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Meromorphic Function Sharing Sets with Its Difference

Operator or Shifts∗
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Abstract Let f be a nonconstant meromorphic function, c ∈ C, and let a(z)( 6≡ 0) ∈
S(f) be a meromorphic function. If f(z) and P (z, f(z)) share the sets {a(z),−a(z)},
{0} CM almost and share {∞} IM almost, where P (z, f(z)) is defined as (1.1), then
f(z) ≡ ±P (z, f(z)) or f(z)P (z, f(z)) ≡ ±a2(z). This extends the results due to Chen and
Chen (2013), Liu (2009) and Yi (1987).

Keywords Meromorphic function, Difference operator, Shared sets
2010 MR Subject Classification 30D35

1 Introduction

In this paper, a meromorphic function always means meromorphic in the whole complex

plane, and we assume that the reader is familiar with Nevanlinna theory of meromorphic func-

tions. For a meromorphic function f(z), we denote by S(f) the set of all meromorphic functions

a(z) such that T (r, a) = o(T (r, f)) for all r outside of a set with finite logarithmic measure (see

[6, 8]).

For a meromorphic function f and a set S ⊆ C, we define

Ef (S) =
⋃

a∈S

{z | f(z)− a = 0, counting multiplicities},

Ef (S) =
⋃

a∈S

{z | f(z)− a = 0, ignoring multiplicities}.

If Ef (S) = Eg(S), then we say that f and g share S CM.

If Ef (S) = Eg(S), then we say that f and g share S IM.

Let a(z) be a common small function of both f(z) and g(z), and set N(r, a) be a counting

function of both zeros of f(z)− a(z) and g(z)− a(z) with same multiplicity. If

N
(

r,
1

f − a

)

+N
(

r,
1

g − a

)

− 2N(r, a) = S(r, f) + S(r, g),

then we call that f(z) and g(z) share a(z) CM almost (see [3]).
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Set N(r, a) be a counting function of both zeros of f(z) − a(z) and g(z) − a(z) ignoring

multiplicity. If

N
(

r,
1

f − a

)

+N
(

r,
1

g − a

)

− 2N(r, a) = S(r, f) + S(r, g),

then we call that f(z) and g(z) share a(z) IM almost (see [3]).

Specially, N(r, 1) (N(r, 1)) denote the counting function of both zeros of f(z)−1 and g(z)−1

with same multiplicity (ignoring multiplicity).

For a meromorphic function f(z), c ∈ C, we denote its shift and difference operator by

f(z + c) and ∆cf := f(z + c)− f(z), respectively.

The classical results in the uniqueness theory of meromorphic functions are the five values

and four values theorems due to Nevanlinna (see [6, 8]). Corresponding to sharing sets, Gross

and Osgood [4] obtained the following result.

Theorem 1.1 Let f and g be two nonconstant entire functions of finite order. If f and g

share the sets {1,−1} and {0} CM, then f ≡ ±g or fg ≡ ±1.

In 1987, Yi [9] improved Theorem 1.1 as follows.

Theorem 1.2 Let f and g be two nonconstant meromorphic functions. If f and g share

the sets {1,−1} , {0} and {∞} CM, then f ≡ ±g or fg ≡ ±1.

Recently, a number of papers (including [1, 2, 5, 7, 10]) have focused on value distribution of

difference analogues of meromorphic functions. Liu [7] investigated the cases that f(z) shares

sets with its shift f(z+c) or difference operator ∆cf := f(z+c)−f(z), and proved the following

result.

Theorem 1.3 Let f be a nonconstant entire function of finite order, c ∈ C, and let a(z) ∈

S(f) be a non-vanishing periodic entire function with period c. If f(z) and f(z + c) share the

sets {a(z),−a(z)} and {0} CM, then f(z) ≡ ±f(z + c).

In 2013, Chen and Chen [1] extended Theorem 1.3 as follows.

