sample paths of Xn are continuous, it suffices to prove that {Xn} is

tight in D([0, T ], D(A)). By the above theorem and [6, Theorem 4.1], it remains to prove that

for λ ∈ R and s > 0, there exist random variables ξn(s, λ) satisfying that for 0≤t≤t+ s≤T ,

E[enλ(|X
x
n(t+s)−Xx

n(t)|2∧1)|Ft]≤E[eξn(s,λ)|Ft] (4.10)

and

lim
s→0

lim sup
n→∞

1

n
logE[eξn(s,λ)] = 0. (4.11)

Let r > 0 be large enough such that by setting Ω1 :=
{
ω : sup

s∈[0,T ]

|Xx
n(s)| > r

}
, we have

according to Proposition 2.3,

P(Ω1)≤e−n|λ|.
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By Itô’s formula,

E[eλn(|X
x
n(t+s)−Xx

n(t)|2∧1)|Ft]

= E[eλn(|X
x
n(t+s)−Xx

n(t)|2∧1) · χΩ1 |Fn
t ] +E[eλn(|X

x
n(t+s)−Xx

n(t)|2∧1) · χΩ−Ω1 |Ft]

≤E[en|λ| · χΩ1 |Ft] +E[eλn|X
x
n(t+s)−Xx

n(t)|2 · χΩ−Ω1 |Ft]

= E[en|λ| · χΩ1 |Ft] +E
[
exp

(
λn

{ 2√
n

∫ t+s

t

〈Xx
n(l)−Xx

n(t), σ(l, X
x
n(l))〉dW (l)

+

∫ t+s

t

(
2〈Xx

n(l)−Xx
n(t), b(l, X

x
n(l))〉+

1

n
tr(σσ∗)(Xx

n(l))
)
dl

− 2

∫ t+s

t

〈Xx
n(l)−Xx

n(t), dK
x
n(l)〉

})
· χΩ−Ω1

∣∣∣Ft

]

≤E[en|λ| · χΩ1 |Ft] + enC(λ,r,L′)sE
[(

exp
{
4λ

√
n

∫ t+s

t

〈Xx
n(l)−Xx

n(t), σ(l, X
x
n(l))〉dW (l)

}

+ exp
{
4λn

∫ t+s

t

〈Xx
n(t)−Xx

n(l), dK
x
n(l)〉

})
· χΩ−Ω1

∣∣∣Ft

]

=: I1 + I2 + I3.

Note that since

ς(u) := exp
(
λ
√
n

∫ u

t

〈Xx
n(l)−Xx

n(t), σ(l, X
x
n(l))〉dW (l)

− nλ2

2

∫ u

t

|σ∗(l, Xx
n(l))(X

x
n(l)−Xx

n(t))|2dl
)

is an exponential martingale with respect to Ft, we have E[ς(t+ s)|Ft] = 1 and furthermore,

I2≤enC(λ,r,L′)s.

Now for r > 0 and ε sufficiently small we set

D
ε
r :=

{
ax, 0≤a≤1− ε

2
, x ∈ ∂(D(A) ∩B(0, r))

}
.

Then D
ε
r is a nonempty compact convex subset of Int(D(A)) satisfying d(x,Dε

r) < εr for every

x ∈ D(A) ∩B(0, r).

Set

lr(ε) := sup
x∈Dε

r

sup
y∈A(x)

|y|.

By Proposition 2.1, A is locally bounded on Int(D(A)). Thus the function

(0, ε0) ∋ ε→ lr(ε)

is well defined for some ε0 > 0 and decreasing.

Define

qr(s) := inf{ε ∈ (0, ε0) : lr(ε)≤s−
1
2 }.
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Then

lim
s→0

qr(s) = 0, lr(s+ qr(s))≤s−
1
2 for every s > 0.

