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1 Introduction

We consider the nonlinear wave (NLW for short) equation

utt = uxx −mu− f(u) (1.1)

on the finite x-interval [0, π] with Dirichlet boundary conditions

u(t, 0) = u(t, π) = 0, t ∈ R.

The parameter m is real and positive, and the nonlinearity f is assumed to be real analytic in

u and of the form

f(u) = au3 +
∑

k≥2

fku
2k+1, a 6= 0. (1.2)

(1.1) is a typical model of infinite-dimensional Hamiltonian system associated with the Hamil-

tonian function

H =
1

2
〈v, v〉+ 1

2
〈Au, u〉+

∫ π

0

g(u)dx,
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where v = ut, A := − d2

dx2 + m, g =
∫
f(s)ds and 〈·, ·〉 denotes the usual scalar product in

L2. (1.1) is well studied by many authors as an infinite dimensional Hamiltonian system, such

as the long time stability result (see [1–4, 7–10, 19]) and the existence of invariant tori by

Kolmogorov-Arnold-Moser (KAM for short) theory (see [5, 11, 16–18, 21–26]).

In [3], Bambusi proved a Birkhoff normal form theorem which is applied to (1.1) with Dirich-

let boundary conditions and obtained the dynamical consequences on the long time behavior of

the solutions with small initial Cauchy data in Sobolev spaces Hs. Afterwards, Bambusi and

Grébert [6] gave an abstract Birkhoff normal form theorem for Hamiltonian partial differential

equations, which is applied to semi-linear equations with nonlinearity satisfying tame modulus.

They got that for s sufficiently large, the Sobolev norm of index s of the solution is bounded

by 2ǫ during a polynomial long time (of order ǫ−r with r arbitrary). Later, Cong-Liu-Yuan [14]

and Cong-Gao-Liu [13] generalized the method in [6] and proved the KAM tori are stable in a

polynomial long time for nonlinear Schrödinger equation and nonlinear wave equation.

Recently, in [15], Faou and Grébert proved a Nekhoroshev type theorem for the nonlinear

Schrödinger equation

iut = −∆u+ V ∗ u+ f(|u|2)u, x ∈ T
d

in an analytic space. The authors proved that if the initial datum is analytic in a strip of

width ρ > 0 with a bound on this strip equal to ǫ then, if ǫ is small enough, the solution of

the nonlinear Schrödinger equation above remains analytic in a strip of width ρ
2 and bounded

on this strip by Cǫ during very long time of order ǫ−α| ln ǫ|δ for some constants C > 0, α > 0

and 0 < δ < 1. We should point out that there is no so-called tame property in analytic space

compared to that in Sobolev space. Later, Mi-Liu-Shi-Zhao [20] generalized the method in [15]

to prove the similar result for (1.1) with Dirichlet boundary.

As Bourgain [12] said, the topology is very important for studying the long time stability

result. On the other hand, the Gevrey space is a phase space which is well studied for infinite-

dimensional Hamiltonian system (see [9–10]). It is natural to ask that whether such a stability

result holds in Gevrey space. In this paper, we will prove that if the Gevrey norm of initial

datum is small in a strip of width 2ρ > 0 with a bound on this strip equal to ǫ, then, if ǫ is

small enough, the Gevrey norm of the solution of the nonlinear wave equation above remains

small in a strip of width ρ
2 and bounded on this strip by Cǫ during very long time of order

ǫ−σ| ln ǫ|β for some constants C > 0, σ > 0 and 0 < β < 1
7 .

Before stating the result, we firstly introduce the Gevrey space. Suppose a function u :

[0, π] → C that can be expressed as

u(x) =
∑

j∈Z

ûje
ijx.

For ρ > 0, we denote

Aρ ≡ Aρ([0, π];C) =
{
u | |u|ρ :=

∑

j∈Z

|ûj|eρ
√

|j| < +∞
}
. (1.3)

Note that (Aρ, | · |ρ) is a Banach space. Then our main result is as follows.
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Theorem 1.1 There exist 0 < β < 1
7 and ρ > 0, and the following holds: There exist

constants C > 0 and ǫ0 > 0 such that if

u0, v0 ∈ A2ρ and |u0|2ρ + |v0|2ρ = ǫ ≤ ǫ0,

then the solution of (1.1) with initial datum u0 and v0 exists in A ρ
2
for times |t| ≤ ǫ−σρ| ln ǫ|β

and satisfies

|u(t)| ρ
2
≤ Cǫ for |t| ≤ ǫ−σρ| ln ǫ|β (1.4)

with σρ = min
{

1
10 ,

ρ
2

}
.

The rest of the paper is organized as follow. In Section 2, (1.1) is turned into an infinite

dimensional Hamiltonian system in complex coordinates. And we give an important lemma

which will be used to prove the main result. In Section 3, some important definitions are given.

Then, we obtain estimate of the nonlinearity, vector field and Passion bracket. In Section 4,

we introduce recursive equation and give two lemmas which we will use to get the normal form

result (i.e., Theorem 4.1). In Section 5, two important lemmas are given. Theorem 1.1 is proved

and the long time stability of solutions to NLW equation is obtained in Gevrey space.

2 Hamiltonian System

We study (1.1) as an infinite dimensional Hamiltonian system. As the phase space one may

take, for example, the product of the usual Sobolev spaceH1
0 ([0, π])×L2([0, π]) with coordinates

u and v = ut, i.e.,

ut = v =
∂H

∂v
, vt = uxx −mu− f(u) = −∂H

∂u
, (2.1)

then the Hamiltonian is

H =
1

2

∫ π

0

(v2 − |ux|2 +mu2)dx+

∫ π

0

g(u)dx, (2.2)

where g =
∫
f(s)ds. Let A := − d2

dx2 +m. Then the second equation of (2.1) is changed into

vt = −∂H

∂u
= −Au− f(u),

and the Hamiltonian equations (2.2) is changed into

H =
1

2
〈v, v〉+ 1

2
〈Au, u〉+

∫ π

0

g(u)dx, (2.3)

where 〈·, ·〉 denotes the usual scalar product in L2. To simplify calculation, we changed it into

a Hamiltonian in infinitely many coordinates. Therefore, suppose

u =
∑

j≥1

qj√
λj

φj , v =
∑

j≥1

√
λjpjφj , (2.4)

where φj =
√

2
π
sin jx for j = 1, 2, · · · are the normalized Dirichlet eigenfunctions of the

operator A with eigenvalues λ2
j = j2 +m. The coordinates are taken from some Banach space
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Lρ (ρ > 0) of all real valued sequences w = (w1, w2, · · · ) with finite norm

‖w‖ρ :=
∑

j≥1

|wj |e
√
jρ.

