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Abstract This paper deals with the blowup behavior of the radially symmetric solution
of the nonlinear heat equation ut = ∆u + eu in RN . The authors show the nonexistence
of type II blowup under radial symmetric case in the lower supercritical range 3 ≤ N ≤ 9,
and give a sufficient condition for the occurrence of type I blowup. The result extends that
of Fila and Pulkkinen (2008) in a finite ball to the whole space.
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1 Introduction

In this paper, we consider the blowup phenomenon of the nonlinear heat equation{
ut = ∆u+ eu, (x, t) ∈ RN × (0, T ),
u(x, 0) = u0(x), x ∈ RN (1.1)

with nonnegative, nontrivial initial data u0(x) ∈ L∞(RN ).

Throughout this paper, we deal with radially symmetric solution u(x, t) = U(r, t) = U(|x|, t),
which satisfies the equation

Ut = Urr +
N − 1

r
Ur + eU . (1.2)

The nonlinear reaction-diffusion model (1.1) with exponential nonlinearity is derived from

the ignition model for a high activation energy thermal explosion of a solid fuel, which is

important not only in combustion theory but also in other areas (see [1, 7–8, 23–24]). It is also

interesting in differential geometry (see [14]) and other applications.

As we know, the solution of (1.1) will develop singularity in finite time, provided that the

initial data is nonnegative and nontrivial. Namely, there exists a finite time T <∞ such that

lim sup
t→T−

∥u(·, t)∥L∞ = ∞.
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Here, T is called the blowup time.

Furthermore, another interesting and important problem is to investigate the singularity

behavior near the blowup time. The simplest example of a blowup solution is u(t) = − ln(T−t).
Another simple example is a self-similar blowup solution, which is given in the form

u(x, t) = − ln(T − t) + ψ
( x− a√

T − t

)
,

where a is any point in RN and ψ(y) is a bounded solution of the equation

∆ψ − 1

2
y · ∇ψ + eψ − 1 = 0 for y ∈ RN .

Both of these two special solutions imply

∥u(·, t)∥L∞ + ln(T − t) <∞.

We call the blowup is of type I if u satisfies

lim sup
t→T−

(∥u(·, t)∥L∞ + ln(T − t)) < +∞ (1.3)

and it is of type II otherwise. We would like to refer the important surveys [4, 16] in this topic.

Before stating the main issues in this paper, we will review the known results on another

important nonlinear heat equation

ut = ∆u+ |u|p−1u, p > 1, (1.4)

which has been studied most extensively. Similarly, we say that the blowup is of type I provided

that u satisfies

lim sup
t→T−

(T − t)
1

p−1 ∥u(·, t)∥L∞ <∞, (1.5)

otherwise it is called type II blowup.

The Sobolev critical exponent pS = N+2
N−2 for N > 2 and p

S
= ∞ for N ≤ 2 plays a key

role for studying the blowup profile. The singularity behavior is much better understood in

subcritical case p < p
S
, since the imbedding of Sobolev space H1(Ω) in Lp(Ω) is valid, the

functional analysis method and energy estimate can work here. It has been shown that only

type I blowup can occur in subcritical case p < p
S
in [9–10].

A first example of type II blowup has been constructed by Herrero and Vázquez for p > p
JL

in [11–12], where p
JL

is the so-called Joseph-Lundgren critical exponent as

p
JL

=

 N − 2
√
N − 1

N − 4− 2
√
N − 1

, if N > 10,

∞, if N ≤ 10.

It was known to characterize the spectral properties of the singular stationary solution in [13].

Later on, Mizoguchi used a brief and clean proof to give a series works on the existence of type

II blowup for p > p
JL

(see [19–21]).
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In the recent significant work [17], Matano and Merle characterized the nonexistence of type

II blowup in lower supercritical case p
S
< p < p

JL
both in a finite ball and in RN . In the latter

case, sign conditions are additionally satisfied, i.e., |u(r, t0) − φ∗(r)| and ut(r, t0) change sign

at most finitely many times over [0,∞) for some t0 ∈ [0, T ), where

φ∗(r) = c∗r−
2

p−1 with (c∗)p−1 =
2

p− 1

(
N − 2− 2

p− 1

)
,

which is the singularity solution of the stationary equation of (1.4). Furthermore, they improved

their results in the case of RN by eliminating restrict condition on ut(r, t0) in [18]. Mizoguchi

[22] obtained the nonexistence of type II blowup in RN under the condition that u0(r) is

nonincreasing with respect to r for p
S
< p < p

JL
.