Now fix s sufficiently small such that s + qr(s)≤ε0. Let Y x
n be the projection of Xx

n(t) on

D
s+qr(s)
r . Then Y x

n ∈ Int(D(A)) and on the set Ω− Ω1,

∫ t+s

t

〈Xx
n(t)−Xx

n(l), dK
x
n(l)〉

=

∫ t+s

t

〈Xx
n(t)− Y x

n , dK
x
n(l)〉+

∫ t+s

t

〈Y x
n −Xx

n(l), dK
x
n(l)〉

≤|Xx
n(t)− Y x

n ||Kx
n |t+s

t +

∫ t+s

t

〈Y x
n −Xx

n(l), dK
x
n(l)〉

≤(s+ qr(s))r|Kx
n |t+s

t +

∫ t+s

t

〈Y x
n −Xx

n(l), dK
x
n(l)− zdl〉+

∫ t+s

t

〈Y x
n −Xx

n(l), zdl〉

≤(s+ qr(s))r|Kx
n |t+s

t + 2rs
1
2 ,

where z ∈ A(Y x
n ) is arbitrarily fixed and we used the fact |z|≤s− 1

2 . Thus by taking

ξn(s, λ) := log(enC(λ,r,L′)s+en|λ| ·χΩ1 +exp
{
4n|λ|[(s+ qr(s))r|Kx

n |0T +2rs
1
2 ]+nC(λ, r, L′)s

}
),

we get (4.10).

To prove (4.11), observe that by Proposition 2.2 there exist constants γ and µ independent

of n such that on Ω− Ω1,

|Kx
n |0T≤C(r, µ, γ, L′) +

2

γ
√
n

∫ T

0

〈Xx
n(l), σ(l, X

x
n(l))〉dW (l).

Therefore

Eeξn(s,λ)≤1 + enC(λ,r,L′)s +E exp{4n|λ|[(s+ qr(s))r|Kx
n |0T + 2rs

1
2 ] + nC(λ, r, L′)s}

≤1 + enC(λ,r,L′)s +E
[
exp

(8
√
n

γ
|λ|(s+ qr(s))r

∫ T

0

〈Xx
n(l), σ(l, X

x
n(l))〉dW (l)

)
χΩ−Ω1

]

· exp(4n|λ|[(s+ qr(s))C(r, µ, γ, L
′) + 2rs

1
2 ] + nC(λ, r, L′)s)

≤1 + enC(λ,r,L′)s + exp{4n[C(r, µ, λ, γ, L′)(s+ qr(s) + 2rs
1
2 )]},

where the last inequality follows from the fact that for every constant c and αl := χ(sup
u≤l

|Xx
n(u)|≤r),

the process

exp
{
c

∫ r

0

〈Xx
n(l)αl, σ(l, X

x
n(l))〉dW (l)− c2

2

∫ r

0

αl|Xx
n(l)|2‖σ(l, Xx

n(l))‖2dl
}

r∈(0,T ]

is an exponential martingale with respect to Fr and that according to the locality of stochastic

integrals (see e.g. [17, Chapter 4, Lemma 2.11]), the following holds:

exp
{
c

∫ r

0

〈Xx
n(l), σ(l, X

x
n(l))〉dW (l)− c2

2

∫ r

0

|Xx
n(l)|2‖σ(l, Xx

n(l))‖2dl
}
χΩ−Ω1
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= exp
{
c

∫ r

0

〈Xx
n(l)αl, σ(l, X

x
n(l))〉dW (l)− c2

2

∫ r

0

αl|Xx
n(l)|2‖σ(l, Xx

n(l))‖2dl
}
χΩ−Ω1 .

Hence with this estimate it is easy to see that

lim
s→0

lim sup
n→∞

1

n
logEeξn(s,λ)

≤ lim
s→0

(C(λ, r, L′)s+ 4C(r, µ, λ, γ, L′)(s+ qr(s) + rs
1
2 )) = 0.

Combining Theorems 4.2–4.3, and using [6, Sections 4.4, 4.7] we arrive at the following

theorem.

Theorem 4.4 For each x ∈ D(A), let Xx
n denote the solution of (4.3) with t = 0. Then

{Xx
n} satisfies the LDP in C([0, T ], D(A)).

Remark 4.1 Using Theorem 4.2 and a standard procedure as explained in [18, Chapter 5]

it is possible to write down the good rate function as

I(f) :=
1

2
inf

{∫ T

0

|zs|2ds; f = Xz
x

}
,

where Xz
x is the solution to (4.8), starting from x at 0, and f ∈ C([0, T ], D(A)).

