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1 Introduction

Suppose ν is a positive Borel measure on C, denoted by ν ≥ 0. We call ν is doubling, if

there exists some constant C > 0 such that

ν(D(z, 2r)) ≤ Cν(D(z, r))

for z ∈ C and r > 0, where D(z, r) = {w ∈ C : |w − z| < r}. Throughout the paper, we

assume that φ is a subharmonic, real-valued function on C, and φ is not identically zero with

ν = ∆φdA doubling, where dA is the Lebesgue area measure on C. Denote by ρ(·) the positive

radius such that ν(D(z, ρ(z))) = 1 for z ∈ C. See [15] for details.

Suppose H(C) is the collection of all holomorphic functions on C. For 0 < p <∞, the space

Lp
φ is the family of all Lebesgue measurable functions f on C such that

‖f‖p,φ =
(∫

C

|f(z)|pe−pφ(z)dA(z)
) 1

p

<∞.

The doubling Fock space F p
φ is defined to be

F p
φ = Lp

φ ∩H(C)

if 0 < p <∞ and

F∞
φ =

{
f ∈ H(C) : ‖f‖∞,φ = sup

z∈C

|f(z)|e−φ(z) <∞
}
.
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It is well known that, F p
φ is a Banach space under ‖ · ‖p,φ for p ≥ 1, and F p

φ is an Fréchet space

under d(f, g) = ‖f − g‖pp,φ for 0 < p < 1. The doubling Fock space has been studied in [5, 7,

11, 15–16, 19]. It is always called the generalized Fock space. When φ(z) = α
2 |z|

2 with α > 0,

F p
φ is the classical Fock space F p

α, which has been studied by many authors, see [6, 9, 13, 18,

24] for example. And for another special case that φ(z) = 1
2 |z|

2 − m
2 ln(A+ |z|2) with suitable

A > 0, where m is a positive integer, F p
φ is the Fock-Sobolev space F p,m studied in [2–4, 17,

23]. For φ(z) = |z|2m, F 2
φ is the Fock space in [20] and [21]. If n = 1, the Laplacian of the

weight function ϕ in [10] and [22] satisfies the doubling measure hypothesis.

As far as we know, these doubling Fock spaces were first introduced by Christ [5]. In 2003,

Marco, Massaneda and Ortega-Cerdà [15] studied the interpolating and sampling sequences for

the doubling Fock spaces. After that, Marzo and Ortega-Cerdà [16] gave quite sharp pointwise

estimates of the Bergman kernel associated to these spaces. Let K(·, ·) be the reproducing

kernel for F 2
φ . The orthogonal projection P from L2

φ to F 2
φ can be represented as

Pf(z) =

∫

C

K(z, w)f(w)e−2φ(w)dA(w), z ∈ C.

Given µ ≥ 0, Toeplitz operator Tµ on F p
φ is defined to be

Tµf(z) =

∫

C

K(z, w)f(w)e−2φ(w)dµ(w), z ∈ C,

if it can be well (densely) defined.

The behaviors of positive Toeplitz operators on Fock spaces have been studied by many

authors. In 2010, Isralowitz and Zhu [13] discussed the characterizations on µ ≥ 0 such that

Tµ is bounded, compact and in Schatten classes on the classical Fock space F 2
α. Wang, Cao

and Xia [23] studied the same problems on the Fock-Sobolev space F 2,m. In [9], Hu and Lv

characterized the boundedness and compacteness of Tµ from one Fock space F p
α to another

F q
α for 1 < p, q < ∞. Mengestie [18] extended them between F p

α and F∞
α with 1 < p < ∞.

With some weight ϕ satisfying M1dd
c|z|2 ≤ ddcϕ ≤M2dd

c|z|2 for fixed constants M1,M2 > 0,

Schuster and Varolin [22] obtained the necessary and sufficient conditions such that Tµ is

bounded or compact on F p
ϕ for 1 < p < ∞. Given 0 < p, q < ∞, the corresponding problems

were solved from F p
ϕ to F q

ϕ in [10], and between F p
ϕ and F∞

ϕ for 0 < p ≤ ∞ in [14]. With

1 ≤ p <∞, Oliver and Pascuas [19] studied the characterizations on µ for which Tµ is bounded

or compact on the doubling Fock space F p
φ .

Carleson measures have been extensively applied to various problems in Hardy (and Bergman)

space theory. On the classical Fock space, Carleson measures were first introduced in [13]. The

reference [4] is the first one where the so-called Carleson measures for Fock-Sobolev spaces were

studied. See also [9–10, 17, 22].

