Wanpeng LEI^1 Liming XIONG¹ Junfeng DU^1 Jun YIN^2

Abstract Win proved a well-known result that the graph G of connectivity $\kappa(G)$ with $\alpha(G) \leq \kappa(G) + k - 1$ $(k \geq 2)$ has a spanning k-ended tree, i.e., a spanning tree with at most k leaves. In this paper, the authors extended the Win theorem in case when $\kappa(G) = 1$ to the following: Let G be a simple connected graph of order large enough such that $\alpha(G) \leq k + 1$ $(k \geq 3)$ and such that the number of maximum independent sets of cardinality k + 1 is at most n - 2k - 2. Then G has a spanning k-ended tree.

Keywords *k*-ended tree, Connectivity, Maximum independent set 2000 MR Subject Classification 05C10

1 Introduction

A graph is traceable if it contains a Hamilton path, and hamiltonian if it contains a Hamilton cycle. In 1972, Chvátal and Erdős gave the following well-known sufficient condition for a graph to be traceable. Given a graph G, let $\kappa(G)$ and $\alpha(G)$ denote the connectivity and the independence number of G, respectively.

Theorem 1.1 (see [6]) If G is a graph on at least 3 vertices such that $\alpha(G) \leq \kappa(G) + 1$, then G is traceable.

Theorem 1.1 has been extended in many different directions (see [1-2, 7, 9-11]). For the recent results, see [4, 8, 12].

A Hamiltonian path is a spanning tree having exactly two leaves. From this point of view, some sufficient conditions for a graph to be traceable are modified to those for a spanning tree having at most k leaves. A tree having at most k leaves is called a k-ended tree, and we now turn our attention to spanning k-ended trees. It is clear that if $s \leq t$ then a spanning s-ended tree is also a spanning t-ended tree. Theorem 1.1 says that every graph G satisfying $\alpha(G) \leq \kappa(G) + 1$ is traceable. Las Vergnas conjectured the following theorem, which is a generalization of Theorem 1.1. This conjecture was proved by Win, who introduced a new proof technique called a k-ended system.

Manuscript received March 21, 2016. Revised November 29, 2017.

¹School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China.

E-mail: ryohaha@163.com lmxiong@bit.edu.cn djfdjf1990@163.com

²School of Computer Science, Qinghai Normal University, Xining 810008, Qinghai, China.

E-mail: yinlijun0908@163.com

^{*}This work was supported by the National Natural Science Foundation of China (Nos. 11871099, 11671037, 11801296) and the Nature Science Foundation from Qinghai Province (No. 2017-ZJ-949Q).

Theorem 1.2 (see [14]) Let $k \ge 2$ be an integer and G be a connected simple graph. If $\alpha(G) \le \kappa(G) + k - 1$, then G has a spanning k-ended tree.

Let m(H) denote the number of maximum independent sets of H for a subgraph $H \subseteq G$. In [5], Chen et al. proved that it does not change the traceability of those graphs G with a slight larger independence number (i.e., $\alpha(G) \leq \kappa(G) + 2$) when we bound m(G). The complete graph with s vertices is denoted by K_s and its complement is denoted by $\overline{K_s}$, i.e., sK_1 . By starting with a disjoint union of two graphs G and H and adding edges joining every vertex of G to every vertex of H, one obtains the join of G and H, denote by $G \vee H$.

Theorem 1.3 (see [5]) Let G be a connected graph of order $n \ge 2\kappa^2(G)$ such that $\alpha(G) \le \kappa(G) + 2$, $\kappa(G) = \kappa \ge 1$ and $m(G) \le n - 2\kappa(G) - 1$. Then either G is traceable or a subgraph of $K_{\kappa} \lor ((\kappa K_1) \cup K_{n-2\kappa})$.

In this paper, we extend Theorem 1.2 in the case when $\kappa(G) = 1$ by the following direction.

Theorem 1.4 Let $k \ge 3$ and G be a connect graph of order $n \ge 2k+2$ such that $\alpha(G) \le 1+k$ and $m(G) \le n - 2k - 2$. Then G has a spanning k-ended tree.