5 Uniform Large Deviation Principle

Our final purpose is an LDP uniform both in time and in initial conditions. To this end we

need to consider the multi-point motion. Let m be an arbitrary positive integer and xi ∈ R
d,

i = 1, · · · ,m. Set x = (x1, · · · , xm) and

σ(m)(t,x) :=




σ(t.x1)
σ(t, x2)

...
σ(t, xm)


 , b(m)(t,x) :=




b(t, x1)
b(t, x2)

...
b(t, xm)


 , A(m)(x) :=




A(x1)
A(x2)

...
A(xm)


 .

Then σ(m) and b(m) are functions defined on (Rd)m and A(m) is a multivalued maximal operator

with domain D(A)m and they satisfy the assumptions (H1)–(H2) in Section 2.

We consider the following MSDE:




dX

(m)
n (t) ∈ b(m)(t,X

(m)
n (t))dt +

1√
n
σ(m)(t,X

(m)
n (t))dW (t) −A(X(m)(t))dt,

X
(m)
n (0) = x ∈ D(A)m.

(5.1)

Denote its solution by X
(m)
n (x, ·). Then using Theorem 4.4, we have the following result.

Theorem 5.1 {X(m)
n (x, ·)} satisfies the LDP.

As what we have just done in Section 5, to pass from the finite multi-point motion LDP to

the LDP on C([0, T ] × D(A), D(A)) we have to prove the exponential tightness in this latter

space. This will be done with the help of the following lemma.
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Lemma 5.1 Let E be a separable Banach space and suppose that for every x ∈ D(A),

{ξn(x)} ⊂ E is exponentially tight and there is a constant C independent of n such that

E|ξn(x) − ξn(y)|nE≤Cn|x− y|n.

Then {ξn(·)} ⊂ C(D(A),E) is exponentially tight. Here C(D(A),E) is endowed with the locally

uniform topology.

Proof For an integer r≥0 set

Lr := D(A) ∩ {x, |x|≤r}.

By [19, Chapter 1, Theorem 2.1], for every r > 0 there exists a constant Cr independent of n

such that

E
[

sup
x 6=y

x,y∈Lr

|ξn(x)− ξn(y)|n
|x− y|n2

]
≤Cn

r

for all n. Thus by Chebeyshev’s inequality we have for all ε > 0,

P
(

sup
0<|x−y|<δ
x,y∈Lr

|ξn(x)− ξn(y)|≥ε
)
≤ε−nδ

n
2 Cn

r , ∀n. (5.2)

Take a dense subset G = {xi}∞i=1 ⊂ D(A) and set

Gr := G ∩ Lr.

Let M≥1 be arbitrarily fixed. For each i take a compact Ei ⊂ E such that

P(ξn(xi) /∈ Ei)≤e−2Mni.

Taking δr,i = 2−2i(4Mr+1)C−2
r we have by (5.2)

P
(

sup
|x−y|≤δr,i
x,y∈Lr

|ξn(x) − ξn(y)|E≥2−i
)
≤2−4Mnir .

Let

Γ :=
{
f ∈ C(D(A),E) : ∀r, i, f(xi) ∈ Ei and sup

|x−y|≤δr,i
x,y∈Lr\Lr−1

|f(x)− f(y)|E < 2−i
}
.

We claim Γ ⊂ C(D(A),E) is relatively compact.

Taking the claim for granted we have

P(ξn /∈ Γ)≤P(∃i, ξn(xi) /∈ Ei) +P
(
∃r, i, sup

|x−y|≤δr,i
x,y∈Lr\Lr−1

|ξn(x)− ξn(y)|≥2−i
)

≤
∞∑

i=1

2−2Mni +

∞∑

r,i=1

2−4Mnri≤2−Mn,
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from which we deduce

lim sup
n→∞

1

n
logP(ξn /∈ Γ)≤−M log 2.

Hence we are done by the arbitrariness of M .