Theorem 1.4 Let f be a nonconstant entire function of finite order, c ∈ C, let a(z) ∈ S(f)

be a non-vanishing periodic entire function with period c, and let

P (z, f(z)) = bk(z)f(z + kc) + · · ·+ b1(z)f(z + c) + b0(z)f(z), (1.1)

where bk(z) 6≡ 0, b0(z), · · · , bk(z) ∈ S(f) and k is a nonnegative integer. If f(z) and P (z, f(z))

share the sets {a(z),−a(z)} and {0} CM, then f(z) ≡ ±P (z, f(z)).

Now one may ask the following questions which are the motivation of the paper:

(I) In Theorem 1.2, can 3CM be replaced by 2CM+ 1IM?

(II) In Theorems 1.3–1.4, is the condition “f(z) has finite order” necessary?

(III) What will happen in Theorems 1.3–1.4 if f(z) is a meromorphic function?

(IV) In Theorems 1.3–1.4, can the condition “a(z) ∈ S(f) be a non-vanishing periodic entire

function with period c” be replaced by “a(z) ∈ S(f)”?

In this paper we investigate the above problems, and prove the following results.
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Theorem 1.5 Let f and g be two nonconstant meromorphic functions, c ∈ C, and let

a(z)(6≡ 0) be a common small function related to f and g. If f(z) and g(z) share the sets

{a(z),−a(z)}, {0} CM almost and share {∞} IM almost, then f(z) ≡ ±g(z) or f(z)g(z) ≡

±a2(z).

With Theorem 1.5, it is easy to get Theorem 1.6.

Theorem 1.6 Let f be a nonconstant meromorphic function, c ∈ C, and let a(z)(6≡ 0) ∈

S(f) be a meromorphic function. If f(z) and P (z, f(z)) share the sets {a(z),−a(z)}, {0} CM

almost and share {∞} IM almost, where P (z, f(z)) is defined as (1.1), then f(z) ≡ ±P (z, f(z))

or f(z)P (z, f(z)) ≡ ±a2(z).

From Theorem 1.6, we have the corollary as follows.

Corollary 1.1 Let f be a nonconstant entire function, c ∈ C, and let a(z)(6≡ 0) ∈ S(f) be

a meromorphic function. If f(z) and P (z, f(z)) share the sets {a(z),−a(z)}, {0} CM almost,

where P (z, f(z)) is defined as (1.1), then f(z) ≡ ±P (z, f(z)) or f(z)P (z, f(z)) ≡ ±a2(z).

For the meromorphic function share three sets with its shift, we obtain the following result.

Theorem 1.7 Let f be a nonconstant meromorphic function, c ∈ C. If f(z) and ∆cf share

the sets {1,−1}, {0} CM and share {∞} IM almost, then f(z + c) ≡ 2f(z).

For the meromorphic function with finite order, we prove the following result.

Theorem 1.8 Let f be a nonconstant meromorphic function of finite order, c ∈ C, and

let a(z)(6≡ 0) ∈ S(f) be a meromorphic function. If f(z) and P (z, f(z)) share the sets

{a(z),−a(z)}, {0} CM almost and share {∞} IM almost, where P (z, f(z)) is defined as (1.1),

then f(z) ≡ ±P (z, f(z)).

From Theorem 1.8, we can deduce Theorems 1.3–1.4 immediately.

Example 1.1 Let f(z) = ee
z

, and P (z, f(z)) = f(z+πi), a(z) ≡ 1, then P (z, f(z)) = e−ez .

Obviously f(z) and P (z, f(z)) share the sets {a(z),−a(z)}, {0} CM almost and share {∞} IM

almost, and f(z)P (z, f(z)) ≡ 1. Thus, the case “f(z)P (z, f(z)) ≡ ±a2(z)” in Theorem 1.6 can

not be deleted.

2 Some Lemmas

For the proof of our results, we need the following results.

Lemma 2.1 Let F (z) and G(z) be two nonconstant meromorphic functions with N(r, F ) =

S(r, F ). Supposed that F (z), G(z) share 0, 1 CM almost, and share ∞ IM almost. If

N(r, 1)−N(r, 1) 6= S(r, F ) + S(r,G),

then F (z) ≡ G(z).