Then the Hamiltonian (2.3) turns into

H =
1

2

∑

j≥1

λj(p
2
j + q2j ) +

∫ π

0

g
(∑

j≥1

qj√
λj

φj

)
dx (2.5)

with equations of motions turned into

q̇j =
∂H

∂pj
= λjpj , ṗj = −∂H

∂qj
= −λjqj −

∂F

∂qj
, j ≥ 1, (2.6)

where

F (q) =

∫ π

0

g
(∑

j≥1

qj√
λj

φj

)
dx. (2.7)

These are Hamiltonian equations of motion with respect to the standard symplectic structure∑
j≥1

dqj ∧ dpj on Lρ ×Lρ. Since the nonlinearity f in (1.1) is real analytic in a neighborhood of

zero and of the form (1.2), we have

g(u) =

+∞∑

k=2

g(2k)(0)

(2k)!
u2k. (2.8)

According to (2.7)–(2.8), we get

F (q) =

∫ π

0

+∞∑

k=2

g(2k)(0)

(2k)!

(∑

j≥1

qj√
λj

φj

)2k

dx =

+∞∑

k=2

∑

j1±···±j2k=0

j1,··· ,j2k>0

Fj1,··· ,j2kqj1 · · · qj2k , (2.9)

where

Fj1,··· ,j2k =
g(2k)(0)

(2k)!

1√
λj1 · · ·λj2k

∫ π

0

φj1 · · ·φj2kdx. (2.10)

Let Z := Z1 \ {0}. If the Hamiltonian is defined on the complex Banach space Lρ,b collecting

all the two-side sequences with norm

‖w‖ρ :=
∑

j∈Z
|wj |e

√
|j|ρ,

the corresponding symplectic structure is i
∑
j≥1

dwj∧dw−j . Then for a function P of C1(Lρ,b,C),

we define its Hamiltonian vector field by XP = J∇P, where J is the symplectic operator on

Lρ,b. For two functions P and Q, we define the Poisson bracket by

{P,Q} = ∇PTJ∇Q = i
∑

j≥1

∂P

∂w−j

∂Q

∂wj

− ∂P

∂wj

∂Q

∂w−j

. (2.11)

If wj = w−j , we say that w ∈ Lρ,b is real. Similarly, if H(w) is real for all real w ∈ Lρ,b, we

also say that the Hamiltonian H is real.
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Definition 2.1 For a given ρ > 0, we define the space of real Hamiltonian P by Hρ satis-

fying

P ∈ C1(Lρ,b,C) and XP ∈ C1(Lρ,b,Lρ,b).

Obviously, for P and Q in Hρ, the formula (2.11) is well defined. For a given Hamiltonian

function H ∈ Hρ, we associate the Hamiltonian system

ẇ = XH(w) = J∇H(w),

which is equivalent to

ẇj = −i
∂H

∂w−j

, ẇ−j = i
∂H

∂wj

, j ≥ 1. (2.12)

We define the local flow Φt
H(w) associated with the above system. Note that if both w and H

are real, the flow is also real, i.e., Φt
H(w) is real for all t.

Then, let us introduce the complex coordinates

zj =
1√
2
(qj + ipj), zj =

1√
2
(qj − ipj), j ≥ 1. (2.13)

To simplify calculation, we introduce another set of coordinates (· · · , w−2, w−1, w1, w2, · · · ) in
Lρ,b by setting

wj = zj , w−j = zj for j ≥ 1. (2.14)

Therefore, the system (2.6) is turned into

ẇj = −iλjwj − i sgn j
∂F

∂w−j

, j 6= 0 (2.15)

with Hamiltonian (2.5) changed into

H(w) =
∑

j≥1

λjwjw−j + F (w),

where λj = sgn j
√
j2 +m and

F (w) =

+∞∑

k=2

∑

j1±···±j2k=0

j1,··· ,j2k>0

Fj1,··· ,j2k
zj1 + zj1√

2
· · · zj2k + zj2k√

2

=

+∞∑

k=2

∑

j1±···±j2k=0

j1,··· ,j2k 6=0

1

(
√
2)2k

Fj1,··· ,j2kwj1 · · ·wj2k . (2.16)

Notice that Fj1,··· ,j2k = F|j1|,··· ,|j2k|.

In the end of the section, we give a lemma that shows the relation between the space Aρ

and the space Lρ,b, which will be used in the proof of the main result.

Lemma 2.1 Let u, v be valued infinite differentiable functions on the closure of the x-

interval [0, π], and let (wj)j∈Z be the sequence of its coordinates defined by (2.4) and (2.13)–

(2.14). Then for any µ < ρ, we have

if u, v ∈ Aρ, then w ∈ Lµ,b and ‖w‖µ ≤ cµ,ρ(|u|ρ + |v|ρ), (2.17)

if w ∈ Lρ,b, then u, v ∈ Aµ and |u|µ, |v|µ ≤ cµ,ρ‖w‖ρ, (2.18)

where cµ,ρ is a constant depending on µ and ρ.
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Proof Due to (2.13)–(2.14), we know

|wj | ≤
1√
2
(|p|j||+ |q|j||) for j ∈ Z

and

pj =
1√
2i
(wj − w−j), qj =

1√
2
(wj + w−j), j ≥ 1.

Due to (2.4), it is clear to know that

u(x) =

√
2

π

∑

j≥1

qj√
λj

sin jx

=

√
2

π

∑

j≥1

qj√
λj

eijx − e−ijx

2i

=
1

2i

√
2

π

∑

j 6=0

sgn jq|j|√
λ|j|

eijx =
∑

j∈Z

ûje
ijx

and

v(x) =

√
2

π

∑

j≥1

√
λjpj sin jx

=

√
2

π

∑

j≥1

√
λjpj

eijx − e−ijx

2i

=
1

2i

√
2

π

∑

j 6=0

√
λ|j|sgn jp|j|e

ijx =
∑

j∈Z

v̂je
ijx.