In this paper, with 0 < p ≤ ∞, we are going to obtain some characterizations on those

µ ≥ 0 such that Toeplitz operators Tµ is bounded or compact from F p
φ to F∞

φ and from F∞
φ

to F p
φ , respectively. We also introduce Fock-Carleson measures for the doubling Fock space.

Our results extend those in [4, 9–10, 13–14, 17–19, 22]. In Section 2, we will introduce Fock

Carleson measures with some characterizations in terms of averaging functions and Berezin

transforms. In [10], on those Fock spaces induced by ϕ with M1dd
c|z|2 ≤ ddcϕ ≤ M2dd

c|z|2,

we proved that the (p, q)-Fock Carleson measure does not depend on the precise value p
q
when
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p ≤ q. This phenomenon seems quite inconsistent with the well-known results in Bergman

(and Hardy) space theory. Our analysis in Section 2 shows that this independence of p
q
can

only occur for weights φ for which ρ(·) is bounded above and below with positive constants.

In Section 3, given 0 < p ≤ ∞, we are going to discuss the boundedness and compactness of

Tµ from F p
φ to F∞

φ and from F∞
φ to F p

φ , respectively. It is worth to mention that, expect for

[10, 14], all research mentioned above is about p-th Fock spaces with p = 2 or 1 < p ≤ ∞.

However, since F p
φ is not a Banach space for 0 < p < 1, the Banach space technique in [9, 13,

18–19, 22] is invalid in this case. Also, the proof in [10, 14] depends strongly on two points:

F p
ϕ ⊂ F q

ϕ, ∀0 < p ≤ q and Pf = f, ∀f ∈ F p
ϕ , p > 0. (1.1)

However, these two points are not available for doubling Fock spaces. For example, for φ(z) =

|z|4, Constantin and Peláez [8] concluded

F p
φ\F

q
φ 6= ∅, F q

φ\F
p
φ 6= ∅,

when p 6= q.

We always use C to denote positive constants whose value may change from line to line

but does not depend on the functions being considered. Two quantities A and B are called

equivalent if there exists some C such that C−1A ≤ B ≤ CA, written as “A ≃ B”.

2 Carleson Measures

In this section, we are going to introduce the Fock Carleson measure, which will be used in

the following sections. First, we list some notations and preliminary results. These results can

be found in [12] and [15].

Recall that, φ is a subharmonic, real-valued function on C, which satisfies dν = ∆φdA a

doubling measure, and ρ(·) is the positive radius such that ν(D(z, ρ(z))) = 1 for z ∈ C. Given

r > 0, write Dr(z) = D(z, rρ(z)). There exists some constant C > 0 such that for z ∈ C and

w ∈ Dr(z),

1

C
ρ(z) ≤ ρ(w) ≤ Cρ(z). (2.1)

Moreover, for fixed r > 0 we have m1,m2 > 0 such that

Dr(z) ⊆ Dm1r(w), Dr(w) ⊆ Dm2r(z) whenever w ∈ Dr(z), (2.2)

which follows from the triangle inequality. Given r > 0, we say a sequence {ak}∞k=1 in C is an

r-lattice if {Dr(ak)}k covers C and the disks of {D
r
5 (ak)}k are pairwise disjoint, see [15] for

details. For m > 0, there exists some positive integer N such that

1 ≤
∞∑

k=1

χDmr(ak)(z) ≤ N, z ∈ C. (2.3)

For our later use, we need the concepts of averaging function and Berezin transform. Given

µ ≥ 0, the average of µ is defined as

µ̂r(z) = µ(Dr(z))/A(Dr(z)), z ∈ C.
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For 0 < p <∞ and δ > 0, there is some C > 0 such that for f ∈ H(C) and z ∈ C, we obtain

|f(z)|e−φ(z) ≤
C

A(Dδ(z))
1
p

(∫

Dδ(z)

|f |pe−pφdA
) 1

p

. (2.4)

Thus, in a way similar to Lemma 2.2 in [9], we get
∫

C

|f(z)e−φ(z)|pdµ(z) ≤ C

∫

C

|f(z)e−φ(z)|pµ̂r(z)dA(z). (2.5)

For t > 0, we set the t-Berezin transform of µ to be

µ̃t(z) =

∫

C

|kt,z(w)|
te−tφ(w)dµ(w), z ∈ C,

where kt,z(w) = K(w, z)/‖K(·, z)‖t,φ is the normalized Bergman kernel for F t
φ. When φ(z) =

1
2 |z|

2, the t-Berezin transform is closely connected with the heat flow as mentioned in [1].