Proof Let

φ(z) =
F ′

F
−

G′

G
. (2.1)
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If φ(z) 6≡ 0, then m(r, φ) = S(r, F ) + S(r,G). Since F (z), G(z) share 0, 1 CM almost, share ∞

IM almost, and N(r, F ) = S(r, F ), we get N(r, φ) ≤ N(r, F ) + S(r, F ) + S(r,G) ≤ S(r, F ) +

S(r,G). So from (2.1) we have

N(r, 1)−N(r, 1) ≤ N
(

r,
1

φ

)

≤ T (r, φ) +O(1) ≤ S(r, F ) + S(r,G),

a contradiction. Thus φ(z) ≡ 0. From (2.1), it is easy to obtain F (z) ≡ cG(z), where c is a

constant. Since N(r, 1)−N(r, 1) 6= S(r, F )+S(r,G), there exists z0 such that F (z0) = G(z0) =

1. So c = 1, that is F (z) ≡ G(z).

This completed the proof of Lemma 2.1.

Lemma 2.2 Let F (z) and G(z) be two nonconstant meromorphic functions with N(r, F ) =

S(r, F ). Supposed that F (z), G(z) share 0, 1 CM almost, and share ∞ IM almost. If F (z) is

not a Mobius transformation of G(z), then

N(r, 1) ≤ N
(

r,
1

F ′

)

+N
(

r,
1

G′

)

+ S(r, F ) + S(r,G). (2.2)

Proof By Lemma 2.1, we have

N(r, 1)−N(r, 1) = S(r, F ) + S(r,G). (2.3)

Set

ϕ(z) =
F ′′

F ′
− 2

F ′

F − 1
−

G′′

G′
+ 2

G′

G− 1
. (2.4)

If ϕ(z) ≡ 0, then from (2.4), we know that F (z) is a Mobius transformation of G(z), a

contradiction. Thus ϕ(z) 6≡ 0. From (2.3)–(2.4) and the fact that F (z), G(z) share 0, 1 CM

almost, share ∞ IM almost, we obtain

N(r, 1) ≤ N1)(r, 1) + S(r, F ) + S(r,G)

≤ N
(

r,
1

ϕ

)

+ S(r, F ) + S(r,G)

≤ T (r, ϕ) + S(r, F ) + S(r,G) +O(1)

≤ N(r, ϕ) + S(r, F ) + S(r,G)

≤ N
(

r,
1

F ′

)

+N
(

r,
1

G′

)

+ S(r, F ) + S(r,G),

where N1)(r, 1) denotes the counting function of both simple zeros of F (z)− 1 and G(z)− 1.

This completed the proof of Lemma 2.2.

Lemma 2.3 (see [5]) Let f(z) be a non-constant meromorphic function of finite order,

c ∈ C, then

m
(

r,
f(z + c)

f(z)

)

= o{T (r, f)}

for all r outside of a possible exceptional set E with finite logarithmic measure.
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3 Proof of Theorem 1.5

Obviously f2(z) and g2(z) share 0, a2(z) CM almost, and share ∞ IM almost. Set F (z) =
f2(z)
a2(z) and G(z) = G2(z)

a2(z) . Then F (z) and G(z) share 0, 1 CM almost, and share ∞ IM almost.

Thus

T (r, F ) = O(T (r,G)), T (r,G) = O(T (r, F )).

So S(r, F ) = S(r,G). Define S(r) = S(r, F ) + S(r,G).

Obviously F (z) and G(z) have no simple zeros and poles.

Now we assume that both F (z) 6≡ G(z) and F (z)G(z) 6≡ 1. We claim that

N
(

r,
1

F

)

+N(r, F ) = S(r), N
(

r,
1

G

)

+N(r,G) = S(r).