2 Notation and Terminology

For graph-theoretic notation not explained in this paper, we refer the reader to [13]. Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). We denote by N(v) the neighborhood of vertex v in G. For a nonempty subset X of V(G), we write $N(X) = \bigcup_{x \in X} N(x)$. For $S \subseteq V(G)$, we denote by G[S] the subgraph of G induced by S. Let H_1 and H_2 be two vertex disjoint subgraphs of G, $x, y \in V(G)$, and P is a path of G. A path xPy in G with end vertices x and y is called a path from H_1 to H_2 if $V(xPy) \cap V(H_1) = \{x\}$ and $V(xPy) \cap V(H_2) = \{y\}$. A path from $\{x\}$ to a vertex set U is also called an (x, U)-path. A subgraph F of G is called an (x, U)-fan of width k if F is a union of (x, U)-paths P_1, P_2, \cdots, P_k , where $V(P_i) \cap V(P_j) = \{x\}$ for $i \neq j$. Let G_0 be a subgraph of G. For the convenience, if $G[\{x\} \cup V(G_0)]$ has a spanning path of $G[\{x\} \cup V(G_0)]$, which starts at x (terminates at x, respectively). If $G[V(G_0) \cup \{x, y\}]$ has a spanning path, then we denote by xG_0y the spanning path of $G[V(G_1) \cup \{x\} \cup V(G_2)]$ has a spanning path, then we denote by G_1xG_2 the spanning path of $G[V(G_1) \cup \{x\} \cup V(G_2)]$.

We now introduce the concept of a k-ended system in order to prove Theorem 1.4. We denote the set of all simple graph by \mathcal{G} . Define a function $f : \mathcal{G} \to \{0, 1, 2\}$ as follows: For each element X of \mathcal{G} ,

$$f(X) = \begin{cases} 2, & \text{if } X \text{ is a path of order at least three,} \\ 1, & \text{if } X \text{ is } K_1, K_2 \text{ or a cycle,} \\ 0, & \text{otherwise.} \end{cases}$$
(2.1)

Let S be a set of vertex-disjoint subgraphs X of G with $f(X) \ge 1$, and

$$\mathcal{S}_P = \{ X \in \mathcal{S} : f(X) = 2 \}, \quad \mathcal{S}_C = \{ X \in \mathcal{S} : f(X) = 1 \}.$$

Then

$$S = S_P \cup S_C, \quad V(S) = \bigcup_{X \in S} V(X).$$

Moreover, $V(S_P)$ and $V(S_C)$ can be defined analogously, and $|S|, |S_P|, |S_C|$ denote the number of elements in S, S_P and S_C , respectively. For each path $P \in S_P$, let $v_L(P)$ and $v_R(P)$ denote the two end-vertices of P. For each element $C \in S_C$, let v_C be an arbitrarily chosen vertex of C. Once we choose a vertex v_C , each C corresponds the unique vertex v_C . Then define

$$\operatorname{End}(\mathcal{S}_P) = \bigcup_{P \in \mathcal{S}_P} \{ v_L(P), v_R(P) \}, \quad \operatorname{End}(\mathcal{S}_C) = \bigcup_{C \in \mathcal{S}_C} \{ v_C \},$$

$$\operatorname{End}(\mathcal{S}) = \operatorname{End}(\mathcal{S}_P) \cup \operatorname{End}(\mathcal{S}_C).$$

Then S is called a k-ended system if $\sum_{X \in S} f(X) = 2|S_P| + |S_C| \le k$. If V(S) = V(G), then S is called a spanning k-ended system of G.

For any $P \in S_P$, we orient P from $v_L(P)$ to $v_R(P)$, say \overrightarrow{P} for the oriented path (from $v_R(P)$ to $v_L(P)$, say \overleftarrow{P} , respectively). With a given orientation \overrightarrow{P} and for every vertex x of P, we will denote the first, second and *i*th predecessor (successor, respectively) of x as x^- , x^{--} and x^{i-} (x^+ , x^{++} , and x^{i+} , respectively). If $x = v_R(P)$ ($x = v_L(P)$, respectively), we have only predecessor of $v_R(P)$ (successor of $v_L(P)$, respectively). Given x and y on P, a section P(x, y) is a path $x^+x^{2+}x^{3+}\cdots x^{s+}(=y^-)$ of consecutive vertices of P, and a section P[x, y] is a path $xx^+x^{2+}\cdots x^{s+}(=y)$ of consecutive vertices of P. The section P[x, y] is trivial if x = y.

