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Meromorphic Function Sharing Sets with Its Difference
Operator or Shifts*

Bingmao DENG! Chunlin LEI! Mingliang FANG?

Abstract Let f be a nonconstant meromorphic function, ¢ € C, and let a(z)(Z£ 0) €
S(f) be a meromorphic function. If f(z) and P(z, f(z)) share the sets {a(z), —a(2)},
{0} CM almost and share {co} IM almost, where P(z, f(z)) is defined as (1.1), then
f(z) = £P(z, f(2)) or f(2)P(z, f(2)) = £a*(z). This extends the results due to Chen and
Chen (2013), Liu (2009) and Yi (1987).
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1 Introduction

In this paper, a meromorphic function always means meromorphic in the whole complex
plane, and we assume that the reader is familiar with Nevanlinna theory of meromorphic func-
tions. For a meromorphic function f(z), we denote by S(f) the set of all meromorphic functions
a(z) such that T'(r,a) = o(T'(r, f)) for all r outside of a set with finite logarithmic measure (see
[6, 8]).

For a meromorphic function f and a set S C C, we define

E¢(S) = U {z | f(2) — a =0, counting multiplicities},
acs
Es(S) = U {z | f(z) — a =0, ignoring multiplicities}.
acs
If E¢(S) = E4(S), then we say that f and g share S CM.
If E4(S) = E4(S), then we say that f and g share S IM.
Let a(z) be a common small function of both f(z) and g(z), and set N(r,a) be a counting
function of both zeros of f(z) — a(z) and g(z) — a(z) with same multiplicity. If
1
N(T,—f_a) —I—N(r,
then we call that f(z) and g(z) share a(z) CM almost (see [3]).

) —2N(r,a) = S(r, f) + S(r, g),

g—a
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Set N(r,a) be a counting function of both zeros of f(z) — a(z) and g(z) — a(z) ignoring
multiplicity. If

N(r, 7 i a) +N(r, 7 i a) —2N(r,a) = S(r, f) + S(r,9),

then we call that f(z) and g(z) share a(z) IM almost (see [3]).

Specially, N(r,1) (N(r,1)) denote the counting function of both zeros of f(z)—1 and g(z)—1
with same multiplicity (ignoring multiplicity).

For a meromorphic function f(z), ¢ € C, we denote its shift and difference operator by
f(z+c¢)and A f := f(z 4+ ¢) — f(z), respectively.

The classical results in the uniqueness theory of meromorphic functions are the five values
and four values theorems due to Nevanlinna (see [6, 8]). Corresponding to sharing sets, Gross
and Osgood [4] obtained the following result.

Theorem 1.1 Let f and g be two nonconstant entire functions of finite order. If f and g
share the sets {1,—1} and {0} CM, then f = +g or fg= +1.

In 1987, Yi [9] improved Theorem 1.1 as follows.

Theorem 1.2 Let f and g be two nmonconstant meromorphic functions. If f and g share
the sets {1,—1} , {0} and {0} CM, then f =+g or fg=+1.

Recently, a number of papers (including [1, 2, 5, 7, 10]) have focused on value distribution of
difference analogues of meromorphic functions. Liu [7] investigated the cases that f(z) shares
sets with its shift f(z4¢) or difference operator A.f := f(z+¢)— f(z), and proved the following
result.

Theorem 1.3 Let f be a nonconstant entire function of finite order, c € C, and let a(z) €
S(f) be a non-vanishing periodic entire function with period c¢. If f(z) and f(z + ¢) share the
sets {a(z), —a(2)} and {0} CM, then f(z) = £f(z+ ¢).

In 2013, Chen and Chen [1] extended Theorem 1.3 as follows.

Theorem 1.4 Let f be a nonconstant entire function of finite order, ¢ € C, let a(z) € S(f)
be a non-vanishing periodic entire function with period c, and let

P(z, f(2)) = bi(2)f(z + k) + -+ 01(2) f (2 + ) + bo(2) f (2), (1.1)

where by (z) £ 0, bo(2),--- ,bk(z) € S(f) and k is a nonnegative integer. If f(z) and P(z, f(2))
share the sets {a(z),—a(z)} and {0} CM, then f(z) = +P(z, f(2)).

Now one may ask the following questions which are the motivation of the paper:

(I) In Theorem 1.2, can 3CM be replaced by 2CM + 1IM?