However, there are few works to investigate the singularity behavior to the exponential

equation (1.1). In the pioneering work [6] in this topic, the nonexistence of type II blowup was

shown for bounded domain provided that u, ut are always nonnegative. The fundamental issue

of whether there exists type II blowup to the exponential equation in (1.1) remains outstanding

open. As pointed out by Matano in the end of his famous survey [16]: “· · · , we are led to

speculate that every (radially symmetric) blow-up for (1.1) in the range 3 ≤ N ≤ 9 is of type

I. · · · . This question is still open.” We have realized that the range 3 ≤ N ≤ 9 for (1.1) looks

much like the lower supercritical range p
S
< p < p

JL
for (1.4) in [13]. Fila and Pulkkinen [5] got

a sufficient condition for type I blowup for equation (1.1) with u(0, t) = max
BR

u(·, t) in a finite

ball. In this paper, we will give a rigorous proof to show the nonexistence of type II blowup in

lower supercritical range for (1.1) in RN . Though the result is the same as that in finite ball,

there is some technical difficulty when using zero number theory for RN , and we resolve it in

Lemma 3.1. The main result is stated as follows.

Theorem 1.1 (Nonexistence of Type II Blowup in RN ) Let 3 ≤ N ≤ 9 and u be a solution

of (1.1) with radially symmetric nonincreasing initial data u0 ∈ L∞ (
RN

)
. Suppose that u blows

up in L∞ (
RN

)
at t = T for some 0 < T < +∞. Then u exhibits type I blowup provided that

the blowup set B(u0) is not [0,∞).

Remark 1.1 The proof of Theorem 1.1 is based on the intersection comparison method,

which has been used extensively to solve the same problem for equation (1.4) in [16–18, 20, 22].

Thus, we have to restrict the solution to be radially symmetric.

Remark 1.2 The nonexistence type II blowup result in this paper coincides with the one

for the nonlinear heat equation (1.4), obtained in [22] for lower supercritical range.

This paper is organized as follows. In Section 2, we will give some known results including

zero number properties, the behavior of stationary solutions and so on. In Section 3, we will

give the proof of Theorem 1.1.

2 Preliminary

First, we introduce some important notations.
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For a function f ̸≡ 0 on [0, b] with 0 < b <∞, let Z[0,b](f) be the supremum over all j such

that there exist 0 ≤ r1 < r2 < · · · < rj+1 < b with f(ri) · f(ri+1) < 0 for i = 1, 2, · · · , j. We

denote by Z(f) for simplicity if b = ∞.

We introduce a so-called Sturm-type theorem which has been established in [2].

Lemma 2.1 (Zero Number Properties) Let V (r, t) := v(x, t) with r = |x| be a smooth,

radially symmetric solution of the linear equation

vt = ∆v + a(|x|, t)v for |x| < R, t ∈ (t1, t2),

where 0 < R < ∞, −∞ ≤ t1 < t2 ≤ ∞, and a(r, t) is continuous on [0, R] × (t1, t2). Assume

that V (r, t) is not identically equal to 0 and satisfies either of the following boundary conditions:

(a) V (R, t) ≡ 0, t ∈ (t1, t2), (b) V (R, t) ̸= 0, t ∈ (t1, t2).

Then the following statements hold:

(i) Z[0,R](V (·, t)) is finite for any t ∈ (t1, t2),

(ii) Z[0,R](V (·, t)) is monotone nonincreasing with respect to t,

(ii) if Vr(r
∗, t∗) = V (r∗, t∗) = 0 for some r∗ ∈ [0, R], t∗ ∈ (t1, t2), then

Z[0,R](V (·, t)) > Z[0,R](V (·, s)), t1 < t < t∗ < s < t2.

