Problems of Lifts in Symplectic Geometry

Arif SALIMOV¹ Manouchehr BEHBOUDI ASL²

Sevil KAZIMOVA¹

Abstract Let (M, ω) be a symplectic manifold. In this paper, the authors consider the notions of musical (bemolle and diesis) isomorphisms $\omega^b : TM \to T^*M$ and $\omega^{\sharp} : T^*M \to TM$ between tangent and cotangent bundles. The authors prove that the complete lifts of symplectic vector field to tangent and cotangent bundles is ω^b -related. As consequence of analyze of connections between the complete lift ${}^c\omega_{TM}$ of symplectic 2-form ω to tangent bundle and the natural symplectic 2-form dp on cotangent bundle, the authors proved that dp is a pullback of ${}^c\omega_{TM}$ by ω^{\sharp} . Also, the authors investigate the complete lift ${}^c\varphi_{T^*M}$ of almost complex structure φ to cotangent bundle and prove that it is a transform by ω^{\sharp} of complete lift ${}^c\varphi_{TM}$ to tangent bundle if the triple (M, ω, φ) is an almost holomorphic \mathfrak{A} -manifold. The transform of complete lifts of vector-valued 2-form is also studied.

Keywords Symplectic manifold, Tangent bundle, Cotangent bundle, Transform of tensor fields, Pullback, Pure tensor, Holomorphic manifold
 2000 MR Subject Classification 53D05, 53C12, 55R10

1 Introduction

Let M be an *n*-dimensional C^{∞} -manifold and $T_P(M)$ $(T_P^*(M))$ be the tangent (cotangent) vector space at a point $P \in M$. Then the set

$$T(M) = \underset{P \in M}{\cup} T_P(M) \ (T^*(M) = \underset{P \in M}{\cup} T_P^*(M))$$

is, by definition, the tangent (cotangent) bundle over the manifold M. For any point \tilde{P} of $T_P(M)$ $(T_P^*(M))$ such that $\tilde{P} \in T_P(M)$ $(\tilde{P} \in T_P^*(M))$, the correspondence $\tilde{P} \to P$ determines the natural tensor bundle projection $\pi : T(M) \to M$ $(\pi : T^*(M) \to M)$, that is, $\pi(\tilde{P}) = P$. Suppose that the base space M is covered by a system of coordinate neighborhoods (U, x^i) , where $x^i, i = 1, \cdots, n$ are local coordinates in the neighborhood U. The open set $\pi^{-1}(U) \subset T(M)$ $(\pi^{-1}(U) \subset T^*(M))$ is naturally diffeomorphic to the direct product $U \times \mathbb{R}^n$ in such a way that a point $\tilde{P} \in T_P(M)$ $(\tilde{P} \in T_P^*(M))$ is represented by an ordered pair (P, ν) ((P, p)) of the point $P \in M$ and a vector (covector) $\nu \in \mathbb{R}^n$ $(p \in \mathbb{R}^n)$ whose components are given by $\nu^i(p_i)$ of \tilde{P} in $T_P(M)$ $(T_P^*(M))$ with respect to the frame (coframe) ∂_i (dx^i) . Denoting (x^i) by the coordinates of $P = \pi(\tilde{P})$ in U and establishing the correspondence $(x^i, \nu^i) \to \tilde{P} \in \mathbb{R}^n$.

Manuscript received August 23, 2017. Revised May 15, 2018.

¹Department of Algebra and Geometry, Baku State University, AZ1148, Baku, Azerbaijan.

E-mail: asalimov@hotmail.com sevilkazimova@hotmail.com

 $^{^2\}mathrm{Department}$ of Mathematics, Salmas Branch, Islamic Azad University, Salmas, Iran.

E-mail: behboudi@iausalmas.ac.ir

 $\pi^{-1}(U) \ ((x^i, p_i) \to \widetilde{P} \in \pi^{-1}(U)), \text{ we can introduce a system of local coordinates } (x^i, x^{\overline{i}}) = (x^i, \nu^i) \ ((x^i, \widetilde{x^i}) = (x^i, p_i)), \ \overline{i} = n + 1, \cdots, 2n \text{ in the open set } \pi^{-1}(U) \subset T(M) \ (\pi^{-1}(U) \subset T^*(M)).$ We call $(x^i, x^{\overline{i}}) = (x^J), \ J = 1, \cdots, 2n \ ((x^i, \widetilde{x^i}) = (\widetilde{x}^J)), \ J = 1, \cdots, 2n \text{ the induced coordinates in } \pi^{-1}(U) \subset T(M) \ (\pi^{-1}(U) \subset T^*(M)).$

A manifold M of dimension n = 2m is symplectic if it possesses a nondegenerate 2-form ω which is closed (i.e., $d\omega = 0$). For any manifold M of dimension n, the cotangent bundle $T_P^*(M)$ is a natural symplectic 2*n*-manifold with symplectic 2-form $\tilde{\omega} = -dp = dx^i \wedge dp_i$, where $p = p_i dx^i$ is the Liouville form (basic 1-form) on $T^*(M)$.