So, for µ < ρ and for any u, v ∈ Aρ, we have the estimation

‖w‖µ =
∑

j∈Z
|wj |eµ

√
|j|

≤ 1√
2

∑

j∈Z
(|p|j||+ |q|j||)eµ

√
|j|

≤ √
π
∑

j∈Z

(√
λ|j||ûj|+

1√
λ|j|

|v̂j |
)
eµ
√

|j|

≤ √
π
∑

j∈Z

√
λ|j|(|ûj |+ |v̂j |)eµ

√
|j|

≤ √
π
∑

j∈Z

(|ûj |+ |v̂j |)eρ
√

|j|
√
λ|j|e

(µ−ρ)
√

|j|

≤ c(|u|ρ + |v|ρ)
∑

j∈Z

√
λ|j|e

(µ−ρ)
√

|j| ≤ cµ,ρ(|u|ρ + |v|ρ)
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with
∑
j∈Z

√
λ|j|e

(µ−ρ)
√

|j| convergent. Namely, (2.17) is proved. Conversely,

|u|µ =
∑

j∈Z

|ûj |eµ
√

|j|

≤ 1√
2π

∑

j∈Z

∣∣∣
q|j|√
λ|j|

∣∣∣eµ
√

|j|

≤ c
∑

j∈Z

∣∣∣ wj√
λ|j|

∣∣∣eµ
√

|j|

≤ c
∑

j∈Z
|wj |eρ

√
|j| 1√

λ|j|
e(µ−ρ)

√
|j|

≤ c‖w‖ρ
∑

j∈Z

1√
λ|j|

e(µ−ρ)
√

|j| ≤ cµ,ρ‖w‖ρ

with
∑
j∈Z

1√
λ|j|

e(µ−ρ)
√

|j| convergent. Similarly, we have

|v|µ ≤ cµ,ρ‖w‖ρ.

Therefore, (2.18) is also proved.

3 Space of Polynomial and Some Properties

Firstly, let us introduce some terminologies and notions about the polynomial on CZ . Let

ℓ ≥ 2 and j = (j1, j2, · · · , jℓ) ∈ Zℓ. We define

(1) the monomial associated with j,

wj = wj1 · · · wjℓ ,

(2) the divisor associated with j,

Ω(j) = λj1 + · · ·+ λjℓ , (3.1)

where for ji ∈ Z, λji = sgn ji
√
j2i +m, i = 1, 2, · · · , ℓ.

In addition, we also denote the set of indices with zero momentum by

Iℓ = {j = (j1, j2, · · · , jℓ) ∈ Zℓ | j1 ± j2 ± · · · ± jℓ = 0}. (3.2)

Furthermore, if ℓ is even and j is of the form (j1,−j1, · · · , j ℓ
2
,−j ℓ

2
) or some permutation of it,

we say that j = (j1, j2, · · · , jℓ) ∈ Zℓ is resonant writing j∈ Nℓ. Specially, if j is resonant, its

associated divisor vanishes, i.e., Ω(j) = 0, and its associated monomials depend only on the

actions

wj = wj1 · · · wjℓ = wj1w−j1 · · · wj ℓ
2

w−j ℓ
2

= Ij1 · · · Ij ℓ
2

, (3.3)

where for j ≥ 1, Ij = wjw−j denotes the action associated with the index j.

We note that if w is real, then Ij = |wj |2 and if ℓ is odd, the resonant set Nℓ is the empty

set. So, we know that the orders of monomials in the nonlinearity F are all even.
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Definition 3.1 If P is real, then for k ≥ 2, a formal polynomial P (w) = Σajwj ∈ Pk, of

degree k, has a zero of order at least 2 in w = 0, and satisfies the following conditions:

(1) P contains only monomials having zero momentum (i.e., such that j∈ Iℓ for some ℓ,

when aj 6= 0), and P denotes

P (w) =
k∑

ℓ=2

∑

j∈Iℓ

ajwj, (3.4)

where aj = a|j|, |j| = (|j1|, · · · , |jℓ|).
(2) The coefficients aj are bounded, i.e., sup

j∈Iℓ

|aj| < +∞ for all ℓ = 2, · · · , k.

We endow Pk with the norm

‖P‖ =

k∑

ℓ=2

sup
j∈Iℓ

|aj|. (3.5)

Recall that we assume that the nonlinearity f in (1.1) is complex analytic in a neighbourhood

of zero in C. Therefore, there exist two positive constants M and R0 such that the Taylor

expansion of its primary function (2.8) is uniformly convergent and bounded by M on the

district of |u| ≤ R0 of C. So the formula (2.9) defines an analytic function on the ball ‖w‖ρ ≤ R0

of Lρ,b and we have

F (w) =
∑

k≥2

P2k,

where P2k ∈ P2k is a homogeneous polynomial of degree 2k. By Cauchy integral formula, (2.10)

and (2.16), we have

‖P2k‖ = sup
j∈I2k

|Fj1,··· ,j2k |
(
√
2)2k

≤ |g(2k)(0)|
(2k)!(

√
π)2k−2

≤ MR−2k
0 . (3.6)

Finally, we will give some useful estimates of the polynomial space which are used in the

following section. And we note that the zero momentum will play an important role in the

estimates.

Proposition 3.1 For k ≥ 2 and ρ > 0, we obtain Pk ⊂ Hρ. Moreover, for any homogeneous

polynomial F ∈ Pk, of degree k, we get the following two estimates:

|F (w)| ≤ ‖F‖ ‖w‖kρ (3.7)

and

‖XF (w)‖ρ ≤ 2k−1k‖F‖ ‖w‖k−1
ρ for all w ∈ Lρ,b. (3.8)

Proof Let

F (w) =
∑

j∈Ik

ajwj.
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We obtain

|F (w)| ≤ ‖F‖
∑

j∈Zk

|wj1 | · · · |wjk | ≤ ‖F‖ ‖w‖kl1 ≤ ‖F‖ ‖w‖kρ,

where ‖ · ‖l1 denotes the l1-norm of vector. Thus (3.7) is proved.

To prove the second estimate, let us take ℓ ∈ Z, by using the zero momentum condition, we

have
∣∣∣ ∂F
∂wℓ

∣∣∣ ≤ k‖F‖
∑

j∈Zk−1

j1±j2±···±jk−1=±ℓ

|wj1 · · · wjk−1
|.

So we have the estimate

‖XF (w)‖ρ =
∑

ℓ∈Z
eρ
√

|ℓ|
∣∣∣ ∂F
∂wℓ

∣∣∣ ≤ k‖F‖
∑

ℓ∈Z

∑

j∈Zk−1

j1±j2±···±jk−1=±ℓ

eρ
√

|ℓ||wj1 · · · wjk−1
|.

Due to j1 ± j2 ± · · · ± jk−1 = ±ℓ, then we have the inequality

eρ
√

|ℓ| ≤ exp(ρ(
√

|j1|+ · · ·+
√
|jk−1|)) ≤

k−1∏

n=1

eρ
√

|jn|.

Therefore, after summing in j1, · · · , jk−1 and ℓ, we have

‖XF (z)‖ρ ≤ 2k−1k‖F‖
∑

j∈Zk−1

eρ
√

|j1||wj1 | · · · eρ
√

|jk−1||wjk−1
| ≤ 2k−1k‖F‖ ‖w‖k−1

ρ .