Firstly, we prove N(r, F ) = N(r,G) = S(r). Set

ϕ(z) =
F (G− 1)

G(F − 1)
. (3.1)

Since F (z) and G(z) share 0, 1 CM almost, and share ∞ IM, we get

N(r, ϕ) +N
(

r,
1

ϕ

)

= S(r). (3.2)

From (3.1) we get

G(z)− F (z) = (ϕ(z)− 1)G(z)(F (z)− 1). (3.3)

From (3.3) and the fact that F and G share ∞ IM almost, we obtain that all the multiple

poles of F and G must be the multiple zeros of ϕ − 1. Noting that F and G have no simple

pole, if ϕ′ 6≡ 0, we get

N(r, F ) = N (2(r, F ) ≤ 2N
(

r,
1

ϕ′

)

+ S(r) ≤ 2
{

N
(

r,
1

ϕ

)

+N(r, ϕ)
}

+ S(r). (3.4)

Combining (3.2) and (3.4), we get N(r, F ) = S(r).

If ϕ′(z) ≡ 0, then ϕ(z) ≡ c, where c is a constant. If c = 1 , form (3.1) we get F (z) ≡ G(z),

a contradiction. If c 6= 1, then it follows from (3.3) that N(r, F ) = S(r).

Since F and G share ∞ IM almost, N(r, F ) = N(r,G) = S(r).

Next, we prove N
(

r, 1
F

)

= N
(

r, 1
G

)

= S(r). Let

φ(z) =
F ′(z)

F (z)− 1
−

G′(z)

G(z)− 1
. (3.5)

If φ(z) ≡ 0, then we get F (z) ≡ G(z), a contradiction.

If φ(z) 6≡ 0, then m(r, φ) = S(r, F ). Since F (z) and G(z) share 0, 1 CM almost, and share ∞

IM almost, from (3.5), we know that the pole of ϕ(z) must be the pole of F (z) and all the poles

of φ(z) are simple. Thus N(r, φ) ≤ N(r, F ) = S(r). So T (r, φ) = m(r, φ) + N(r, φ) = S(r).

From (3.5) we also get that the multiple pole of F (z) must be the zeros of φ(z). Since F (z)

have no simple zero,

N
(

r,
1

F

)

= N(2

(

r,
1

F

)

≤ 2N
(

r,
1

φ

)

≤ 2T (r, φ) +O(1) ≤ S(r).
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Since F and G share 0 CM almost, N
(

r, 1
F

)

= N
(

r, 1
G

)

= S(r). Thus the claim is proved.

If F (z) is not a Mobius transformation of G(z), then from Lemma 2.2, we get

N
(

r,
1

F − 1

)

= N(r, 1) +O(1) ≤ N
(

r,
1

F ′

)

+N(r,
1

G′
) + S(r) (3.6)

and

N
(

r,
1

G− 1

)

= N(r, 1) +O(1) ≤ N
(

r,
1

F ′

)

+N
(

r,
1

G′

)

+ S(r). (3.7)

On the other hand, by Nevanlinna’s second fundamental theorem and

N
(

r,
1

F

)

+N(r, F ) = S(r), N
(

r,
1

G

)

+N(r,G) = S(r),

we have

T (r, F ) ≤ N
(

r,
1

F − 1

)

−N
(

r,
1

F ′

)

+ S(r, F ) (3.8)

and

T (r,G) ≤ N
(

r,
1

G− 1

)

−N
(

r,
1

G′

)

+ S(r,G). (3.9)

By (3.6)–(3.9), we get

T (r, F ) + T (r,G) ≤ 2N(r, 1)−N
(

r,
1

F ′

)

−N
(

r,
1

G′

)

+ S(r)

≤ N(r, 1) + S(r)

≤
1

2
{T (r, F ) + T (r,G)}+ S(r).

Then T (r, F )+T (r,G) ≤ S(r), a contradiction. Thus F (z) is a Mobius transformation of G(z),

that is

F (z) =
AG(z) +B

CG(z) +D
, (3.10)

where A,B,C,D are constants, and AD −BC 6= 0.

Next we discuss following two cases.