It is easy to see that there exists a singular stationary solution of (1.2), denoted by

φ∞(r) = ln
2(N − 2)

r2
for N ≥ 3.

Next, we show some important properties of the stationary solution which play a crucial

role to establish the nonexistence of type II blowup in lower supercritical range 3 ≤ N ≤ 9.

Lemma 2.2 (see [13, 15]) For a > 0, let φa be a positive solution ofφ′′(r) +
N − 1

r
φ′(r) + eφ(r) = 0 in (0,∞),

φ′(0) = 0, φ(0) = a.
(2.1)

If 3 ≤ N ≤ 9, then Z(φa − φ∞) = ∞.

A direct computation gives that

φa(r) = a− 1 + φ1(e
a−1
2 r). (2.2)

3 Proof of the Main Results

We will give the proof of Theorem 1.1 in this section. The proof is separated into four steps.

First, we prove that the possible type II blowup can occur only at the origin. Second, we will

show that Z[0,R](u(r, t)−φ∞) is finite. Furthermore, we prove that any type II blowup solution

converges to a stationary solution of (1.1). Finally by constructing a contradiction we get the

desired result.
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Step 1 Now we give the fact that the possible type II blowup can occur only at the origin.

For a solution u to problem (1.1) and T > 0, set

ω(y, s) = u(r, t) + log(T − t), y =
r√
T − t

, s = − log(T − t).

Then ω satisfies

ωs = wyy +
N − 1

y
ωy −

y

2
ωy + eω − 1 in (0,∞)× (sT ,∞), (3.1)

where sT = − log T .

Proposition 3.1 Suppose that u0(r) is nonincreasing with r. Let u be a radially symmetric

solution of (1.1) with blowup time T and ω be the corresponding solution of (3.1). Then the

possible type II blowup must occur at r = 0.

Proof Let λR and ϕR be respectively the first eigenvalue and eigenfunction of{
−∆ϕ = λϕ in BR,

ϕ = 0 on ∂BR

with ϕR > 0 in BR and normalized by
∫
BR

ϕRdx = 1. For any R > 0,

λR =
λ1
R2

and ϕR(r) =
1

RN
ϕ1

( r
R

)
for 0 < r < R.

It is easy to see that ϕR(r) is nonincreasing with respect to r = |x|. Since the assumption

u0(r) is nonincreasing with r that implies ωy(y, s) ≤ 0 in [0,∞)× [sT ,∞), we have

ωs ≥ y1−N (ωyy
N−1)y + eω − 1 in (0,∞)× (sT ,∞). (3.2)

Multiplying (3.2) by ϕRy
N−1 and integrating over [0, R] yield that

d

ds

∫ R

0

ωϕRy
N−1dy ≥ −

∫ R

0

ωy(ϕR)yy
N−1dy +

∫ R

0

(eω − 1)ϕRy
N−1dy

≥ −λR
∫ R

0

ωϕRy
N−1dy +

∫ R

0

(eω − 1)ϕRy
N−1dy

≥ −λR
∫ R

0

ωϕRy
N−1dy + e

∫ R
0
ωϕRy

N−1dy − 1

for s ≥ sT . Here we have used Jensen’s inequality. Putting

W (s) =

∫ R

0

ωϕRy
N−1dy for s ≥ sT ,

we get

W ′(s) ≥ −λRW (s) + eW (s) − 1 for s ≥ sT .

Since W (s) exists globally in s, there holds

eW (s) ≤ λRW (s) + 1 for s ≥ sT ,



314 R. H. Ji, S. Li and H. Chen

which yields the uniform upper bound of W (s),

W (s) ≤ C

for some constant C > 0 depending only on R.

Suppose that u(r, t) blows up at some r0 > 0 and it is of type II. Then there exists a sequence

tn → T such that

u(r0, tn) + log(T − tn) → +∞, n→ ∞.