In Riemannian geometry, the musical isomorphism (or canonical isomorphism) is an isomorphism between the tangent and cotangent bundles of a Riemannian manifold given by its metric. There are similar isomorphisms on symplectic manifolds. Let now (M, ω) be a symplectic manifold. Then the musical isomorphisms $\omega^b : TM \to T^*M$ and $\omega^{\sharp} : T^*M \to TM$ are given by

$$\omega^b : x^I = (x^i, x^{\overline{i}}) = (x^i, \nu^i) \to \widetilde{x}^K = (x^k, \widetilde{x}^{\overline{k}}) = (x^k = \delta^k_i x^i, p_k = \omega_{ki} \nu^i)$$

and

$$\omega^{\sharp}: \widetilde{x}^{K} = (x^{k}, \widetilde{x}^{\overline{k}}) = (x^{k}, p_{k}) \to x^{I} = (x^{i}, x^{\overline{i}}) = (x^{i} = \delta^{i}_{k} x^{k}, \nu^{i} = \omega^{ik} p_{k}),$$

where $\omega^{ik}\omega_{kj} = \delta^i_j$, δ^i_j is the Kronecker symbol. The Jacobian matrices of ω^b and ω^{\sharp} are given, respectively, by

$$(\omega^{b})_{*} = \widetilde{A} = (\widetilde{A}_{I}^{K}) = \begin{pmatrix} \widetilde{A}_{i}^{k} & \widetilde{A}_{i}^{k} \\ \widetilde{A}_{i}^{\overline{k}} & \widetilde{A}_{i}^{\overline{k}} \end{pmatrix}$$
$$= \left(\frac{\partial \widetilde{x}^{K}}{\partial x^{I}}\right) = \begin{pmatrix} \delta_{i}^{k} & 0 \\ \nu^{s} \partial_{i} \omega_{ks} & \omega_{ki} \end{pmatrix}$$
(1.1)

and

$$(\omega^{\sharp})_{*} = A = (A_{K}^{I}) = \begin{pmatrix} A_{k}^{i} & A_{\overline{k}}^{i} \\ A_{\overline{k}}^{\overline{i}} & A_{\overline{k}}^{\overline{i}} \end{pmatrix}$$
$$= \left(\frac{\partial x^{I}}{\partial \widetilde{x}^{K}} \right) = \left(\begin{array}{c} \delta_{k}^{i} & 0 \\ p_{s} \partial_{k} \omega^{is} & \omega^{ik} \end{array} \right).$$
(1.2)

The theory of prolongations (lifts) of tensor fields from base manifold to its tangent and cotangent bundles was developed by Yano and Ishihara [18] (also, see for example [1-2, 4]). The main purpose of this paper is to study the transform (pullback and pushforward) of lifts via the musical symplectic isomorphisms. A similar problem for Riemannian manifolds was solved in [3] (also, see [13]).

2 ω^{b} -Related Vector Fields

Let f be any function on symplectic manifold (M, ω) . If $^{C}X_{T}$ is the complete lift of vector field X from manifold M to its tangent bundle T(M) which is defined by

$${}^{C}X_{T} {}^{C}f = {}^{C}(Xf), \quad {}^{C}f = v^{s}\partial_{s}f,$$

Problems of Lifts in Symplectic Geometry

then has components (see [18, p.15])

$$^{C}X_{T} = \begin{pmatrix} X^{i} \\ v^{s}\partial_{s}X^{i} \end{pmatrix}$$

$$\tag{2.1}$$

with respect to the coordinates $(x^i, x^{\overline{i}}) = (x^i, \nu^i)$.

Using (1.1) and (2.1) we have

$$(\omega^{b})_{*} {}^{C}X_{T} = (\widetilde{A}_{I}^{K} {}^{C}X_{T}^{I}) = \begin{pmatrix} \delta_{i}^{k} & 0 \\ \nu^{s}\partial_{i}\omega_{ks} & \omega_{ki} \end{pmatrix} \begin{pmatrix} X^{i} \\ v^{s}\partial_{s}X^{i} \end{pmatrix}$$
$$= \begin{pmatrix} X^{k} \\ X^{i}v^{s}\partial_{i}\omega_{ks} + \omega_{ki}v^{s}\partial_{s}X^{i} \end{pmatrix}$$
$$= \begin{pmatrix} X^{k} \\ v^{s}(X^{i}\partial_{i}\omega_{ks} + \omega_{is}\partial_{k}X^{i} + \omega_{ki}\partial_{s}X^{i}) - v^{s}\omega_{is}\partial_{k}X^{i} \end{pmatrix}$$
$$= \begin{pmatrix} X^{k} \\ v^{s}L_{X}\omega_{ks} - p_{i}\partial_{k}X^{i} \end{pmatrix}, \qquad (2.2)$$

where L_X denotes the Lie derivations.

On the other hand, the complete lift ${}^{C}X_{T^*}$ of vector field X from manifold M to its cotangent bundle $T^*(M)$ is defined by

$$^{C}X_{T^{*}}(\gamma Z) = \gamma(L_{X}Z),$$

where γZ and $\gamma(L_X Z)$ are functions in $T^*(M)$ with local expressions

$$\gamma Z = p_i Z^i, \quad \gamma(L_X Z) = p_i [X, Z]^i$$

and the complete lift $^{C}X_{T^{*}}$ has components (see [18, p.236])

$$^{C}X_{T^{*}} = \begin{pmatrix} X^{k} \\ -p_{i}\partial_{k}X^{i} \end{pmatrix}$$

with respect to the coordinates $(x^i, x^{\overline{i}}) = (x^i, p_i)$.