(IT) In Theorems 1.3-1.4, is the condition “f(z) has finite order” necessary?

(IIT) What will happen in Theorems 1.3-1.4 if f(z) is a meromorphic function?

(IV) In Theorems 1.3-1.4, can the condition “a(z) € S(f) be a non-vanishing periodic entire
function with period ¢” be replaced by “a(z) € S(f)”?

In this paper we investigate the above problems, and prove the following results.
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Theorem 1.5 Let f and g be two nonconstant meromorphic functions, ¢ € C, and let
a(z)(#£ 0) be a common small function related to f and g. If f(z) and g(z) share the sets
{a(2),—a(2)}, {0} CM almost and share {oo} IM almost, then f(z) = +g(z) or f(2)g(z) =
+a?(2).

With Theorem 1.5, it is easy to get Theorem 1.6.

Theorem 1.6 Let [ be a nonconstant meromorphic function, ¢ € C, and let a(z)(# 0) €
S(f) be a meromorphic function. If f(z) and P(z, f(2)) share the sets {a(2),—a(2)}, {0} CM
almost and share {oo} IM almost, where P(z, f(2)) is defined as (1.1), then f(z) = +P(z, f(z))

or f(2)P(z, f(2)) = £a?(2).
From Theorem 1.6, we have the corollary as follows.

Corollary 1.1 Let f be a nonconstant entire function, ¢ € C, and let a(z)(Z£ 0) € S(f) be
a meromorphic function. If f(z) and P(z, f(z)) share the sets {a(z),—a(z)}, {0} CM almost,
where P(z, f(2)) is defined as (1.1), then f(z) = £P(z, f(2)) or f(2)P(z, f(2)) = £a%(2).

For the meromorphic function share three sets with its shift, we obtain the following result.

Theorem 1.7 Let f be a nonconstant meromorphic function, ¢ € C. If f(z) and A.f share
the sets {1,—1}, {0} CM and share {0} IM almost, then f(z + ¢) = 2f(2).

For the meromorphic function with finite order, we prove the following result.

Theorem 1.8 Let f be a nonconstant meromorphic function of finite order, ¢ € C, and
let a(z)(# 0) € S(f) be a meromorphic function. If f(z) and P(z, f(z)) share the sets
{a(2),—a(2)}, {0} CM almost and share {co} IM almost, where P(z, f(2)) is defined as (1.1),
then f(z) = £P(z, f(z)).

From Theorem 1.8, we can deduce Theorems 1.3-1.4 immediately.

Example 1.1 Let f(z) = e, and P(z, f(2)) = f(z+ni), a(z) = 1, then P(z, f(z)) =e .
Obviously f(z) and P(z, f(z)) share the sets {a(z), —a(2)}, {0} CM almost and share {co} IM
almost, and f(2)P(z, f(2)) = 1. Thus, the case “f(2)P(z, f(z)) = £a?(z)” in Theorem 1.6 can
not be deleted.

2 Some Lemmas

For the proof of our results, we need the following results.

Lemma 2.1 Let F(z) and G(z) be two nonconstant meromorphic functions with N(r, F) =
S(r, F). Supposed that F(z), G(z) share 0,1 CM almost, and share oo IM almost. If

N(r,1) = N(r,1) # S(r, F) + S(r,GQ),

then F(z) = G(z).
Proof Let
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If ¢(z) # 0, then m(r,¢) = S(r, F) + S(r,G). Since F(z), G(z) share 0,1 CM almost, share co
IM almost, and N(r, F) = S(r, F), we get N(r,¢) < N(r, F) + S(r, F) + S(r,G) < S(r, F) +
S(r,G). So from (2.1) we have

N(r1) = N(r,1) < N(r, ¢) < T(r,¢) + O(1) < S(r, F) + 5(r,G),

a contradiction. Thus ¢(z) = 0. From (2.1), it is easy to obtain F(z) = ¢G(z), where ¢ is a
constant. Since N(r,1)—N(r,1) # S(r, F)+ S(r,G), there exists zq such that F(zy) = G(z0) =
1. So ¢ =1, that is F(z) = G(z).

This completed the proof of Lemma 2.1.