We also need some other spaces. Let 0 < p < ∞. The space Lp
φ(dµ) is the family of all

µ-measurable functions f on C such that

‖f‖p,φ,dµ =
( ∫

C

|f(z)|pe−pφ(z)dµ(z)
) 1

p

<∞.

The space Lp is defined as

Lp =
{
f is Lebesgue measurable on C : ‖f‖Lp =

( ∫

C

‖f‖pdA
) 1

p

<∞
}
,

and lp consists of all sequence {bk}
∞
k=1 ⊂ Cn with

‖{bk}k‖lp =
( ∞∑

k=1

|bk|
p
) 1

p

<∞.

To prove the main results, we need some lemmas. Lemma 2.1 lists some well-known results

about the Bergman kernel for F p
φ . Most of them can be seen in [12, 16, 19]. We only need to

show the statements of (3) and (4) for p = ∞. Notice that 1/p = 0 if p = ∞.

Lemma 2.1 The Bergman kernel K(·, ·) satisfies:

(1) There exist positive constants C and ǫ such that

|K(w, z)| ≤ C
eφ(w)+φ(z)

ρ(w)ρ(z)
e−

(
|z−w|
ρ(z)

)ǫ

(2.6)

for w, z ∈ C.

(2) There exists some r0 > 0 such that

|K(w, z)| ≃
eφ(w)+φ(z)

ρ(z)2
, (2.7)

whenever z ∈ C and w ∈ Dr0(z).

(3) For 0 < p ≤ ∞, we have

‖K(·, z)‖p,φ ≃ eφ(z)ρ(z)
2
p
−2, z ∈ C.

(4) For 0 < p ≤ ∞, kp,z → 0 uniformly on compact subsets of C as z → ∞.
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Proof Given z ∈ C, by [19], there holds

‖K(·, z)‖1,φ ≃ eφ(z).

This, together with (2.4), we have

|K(w, z)|e−φ(w) = eφ(z)−φ(w)|K(z, w)|e−φ(z)

≤
Ceφ(z)−φ(w)

A(Dδ(z))

∫

Dδ(z)

|K(·, w)|e−φdA

≤
Ceφ(z)−φ(w)

A(Dδ(z))

∫

C

|K(·, w)|e−φdA

≃ eφ(z)ρ(z)−2

for z ∈ C. Hence, by (2.6) and (5) in [15, p. 869], if |z| is large enough, we have some β ∈ (0, 1)

such that

|k∞,z(w)| = |K(w, z)|e−φ(z)ρ(z)2 = |K(z, w)|e−φ(z)ρ(z)2

≤ Cρ(z)e−φ(w)ρ(w)−1e−
(

|z−w|
ρ(w)

)ǫ

≤ C|z|βeφ(w)ρ(w)−1e−
(

|z|−|w|
ρ(w)

)ǫ

for w ∈ C. This tells us the statement (4) is true. The proof is completed.

Next, we are going to introduce (vanishing) (p, q)-Fock Carleson measures. When n = 1, all

the spaces studied in [4, 9–10, 13, 17, 22] are special cases of ours here. When p = q > 1, this

is just the Fock Carleson measure discussed in [19].

Definition 2.1 Let 0 < p, q <∞ and let µ ≥ 0. We call µ a (p, q)-Fock Carleson measure

if the embedding operator i : F p
φ → Lq

φ(dµ) is bounded, i.e., there exists some constant C such

that for f ∈ F p
φ , (∫

C

|f(z)|qe−qφ(z)dµ(z)
) 1

q

≤ C‖f‖p,φ.

And also, we call µ a vanishing (p, q)-Fock Carleson measure if

lim
j→∞

∫

C

|fj(z)|
qe−qφ(z)dµ(z) = 0,

whenever {fj}
∞
j=1 is a bounded sequence in F p

φ that converges to 0 uniformly on any compact

subset of C as j → ∞.

The following three theorems characterize (vanishing) (p, q)-Fock Carleson measures for all

possible 0 < p, q < ∞. The proof is similar to that of Theorems 3.1–3.3 in [9], we omit them

here.

Theorem 2.1 Let 0 < p ≤ q < ∞, and let µ ≥ 0. Then the following statements are

equivalent:

(1) µ is a (p, q)-Fock Carleson measure.

(2) µ̃tρ
2(1− q

p ) is bounded on C for some (or any) t > 0.
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(3) µ̂δρ
2(1− q

p) is bounded on C for some (or any) δ > 0.

(4) The sequence {µ̂r(ak)ρ(ak)
2(1− q

p )}k is bounded for some (or any) r-lattice {ak}k. Fur-

thermore,

‖i‖q
F

p
φ
→Lq(φ,µ)

≃ sup
z∈C

µ̃t(z)ρ(z)
2(1− q

p
) ≃ sup

z∈C

µ̂δ(z)ρ(z)
2(1− q

p
) ≃ sup

k

µ̂r(ak)ρ(ak)
2(1− q

p
).