So (3.8) is also proved.

Proposition 3.2 If F and G are homogeneous polynomials of degree k and ℓ respectively

in Pk and Pℓ, then {F,G} ∈ Pk+ℓ−2 and we have the estimate

‖{F,G}‖ ≤ 2min{k,ℓ}−1kℓ‖F‖ ‖G‖. (3.9)

Proof Now we assume that F and G are homogeneous polynomials of degrees k and ℓ

respectively and with coefficients ak, k ∈ Ik and bl, l ∈ Iℓ. It is clear that {F,G} is a homo-

geneous polynomial of degree k + ℓ− 2 satisfying the zero momentum condition. Furthermore,

we can write

{F,G}(w) =
∑

j∈Ik+ℓ−2

cjwj,

where cj is expressed as a sum of coefficients akbl for which there exists a j ∈ Z such that

j ⊂ k ∈ Ik, −j ⊂ l ∈ Iℓ,

and such that if for instance j = k1 and −j = ℓ1, we necessarily have (k2, · · · , kk, ℓ2, · · · , ℓℓ) = j.

Hence, for a given j, the zero momentum condition on k and on l determines the value of j

which in turn determines 2min{k,ℓ}−1 possible values of j.

This proves (3.9) for monomials. The extension to polynomials follows from the definition

of the norm (3.5).

The last assertion and the fact that the Poisson bracket of two real Hamiltonian is real

follow immediately from the definitions.
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4 Recursive Equation and Normal Form Results

In this section, let us firstly introduce the definition of the N -normal form. For r ≥ 4 and

j = (j1, · · · , jr) ∈ Zr, we denote the third largest integer amongst |j1|, · · · , |jr| by µ(j), and set

Jk(N) = {j ∈ Ik | µ(j) > N} for N ≥ 1 and k ≥ 4.

Definition 4.1 (N -Normal Form) Let N be an integer. We say that a polynomial W ∈ Pk

is in N -normal form if it can be written as

W =

k∑

ℓ=4

∑

j∈Nℓ∪Jℓ(N)

ajwj.

Namely, W contains either monomials depending only on the actions or monomials whose

indices j satisfy µ(j) > N , i.e., monomials involving at least three modes with index greater

than N .

4.1 Recursive equation

Firstly, we give a lemma which is an easy consequence of the nonresonance condition and

the definition of the normal forms.

Lemma 4.1 Firstly, we suppose that the nonresonance condition (6.6) is satisfied, and let

N be fixed. Also suppose that H0 :=
∑
j≥1

λjwjw−j is the integrable part of Hamiltonian (2.5)

and Q is a homogenous polynomial of degree n. Then the homological equation

{χ,H0} −W = Q (4.1)

admits a polynomial solution (χ,W ) homogenous of degree n such that W is in N -normal form,

and such that

‖W‖ ≤ ‖Q‖ and ‖χ‖ ≤ N16n6‖Q‖. (4.2)

Proof Assume that Q =
∑
j∈In

Qjwj and find W =
∑
j∈In

Wjwj and χ =
∑
j∈In

χjwj such that

(4.1) is satisfied. (4.1) can be written in term of polynomial coefficients

−iΩ(j)χj −Wj = Qj, j ∈ In,

where Ω(j) is given in (3.1). We then define

(1) Wj = −Qj, χj = 0 if j ∈ Nn or µ(j) > N,

(2) Wj = 0, χj = − Qj

iΩ(j) if j /∈ Nn and µ(j) ≤ N.

In view of (6.6), this leads to (4.2).

In the following section, we will introduce the recursive equation. The solutions of recur-

sive equation can generate a canonical transformation Φ such that in the new variables, the

Hamiltonian H0+F is in normal form modulo a small remainder term. To obtain the recursive

equation, we consider the following problem.

Seek polynomials χ =
r∑

n=4
χn and W =

r∑
n=4

Wn in normal form and a smooth Hamiltonian

R satisfying ∂αR(0) = 0 for all α ∈ NZ with |α| ≤ r, such that

(H0 + F ) ◦ Φ1
χ = H0 +W +R. (4.3)
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Recall that for two Hamiltonian functions χ and K, we have for all k ≥ 0,

dk

dtk
(K ◦ Φt

χ) = {χ, {· · · {χ,K} · · · }}(Φt
χ) = (adkχK)(Φt

χ),

where adχK = {χ,K}. Moreover, if K and L are homogeneous polynomials of degree re-

spectively n and ℓ, then {K,L} is a homogeneous polynomial of degree n + ℓ − 2. Hence, we

obtain

(H0 + F ) ◦ Φ1
χ − (H0 + F ) =

r
2
−2∑

k=0

1

(k + 1)!
adkχ({χ,H0 + F}) +Or (4.4)

by using the Taylor formula, where Or stands for any smooth function R satisfying ∂αR(0) = 0

for all α ∈ NZ with |α| ≤ r. On the other hand, we know that for ζ ∈ C, the following relation

holds:

( r
2
−2∑

k=0

Bk

k!
ζk
)( r

2
−2∑

k=0

1

(k + 1)!
ζk
)
= 1 +O(|ζ| r2−1),

where Bk are the Bernoulli numbers defined by the expansion of the generating function z
ez−1 .

Hence, by defining the two differential operators

Ar =

r
2
−2∑

k=0

1

(k + 1)!
adkχ, Br =

r
2
−2∑

k=0

Bk

k!
adkχ,

we get

BrAr = Id + Cr,

where Cr is a differential operator satisfying

CrO r
2
+2 = Or.

Applying Br to the two sides of (4.4), we obtain

{χ,H0 + F} = Br(W − F ) +Or.

Plugging the decompositions in homogeneous polynomials of χ, W and F in the last equation

and equating the terms of same degree, after a straightforward calculation, we obtain the

recursive equations

{χn, H0} −Wn = Qn, n = 4, · · · , r, (4.5)

where

Qn = −Pn +

n−2∑

k=4

{Pn+2−k, χk}

+

n
2
−2∑

k=1

Bk

k!

∑

ℓ1+···+ℓk+1=n+2k
4≤ℓi≤n−2k

adχℓ1
· · · adχℓk

(Wℓk+1
− Pℓk+1

). (4.6)
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In the last sum, ℓi ≤ n−2k appears as a consequence of ℓi ≥ 4 and ℓ1+· · ·+ℓk+1 = n+2k. Once

these recursive equations solved, we define the remainder term as R = (H0+F )◦Φ1
χ−H0−W.