Now we prove the claim. For this we have to prove that Γr is relatively compact in C(Lr,E)

for every r where Γr is the set consisting of the restriction to Lr of the elements of Γ. Obviously,

Γr is an equicontinuous family and hence it only remains to prove that {f(x), f ∈ Γr} is

relatively compact in E for every x ∈ Lr. In fact, let x ∈ Lr be fixed. Write

Gr = {xr1 , xr2 , · · · }

with r1 < r2 < · · · . To simplify notations we set yk := xrk and Fk := Erk . For ε > 0, take first

an integer k1 > 2ε−1 and then an integer k2 such that |x − yk2 | < δr,k1 . Since Fk2 is totally

bounded, there exists a finite ε
2 -net

{
B
(
ei,

ε
2

)}N

i=1
containing Fk2 . It follows that {B(ei, ε)}Ni=1

is a finite ε-net containing {f(x), f ∈ Γr}. Hence {f(x), f ∈ Γr} is relatively compact. Now

the relative compactness of Γr follows by Arzelà-Ascoli Theorem and the proof is complete.

Next we prove the following lemma.

Lemma 5.2 For the sequence of solutions of (4.3), {Xn(·, ·)}∞n=1 is exponentially tight in

C(D(A); C([0, T ], D(A))).

Proof By Itô’s formula and Proposition 2.2, we have

|Xn(x, t)−Xn(y, t)|n≤|x− y|n +Mn,t + Cn

∫ t

0

|Xn(x, s)−Xn(y, s)|nds, (5.3)

where

Mn,t = n
1
2

∫ t

0

|Xn(x, s)−Xn(y, s)|n−1sgn(Xn(x, s)−Xn(y, s))

· (σ(Xn(x, s)) − σ(Xn(y, s)))dWs. (5.4)

Taking expectation gives

E[|Xn(x, t)−Xn(y, t)|n]≤|x− y|n + Cn

∫ t

0

E[|Xn(x, t) −Xn(y, t)|n]ds.

By Gronwall’s lemma,

E[|Xn(x, t)−Xn(y, t)|n]≤|x− y|neCnt.

Using (5.4), Doob’s inequality and BDG inequality, we have

E
[

sup
0≤s≤t

|Mn,s|2
]
≤Cn

∫ t

0

E[|Xn(x, s)−Xn(y, s)|2n]ds

≤CneCnt|x− y|2n.

Hence

E
[

sup
0≤s≤t

|Mn,s|
]
≤Cn 1

2 eCnt|x− y|n.
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By (5.3) we have

sup
0≤s≤t

|Xn(x, s)−Xn(y, s)|n

≤|x− y|n + sup
0≤s≤t

|Mn,s|+ Cn

∫ t

0

[
sup

0≤u≤s

|Xn(x, u)−Xn(y, u)|n
]
ds.

Taking expectation we have

E
[

sup
0≤s≤t

|Xn(x, s) −Xn(y, s)|n
]

≤eCn|x− y|n + Cn

∫ t

0

E
[

sup
0≤u≤s

|Xn(x, u)−Xn(y, u)|n
]
ds.

By Gronwall’s lemma we have

E
[

sup
0≤s≤t

|Xn(x, s)−Xn(y, s)|n
]
≤eCn|x− y|n.

Hence by Lemma 5.1, the family {Xn}∞n=1 is exponentially tight in C(D(A), C([0, T ], D(A))).

Lemma 5.2 combined with Theorem 5.1 shows that {Xn(·, ·)}∞n=1 satisfies the LDP in

C(D(A), C([0, T ], D(A))). But

C(D(A), C([0, T ], D(A))) ∼= C(D(A)× [0, T ], D(A)),

so we have completed the proof of the following theorem, which is the main result of the present

paper.

Theorem 5.2 {Xn} satisfies the LDP in C(D(A)× [0, T ], D(A)).

Remark 5.1 We have a similar remark as Remark 4.1 and, consequently, have a variational

expression of the rate function as

I(f) := inf
{1

2

∫ T

0

|z(s)|2ds, fx = Xz
x, ∀x ∈ D(A)

}

for f ∈ C(D(A)× [0, T ], D(A)).