Theorem 2.2 Let 0 < p ≤ q < ∞, and let µ ≥ 0. Then the following statements are

equivalent:

(1) µ is a vanishing (p, q)-Fock Carleson measure.

(2) µ̃t(z)ρ(z)
2(1− q

p ) → 0 as z → ∞ for some (or any) t > 0.

(3) µ̂δ(z)ρ(z)
2(1− q

p ) → 0 as z → ∞ for some (or any) δ > 0.

(4) µ̂r(ak)ρ(ak)
2(1− q

p) → 0 as k → ∞ for some (or any) r-lattice {ak}k.

Theorem 2.3 Let 0 < q < p < ∞, and let µ ≥ 0. Then the following statements are

equivalent:

(1) µ is a (p, q)-Fock Carleson measure.

(2) µ is a vanishing (p, q)-Fock Carleson measure.

(3) µ̃t ∈ L
p

p−q for some (or any) t > 0.

(4) µ̂δ ∈ L
p

p−q for some (or any) δ > 0.

(5)
{
µ̂r(ak)ρ(ak)

2(p−q)
p

}∞

k=1
∈ l

p
p−q for some (or any) r-lattice {ak}∞k=1. Furthermore,

‖i‖q
F

p
φ
→Lq(φ,µ)

≃ ‖µ̃t‖
L

p
p−q

≃ ‖µ̂δ‖
L

p
p−q

≃
∥∥{µ̂r(ak)ρ(ak)

2(p−q)
p

}
k

∥∥
l

p
p−q

.

Remark 2.1 In the setting of classical Fock spaces, µ is a (p, q)-Fock Carleson measure for

some p ≤ q if and only if µ is a (vanishing) (p, q)-Fock Carleson measure for all possible p ≤ q

(see [9]). This is still available for F p
ϕ with M1dd

c|z|2 ≤ ddcϕ ≤ M2dd
c|z|2, which can be seen

in [10]. Now, Theorems 2.1–2.2 tell us that this phenomenon can only occur when ρ(·) ≃ 1.

Theorems 2.1–2.3 extend the results in [4, 9–10, 13, 17, 19, 22]. From these theorems above,

µ is a (p, q)-Fock Carleson measure if and only if it is a (tp, tq)-Fock Carleson measure, t > 0.

So (p, q)-Fock Carleson measure can be simply called p
q
-Fock Carleson measure, and written as

‖µ‖ p
q
= ‖i‖

F

p
q
φ

→L1(φ,µ)

for simplicity.

3 Toeplitz Operators

In this section, for 0 < p ≤ ∞, we are going to characterize those µ ≥ 0 for which Toeplitz

operators Tµ are bounded and compact from F p
φ to F∞

φ or from F∞
φ to F p

φ , respectively. To

study the compactness, we need Lemma 3.1. Part of this lemma can be seen in [12, Lemma

3.1].

Lemma 3.1 Let µ be a t-Fock Carleson measure for some t > 0. Toeplitz operator Tµ is

well-defined on F p
φ for all 0 < p ≤ ∞.Moreover, TµR

is compact from F p
φ to F q

φ for 0 < p, q ≤ ∞,

where R > 0 and µR(E) =
∫
E∩{z:|z|≤R}

dµ for measurable set E ⊆ C.

Proof In a way similar to the proof of [12, Lemma 3.1], we can conclude that Tµ is well-

defined on F p
φ for 0 < p ≤ ∞, and TµR

is compact from F p
φ to F q

φ for 0 < q <∞. To prove the
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compactness of TµR
for q = ∞, we suppose that {fj}

∞
j=1 ⊆ F p

φ is a bounded sequence, and fj

uniformly converges to 0 on compact subsets of C as j → ∞. By Montel’s theorem, we only

need to show

lim
j→∞

‖TµR
fj‖∞,φ = 0. (3.1)

In a way similar to the proof of (2.5), we obtain

|TµR
fj(z)| e

−φ(z)

≤ e−φ(z)

∫

|w|≤R

|fj(w)||K(z, w)|e−2φ(w)dµ(w)

≤ Ce−φ(z)

∫

|w|≤C1(1+r)R

|fj(w)||K(z, w)|e−2φ(w)µ̂r(w)dA(w).

Since µ is a t-Fock Carleson measure, Theorems 2.1–2.3 tell us that there exists some t1 ∈ R

such that

sup
z∈C

µ̂r(z)ρ(z)
t1 <∞.