From (2.2) we obtain

$$(\omega^b)_* {}^C X_T = {}^C X_{T^*} + \begin{pmatrix} 0 \\ v^s L_X \omega_{ks} \end{pmatrix},$$

i.e., if $L_X \omega_{ks} = 0$, then $(\omega^b)_* {}^C X_T = {}^C X_{T^*}$. A symplectic vector field X is a vector field on (M, ω) which preserves the symplectic form, i.e., $L_X \omega = 0$. Thus we have the following theorem.

Theorem 2.1 Let (M, ω) be a symplectic manifold, ${}^{C}X_{T}$ and ${}^{C}X_{T^*}$ be complete lifts of a vector field X to tangent bundle T(M) and cotangent bundle $T^*(M)$, respectively. If X is a symplectic vector field, then ${}^{C}X_{T}$ and ${}^{C}X_{T^*}$ is ω^{b} -related, i.e., $(\omega^{\text{b}})_* {}^{C}X_T = {}^{C}X_{T^*}$.

Since every Hamiltonian vector fields $X_H (\iota_{X_H} \omega = dH)$ is a symplectic vector field $(L_{X_H} \omega = d \circ \iota_{X_H} \omega + d\iota_{X_H} \circ d\omega = d^2 H = 0)$. From Theorem 2.1 we immediately have the following corollary.

Corollary 2.1 If X_H is a Hamiltonian vector field, then ${}^C(X_H)_T$ and ${}^C(X_H)_{T^*}$ are ω^b -related.

3 Pullback of $^{C}\omega_{T}$

Let (M, ω) be a symplectic manifold of dimension n = 2m. It is well known that in the cotangent bundle $T^*(M)$, there exists a closed 2-form

$$\widetilde{\omega} = \mathrm{d}p = \mathrm{d}p_i \wedge \mathrm{d}x^i,$$

where $p = p_i dx^i$, i.e., $T^*(M)$ is a symplectic 4*m*-manifold. If we write $\tilde{\omega} = \frac{1}{2} \tilde{\omega}_{KL} dx^K \wedge dx^L$, then we have

$$\widetilde{\omega} = (\widetilde{\omega}_{KL}) = \begin{pmatrix} 0 & \delta_k^l \\ -\delta_l^k & 0 \end{pmatrix}.$$

The complete lift ${}^{C}\omega_{T}$ of ω to tangent bundle T(M) is a 2-form and has components of the form (see [18, p.38])

$$^{C}\omega_{T} = \begin{pmatrix} v^{s}\partial_{s}\omega_{ij} & \omega_{ij} \\ \omega_{ij} & 0 \end{pmatrix}$$
(3.1)

with respect to the coordinates $(x^i, x^{\overline{i}}) = (x^i, v^i)$.

We now consider the musical isomorphism $\omega^{\sharp}: T^*M \to TM$. Using

$$(d\omega)_{skl} = \frac{1}{3} (\partial_s \omega_{kl} + \partial_k \omega_{ls} + \partial_l \omega_{sk}) = 0,$$

$$\omega_{ij} = -\omega_{ji}, \quad \omega^{ij} = -\omega^{ji}, \quad \omega^{is} \omega_{sj} = \delta^i_j,$$
(3.2)

from (1.2) and (3.1) we see that the pullback of ${}^{C}\omega$ by ω^{\sharp} is a 2-form $(\omega^{\sharp})^{*} {}^{C}\omega$ on $T^{*}(M)$ and has components

$$\begin{split} ((\omega^{\sharp})^{*} {}^{C} \omega_{T})_{kl} &= A_{k}^{I} A_{l}^{J} ({}^{C} \omega_{T})_{IJ} \\ &= A_{k}^{i} A_{l}^{j} ({}^{C} \omega_{T})_{ij} + A_{k}^{i} A_{l}^{j} ({}^{C} \omega_{T})_{ij} + A_{k}^{i} A_{l}^{j} ({}^{C} \omega_{T})_{ij} \\ &= \delta_{k}^{i} \delta_{l}^{j} v^{s} \partial_{s} \omega_{ij} + p_{s} (\partial_{k} \omega^{is}) \delta_{l}^{j} \omega_{ij} + \delta_{k}^{i} p_{s} (\partial_{l} \omega^{js}) \omega_{ij} \\ &= v^{s} \partial_{s} \omega_{kl} + p_{s} ((\partial_{k} \omega^{is}) \omega_{il} - (\partial_{l} \omega^{sj}) \omega_{kj}) \\ &= p_{t} \omega^{ts} \partial_{s} \omega_{kl} - p_{s} (\omega^{si} \partial_{k} \omega_{il} - \omega^{sj} \partial_{l} \omega_{jk}) \\ &= p_{t} \omega^{ts} (\partial_{s} \omega_{kl} - \partial_{k} \omega_{sl} + \partial_{l} \omega_{sk}) \\ &= 3 p_{t} \omega^{ts} (d\omega)_{skl} = 0, \\ ((\omega^{\sharp})^{*} {}^{C} \omega_{T})_{k\overline{l}} &= A_{k}^{i} A_{\overline{l}}^{\overline{l}} ({}^{C} \omega_{T})_{i\overline{j}} = \delta_{k}^{i} \omega^{jl} \omega_{ij} = \delta_{k}^{i} \delta_{l}^{j} = -\delta_{k}^{k} , \\ ((\omega^{\sharp})^{*} {}^{C} \omega_{T})_{\overline{kl}} = 0 \end{split}$$

or

$$(\omega^{\sharp})^{* C} \omega_T = (((\omega^{\sharp})^{* C} \omega_T)_{KL}) = \begin{pmatrix} 0 & \delta_k^l \\ -\delta_l^k & 0 \end{pmatrix}.$$

From here follows that the pullback $(\omega^{\sharp})^* {}^C \omega_T$ coincides with the symplectic form $\widetilde{\omega} = dp = dp_i \wedge dx^i$. Thus we have the following theorem.