By construction, R is analytic on a neighborhood of the origin in Lρ,b and R = Or. So, by the

Taylor’s formula,

R =
∑

n≥r+1

n
2
−1∑

k=2

1

k!

∑

ℓ1+···+ℓk=n+2k−2
4≤ℓi≤r

adχℓ1
· · · adχℓk

H0

+
∑

n≥r+1

n
2
−2∑

k=0

1

k!

∑

ℓ1+···+ℓk+1=n+2k
4≤ℓ1,··· ,ℓk≤r

4≤ℓk+1

adχℓ1
· · · adχℓk

Pℓk+1
. (4.7)

Lemma 4.2 Suppose that the nonresonance condition (6.6) is fulfilled for some constants

γ, ν. Then there exists C > 0 such that for all r,N, and for n = 4, · · · , r, there exist two homo-

geneous polynomials χn and Wn of degree n, with Wn in N -normal form, which are solutions

of the recursive equation (4.5) and satisfy

‖χn‖+ ‖Wn‖ ≤ (C4nnN16)n
7

. (4.8)

Proof We define χn and Wn by induction using Lemma 4.1. Note that (4.8) is clearly

satisfied for n = 4, provided C big enough. Estimate (4.2) yields

N−16n6‖χn‖+ ‖Wn‖ ≤ ‖Qn‖. (4.9)

Using the definition (4.6) of the term Qn and the estimate on the Bernoulli numbers, |Bk| ≤
k!Ck for some C > 0, together with (3.9), which implies that for all ℓ ≥ 4, ‖adχℓ

R‖ ≤
2min{n,ℓ}−1nℓ‖R‖ ‖χℓ‖ for any polynomial R of degree less than n, we have for all n ≥ 4,

‖Qn‖ ≤ ‖Pn‖+ 2n
n−2∑

k=4

k(n+ 2− k)‖Pn+2−k‖ ‖χk‖

+ 2

n
2
−2∑

k=1

(Cn)k
∑

ℓ1+···+ℓk+1=n+2k
4≤ℓi≤n−2k

C(n, k)ℓ1‖χℓ1‖ · · · ℓk‖χℓk‖ ‖Wℓk+1
− Pℓk+1

‖, (4.10)

where

C(n, k) = 2min{ℓ1,n+2−ℓ1}−12min{ℓ2,n+2·2−ℓ1−ℓ2}−1 · · · 2min{ℓk,ℓk+1}−1

and C is a constant. It is easy to know C(n, k) ≤ 4n.

We set βn = n(‖χn‖+ ‖Wn‖). Equation (4.9) implies that

βn ≤ (CNν)n
6

n‖Qn‖ (4.11)

for some constant C independent of n.

By the fact that ‖Pn‖ ≤ MR−n
0 (see (3.6)), we obtain

βn ≤ β(1)
n + β(2)

n ,
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where

β(1)
n = (CNν)n

6

2nn3
n−2∑

k=4

βk (4.12)

and

β(2)
n = Nνn6

(Cn)n−14n

n
2
−2∑

k=1

∑

ℓ1+···+ℓk+1=n+2k
4≤ℓi≤n−2k

βℓ1 · · ·βℓk(βℓk+1
+ ‖Pℓk+1

‖), (4.13)

where C depends on M and R0. It remains to prove by induction that βn ≤ (C4nnN16)n
7

.

Assume that βj ≤ (C4jjN16)j
7

, j = 4, · · · , n− 1. Then for C > 1, we have

(C4nnN16)n
7 ≥ 1 for all n ≥ 4, (4.14)

so we get

β(1)
n ≤ (CN16)n

6

2nn4(C4nnN16)(n−1)7 ≤ 1

2
(C4nnN16)n

7

for n ≥ 4

provided C > 2.

Using (4.14) again and the induction hypothesis, we obtain

β(2)
n ≤ N16n6

(Cn)n−14n

n
2
−2∑

k=1

∑

ℓ1+···+ℓk+1=n+2k
4≤ℓi≤n−2k

(CN164n−1(n− 2k))ℓ
7
1+···+ℓ7k+1 .

Notice that the maximum of ℓ71+ · · ·+ ℓ7k+1 when ℓ1+ · · ·+ ℓk+1 = n+2k and 4 ≤ ℓi ≤ n−2k is

obtained for ℓ1 = · · · = ℓk = 4 and ℓk+1 = n− 2k and its value is (n− 2k)7+47k. Furthermore,

the cardinality of {ℓ1 + · · ·+ ℓk+1 = n+ 2k, 4 ≤ ℓi ≤ n− 2k} is smaller than nk+1, and hence

we obtain

β(2)
n ≤ max

k=
{
1,··· ,n

2
−2

}N16n6

(Cn)n−1Cnk+24n(CN164n(n− 2k))(n−2k)7+47k ≤ 1

2
(C4nnN16)n

7

for n ≥ 5 and after adapting C if necessary.

4.2 Normal form result

For any R1 > 0, we set Bρ(R1) = {w ∈ Lρ,b | ‖w‖ρ < R1}.

Theorem 4.1 Suppose that F is analytic on a ball Bρ(R1) for some R1 > 0 and ρ > 0.

Also suppose that the nonresonance condition (6.6) is satisfied, and let β < 1
7 and M > 1 be

fixed. Then there exists a constant ǫ0 > 0 such that for all ǫ < ǫ0, there exist a polynomial χ,

a polynomial W in N -normal form, and a Hamiltonian R analytic on Bρ(Mǫ), such that

(H0 + F ) ◦ Φ1
χ = H0 +W +R. (4.15)

Furthermore, for all w ∈ Bρ(Mǫ),

‖XW (w)‖ρ + ‖Xχ(w)‖ρ ≤ 2ǫ
3
2 , ‖XR(w)‖ρ ≤ ǫ2e−

1
4
| ln ǫ|1+β

. (4.16)
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Proof Using Lemma 4.2, for all N and r, we can construct polynomial Hamiltonians

χ(w) =
r∑

k=4

χk(w) and W (w) =
r∑

k=4

Wk(w),

with W in N -normal form, such that (4.15) holds with R = Or. Now for fixed ǫ > 0, we choose

N = | ln ǫ|2+2β and r = | ln ǫ|β .

This choice is motivated by the necessity of balance between W and R in (4.15). The error

induced by W is controlled as in Lemma 5.2, while the error induced by R is controlled by

Lemma 4.2. By (4.8), we get

‖χk‖ ≤ (C4kkN16)k
7 ≤ exp(k(16k6(2 + 2β) ln | ln ǫ|+ k7 ln 4 + k6 lnCk))

≤ exp(k(νr6(2 + 2β) ln | ln ǫ|+ r7 ln 4 + r6 lnCr))

≤ exp(k| ln ǫ|(16| ln ǫ|6β−1(2 + 2β) ln | ln ǫ|+ | ln ǫ|7β−1 ln 4 + | ln ǫ|6β−1 lnC| ln ǫ|β))
≤ ǫ−

k
8 (4.17)

as β < 1
7 (we take β < 1

7 such that max{6β− 1, 7β− 1} < 0 ), and for ǫ < ǫ0 sufficiently small.