Thus

|TµR
fj(z)|e

−φ(z)

≤ C
(
sup
z∈C

µ̂r(z)ρ(z)
t1
)
e−φ(z)

∫

|w|≤C1(1+r)R

|fj(w)||K(z, w)|e−2φ(w)ρ(w)−t1dA(w)

≤ Ce−φ(z)

∫

|w|≤C1(1+r)R

|fj(w)||K(z, w)|e−2φ(w)ρ(w)−t1dA(w).

Notice that, for p, s > 0 and real number k, there is C > 0 such that
∫

C

ρ(w)ke−p( |z−w|
ρ(z) )

s

dA(w) ≤ Cρ(z)k+2, z ∈ C (3.2)

(see [12, Lemma 2.1]). This, together with (3.2) shows

‖TµR
fj‖∞,ϕ

≤ C sup
z∈C

ρ(z)−1

∫

|w|≤C1(1+r)R

|fj(w)|e
−φ(w)ρ(w)−1−t1e−(

|z−w|
ρ(z) )

ǫ

dA(w)

≤ C sup
|w|≤C1(1+r)R

e−φ(w)ρ(w)−t1 |fj(w)| sup
z∈C

ρ(z)−1

∫

C

ρ(w)−1e−(
|z−w|
ρ(z) )

ǫ

dA(w)

≤ C sup
|w|≤C1(1+r)R

|fj(w)| → 0

as j → ∞. Hence, (3.1) is true. The proof is ended.

In this position, we will characterize the boundedness and compactness of positive Toeplitz

operators from F p
φ to F∞

φ or from F∞
φ to F p

φ with 0 < p ≤ ∞. Now, we state the main results

as follows. These three theorems extend the main results in [9–10, 13–14, 18–19, 22]. However,

the approach (Banach space technique) in [9, 13, 18–19, 22] is invalid in this case of 0 < p ≤ 1.

Also, part of the proof here is different from that in [10, 14], because those two points are not

available in the present case, see (1.1) for details.
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Theorem 3.1 Let 0 < p ≤ ∞, and let µ ≥ 0. Then

(1) Tµ : F p
φ → F∞

φ is bounded if and only if µ is a p
p+1 -Fock Carleson measure. Furthermore,

‖Tµ‖Fp
φ
→F∞

φ
≃ ‖µ‖ p

p+1
. (3.3)

(2) Tµ : F p
φ → F∞

φ is compact if and only if µ is a vanishing p
p+1 -Fock Carleson measure.

Proof (1) First, we assume that Tµ : F p
φ → F∞

φ is bounded. For z ∈ C, Lemma 2.1 yields

µ̃2(z)ρ(z)
− 2

p ≤ C |Tµkp,z(z)| e
−φ(z)

≤ C‖Tµkp,z‖∞,ϕ

≤ C‖Tµ‖Fp
φ
→F∞

φ
‖kp,z‖p,φ

≤ C‖Tµ‖Fp

φ
→F∞

φ
. (3.4)

This, together with Theorem 2.1, shows that µ is a p
p+1 -Fock Carleson measure, and

‖µ‖ p
p+1

≃ sup
z∈C

µ̃2(z)ρ(z)
− 2

p ≤ C‖Tµ‖Fp(ϕ)→F∞
φ
. (3.5)

On the other hand, suppose that µ is a p
p+1 -Fock Carleson measure. Then µ̂δρ

− 2
p is bounded

on C for δ > 0, which follows from Theorem 2.1. Given f ∈ F p
φ , by (2.4), we get

|f(z)|e−φ(z) ≤ Cρ(z)−
2
p ‖f‖p,φ, z ∈ C. (3.6)

Given z ∈ C, since K(·, z)f(·) ∈ H(C), applying (2.5) to the weight 2φ, we have

|Tµf(z)| ≤ C

∫

C

|K(w, z)f(w)|e−2φ(w)µ̂δ(w)dA(w). (3.7)

(3.6), Lemma 2.1 and Theorem 2.1 imply

|Tµf(z)|e
−φ(z)

≤ C‖f‖p,φ

∫

C

µ̂δ(w)ρ(w)
− 2

p |K(z, w)|e−φ(w)dA(w)

≤ C sup
w∈C

µ̂δ(w)ρ(w)
− 2

p ‖f‖p,φe
−φ(z)

∫

C

|K(z, w)|e−φ(w)dA(w)

≤ C‖µ‖ p
p+1

‖f‖p,φ.

Therefore, Tµ is bounded from F p
φ to F∞

φ , and

‖Tµ‖Fp(ϕ)→F∞
φ

≤ ‖µ‖ p
p+1

.