Case 1 C = 0. Thus AD 6= 0. From (3.10), we have F (z) = A
D
G(z) + B

D
. If B 6=

0, it follows from N
(

r, 1
F

)

= S(r) that N
(

r, 1
G−

B

A

)

= S(r), then we get a contradiction by

Nevanlinna’s second fundamental theorem. Hence F (z) = A
D
G(z). If F (z) 6= 1, it is easy to

get a contradiction by Nevanlinna’s second fundamental theorem. So there exists z0 such that

F (z0) = G(z0) = 1. Thus we get A
D

= 1, that is F (z) ≡ G(z).

Case 2 C 6= 0. We consider two subcases.

Case 2.1 D 6= 0. Then from (3.10), we obtain F (z) 6= ∞, G(z) 6= ∞, G(z) 6= −D
C
. By

Nevanlinna’s second fundamental theorem, we get a contradiction.

Case 2.2 D = 0. Then B 6= 0. From (3.10), we have CF (z)G(z) = AG(z) +B. It is easy

to get F (z) 6= ∞, and G(z) 6= ∞. If A 6= 0, we get G 6= −B
A
, which contradicts Nevanlinna’s

second fundamental theorem. So A = 0. Then F (z)G(z) = B
C
. In the same way as in Case 1,

we can get B
C

= 1.

Thus we get F (z) ≡ G(z) or F (z)G(z) ≡ 1.

If F (z) ≡ G(z), then f(z) ≡ ±g(z). If F (z)G(z) ≡ 1, then f(z)g(z) ≡ ±a2(z).

This completed the proof of Theorem 1.5.
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4 Proof of Theorem 1.7

By Theorem 1.5, we get f(z) ≡ ±∆cf or f(z)∆cf ≡ ±1.

If f(z)∆cf ≡ ±1, that is

f(z)[f(z + c)− f(z)] ≡ ±1. (4.1)

From (4.1) and the fact that f(z),∆cf share 0 CM almost and share∞ IM almost, we obtain

f(z) 6= 0 and f(z) 6= ∞. Thus f(z) = eh(z), where h(z) be a nonconstant entire function.

By (4.1), we get

f(z)[f(z + c)− f(z)] ≡ t, (4.2)

where t2 = 1.

From (4.2) and f(z) = eh(z), we obtain

eh(z)[eh(z+c) − eh(z)] ≡ t.

That is

eh(z)h(z+c) − e2h(z) ≡ t.

Since eh(z)h(z+c) 6= 0, we easily get e2h(z) 6= −t, and obviously e2h(z) 6= 0,∞. Then by

Picard theorem, we get e2h(z) ≡ C1, then h ≡ C2, where C1, C2 are constants. A contradiction.

So we get f(z) ≡ ±[f(z+c)−f(z)], that is f(z) ≡ f(z+c)−f(z) or f(z) ≡ f(z)−f(z+c). If

f(z) ≡ f(z)−f(z+c), then f(z+c) ≡ 0. So f(z) ≡ 0, a contradiction. So f(z) ≡ f(z+c)−f(z).

Thus f(z + c) ≡ 2f(z).

This completed the proof of Theorem 1.7.

5 Proof of Theorem 1.8

By Theorem 1.5, we get f(z) ≡ ±P (z, f(z)) or f(z)P (z, f(z)) ≡ ±a2(z).

If f(z)P (z, f(z)) ≡ ±a2(z), we get

1

f2(z)
= ±

1

a2(z)

P (z, f(z))

f(z)
. (5.1)

Since f(z), P (z, f(z)) share 0 CM almost, share ∞ IM almost and T (r, a(z)) = S(r), N
(

r, 1
f

)

=

S(r).

By (5.1) and Lemma 2.3, we get

2m
(

r,
1

f

)

= m
(

r,
1

f2

)

= m
(

r,±
P (z, f(z))

a2(z)f(z)

)

≤ S(r).

So T (r, f) = T
(

r, 1
f

)

+O(1) = m
(

r, 1
f

)

+N
(

r, 1
f

)

+O(1) ≤ S(r), a contradiction.

This completed the proof of Theorem 1.8.
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