So using Proposition 3.1, we have

|χk(w)| ≤ ǫ−
k
8 (Mǫ)k ≤ Mkǫ7

k
8 for w ∈ Bρ(Mǫ)

and thus

|χ(w)| ≤
∑

k≥4

Mkǫ
7k
8 ≤ ǫ

3
2

for ǫ small enough.

Similarly, we have for all k ≤ r,

‖Xχk
(w)‖ρ ≤ 2k−1kǫ−

k
8 (Mǫ)k−1 ≤ k(2M)k−1ǫ

7k
8
−1

and

‖Xχ(w)‖ρ ≤
∑

k≥4

k(2M)k−1ǫ
7k
8
−1 ≤ Cǫ−1ǫ

28
8 ≤ ǫ

3
2

for ǫ small enough. Similar bounds clearly hold for W =
r∑

k=4

Wk, which shows the first estimate

in (4.16).

On the other hand, using adχℓk
H0 = Wℓk +Qℓk (see (4.5)) and then combining Lemma 4.2

with the definition of Qn (see (4.6)), we can obtain

‖adχℓk
H0‖ ≤ (C4ℓkℓkN

16)ℓ
7
k ≤ ǫ−

ℓk
8 ,

where the last inequality proceeds as in (4.17). Therefore, due to (4.7), (4.17) and ‖Pℓk+1
‖ ≤

MR
−ℓk+1

0 , we obtain by Proposition 3.1 that for w ∈ Bρ(Mǫ),

‖XR(w)‖ρ ≤
∑

n≥r+1

n
2
−2∑

k=0

4nn(Cr)3nǫ−
n+2k

8 ǫn−1 ≤
∑

n≥r+1

n2(4Cr)3nǫ
n
2 ≤ (4Cr)3rǫ

r
2 .

Since r = | ln ǫ|β > 2 (ǫ small enough), we get ‖XR(w)‖ρ ≤ ǫ2e−
1
4
| ln ǫ|1+β

for w ∈ Bρ(Mǫ).
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5 Proof of the Main Result

Firstly, before giving the proof of the main theorem, we will introduce two important lemmas.

Lemma 5.1 (see [15]) Let f : R → R+ be a continuous function and y : R → R+ be a

differentiable function satisfying the inequality

d

dt
y(t) ≤ 2f(t)

√
y(t) for all t ∈ R.

Then we have the estimate

√
y(t) ≤

√
y(0) +

∫ t

0

f(s)ds for all t ∈ R.

Fix N > 1. For all w ∈ Lρ,b, we set

RN
ρ (w) =

∑

|j|>N

eρ
√

|j||wj |.

Notice that if w ∈ Lρ+µ,b, then

RN
ρ (w) ≤ e−µ

√
N‖w‖ρ+µ. (5.1)

Lemma 5.2 Let N ∈ N and k ≥ 4. Suppose that W is a homogeneous polynomial of

degree k in N -normal form. Let w(t) be a real solution of the flow generated by the Hamiltonian

H0 +W . Then we have

RN
ρ (w(t)) ≤ RN

ρ (w(0)) + 4k32k−1‖W‖
∫ t

0

RN
ρ (w(s))2‖w(s)‖k−3

ρ ds (5.2)

and

‖w(t)‖ρ ≤ ‖w(0)‖ρ + 4k32k−1‖W‖
∫ t

0

RN
ρ (w(s))2‖w(s)‖k−3

ρ ds. (5.3)

Proof Fix j ∈ Z and let Ij(t) = wj(t)w−j(t) be the actions associated with the solution of

the Hamiltonian system generated by H0 +W. Due to (3.9), we can obtain

|e2ρ
√

|j|İj | = |e2ρ
√

|j|{Ij ,W}| ≤ 2k−1k‖W‖| eρ
√

|j|√Ij |
( ∑

j1±···±jk−1=±j
2 indices>N

eρ
√

|j||wj1 · · ·wjk−1
|
)
.

Then using Lemma 5.1, we can get

eρ
√

|j|
√
Ij(t)

≤ eρ
√

|j|
√
Ij(0) + 2k−1k‖W‖

∫ t

0

( ∑

j1±···±jk−1=±j
2 indices>N

eρ
√

|j1||wj1 | · · · eρ
√

|jk−1||wjk−1
|
)
ds. (5.4)

Ordering the multi-indices in such a way that |j1| and |j2| are the largest, and making use of

the fact that w(t) is real (and thus |wj | =
√
Ij), we have, after summation in |j| > N ,

RN
ρ (w(t)) ≤ RN

ρ (w(0)) + 4k32k−1‖W‖
∫ t

0

( ∑

|j1|,|j2|≥N
j3,··· ,jk−1∈Z

eρ
√

|j1||wj1 | · · · eρ
√

|jk−1||wjk−1
|
)
ds

≤ RN
ρ (w(0)) + 4k32k−1‖W‖

∫ t

0

RN
ρ (w(s))2‖w(s)‖k−3

ρ ds.
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Inequality (5.3) can be proved in the same way.

Now we are in position to prove the main theorem in Section 1 in which we will take

advantage of the bootstrap argument.

Proof of Theorem 1.1 Let u0, v0 ∈ A2ρ with |u0|2ρ + |v0|2ρ = ǫ, and denotes by w(0) the

corresponding sequence of its Fourier coefficients which belongs to L 3
2
ρ,b with ‖w(0)‖ 3

2
ρ ≤ cρ

4 ǫ

by Lemma 2.1. Let w(t) be the local solution in Lρ,b of the Hamiltonian system associated with

H = H0 + F .

Let χ,W and R given by Theorem 4.1 with M = cρ and let y(t) = Φ1
χ(w(t)). We recall that

since χ(w) = O(‖w‖4), the transformation Φ1
χ is close to the identity, Φ1

χ(w) = w + O(‖w‖3)
and thus, for ǫ small enough, we have ‖y(0)‖L 3

2
ρ
≤ cρ

2 ǫ. Specially, note that

RN
ρ (y(0)) ≤ cρ

2
ǫe−

ρ
2

√
N ≤ cρ

2
ǫe−σ

√
N ,

where σ = σρ ≤ ρ
2 .