This, combined with (3.5), gives (3.3).

(2) Suppose that µ is a vanishing p
p+1 -Fock Carleson measure. By Theorem 2.2, we know

µ̂δ(z)ρ(z)
− 2

p → 0 as z → ∞.

Setting µR as in Lemma 3.1, TµR
is compact from F p

φ to F∞
φ . Moreover, µ− µR ≥ 0, Tµ−µR

is

bounded from F p(φ) to F∞
φ , and for r > 0,

lim
R→∞

sup
z∈C

(µ̂− µR)r(z)ρ(z)
− 2

p = 0.
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Thus, (3.3) and Theorem 2.1 tell us

‖Tµ − TµR
‖Fp

φ
→F∞(φ) = ‖Tµ−µR

‖Fp

φ
→F∞(φ)

≃ ‖µ− µR‖ p
p+1

≃ sup
z∈C

(µ̂− µR)r(z)ρ(z)
− 2

p

→ 0

as R → ∞. So we can conclude that Tµ : F p
φ → F∞

φ is also compact. Conversely, we assume

that Tµ : F p
φ → F∞

φ is compact. Then µ̂δρ
− 2

p is bounded for δ > 0. Notice that {kp,z : z ∈ C}

is bounded in F p
φ . So {Tµkp,z : z ∈ C} is relatively compact in F∞

φ . For any sequence

{zk}∞k=1 ⊂ C with lim
j→∞

zj = ∞, there exists a subsequence of {Tµkp,zj}
∞
j=1 converging to some

h in F∞
φ . Without loss of generality, we may assume

lim
j→∞

‖Tµkp,zj − h‖∞,φ = 0. (3.8)

We only need to show h ≡ 0. For any w ∈ C, (3.7) implies

|Tµkp,zj (w)| ≤

∫

C

|kp,zj (u)K(w, u)e−2φ(u)|µ̂δ(u)dA(u)

≤ sup
u∈C

µ̂δ(u)ρ(u)
− 2

p

∫

C

ρ(u)
2
p |kp,zj (u)K(w, u)e−2φ(u)|dA(u).

By Lemma 2.1 and (3.2), we have

∫

C

|K(w, u)|2ρ(u)2e−2φ(u)dA(u) ≤ Ce2φ(w)ρ(w)−2

∫

C

e−2
(

|w−u|
ρ(w)

)ǫ

dA(u) ≤ Ce2φ(w).

So, for any ε > 0, there is some R > 0 such that
∫

|u|>R

|K(w, u)|2ρ(u)2e−2φ(u)dA(u) < ε2.

Since kp,z → 0 uniformly on compact subsets of C as z → ∞, we get

|Tµkp,zj (w)| ≤ C
(∫

|u|≤R

+

∫

|u|>R

)
ρ(u)

2
p |kp,zj (u)K(w, u)e−2φ(u)|dA(u)

< ε+

∫

|u|>R

ρ(u)
2
p |kp,zj (u)K(w, u)e−2φ(u)|dA(u),

while j is large enough. By Hölder’s inequality, Lemma 2.1 and (3.2), we obtain

∫

|u|>R

ρ(u)
2
p |kp,zj (u)K(w, u)e−2φ(u)|dA(u)

≤
(∫

|u|>R

|K(w, u)|2ρ(u)2e−2φ(u)dA(u)
) 1

2
( ∫

C

|kp,zj (u)|
2ρ(u)

2(2−p)
p e−2φ(u)dA(u)

) 1
2

≤ Cερ(zj)
1− 2

p

(∫

C

ρ(u)
4
p
−4e

−2
(

|zj−u|

ρ(zj )

)ǫ

dA(u)
) 1

2

≤ Cε,
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where C is independent of j and ε. Therefore

lim
j→∞

Tµkp,zj (w) = 0.

On the other hand, (3.8) implies

lim
j→∞

Tµkp,zj (w) = h(w)

for w ∈ C. Hence, h ≡ 0, which means

lim
j→∞

‖Tµkp,zj‖∞,φ = 0.

This, combined with (3.4), yields that as j → ∞,

µ̃2(zj)ρ(zj)
− 2

p ≤ C|Tµkp,zj (zj)|e
−φ(zj) ≤ ‖Tµkp,zj‖∞,φ → 0.

Thus,

lim
z→∞

µ̃2(z)ρ(z)
− 2

p = 0.

We conclude that µ is a vanishing p
p+1 -Fock Carleson measure, which follows from Theorem

2.2. The proof is complete.

Theorem 3.2 Let 0 < p <∞, and let µ ≥ 0. Then the following statements are equivalent:

(1) Tµ : F∞
φ → F p

φ is bounded.