Lemma 2.2 Let F(z) and G(z) be two nonconstant meromorphic functions with N(r, F) =
S(r, F). Supposed that F(z), G(z) share 0,1 CM almost, and share oo IM almost. If F(z) is
not a Mobius transformation of G(z), then

N(r,1) < N(r, Fl,)+N( G,)—i—S(rF)—i—S(rG) (2.2)

Proof By Lemma 2.1, we have

N(r,1) = N(r,1) = S(r, F) + S(r, G). (2.3)
Set
F/I F/ G/I G/

If p(z) = 0, then from (2.4), we know that F(z) is a Mobius transformation of G(z), a
contradiction. Thus ¢(z) £ 0. From (2.3)—(2.4) and the fact that F(z), G(z) share 0,1 CM
almost, share oo IM almost, we obtain

N(r,1) < Nyy(r,1) + S(r, F) 4+ S(r, G)
1
< N(r, ;) +S(r,F) + S(r,G)

<T(r,p)+S(r,F)+S(r,G)+ O(1)
< N(r,p) +S(r, F) +5(r,G)

< N( F) +N( G,) +S(r, F) + S(r,Q),

where Ny)(r, 1) denotes the counting function of both simple zeros of F(z) — 1 and G(z) —
This completed the proof of Lemma 2.2.

Lemma 2.3 (see [5]) Let f(z) be a non-constant meromorphic function of finite order,

c e C, then
m(r, f(fz(—:)c)) =o{T(r, )}

for all r outside of a possible exceptional set E with finite logarithmic measure.
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3 Proof of Theorem 1.5

Obviously f2(z) and ¢g2(z) share 0, a?(z) CM almost, and share oo IM almost. Set F(z) =
2 2
Zzgig and G(z) = 52((;) Then F(z) and G(z) share 0,1 CM almost, and share oo IM almost.
Thus

T(r,F)=0(T(r,G)), T(r,G)=O0O(T(rF)).

So S(r,F) = S(r,G). Define S(r) = S(r, F) + S(r, G).
Obviously F(z) and G(z) have no simple zeros and poles.
Now we assume that both F(z) £ G(z) and F(2)G(z) £ 1. We claim that

N(r, %) +N(F) = 50), N(r, é) +N(rG) = S(r).

Firstly, we prove N (r, F) = N(r,G) = S(r). Set

Since F'(z) and G(z) share 0,1 CM almost, and share oo IM, we get
1
N(r) + N(r, ;) = 5(r). (3.2)
From (3.1) we get
G(z) = F(2) = (¢(2) = 1)G(2)(F(2) — 1). (3.3)

From (3.3) and the fact that F' and G share oo IM almost, we obtain that all the multiple
poles of F' and G must be the multiple zeros of ¢ — 1. Noting that F' and G have no simple
pole, if ¢’ # 0, we get

N(r.F) = Na(r. F) <2N(r, %) +5() <2{N(r é) tNrp)} S0 (34)

Combining (3.2) and (3.4), we get N(r, F) = S(r).

If ¢'(2) =0, then p(2) = ¢, where ¢ is a constant. If ¢ =1, form (3.1) we get F(z) = G(z),
a contradiction. If ¢ # 1, then it follows from (3.3) that N(r, F') = S(r).

Since F and G share oo IM almost, N(r, F) = N(r,G) = S(r).

Next, we prove N(r, %) = N(r, é) = 5(r). Let

¢(z) = - : (3.5)

If ¢(z) = 0, then we get F(z) = G(z), a contradiction.

If ¢(z) # 0, then m(r, ¢) = S(r, F'). Since F(z) and G(z) share 0,1 CM almost, and share co
IM almost, from (3.5), we know that the pole of p(z) must be the pole of F(z) and all the poles
of ¢(z) are simple. Thus N(r,¢) < N(r,F) = S(r). So T(r,¢) = m(r,¢) + N(r,¢) = S(r).
From (3.5) we also get that the multiple pole of F(z) must be the zeros of ¢(z). Since F(z)
have no simple zero,

N(r, %) = N(Q(r, %) < 2N(r, %) <2T(r,¢) +O(1) < S(r).