6 Appendix

Proposition 6.1 Suppose that u and v are respectively viscosity subsolution and superso-

lution to HJB equation:




∂u

∂t
+H(t, x,Du,D2u) ∈ 〈A(x), Du〉 in (0, T )×D(A),

u(T, ·) = h(·) on D(A)

(6.1)

with

H(t, x, q,M) := −1

2
|σ∗(t, x)q|2 + 〈b(t, x), q〉 + c

2
tr(σσ∗(t, x)M), 0≤c <∞.
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Assume that ‖σ(t, x)‖≤M for some M > 0, u, v are bounded from above and either u or v is

Lipscthiz continuous with respect to x. Then u≤v on [0, T ]×D(A).

Proof Through a transformation u→ eλtu we consider the following HJB equation:





−λu+

∂u

∂t
+H(t, x,Du,D2u) ∈ 〈A(x), Du〉,

u(T, ·) = eλTh(·) on D(A).

(6.2)

Here λ > 0 is a constant.

Assume that u and v are subsolution and supersolution of (6.2) respectively. Suppose there

exists (t0, x0) ∈ (0, T ]×D(A) such that l0 := u(t0, x0)− v(t0, x0) > 0. For ε > 0, define

uε(t, x) := u(t, x)− ε|x|2, vε(t, x) := v(t, x) + ε|x|2.

For α > 0 and (t, x, s, y) ∈ ((0, T ]×D(A))2, set

Φα,ε := uε(t, x) − vε(s, y)− ψα(t, x, s, y),

Ψ(t, x, s, y) :=
α

2
(|x− y|2 + |t− s|2) + l0t0

8

(1
t
+

1

s

)
.

Note that for ε≤ l0
4|x0|2

and every α > 0,

Φα,ε(t0, x0, t0, x0) > 0, lim
1
t
∨ 1

s
∨|x|∨|y|→∞

Φα,ε(t, x, s, y)≤0.

Thus there exists ζ := (t, x, s, y) ∈ ((0, T ] × D(A))2 (here and in what follows ζ and t, x, s, y

depend on α, ε but for simplicity we drop the subscripts) such that

Nα,ε := Φα,ε(ζ) = sup
((0,T ]×D(A))2

Φα,ε(t, x, s, y) < +∞.

One then gets

Nα,ε≥u(t0, x0)− v(t0, x0)− 2ε|x0|2 −
l0
4
≥ l0

2
> 0, ∀ε≤ l0

8|x0|2
. (6.3)

Note that α → Nα,ε is decreasing. Then the limit lim
α→+∞

Mα,ε exists and is finite. Moreover,

Nα
2
,ε≥Φα

2
,ε(ζ) = Nα,ε +

α

4
(|x − y|2 + |t− s|2),

which yields that

lim
α→+∞

α(|x − y|2 + |t− s|2) = 0. (6.4)

Since

Φα,ε(ζ)≥Φα,ε(t, x, s, x),

we get

α

2
|x− y|2≤v(s, x)− v(s, y) + ε(|x|2 − |y|2)
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≤L|x− y|+ ε(|x|+ |y|)|x− y|,

which yields that

α|x− y|≤2L+ 2ε(|x|+ |y|). (6.5)

If for some fixed ε≤ε0, there exists an increasing unbounded sequence αn such that tαn,ε ∨
sαn,ε = T . Then one can find x̃ ∈ D(A) such that (tαn,ε, xαn,ε, sαn,ε, yαn,ε) → (T, x̃, T, x̃). By

(6.3),

l0
2
≤ lim

n
Nαn,ε≤ lim sup

n
(u(tαn,ε, xαn,ε)− v(sαn,ε, yαn,ε))≤u(T, x̃)− v(T, x̃)≤0.

This contradicts the assumption l0 > 0. Therefore for ε≤ε0, there exists αε > 0 such that for

α > αε, ζ ∈ ((0, T )×D(A))2.