(2) Tµ : F∞
φ → F p

φ is compact.

(3) µ̃t ∈ Lp for some (or any) t > 0.

(4) µ̂δ ∈ Lp for some (or any) δ > 0.

(5)
{
µ̂r(ak)ρ(ak)

2
p

}∞

k=1
∈ lp for some (or any) r-lattice {ak}

∞
k=1.

Furthermore,

‖Tµ‖F∞
φ

→F
p
φ
≃ ‖µ̃t‖Lp ≃ ‖µ̂δ‖Lp ≃

∥∥{µ̂r(ak)ρ(ak)
2
p

}
k

∥∥
lp
. (3.9)

Proof By [12, Lemma 2.4], we get the equivalence of (3), (4) and (5). To prove (1)⇒(5), we

suppose that Tµ is bounded from F∞
φ to F p

φ . Given any bounded sequence {λk}k and r0-lattice

{ak}k, where r0 as in Lemma 2.1, set

f(z) =

∞∑

k=1

λkk2,ak
(z)ρ(ak), z ∈ C.

In a way similar to [10, Lemma 2.4], we have f ∈ F∞
φ and ‖f‖∞,φ ≤ C sup

k

|λk|. Since Tµ is

bounded from F∞
φ to F p

φ , we have Tµf ∈ F p
φ . Khinchine’s inequality and Fubini’s theorem show

∫

C

( ∞∑

k=1

|λkρ(ak)Tµ(k2,ak
)(z)|2

) p
2

e−pφ(z)dA(z)

≤ C

∫

C

∫ 1

0

∣∣∣
∞∑

k=1

ψk(t)λkρ(ak)Tµ(k2,ak
)(z)

∣∣∣
p

dte−pφ(z)dA(z)

= C

∫ 1

0

∥∥∥Tµ
( ∞∑

k=1

ψk(t)λkρ(ak)k2,ak

)∥∥∥
p

p,φ
dt,
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where ψk is the k-th Rademacher function on [0, 1]. Since Tµ : F∞
φ → F p

φ is bounded, the

inequality above is no more than

C

∫ 1

0

‖Tµ‖
p

F∞
φ

→F
p

φ

∥∥∥
∞∑

k=1

ψ(t)λkρ(ak)k2,ak

∥∥∥
p

∞,φ
dt ≤ C‖Tµ‖

p

F∞
φ

→F
p

φ

sup
k

|λk|
p.

Since the balls {Dr0(ak)}k cover C, (2.3) gives

∫

C

( ∞∑

k=1

|λkρ(ak)Tµ(k2,ak
)(z)|2

) p
2

e−pφ(z)dA(z)

≥ C
∞∑

k=1

∫

Dr0(ak)

( ∞∑

k=1

|λkρ(ak)Tµ(k2,ak
)(z)|2

) p
2

e−pφ(z)dA(z)

≥ C

∞∑

k=1

∫

Dr0(ak)

|λkρ(ak)Tµ(k2,ak
)(z)|pe−pφ(z)dA(z).

By (2.4), we know

ρ(ak)
p+2|Tµ(k2,ak

)(ak)|
pe−pφ(ak)

≤ C

∫

Dr0(ak)

|λkρ(ak)Tµ(k2,ak
)(z)|pe−pφ(z)dA(z).

These yield

∫

C

( ∞∑

k=1

|λkρ(ak)Tµ(k2,ak
)(z)|2

) p
2

e−pφ(z)dA(z)

≥ C

∞∑

k=1

|λk|
pρ(ak)

p+2|Tµ(k2,ak
)(ak)|

pe−pφ(ak).

Notice that Lemma 2.1 shows

µ̂r0(ak)
p ≤ Cρ(ak)

p|Tµ(k2,ak
)(ak)|

pe−pφ(ak).

Setting βk = |λk|p, we know {βk}k ∈ l∞. Hence

∞∑

k=1

βkµ̂r0(ak)
pρ(ak)

2 ≤ C

∫

C

( ∞∑

k=1

|λkρ(ak)Tµ(k2,ak
)(z)|2

) p
2

e−pφ(z)dA(z)

≤ C‖Tµ‖
p

F∞
φ

→F
p
φ

sup
k

|βk|.