336 B. M. Deng, C. L. Let and M. L. Fang

Since F' and G share 0 CM almost, N(r, %) = N(r, é) = S(r). Thus the claim is proved.
If F(z) is not a Mobius transformation of G(z), then from Lemma 2.2, we get

N(r,ﬁ) = N(r,1)+0(1) gN(r, Fi) +N(r,é)+5’(r) (3.6)
and
N(r, Gl_ ) = N(1) +0(1) < N (r, Fi) +N(r Gi) + 5. (3.7)

On the other hand, by Nevanlinna’s second fundamental theorem and

N(r, %) FN(r F) = S(r), N(r, é) +N(rG) = S(r),
we have
T(r,F)gN(r,Fl_l) —N(r,%)—i—S(r,F) (3.8)
and
T(r,0) < N(r, Gl_ ) —N(r,é) +S(rG). (3.9)

By (3.6)—(3.9), we get
T(r,F) +T(r,G) < 2N(r,1) — N(r, Fi) - N(r, Gi) +5(r)
< N(r, 1)+ S(r)

< AT(r,F)+T(r,G)} + S(r).

N =

Then T'(r, F)+T(r,G) < S(r), a contradiction. Thus F(z) is a Mobius transformation of G(z),
that is

Fz)= 22202 (3.10)

where A, B, C, D are constants, and AD — BC' # 0.

Next we discuss following two cases.

Case 1 C = 0. Thus AD # 0. From (3.10), we have F(z) = #G(z) + 2. If B #
0, it follows from N(r, &) = S(r) that N(r ) = S(r), then we get a contradiction by
A

Nevanlinna’s second fundamental theorem. Hence F(z) = 5G(2). If F(z) # 1, it is easy to

_1_
’G—%

get a contradiction by Nevanlinna’s second fundamental theorem. So there exists zp such that
F(z0) = G(20) = 1. Thus we get % =1, that is F'(z) = G(2).

Case 2 C # 0. We consider two subcases.

Case 2.1 D # 0. Then from (3.10), we obtain F(z) # oo, G(z) # oo, G(z) # —&. By
Nevanlinna’s second fundamental theorem, we get a contradiction.

Case 2.2 D =0. Then B # 0. From (3.10), we have CF(2)G(z) = AG(z) + B. Tt is easy
to get F'(z) # oo, and G(z) # co. If A # 0, we get G # —%, which contradicts Nevanlinna’s
second fundamental theorem. So A = 0. Then F(z)G(z) = Z. In the same way as in Case 1,
we can get 2 = 1.

Thus we get F(z) = G(z) or F(z)G(z) = 1.

If F(2) = G(2), then f(2) = £g(2). If F(2)G(z) =1, then f(2)g(z) = £a?(2).

This completed the proof of Theorem 1.5.
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4 Proof of Theorem 1.7

By Theorem 1.5, we get f(z) = £A.f or f(2)A.f = £1.
If f(2)A.f = =+1, that is

FEUF (G +0) - f(2)] = L. (4.1)

From (4.1) and the fact that f(z), A.f share 0 CM almost and share oo IM almost, we obtain
f(2) # 0 and f(2) # co. Thus f(z) = e"*)| where h(z) be a nonconstant entire function.
By (4.1), we get

t

f@IfE+o) = f2)] =t, (4.2)

where 2 = 1.
From (4.2) and f(2) = ¢"*), we obtain
eh(z) [eh(z+c) _ eh(z)] = ¢

That is
eh(z)h(z—i—c) _ e2h(z) =t

Since e(h(zte) £ () we easily get €2?) % —¢t, and obviously e*(*) % 0,00. Then by
Picard theorem, we get €2*(*) = (', then h = C5, where C, Cy are constants. A contradiction.

So we get f(2) = £[f(z+¢)— f(2)], that is f(2) = f(z4+¢)— f(2) or f(2) = f(2)— f(z+¢). If
f(z)= f(2)—f(z+¢), then f(z4¢) = 0. So f(z) = 0, a contradiction. So f(z) = f(z+¢)— f(2).
Thus f(z 4 ¢) = 2f(2).

This completed the proof of Theorem 1.7.

5 Proof of Theorem 1.8

By Theorem 1.5, we get f(z) = £P(z, f(2)) or f(2)P(z, f(2)) = +a?(z).
If f(2)P(z, f(2)) = £a?(2), we get

! 1 PGS()

Since f(z), P(z, f(z)) share 0 CM almost, share oo IM almost and T'(r, a(z)) = S(r), N (r, %) =
S(r).
By (5.1) and Lemma 2.3, we get

2m(r, %) zm(r,%) zm(r,iw < S(r).

So T'(r, f) =T(r, ) + O(1) =m(r, ) + N(r, 3) + O(1
This completed the proof of Theorem 1.8.

IN
n

(r), a contradiction.
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