Theorem 3.1 Let (M, ω) be a symplectic manifold. The natural symplectic structure $dp = dp_i \wedge dx^i$ on cotangent bundle T^*M is a pullback by ω^{\sharp} of complete lift of ω to tangent bundle TM, i.e., $(\omega^{\sharp})^* {}^C \omega_T = dp$.

A diffeomorphism between any two symplectic manifolds $f : (M, \omega) \to (N, \omega)$ is called symplectomorphism if $f^*\omega = \omega$, where f^* is the pullback of f. Since $d^C\omega_T = C(d\omega)_T = 0$ (see [18, p.25]), from Theorem 3.1 we have the following corollary.

Corollary 3.1 The musical isomorphism $\omega^{\sharp} : (T^*M, dp) \to (TM, {}^{C}\omega_T)$ is a symplectomorphism.

4 Transform of Tensor Fields of Type (1,1)

Let (M, ω) be a symplectic manifold with almost complex structure φ ($\varphi^2 = -I$). If the 2form ω satisfies the purity condition $\omega(\varphi X, Y) = \omega(X, \varphi Y)$, i.e., $(\omega \circ \varphi)(X, Y) = -(\omega \circ \varphi)(Y, X)$, then the triple (M, ω, φ) is called \mathfrak{A} -manifold according to the terminology accepted in [6] (also, see [16, p.31]). We call

$$\Omega(X,Y) = (\omega \circ \varphi)(X,Y) = \omega(\varphi Y,X)$$

the twin 2-form associated with ω .

Let \mathbb{C} be a complex algebra and $\omega^* = (\omega_{v_1v_2}^*), v_1, v_2 = 1, \cdots, r$ be a complex tensor field of type (0, 2) on holomorphic (analytic) complex manifold $\mathfrak{X}_r(\mathbb{C})$. Then the real model of ω^* is a tensor field $\omega = (\omega_{j_1j_2}), j_1, j_2 = 1, \cdots, 2r$ on M such that

$$\omega(\varphi X_1, X_2) = \omega(X_1, \varphi X_2)$$

for any vector fields X_1, X_2 . Such tensor fields are said to be pure with respect to . They were studied by many authors (see [5, 7–9, 12–14]).

The Φ_{φ} -operator applied to a pure tensor field ω is defined by (see [10, 15])

$$(\Phi_{\varphi}\omega)(X,Y_1,Y_2) = (\varphi X)(\omega(Y_1,Y_2)) - X(\omega(\varphi Y_1,Y_2)) + \omega((L_{Y_1}\varphi)X,Y_2) + \omega(Y_1,(L_{Y_2}\varphi)X)$$

and has the local expression

$$(\Phi_{\varphi}\omega)_{kij} = \varphi_k^m \partial_m \omega_{ij} - \partial_k (\omega \circ \varphi)_{ij} + \omega_{mj} \partial_i \varphi_k^m + \omega_{im} \partial_j \varphi_k^m,$$
(4.1)

where $\Phi_{\varphi}\omega$ is a tensor field of type (0,3), L_X is the Lie derivation with respect to X and

$$(\omega \circ \varphi)_{ij} = \varphi_i^m \omega_{mj}.$$

Let M on be given the integrable almost complex structure φ . For complex tensor field, ω^* of type (0, 2) on $\mathfrak{X}_r(\mathbb{C})$ to be \mathbb{C} -holomorphic tensor field, it is necessary and sufficient that $\Phi_{\varphi}\omega = 0$ (see [11, p.57]). Let M now be a manifold with non-integrable almost complex structure φ . In this case, when $\Phi_{\varphi}\omega = 0$, ω is said to be almost holomorphic. If the symplectic 2-form ω of \mathfrak{A} -manifold (M, ω, J) satisfies the almost holomorphicity condition $\Phi_{\varphi}\omega = 0$, then it is called an

almost holomorphic symplectic 2-form. We call \mathfrak{A} -manifold admitting such a 2-form an almost holomorphic \mathfrak{A} -manifold.

Let $\varphi = \varphi_j^i \partial_i \otimes dx^j$ be a field of tensor field of type (1,1) in $U \subset M$. The complete lift ${}^C \varphi_{TM}$ of φ to tangent bundle is completely determined by ${}^C \varphi_{TM}({}^C X) = {}^C (\varphi(X))_{TM}$. In an analogous way, the complete lift ${}^C \varphi_{T^*M}$ of φ to cotangent bundle is completely determined by

$${}^{C}\varphi_{T^{*}M}({}^{C}X) = {}^{C}(\varphi(X))_{T^{*}M} + \gamma(L_{X}\varphi),$$

where $\gamma(L_X \varphi)$ is a vertical vector field on T^*M with components

$$\gamma(L_X\varphi) = \sum_{i=1}^n p_s(L_X\varphi)_i^s \partial_{\overline{i}}.$$