Let Tǫ be the maximum of time T such that RN
ρ (y(t)) ≤ cρǫe

−σ
√
N and ‖y(t)‖ρ ≤ cρǫ for

all |t| ≤ Tǫ. By construction, we have

y(t) = y(0) +

∫ t

0

XH0+W (y(s))ds+

∫ t

0

XR(y(s))ds.

So using (5.2) for the first vector field and (4.16) for the second one, we get for |t| ≤ Tǫ,

RN
ρ (y(t)) ≤ 1

2
cρǫe

−σ
√
N + 4|t|

r∑

k=4

‖Wk‖k3(2cρǫ)k−1e−2σ
√
N + |t|ǫ2e− 1

4
| ln ǫ|1+β

≤
(1
2
+ 4|t|

r∑

k=4

‖Wk‖k3(2cρǫ)k−2e−σ
√
N + |t|ǫe− 1

8

√
| ln ǫ|1+β

)
cρǫe

−σ
√
N , (5.5)

where in the last inequality we have used σ = min
{

1
10 ,

ρ
2

}
and N = | ln ǫ|2+2β .

Using Lemma 4.2, we then verify

RN
ρ (y(t)) ≤

(1
2
+ C|t|ǫe−σ

√
N
)
cρǫe

−σ
√
N

and thus, for ǫ small enough,

RN
ρ (y(t)) ≤ cρǫe

−σ
√
N for all |t| ≤ min{Tǫ, e

σ
√
N}. (5.6)

Similarly, we obtain

‖y(t)‖ρ ≤ cρǫ for all |t| ≤ min{Tǫ, e
σ
√
N}. (5.7)

In view of the definition of Tǫ, (5.6)–(5.7) imply Tǫ ≥ eσ
√
N . Specially, ‖w(t)‖ρ ≤ 2cρǫ for

|t| ≤ eσ
√
N = ǫ−σ| ln ǫ|β . Using (2.18), we finally obtain (1.4).

6 Appendix

In this section, we will give some technical lemmas and nonresonance condition. This section

can be also find in [20].
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Lemma 6.1 For any K ≤ r, consider K indexes j1 < · · · < jK ≤ N, and consider the

determinant

D :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λj1 λj2 · · · λjK

dλj1

dm

dλj2

dm
· · · dλjK

dm
...

...
...

dK−1λj1

dmK−1

dK−1λj2

dmK−1
· · · dK−1λjK

dmK−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (6.1)

It holds

|D| =
[K−1∏

j=1

(2j − 3)!

2j−2(j − 1)!2j

]
=

( K∏

l=1

λ−2K+1
jl

)( ∏

1≤l<k≤K

(jl)
2 − (jk)

2
)
≥ C

N2K2
. (6.2)

Proof By explicit computation, one has

dnλj

dmn
=





1

2n
(j2 +m)

1
2
−n, 0 ≤ n ≤ 1,

(2n− 3)!

2n−2(n− 1)!2n
(−1)n

(j2 +m)n−
1
2

, 2 ≤ n ≤ K − 1.
(6.3)

Substituting (6.3) into the right hand site of (6.1), we get the determinant to be estimated. To

obtain the estimate factorize from the j-th column term λj = (j2 + m)
1
2 , and from the n-th

row term (2n−3)!
2n−2(n−1)!2n . Forgetting the essential power of −1, we obtain that the determinant

to be estimated is given by

[ K∏

l=1

λjl

] [1
2

K−1∏

n=2

(2n− 3)!

2n−2(n− 1)!2n

]
∣∣∣∣∣∣∣∣∣

1 1 · · · 1
xj1 xj2 · · · xjK

...
...

...

xK−1
j1

xK−1
j2

· · · xK−1
jK

∣∣∣∣∣∣∣∣∣
,

where we denoted by xj = (j2 + m)−1. The last determinant is a Vandermond determinant

whose value is given by

∏

1≤l<n≤K

(xjl − xjn). (6.4)

Now we have

|xjl − xjn | =
∣∣∣ 1

j2l +m
− 1

j2n +m

∣∣∣ = |j2n − j2l |
(j2l +m)(j2n +m)

≥ Cxjlxjn

with a suitable C. So (6.4) is estimated by

K−1∏

l=1

K∏

n=l+1

Cxjlxjn = C

K∑
n=2

(n−1)
K−1∏

l=1

(
xK−l
jl

K∏

n=l+1

xjn

)
= C

K∏

l=1

xK−1
jl

,

from which, using the asymptotics of the frequencies, the thesis immediately follows.

Next we need the lemma from [8, Appendix B].
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Lemma 6.2 (see [8]) Let u(1), · · · , u(K) be K independent vectors with ‖u(i)‖l1 ≤ 1. Let

w ∈ RK be an arbitrary vector. Then there exists i ∈ [1, · · · ,K], such that

|u(i)w| ≥ ‖w‖l1 det(u(i))

K
3
2

,

where det(u(i)) is the determinant of the matrix formed by the components of the vectors u(i).

Proof The proof can be found in the proposition of Appendix B in [8].

Combining Lemmas 6.1 and 6.2, we deduce the following lemma.

Lemma 6.3 Let w ∈ Z∞ be a vector with K components different from zero, namely those

with indices j1, · · · , jK . Assume that K ≤ r and j1 < · · · < jK ≤ N . Then for any m ∈ [m0,∆],

there exists an index j ∈ [0, · · · ,K − 1] such that

∣∣∣w djλ

dmj
(m)

∣∣∣ ≥ C
‖w‖l1

N2K2+2
, (6.5)

where λ = (λj1 , λj2 , · · · , λjK ) is the frequency vector.

From [24] we learn the following lemma.

Lemma 6.4 Suppose that g(m) is r times differentiable on an interval J ⊂ R. Let Jγ :=

{m ∈ J | |g(m)| < γ}, γ > 0. If |g(r)(m)| ≥ d > 0 on J, then |Jγ | ≤ Mγ
1
r , where M :=

2(2 + 3 + · · ·+ r + d−1).

Proof The proof can be found in [24, Lemma 2.1].

Nonresonance condition In order to control the divisors (3.1), we need to impose the

nonresonance condition on the linear frequencies λj , j ∈ Z.

Recall that Ω(j) = sgn j1λ|j1| + sgn j2λ|j2| + · · ·+ sgn jrλ|jr |. We define a set

Sℓ = {s : |js| = ℓ}

and let k = (kℓ)ℓ∈N, where

kℓ =





0, if Sℓ = ∅,
∑

s∈Sℓ

sgnjs, if Sℓ 6= ∅.