Since yn, sn are sufficiently large for n→ ∞, ω(yn, sn) is also sufficiently large. Then for fixed

sufficiently large n, we can choose some k ∈ (0, 1) such that R1 = yn
k ∈ {yn}∞1 and ω(R1, s

′
n)

large, where s′n corresponds to yn
k . Moreover, ω(y, s) is nonincreasing with respect to y, then

we have ω(y, s) > 0 for 0 < y < R1. This together with the uniform upper bound of W (s)

implies

ω(yn)
kN

N
ϕ1(k) ≤

∫ yn

0

ω(y, s)ϕRy
N−1dy ≤

∫ R1

0

ω(y, s)ϕRy
N−1dy ≤ C.

Hence, taking limit n→ ∞ leads to a contradiction.

Step 2 Z[0,R](u(r, t)− φ∞) is finite.

We quote the following result which was established in [3].

Proposition 3.2 For positive constants R and T , let QR,T = (RN \BR)× [0, T ]. Assume

that u satisfies

|∆u+ ut| ≤M(|u|+ |∇u|) in QR,T

and

|u(x, t)| ≤M exp(M |x|2) in QR,T

for some constant M > 0. If u(x, 0) = 0 for any x ∈ RN \ BR, then u vanishes identically in

QR,T .

Lemma 3.1 Assuming that u0(r) is nonincreasing with r and B(u0) ̸= [0,∞). Let u be a

radially symmetric solution of the Cauchy problem (1.2) which blows up at t = T . Then there

exist δ0 > 0, R > 0, t0 ∈ [0, T ) such that

|u(R, t)− φ∞(R)| ≥ δ0 for t ∈ [t0, T ).

Proof Let p(r, t) = u(r, t)− φ∞(r) in (0,∞)× [0, T ), which satisfies

pt = prr +
N − 1

r
pr +

2(N − 2)

r2
(ep − 1) in (0,∞)× (0, T ). (3.3)

Due to the assumption that B(u0) ̸= [0,∞), there exist some positive constants C and K such

that

u(r, t) ≤ C in [K,∞)× [0, T ),

which implies
2(N − 2)

r2
(ep − 1) ≤ Cp in [K,∞)× [0, T ).
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It follows from (3.3) that p(r, t) can not blowup at any time in [K,∞). Let p(r, T ) = lim
t→T

p(r, t)

for r ≥ K. Change the variable t′ = T − t and denote p1(r, t
′) = p(r, t) such that

|∆p1 + p1t| ≤M(|p1|+ |∇p1|) for some M > 0 in [K,∞)× [0, T ).

Thanks to Proposition 3.2 there exists R ≥ K such that

p1(R, 0) = p(R, T ) ̸= 0.

Then there exists a t0 ∈ [0, T ) such that

(i) if p(R, T ) > 0, then p(R, t) ≥ 1
2p(R, T ) for t ∈ [t0, T ),

(ii) if p(R, T ) < 0, then p(R, t) ≤ 1
2p(R, T ) for t ∈ [t0, T ),

which implies the conclusion by choosing δ0 = 1
2

∣∣p(R, T )∣∣.
Hence, we can conclude that for the whole domain RN , there exists a R > 0 such that

Z[0,R](u(r, t)− φ∞(r)) is finite for t ∈ [t0, T ).

Step 3 We assume that the blowup is of type II. We will show that there exists a time

sequence tn → T such that, after a suitable space-time rescaling, the solution u(r, tn) converges

to a stationary solution of (1.1) in RN for N ≥ 3.

Lemma 3.2 Suppose that u0(r) is nonincreasing with r and B(u0) ̸= [0,∞). Let u be

a solution of (1.2) blowing up at t = T . Then there exists R > 0 and t0 ∈ [0, T ) such that

ut(R, t) ̸= 0 for t ∈ [t0, T ).

The proof of Lemma 3.4 follows from the similar argument in Lemma 3.3 replacing p(r, t)

by ut(r, t), hence we omit it here.

Lemma 3.2 implies immediately that there exists an R > 0 such that

Z[0,R]

(
ut
)
<∞ for t ∈ (t0, T ).