The complete lift of φ to tangent and cotangent bundles are given, respectively, by (see [18])

$${}^{C}\varphi_{TM} = \left(\left({}^{C}\varphi_{TM} \right) _{J}^{I} \right) = \left(\begin{array}{c} \varphi_{j}^{i} & 0\\ v^{s}\partial_{s}\varphi_{j}^{i} & \varphi_{j}^{i} \end{array} \right)$$

and

$${}^{C}\varphi_{T^{*}M} = \left(\left({}^{C}\varphi_{T^{*}M} \right)_{J}^{I} \right) = \left(\begin{array}{c} \varphi_{j}^{i} & 0\\ p_{s}(\partial_{j}\varphi_{i}^{s} - \partial_{i}\varphi_{j}^{s}) & \varphi_{i}^{j} \end{array} \right)$$

with respect to the induced coordinates $(x^j, x^{\overline{j}}) = (x^j, v^j)$ and $(x^j, x^{\overline{j}}) = (x^j, p_j)$.

Using (1.1)–(1.2), (3.2) and $\varphi_j^m \omega_{mk} = \varphi_k^m \omega_{jm}$, for transform of ${}^C \varphi_{TM}$ by $\omega^{\sharp} : T^*M \to TM$ we have

$$(\omega^{\sharp})^{* C} \varphi_{TM} = ((\widetilde{\varphi}_{T^*M})_L^J) = (\widetilde{A}_I^J A_L^K ({}^C \varphi_{TM})_K^I)$$

or

$$\begin{split} (\widetilde{\varphi}_{T^*M})_l^j &= \varphi_l^j, \quad (\widetilde{\varphi}_{T^*M})_l^j = 0, \\ (\widetilde{\varphi}_{T^*M})_l^{\overline{j}} &= \omega_{ji}\omega^{kl}\varphi_k^i = \varphi_l^l, \\ (\widetilde{\varphi}_{T^*M})_l^{\overline{j}} &= v^s(\partial_i\omega_{js})\varphi_l^i + \omega_{ji}v^s\partial_s\varphi_l^i + \omega_{ji}p_s(\partial_l\omega^{ks})\varphi_k^i \\ &= v^s((\Phi_{\varphi}\omega)_{ljs} + \partial_l(\omega \circ \varphi)_{js} - \omega_{is}\partial_j\varphi_l^i) + \omega_{ji}p_s(\partial_l\omega^{ks})\varphi_k^i \\ &= v^s(\Phi_{\varphi}\omega)_{ljs} - p_i\partial_j\varphi_l^i + v^s\partial_l(\varphi_j^m\omega_{ms}) + \omega_{ji}p_s(\partial_l\omega^{ks})\varphi_k^i \\ &= v^s(\Phi_{\varphi}\omega)_{ljs} - p_i\partial_j\varphi_l^i + v^s(\partial_l\varphi_j^m)\omega_{ms} \\ &+ v^s\varphi_j^m(\partial_l\omega_{ms}) + \omega_{jm}p_s(\partial_l\omega^{ks})\varphi_k^m \\ &= v^s(\Phi_{\varphi}\omega)_{ljs} - p_i\partial_j\varphi_l^i + p_m\partial_l\varphi_j^m \\ &+ v^s(\partial_l\omega_{ms})\varphi_j^m + \omega_{mk}p_s(\partial_l\omega^{ks})\varphi_j^m \\ &= v^s(\Phi_{\varphi}\omega)_{ljs} + p_m(\partial_l\varphi_j^m - \partial_j\varphi_l^m) \\ &+ v^s(\partial_l\omega_{ms})\varphi_j^m - \omega^{ks}p_s(\partial_l\omega_{mk})\varphi_j^m \\ &= v^s(\Phi_{\varphi}\omega)_{ljs} + p_m(\partial_l\varphi_j^m - \partial_j\varphi_l^m) \\ &+ v^s(\partial_l\omega_{ms})\varphi_j^m - v^k(\partial_l\omega_{mk})\varphi_j^m \\ &= v^s(\Phi_{\varphi}\omega)_{ljs} + p_m(\partial_l\varphi_j^m - \partial_j\varphi_l^m). \end{split}$$

Thus, if $\Phi_{\varphi}\omega = 0$, then the transform $(\omega^{\sharp})^* {}^C \varphi_{TM}$ of ${}^C \varphi_{TM}$ coincides with ${}^C \varphi_{T^*M}$. Thus we have the following theorem.

Theorem 4.1 Let (M, ω, φ) be a symplectic \mathfrak{A} -manifold and $\omega^{\sharp} : T^*M \to TM$ be a musical isomorphism between cotangent and tangent bundles. If the symplectic \mathfrak{A} -manifold is an almost holomorphic ($\Phi_{\varphi}\omega = 0$), then the complete lift ${}^C\varphi_{T^*M}$ is a transform of ${}^C\varphi_{TM}$ by ω^{\sharp} , i.e., $(\omega^{\sharp})^* {}^C\varphi_{TM} = {}^C\varphi_{T^*M}$.