Therefore

{µ̂r0(ak)
pρ(ak)

2}∞k=1 ∈ l1

and

‖{µ̂r0(ak)ρ(ak)
2
p }k‖lp ≤ C‖Tµ‖F∞

φ
→F

p
φ
. (3.10)

To prove (3)⇒(2), we need to give

‖Tµ‖F∞
φ

→F
p
φ
≤ C‖µ̂δ‖Lp (3.11)
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for some δ > 0. We deal with the case 1 < p < ∞ first. Fixed δ > 0, (3.7), Lemma 2.1 and

Hölder’s inequality show

|Tµf(z)|
pe−pφ(z) ≤ C‖f‖p∞,φ

(∫

C

µ̂δ(w)|K(w, z)|e−φ(w)e−φ(z)dA(w)
)p

≤ C‖f‖p∞,φ

∫

C

µ̂δ(w)
p|K(w, z)e−φ(w)e−φ(z)|dA(w)

×
(∫

C

|K(w, z)e−φ(w)e−φ(z)|dA(w)
)p−1

≤ C‖f‖p∞,φ

∫

C

µ̂δ(w)
p|K(w, z)e−φ(w)e−φ(z)|dA(w)

for f ∈ F∞
φ . By Fubini’s theorem and Lemma 2.1, we get

‖Tµf‖
p
p,φ ≤ C‖f‖p∞,φ

∫

C

µ̂δ(w)
pρ(w)−1dA(w)

∫

C

ρ(z)−1e−
(

|z−w|
ρ(w)

)ǫ

dA(z)

≤ C‖f‖p∞,φ

∫

C

µ̂δ(w)
pdA(w).

We now deal with the case p ≤ 1. For some r-lattice {ak}k and f ∈ F∞
φ , (2.1) and (2.4) show

|Tµf(z)|
p ≤ ‖f‖p∞,φ

( ∞∑

k=1

∫

Dr(ak)

|K(w, z)|e−φ(w)dµ(w)
)p

≤ ‖f‖p∞,φ

∞∑

k=1

( ∫

Dr(ak)

|K(w, z)|e−φ(w)dµ(w)
)p

≤ ‖f‖p∞,φ

∞∑

k=1

µ̂r(ak)
pρ(ak)

2p
(

sup
w∈Dr(ak)

|K(w, z)|e−φ(w)
)p

≤ C‖f‖p∞,φ

∞∑

k=1

µ̂r(ak)
pρ(ak)

2p−2

∫

Dmr(ak)

|K(w, z)|pe−pφ(w)dA(w).

By the triangle inequality, we have m1 > 0 such that Dr(ak) ⊆ Dm1r(w) if w ∈ Dmr(ak).

Hence, (2.1) and (2.3) yield

|Tµf(z)|
pe−pφ(z)

≤ C‖f‖p∞,φe
−pφ(z)

∞∑

k=1

∫

Dmr(ak)

µ̂m1r(w)
pρ(w)2p−2|K(w, z)|pe−pφ(w)dA(w)

≤ CN‖f‖p∞,φe
−pφ(z)

∫

C

µ̂m1r(w)
pρ(w)2p−2|K(w, z)|pe−pφ(w)dA(w).

Fubini’s theorem and (3.2) give

‖Tµf‖
p
p,φ ≤ C‖f‖p∞,φ

∫

C

µ̂m1r(w)
pe−pφ(w)ρ(w)2p−2

∫

C

e−pφ(z)|K(w, z)|pdA(z)dA(w)

≤ C‖f‖p∞,φ

∫

C

µ̂m1r(w)
pρ(w)p−2dA(w)

∫

C

ρ(z)−pe−p
(

|z−w|
ρ(w)

)ǫ

dA(z)

≤ C‖f‖p∞,φ‖µ̂m1r‖
p
Lp .
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Therefore, (3.11) comes true. Taking µR as in Lemma 3.1, then

µ− µR ≥ 0

and

‖Tµ − TµR
‖F∞

φ
→F

p

φ
= ‖Tµ−µR

‖F∞(φ)→F
p

φ

≤ ‖ ̂(µ− µR)δ‖Lp

→ 0,

if R → ∞, since µ̂δ ∈ Lp. Lemma 3.1 gives that TµR
is compact from F∞

φ to F p(φ). So

Tµ : F∞
φ → F p

φ is also compact.

The estimate (3.9) follows from (3.10)–(3.11). The proof is completed.

By Theorems 2.3 and 3.2, we obtain the following corollary.

Corollary 3.1 Let 1 < p <∞, and let µ ≥ 0. Then the following statements are equivalent:

(1) Tµ : F p
φ → F∞

φ is bounded.

(2) Tµ : F p
φ → F∞

φ is compact.

(3) µ is a p
p+1 -Fock Carleson measure.

(4) µ is a vanishing p
p+1 -Fock Carleson measure. Furthermore

‖Tµ‖Fp
φ
→F∞

φ
≃ ‖µ‖ p

p+1
.
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