Then Ω(j) =
∑
ℓ≥1

kℓλℓ and |k| ≤ r. In the following section, we set k = (k̃, k̂), where k̃ =

(k1, · · · , kN ) ∈ ZN , k̂ = (kN+1, · · · ) ∈ ZN and we assume that |k̂| ≤ 2.

Recalling the definition of µ(j) in Section 4, then we have the following proposition.

Proposition 6.1 For a given positive number N, there exists a set J satisfying Meas([m0,∆]

−J ) → 0 as N → +∞, such that for any m ∈ J ,

|〈k, ω(N)〉+ ε1ωj1 + ε2ωj2 | ≥
γ

N16r6
, (6.6)

where |k| ≤ r + 2, ε1, ε2 ∈ {−1, 0, 1}, |j1|, |j2| > N and µ(j) < N.
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Proof For a given positive number N, we define the resonant set R̃kj1j2 by

R̃kj1j2 =
{
m ∈ [m0,∆] | |〈k, ω(N)〉+ ε1ωj1 + ε2ωj2 | <

1

N16r6

}
, (6.7)

where |k| ≤ r + 2, ε1, ε2 ∈ {−1, 0, 1}, |j1|, |j2| > N.

Case 1 ε1 = ε2 = 0.

Denote the resonant Rk =
{
m ∈ [m0,∆] | |〈k, ω(N)〉| < 1

N4r3

}
. By combining Lemmas

6.3–6.4, we can get

|Rk| ≤ 2(2 + 3 + · · ·+ r + 1 + C−1N2r2+2)
1

N
4r3

r+1

≤ 3

N
4r3

r+1
−2r2−1

, (6.8)

where the last inequality is based on N > r and C−1N < 1 if N is large enough. Here | · |
denotes the Lebesgue measure of set and C is a constant in Lemma 6.3. We set R̃1 =

⋃
|k|<r+2

Rk.

Then we have

|R̃1| ≤
∑

|k|<r+2

|Rk| =
∑

|k|<r+2

3

N
4r3

r+1
−2r2−1

≤ 3

N
4r3

r+1
−2r2−1

N r+2

=
3

N
4r3

r+1
−2r2−r−3

<
3

N
2r3−3r2−4r−3

r+1

<
1

9N
(r is large enough). (6.9)

Case 2 ε1 = ±1, ε2 = 0 or ε1 = 0, ε2 = ±1 or ε1ε2 = 1.

In this case, we take ε1 = ±1, ε2 = 0 without loss of generality. Denote the resonant

Rkj1 =
{
m ∈ [m0,∆] | |〈k, ω(N)〉+ ωj1 | < 1

N4r3

}
. Due to ωj1 =

√
j21 +m, one has

|〈k, ω(N)〉+ ωj1 | ≥ |ωj1 | − |〈k, ω(N)〉| ≥ 1,

when |j1| ≥ 2(r + 2)N + 1. Then the resonant Rkj1 is empty. So we only consider |j1| <

2(r + 2)N + 1. Setting 〈k̃, ω(Ñ)〉 = 〈k, ω(N)〉+ ωj1 in place of 〈k, ω(N)〉 and Ñ = 2(r + 2)N + 1

in place of N, then according to Case 1, we have

|Rkj1 | ≤
3

(2(r + 2)N + 1)
4r3

r+2
−2(r+1)2−1

≤ 3

N
2r3−12r2−11r−6

r+2

.



408 C. Y. Liu, H. Y. Liu and R. Zhao

Setting R̃2 =
⋃

|k|<r+2

⋃
|j1|<2(r+2)N+1

Rkj1 , then we have

|R̃2| ≤
∑

|k|<r+2

∑

|j1|<2(r+2)N+1

|Rkj1 |

=
∑

|k|<r+2

∑

|j1|<2(r+2)N+1

3

N
2r3−12r2−11r−6

r+2

≤ 3

N
2r3−12r2−11r−6

r+2

N r+2(2(r + 2)N + 1)

≤ 9

N
2r3−13r2−17r−14

r+2

<
1

9N
(r is large enough). (6.10)

Case 3 ε1ε2 = −1.

In this case, we take ε1 = 1, ε2 = −1 without loss of generality.

Denote the resonant Rkj1j2 =
{
m ∈ [m0,∆] | |〈k, ω(N)〉 + ωj1 − ωj2 | < 1

N4r3

}
. Assume

j1 > j2 without loss of generality. Because of ωj1 =
√
j21 +m,ωj2 =

√
j22 +m, then there is a

constant C > 0 such that

∣∣∣ωj1 − ωj2

j1 − j2
− 1

∣∣∣ ≤ C

j2
.

Therefore,

ωj1 − ωj2 = j1 − j2 + rj1j2

with

|rj1j2 | ≤
Ca

j2

and a = j1 − j2. Then we get

|〈k, ω(N)〉+ ωj1 − ωj2 | ≥ |〈k, ω(N)〉+ a| − |rij |.

Hence,

Rkj1j2 ⊂ Rkaj2 :=
{
m ∈ [m0,∆] | |〈k, ω(N)〉+ a| ≤ 1

N4r3
+

Ca

j2

}
.

If j > j0, we get

Rkaj ⊂ Rkaj0 .

Then it is sufficient to consider

a ≤ 2(r + 2)N + 1,

and let

j0 = 2N4r3.
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Setting 〈k̃, ω(Ñ)〉 = 〈k, ω(N)〉+ ωj1 − ωj2 in place of 〈k, ω(N)〉 and Ñ = 2N4r3+1 in place of N,

then according to Case 1, we have

|Rkj1j2 | ≤
3

(2N4r3+1)
4r3

r+2
−2(r+1)2−1

≤ 3

N
16r6+2r3−12r2−11r−6

r+2

.

Set R̃2 =
⋃

|k|<r+2

⋃
|j1|<2N4r3+1

⋃
|j2|<2N4r3

Rkj1j2 . Then we have

|R̃3| ≤
∑

|k|<r+2

∑

|j1|<2N4r3+1

∑

|j2|<2N4r3

|Rkj1 |

=
∑

|k|<r+2

∑

|j1|<2N4r3+1

∑

|j2|<2N4r3

3

N
16r6+2r3−12r2−11r−6

r+2

≤ 3

N
16r6+2r3−12r2−11r−6

r+2

N r+2(2N4r3+1)(2N4r3)

≤ 36

N
16r6−8r4−6r3−13r2−18r−16

r+2

<
1

9N
(r is large enough). (6.11)

In view of (6.9)–(6.11), we obtain

|R| ≤
∑

k,j1,j2

R̃kj1j2 = R̃1 + 6R̃2 + 2R̃3 <
1

N
.

Let J = [m0,∆]−R. Then the proposition is proved.
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