Moreover, since u(0, t) = ∥u(·, t)∥L∞ and u blows up in finite time T , there exists a t1 ∈ [0, T )

such that

ut(0, t) > 0 in [t1, T ). (3.4)

The following idea is inspired by [17] to show the similar result for (1.4). Let M(t) =

∥u(t)∥L∞ for t ∈ [0, T ). It follows from (3.4) that

0 ≤M ′(t) ≤ eM(t) in [t1, T ), (3.5)

which gives

−1 ≤ d

dt
(e−M(t)) ≤ 0 in [t1, T ). (3.6)

Integrating (3.6) from t to T yields

eM(t) ≥ 1

e(T − t)
. (3.7)
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Since M(t) → ∞ as t→ T , we obtain

e−M(t) → 0 as t→ T.

Let

τ =

∫ t

0

eM(s)−1ds

and one has

τ ≥
∫ t

0

1

e(T − s)
ds ≥ 1

e
ln

T

T − t
→ ∞ as t→ T

due to the facts (3.6)–(3.7). Denoting ρ(τ) = e−M(t)+1, we get

dτ

dt
= eM(t)−1 =

1

ρ(τ)
and dt = ρ(τ)dτ,

thus

T − t =

∫ ∞

τ

ρ(s)ds.

Set

v(η, τ) = u(r, t)−M(t) + 1 and η = re
M(t)−1

2 .

Then v satisfies

vτ = vηη +
N − 1

η
vη + ev − σ(τ)

(η
2
vη + 1

)
in (0,∞)× (0,∞), (3.8)

where

σ(τ) = −ρ
′(τ)

ρ(τ)
=M ′(t)e−M(t)+1. (3.9)

It follows from (3.5) that

0 ≤ σ(τ) ≤ e in (0,∞). (3.10)

Set

ξ(τ) =
ρ(τ)∫ ∞

τ

ρ(s)ds

=
1

eM(t)−1+ln(T−t) .

Since u undergoes type II blowup at t = T , there exists {τn} with τn → ∞ as n→ ∞ such that

ξ(τn) → 0 as n→ ∞. A direct calculation yields

σ(τ) = −ξτ
ξ

+ ξ in (0,∞), (3.11)

which together with (3.9)–(3.10) leads

−eξ ≤ ξτ ≤ ξ2 in (0,∞). (3.12)

The following idea borrows from [17, Lemma 4.2]. For convenience to the readers, we sketch

the proof as follows.
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Lemma 3.3 For any k > 0 there exists {an} with an → ∞ as n→ ∞ such that

max
τ∈[an,an+k]

|ξ(τ)| → 0 as n→ ∞ (3.13)

and ∫ an+k

an

σ(τ)dτ → 0 as n→ ∞. (3.14)

Proof Integrating (3.11) from a to a+ k yields∫ a+k

a

σ(τ)dτ = ln
ξ(a)

ξ(a+ k)
+

∫ a+k

a

ξ(τ)dτ for a > 0. (3.15)

Case 1 ξ(τ) → 0 as τ → ∞. The statement (3.13) is trivial. Furthermore, suppose that

(3.14) does not hold. Then there exists δ0 > 0 such that∫ a+k

a

σ(τ)dτ ≥ δ0 for a≫ 1. (3.16)

From (3.7), we have ∫ ∞

0

ξ(τ)dτ <∞, (3.17)

which contradicts the fact ∫ ∞

0

ξ(τ)dτ =
[
− ln

∫ ∞

τ

ρ(s)ds
]∞
0

= ∞.

Case 2 ξ(τ) 9 0 as τ → ∞. There exists δ1 > 0, {τn} and {τ̃n} satisfying

τ̃1 < τ1 < τ̃2 < τ2 < · · · < τ̃n < τn < · · · → ∞ as n→ ∞,

such that

ξ(τ̃n) ≥ δ1 for n = 1, 2, · · · , and ξ(τn) → 0 as n→ ∞.