In the case of integrability of φ , the complete lifts ${}^{C}\varphi_{TM}$ and ${}^{C}\varphi_{T^*M}$ are complex structures on tangent and cotangent bundles, respectively (see [18, p.37, p.256]), i.e., $(T^*M, {}^{C}\varphi_{T^*M})$ and $(TM, {}^{C}\varphi_{TM})$ are complex manifolds. Since $\widetilde{A}^{-1} = A$ (see (1.1)–(1.2)), the condition

$$(\omega^{\sharp})^{* C} \varphi_{TM} = (\widetilde{A} I_{A}^{J} A_{L}^{K} (^{C} \varphi_{TM})_{K}^{I}) = ((\widetilde{\varphi}_{T^{*}M})_{L}^{J}) =^{C} \varphi_{T^{*}M}$$

in the Theorem 4.1 can be written in the following form

$${}^{C}\varphi_{TM} \circ (\omega^{\sharp})_{*} = (\omega^{\sharp})_{*} \circ {}^{C}\varphi_{T^{*}M},$$

where $(\omega^{\sharp})_{*} = (A_{J}^{I})$. From here it is clear that the mapping $\omega^{\sharp} : T^{*}M \to TM$ is a holomorphic. Thus we have the following corollary.

Corollary 4.1 Let (M, ω, φ) be a holomorphic symplectic \mathfrak{A} -manifold. If φ is an integrable almost complex structure, then the musical isomorphism ω^{\sharp} (or ω^{b}) is a holomorphic mapping.

On the other hand, from (4.1) we obtain

$$\begin{split} \Phi_{\varphi}\omega)_{kij} &= \varphi_k^m \partial_m \omega_{ij} - \partial_k (\omega \circ \varphi)_{ij} + \omega_{mj} \partial_i \varphi_k^m + \omega_{im} \partial_j \varphi_k^m \\ &= \varphi_k^m (\partial_m \omega_{ij} - \partial_i \omega_{mj} - \partial_j \omega_{im}) + (\partial_i \omega_{mj}) \varphi_k^m \\ &+ (\partial_j \omega_{im}) \varphi_k^m + \omega_{mj} \partial_i \varphi_k^m + \omega_{im} \partial_j \varphi_k^m - \partial_k (\varphi_i^m \omega_{mj}) \\ &= \varphi_k^m (\partial_m \omega_{ij} + \partial_i \omega_{jm} + \partial_j \omega_{mi}) \\ &+ \partial_i (\varphi_k^m \omega_{mj}) + \partial_j (\varphi_k^m \omega_{im}) - \partial_k (\varphi_i^m \omega_{mj}) \\ &= 3\varphi_k^m (d\omega)_{mij} + \partial_i \Omega_{kj} + \partial_j (\varphi_i^m \omega_{mk}) - \partial_k \Omega_{ij} \\ &= 3\varphi_k^m (d\omega)_{mij} + \partial_i \Omega_{kj} + \partial_j \Omega_{ik} + \partial_k \Omega_{ji} \\ &= 3(\varphi_k^m (d\omega)_{mij} + (d\Omega)_{ikj}), \end{split}$$

which on symplectic \mathfrak{A} -manifold ($d\omega = 0$) has the form

$$(\Phi_{\varphi}\omega)(X, Y_1, Y_2) = 3(\mathrm{d}\Omega)(Y_1, X, Y_2),$$

where $\Omega = \omega \circ \varphi$ is the twin 2-form. Thus we have the following theorem.

Theorem 4.2 A symplectic \mathfrak{A} -manifold (M, ω, φ) is holomorphic if and only if the twin 2-form $\Omega = \omega \circ \varphi$ is closed.

From Theorems 4.1–4.2 we have the following corollary.

Corollary 4.2 If $\Omega = \omega \circ \varphi$ is a closed twin 2-form on \mathfrak{A} -manifold (M, ω, φ) , then ${}^{C}\varphi_{T^*M}$ is a transform of ${}^{C}\varphi_{TM}$ by musical isomorphism $\omega^{\sharp}: T^*M \to TM$.

A. Salimov, M. Behboudi Asl and S. Kazimova

5 Transform of Skew-Symmetric Tensor Field of Type (1,2)

Let $S = S_{ij}^k \partial_k \otimes dx^i \otimes dx^j$ be a vector valued 2-form on a symplectic manifold (M, ω) . The symplectic 2-form ω is called a pure with respect to if

$$\omega(S(X,Z),Y) = \omega(X,S(Y,Z)), \quad S_{il}^m \omega_{mj} = S_{jl}^m \omega_{im}.$$
(5.1)

Since

$$S(X,Y) = -S(Y,X),$$

from here follows

$$\omega(S(Z,X,),Y) = -\omega(S(X,Z),Y) = -\omega(X,S(Y,Z)) = \omega(X,S(Z,Y)),$$

or

$$S_{li}^m \omega_{mj} = S_{lj}^m \omega_{im}. \tag{5.2}$$

The Yano-Ako operator applied to a pure tensor field is defined by (see [10, 17])

$$(\Phi_S \omega)(X_1, X_2, Y_1, Y_2) = (L_{S(X_1, X_2)} \omega)(Y_1, Y_2) - (L_{X_1}(\omega \circ S))(Y_1, X_2, Y_2) - (L_{X_2}(\omega \circ S))(X_1, Y_1, Y_2)) + (\omega \circ S)([X_1, X_2], Y_1, Y_2)$$

and has the local expression

$$(\Phi_S\omega)_{jihs} = S_{ji}^m \partial_m \omega_{hs} - (\partial_j S_{hi}^m) \omega_{ms} - S_{hi}^m \partial_j \omega_{ms} - (\partial_i S_{jh}^m) \omega_{ms} - S_{jh}^m \partial_i \omega_{ms} + \omega_{ms} \partial_h S_{ji}^m + \omega_{hm} \partial_s S_{ji}^m .$$

The objects $(\Phi_S \omega)_{jihs}$ are components of tensor field of type (0, 4) if and only if ω is pure with respect to S.