Take ε≤ l0
8|x0|2

. By applying [20, Theorem 3.2 ] at the point ζ, we can find matrices Q,R ∈ Sd

such that

(∂Ψ
∂t

(ζ), DxΨ(ζ) + 2εx,Q+ 2ε
(x⊗ x

|x|2 + I
))

∈ P1,2,+

D(A)u(t, x),

(
− ∂Ψ

∂s
(ζ),−DyΨ(ζ)− 2εy,R− 2ε

(y ⊗ y

|y|2 + I
))

∈ P1,2,−

D(A)v(s, y),

where P1,2,±

D(A)
is the same as in [2, 20] and

(
Q 0
0 −R

)
≤3α

(
I − I
−I I

)
. (6.6)

Then since u (resp. v) ia a viscosity subsolution (resp. supersolution), we have

− λu(t, x) +
∂Ψ

∂t
(ζ) +H

(
t, x, α(x− y) + 2εx,Q+ 2ε

(x⊗ x

|x|2 + I
))

≥A∗(x, α(x− y) + 2εx),

− λv(s, y)− ∂Ψ

∂s
(ζ) +H

(
s, y, α(x− y)− 2εy,R− 2ε

(y ⊗ y

|y|2 + I
))

≤A∗(y, α(x− y)− 2εy).

Note that for x, y ∈ D(A) (see [2, Lemma 2]),

A∗(x, α(x − y) + 2εx) = inf
x∗∈A(x)

〈x∗, α(x − y) + 2εx〉,

A∗(y, α(x − y)− 2εy) = sup
y∗∈A(y)

〈y∗, α(x − y)− 2εy〉.

Then by simple calculation one gets

A∗(x, α(x − y) + 2εx)≥A∗(y, α(x − y)− 2εy).

By subtraction we get

− λ(u(t, x)− v(s, y))− l0t0
8

( 1

t
2 +

1

s2

)



Uniform LDP for MSDEs via the Viscosity Solution 307

− 1

2
(|σ∗(t, x)[α(x − y) + 2εx]|2 − |σ∗(s, y)[α(x − y)− 2εy]|2)

+ 〈b(t, x)− b(s, y), α(x − y)〉+ 2ε(〈b(t, x), x〉 − 〈b(s, y), y〉)

+
c

2
tr
(
σσ∗(t, x)

(
Q + 2ε

(x⊗ x

|x|2 + I
)))

− c

2
tr
(
σσ∗(s, y)

(
R− 2ε

(y ⊗ y

|y|2 + I
)))

≥A∗(x, α(x − y) + 2εx)−A∗(y, α(x − y)− 2εy)≥0.

Applying (6.5) here gives

1

2
λl0 + λε(|x|2 + |y|2)≤λ(u(t, x)− v(s, y))

≤1

2
|σ∗(t, x)[α(x − y) + 2εx]|2 + 1

2
|σ∗(s, y)[α(x − y)− 2εy]|2

+ |b(t, x)− b(s, y)||α(x − y)|+ 2ε|〈b(t, x), x〉 − 〈b(s, y), y〉|

+
c

2
[tr(σσ∗(t, x)Q)− tr(σσ∗(s, y)R)] + 4cM2dε

≤16M2L2|x− y|2 + 36M2ε2(|x|2 + |y|2) + 4cM2dε+
3c

2
L2α(|t− s|+ |x− y|)2

+ Lα|x− y|(|t− s|+ |x− y|) + 2ε|x|(1 + |x|) + 2ε|y|(1 + |y|)

≤(3c+ 2)L2α(|t− s|2 + |x− y|2) + ε[|x|2 + (1 + |x|)2 + |y|2 + (1 + |y|)2]

+ (16M2L2 + α)|x − y|2 + 36M2ε2(|x|2 + |y|2) + 4cM2dε

≤(3c+ 2)L2α(|t− s|2 + |x− y|2) + 3ε(1 + |x|2 + |y|2)

+ (16M2L2 + α)|x − y|2 + 36M2ε(|x|2 + |y|2) + 4cM2dε.

By taking λ = (3 + 36M2) we get

1

2
λl0≤(3c+ 2)L2α(|t− s|2 + |x− y|2)

+ (16M2L2 + α)|x − y|2 + (3 + 4cM2d)ε,

which tends to 0 by sending α → ∞ and then ε → 0. Hence we get a contraction and u≤v on

(0, T ]×D(A).
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