Since ξ(τ) varies slowly near τ = τn for n ≫ 1 by (3.12), there exist {an}, {bn} with an ∈
(τ̃n, τn), bn ∈ (τn, τ̃n+1) and bn − an = k for n≫ 1 such that

ξ(an) = ξ(bn) = max
τ∈[an,bn]

ξ(τ) → 0 as n→ ∞.

It follows from (3.15) that∫ an+k

an

σ(τ)dτ = ln
ξ(an)

ξ(bn)
+

∫ bn

an

ξ(τ)dτ =

∫ bn

an

ξ(τ)dτ → 0 as n→ ∞,

which is nothing but (3.14). This completes the proof.

In view of (3.10) and Lemma 3.3, we obtain

σ(τ + an) → 0 in L1(0, k) as n→ ∞.

Therefore, we can get the following result by the diagonalization argument.
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Lemma 3.4 There exist {an} and {kn} with an → ∞ and kn → ∞ as n→ ∞ such that

max
τ∈[an,an+kn]

|ξ(τ)| → 0 as n→ ∞

and ∫ an+kn

an

σ(τ)dτ → 0 as n→ ∞.

Moreover,

σ(τ + an + kn) → 0 a.e. τ ∈ (−∞, 0] as n→ ∞.

Lemma 3.5 There exists {τn} with τn → ∞ as n → ∞ and a solution φ1 of (2.1) such

that

v(η, τn) → φ1(η) locally uniformly in [0,∞) as n→ ∞.

Namely, there exists {tn} with tn → T as n→ ∞ such that

u(ηe−
M(tn)−1

2 , tn)−M(tn) + 1 → φ1(η) locally uniformly in [0,∞) as n→ ∞.

Proof Let an and kn be as in Lemma 3.4. Set kn = kn
3 and τn = an + 2kn, and denote

vn(η, τ) = v(η, τ + τn) for η ≥ 0 and τ ∈ [−2kn, kn].

Then vn satisfies

vτ = vηη +
N − 1

η
vη + ev − σ(τ + τn)

(η
2
vη + 1

)
in (0,∞)× (0,∞). (3.18)

Obviously, ∥vn(·, τ)∥L∞ = 1 for τ ∈ [−2kn, kn]. Since σ(τ + τn) is uniformly bounded from

(3.10), there exists V ∈ C2
(
[0,∞)× R

)
such that

vn(η, τ) → V (η, τ) locally uniformly in [0,∞)× R as n→ ∞

by the parabolic regularity theory. Then V satisfies

Vτ = Vηη +
N − 1

η
Vη + eV in (0,∞)× R. (3.19)

Differentiating (3.19) with respect to τ yields

(Vτ )τ = (Vτ )ηη +
N − 1

η
(Vτ )η + eV Vτ in (0,∞)× R.

Since V (0, τ) ≡ 1 and Vη(0, τ) ≡ 0, it is trivial that Vτ (0, τ) = (Vτ )η(0, τ) = 0 for τ ∈ R.
This together with [17, Corollary 2.9] yields that Vτ (η, τ) = 0 in [0,∞)×R, which implies that

V (η, τ) = φ1(η) for τ ∈ R.
Now we are ready to give a proof of Theorem 1.1.
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Proof of Theorem 1.1 Suppose on the contrary. We assume that there exists a solution

u to the problem (1.1) which exhibits type II blow up at t = T . It follows from Lemma 3.1 that

there exists some positive integer m such that for R > 0 in Lemma 3.1,

Z[0,R](u(r, t)− φ∞(r)) ≤ m, t ∈ [t0, T ). (3.20)

With the aid of Lemmas 2.2–3.5, we get

Z[0,R](u(r, t)− φ∞(r)) = Z[0,R](v(re
M(t)−1

2 , τ) +M(t)− 1− φ∞(r)).

Moreover, thanks to the fact that φa−φ∞ are all simple zeros for any a > 0 (see [15]), we have

Z[0,R](u(r, t)− φ∞(r)) = Z[0,R](φ1(re
M(t)−1

2 ) +M(t)− 1− φ∞(r))

= Z[0,∞)(φ1(η)− φ∞(η))

> m for t→ T.

This leads a contradiction to (3.20), and it completes the proof.
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