The complete lift $^{C}S_{TM}$ of S to tangent bundle is completely determined by (see [18])

$$^{C}S_{TM}(^{C}X, ^{C}Y) = ^{C} (S(X, Y))_{TM}$$

for any vector fields X, Y on M, and has non-zero components

$$({}^{C}S_{TM})^{h}_{ji} = ({}^{C}S_{TM})^{\overline{h}}_{\overline{j}i} = ({}^{C}S_{TM})^{\overline{h}}_{\overline{j}\overline{i}} = S^{h}_{ji}, \quad ({}^{C}S_{TM})^{\overline{h}}_{ji} = v^{\overline{m}}\partial_{m}S^{h}_{ji}$$

with respect to the induced coordinates

$$(x^j, x^{\overline{j}}) = (x^j, v^j).$$

Now, we consider the transform of $^{C}S_{TM}$ by

$$\omega^{\sharp}: T^*M \to TM,$$

i.e.,

$$(\omega^{\sharp})^{* C} S_{TM} = ((\widetilde{S}_{T^*M})^H_{JI}) = (\widetilde{A} {}^H_M A^K_J A^P_I ({}^C S_{TM})^M_{KP}) .$$

Using (3.2) and (5.1)-(5.2) we have

$$\begin{split} (\widetilde{S}_{T^*M})_{ji}^h &= S_{ji}^h, \\ (^{C}\widetilde{S}_{T^*M})_{ji}^h &= (^{C}\widetilde{S}_{T^*M})_{ji}^h &= (^{C}\widetilde{S}_{T^*M})_{ji}^h &= (^{C}\widetilde{S}_{T^*M})_{ji}^h &= 0, \\ (^{C}\widetilde{S}_{T^*M})_{ji}^h &= \widetilde{A}\frac{h}{m}A_j^k A_i^p (^{C}S_{TM})_{kp}^m &= \omega_{hm}\delta_j^k \omega^{pi}S_{kp}^m \\ &= \omega_{hm}\omega^{pi}S_{ki}^m &= \omega^{kj}\omega_{mk}S_{hi}^m &= \delta_m^jS_{hi}^m &= S_{jh}^i, \\ (^{C}\widetilde{S}_{T^*M})_{ji}^h &= \widetilde{A}\frac{h}{m}A_j^k A_i^p (^{C}S_{TM})_{kp}^m &= \omega_{hm}\omega^{kj}\delta_i^p S_{kp}^m \\ &= \omega_{hm}\omega^{kj}S_{jp}^m &= \omega^{pi}\omega_{mp}S_{jh}^m &= \delta_m^i S_{jh}^m &= S_{hi}^j, \\ (^{C}\widetilde{S}_{T^*M})_{ji}^h &= \widetilde{A}\frac{h}{m}A_j^k A_i^p (^{C}S_{TM})_{kp}^m + \widetilde{A}\frac{h}{m}A_j^k A_i^p (^{C}S_{TM})_{kp}^m \\ &+ \widetilde{A}\frac{h}{m}A_j^k A_i^p (^{C}S_{TM})_{kp}^m + \widetilde{A}\frac{h}{m}A_j^k A_i^p (^{C}S_{TM})_{kp}^m \\ &= v^s (\partial_m \omega_{hs}) \delta_j^k \delta_i^p S_{kp}^m + \omega_{hm} \delta_j^k \delta_i^p v^s \partial_s S_{kp}^m \\ &= v^s (\partial_m \omega_{hs}) \delta_j^k \delta_i^p S_{kp}^m + \omega_{hm} \delta_j \delta_i^p v^s \partial_s S_{kp}^m \\ &= v^s (S_{ji}^m \partial_m \omega_{hs} + \omega_{hm} \partial_s S_{ji}^m) + \omega_{mt} p_s (\partial_i \omega^{ts}) S_{jh}^m \\ &- \omega^{ks} p_s (\partial_j \omega^{ks}) S_{hi}^m \\ &= v^s (S_{ji}^m \partial_m \omega_{hs} + \omega_{hm} \partial_s S_{ji}^m) - p_s \omega^{ts} (\partial_i \omega_{mt}) S_{jh}^m \\ &- \omega^{ts} p_s (\partial_j \omega_{mk}) S_{hi}^m \\ &= v^s (S_{ji}^m \partial_m \omega_{hs} + \omega_{hm} \partial_s S_{ji}^m) \\ &- v^t (\partial_i \omega_{mt}) S_{jh}^m - v^k (\partial_j \omega_{ms}) S_{jh}^m) \\ &= v^s (\Phi_S \omega)_{jihs} + v^s (\partial_j S_{hi}^m) \omega_{ms} \\ &+ v^s (\Phi_S \omega)_{jihs} - p_m (\partial_j S_{hi}^m) \omega_{ms} \\ &+ v^s (\Phi_S \omega)_{jihs} - p_m (\partial_j S_{hi}^m) \omega_{ms} \\ &= v^s (\Phi_S \omega)_{jihs} - p_m (\partial_j S_{hi}^m) \omega_{ms} \\ &= v^s (\Phi_S \omega)_{jihs} - p_m (\partial_j S_{hi}^m) \omega_{ms} \\ &= v^s (\Phi_S \omega)_{jihs} - p_m (\partial_j S_{hi}^m) + \partial_s S_{ji}^m) \\ \end{array}$$

On the other hand, it is well known that the complete lift $^{C}S_{T^{*}M}$ of skew-symmetric tensor field of type (1,2) to cotangent bundle has components of the form (see [18, p.245]):

$$({}^{C}S_{T^{*}M})_{ji}^{h} = S_{ji}^{h}, ({}^{C}S_{T^{*}M})_{ji}^{h} = ({}^{C}S_{T^{*}M})_{ji}^{h}$$

$$= ({}^{C}S_{T^{*}M})_{ji}^{h} = ({}^{C}S_{T^{*}M})_{ji}^{h} = 0,$$

$$({}^{C}S_{T^{*}M})_{ji}^{h} = S_{jh}^{i}, \quad ({}^{C}S_{T^{*}M})_{ji}^{h} = S_{hi}^{j},$$

$$({}^{C}S_{T^{*}M})_{ji}^{h} = -p_{m}(\partial_{j}S_{ih}^{m} + \partial_{i}S_{hj}^{m} + \partial_{h}S_{ji}^{m}).$$

From here and (5.3) follows that if $(\Phi_S \omega)_{jihs} = 0$, then $(\omega^{\sharp})^* {}^C S_{TM} = {}^C S_{T^*M}$. Thus we have the following theorem.

Theorem 5.1 Let ω be a pure symplectic 2-form with respect to the skew-symmetric tensor S of type (1,2) on a symplectic manifold (M,ω) , and let $^{C}S_{TM}$ and $^{C}S_{T^*M}$ be complete lifts of S to the tangent and cotangent bundles, respectively. If the symplectic 2-form satisfies the

Yano-Ako equation

$$S_{ji}^{m}\partial_{m}\omega_{hs} - (\partial_{j}S_{hi}^{m})\omega_{ms} - S_{hi}^{m}\partial_{j}\omega_{ms} - (\partial_{i}S_{jh}^{m})\omega_{ms} - S_{jh}^{m}\partial_{i}\omega_{ms} + \omega_{ms}\partial_{h}S_{ji}^{m} + \omega_{hm}\partial_{s}S_{ji}^{m} = 0,$$

then the complete lift ${}^{C}S_{T^*M}$ is a transform of ${}^{C}S_{TM}$ by a musical isomorphism $\omega^{\sharp}: T^*M \to TM$.

References

- Bejan, C.-L. and Druta-Romaniuc, S.-L., Connections which are harmonic with respect to general natural metrics, *Differential Geom. Appl*, 30(4), 2012, 306–317.
- Bejan, C.-L. and Kowalski, O., On some differential operators on natural Riemann extensions, Ann. Global Anal. Geom., 48(2), 2015, 171–180.
- [3] Cakan, R., Akbulut, K. and Salimov, A., Musical isomorphisms and problems of lifts, *Chin. Ann. Math. Ser. B*, 37(3), 2016, 323–330.
- [4] Druta-Romaniuc, S.-L., Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles, Czechoslovak Math. J., 62(4), 2012, 937–949.
- [5] Etayo, F. and Santamaría, R., $(J2 = \pm 1)$ -metric manifolds, Publ. Math. Debrecen, 57(3-4), 2000, 435-444.
- [6] Norden, A. P., On a class of four-dimensional A-spaces, Izv. Vyssh. Uchebn. Zaved. Matematika, 17(4), 1960, 145–157.
- [7] Oproiu, V. and Papaghiuc, N., Some classes of almost anti-Hermitian structures on the tangent bundle, Mediterr. J. Math., 1(3), 2004, 269–282.
- [8] Oproiu, V. and Papaghiuc, N., An anti-Kählerian Einstein structure on the tangent bundle of a space form, Colloq. Math., 103(1), 2005, 41–46.
- [9] Salimov, A., Almost ψ-holomorphic tensors and their properties, Doklady Akademii Nauk, 324(3), 1992, 533–536.
- [10] Salimov, A., On operators associated with tensor fields, J. Geom., 99(1-2), 2010, 107-145.
- [11] Salimov, A., Tensor Operators and Their Applications, Mathematics Research Developments Series, Nova Science Publishers, New York, 2013.
- [12] Salimov, A., On anti-Hermitian metric connections, C. R. Math. Acad. Sci. Paris, 352(9), 2014, 731–735.
- [13] Salimov, A. and Cakan, R., Problems of *g*-lifts, Proc. Inst. Math. Mech., 43(1), 2017, 161–170.
- [14] Salimov, A. and Iscan, M., Some properties of Norden-Walker metrics, Kodai Math. J., 33(2), 2010, 283–293.
- [15] Tachibana, S., Analytic tensor and its generalization, Tohoku Math. J., 12, 1960, 208–221.
- [16] Vishnevskii, V. V., Shirokov, A. P. and Shurygin, V. V., Spaces Over Algebras, Kazanskii Gosudarstvennii Universitet, Kazan, 1985.
- [17] Yano, K. and Ako, M., On certain operators associated with tensor fields, Kodai Math. Sem. Rep., 20, 1968, 414–436.
- [18] Yano, K. and Ishihara, S., Tangent and Cotangent Bundles: Differential Geometry, Marcel Dekker, New York, 1973.