For each element $C \in \mathcal{S}_C$ and $|V(C)| \geq 3$, with a given orientation \overrightarrow{C} and for every vertex v of C, let v^+ and v^- denote the successor and the predecessor of v, respectively.

The following lemma shows why a k-ended system is important for spanning k-ended trees.

Lemma 2.1 (see [14]) Let $k \ge 3$ be an integer, and G be a connected simple graph. If G has a spanning k-ended system, then G has a spanning k-ended tree.

We call a k-ended system S of G a maximal k-ended system if there exists no k-ended system S' in G such that $V(S) \subset V(S')$. The following lemma expresses some nice properties of k-ended systems. Note that we say that two distinct elements of S are connected by a path in G - V(S) if there exists a path in G whose end-vertices are in S and whose inner vertices are all contained in $V(G) \setminus V(S)$, where a path may has no inner vertex.

Lemma 2.2 (see [3]) Let $k \ge 3$ be an integer, and G be a connected simple graph. Suppose that G has no spanning k-ended system, and let S be a maximal k-ended system of G such that $|S_P|$ is maximum subject to the maximality of V(S). Then the following statements hold.

(i) No two elements of S_C are connected by a path whose inner vertices are in $V(G) \setminus V(S)$.

(ii) No element of S_C is connected to an end-vertex of an element of S_P by a path whose inner vertices are in $V(G) \setminus V(S)$.

(iii) No end-vertex of an element of S_P is connected to an end-vertex of another element of S_P by a path whose inner vertices are in $V(G) \setminus V(S)$.

(iv) No vertex u in $V(G) \setminus V(S)$ is connected to two distinct elements of S_C by two internally disjoint paths Q_1 and Q_2 in G - V(S) such that $V(Q_1) \cap V(Q_2) = \{u\}$.

3 Preparatory Works for Proving Theorem 1.4

In the following section, for the convenience, we assume the following: Let $k \geq 3$ be an integer, and G be a simple connected graph such that $\alpha(G) = 1 + k$. Suppose that G has no spanning k-ended system, and let S be a maximal k-ended system of G such that

(I) $|V(\mathcal{S})|$ is maximized.

(II) $|\mathcal{S}_P|$ is maximized subject to (I).

(III) $|V(\mathcal{S}_P)|$ is maximized subject to (I) and (II).

Then S is a set of subgraphs of G satisfying the hypothesis of Lemma 2.2. Let H = G - V(S). Then $|V(H)| \ge 1$.

For the convenience, we assume that $x \in V(P)$. For any $P \in \mathcal{S}_P$, let $\overrightarrow{\mathcal{Q}}(x,P) = v_R(P)$ if $x = v_R(P)$, and $\overrightarrow{\mathcal{Q}}(x,P) = xv_R(P)$ if $x^+ = v_R(P)$. In the case when $x \neq v_R(P)$ and $x^+ \neq v_R(P)$, we also let $\overrightarrow{\mathcal{Q}}(x,P) = x\overrightarrow{P}v_R(P)x$ if $xv_R(P) \in E(G)$. Otherwise, we do not define $\overrightarrow{\mathcal{Q}}(x,P)$. Let $\overleftarrow{\mathcal{Q}}(x,P) = v_L(P)$ if $x = v_L(P)$, and $\overleftarrow{\mathcal{Q}}(x,P) = xv_L(P)$ if $x^- = v_L(P)$. In the case when $x \neq v_L(P)$ and $x^- \neq v_L(P)$, we also let $\overleftarrow{\mathcal{Q}}(x,P) = x\overrightarrow{P}v_L(P)x$ if $xv_L(P) \in E(G)$. Otherwise, we do not define $\overleftarrow{\mathcal{Q}}(x,P)$. Then, $f(\overrightarrow{\mathcal{Q}}(x,P)) = 1$ ($f(\overleftarrow{\mathcal{Q}}(x,P)) = 1$, respectively). Let G_0 be a subgraph of G, $C(G_0)$ is called a spanning subgraph of G_0 such that $f(C(G_0)) = 1$.

Lemma 3.1 G has no k'-ended system \mathcal{T} such that $V(\mathcal{T}) \supseteq V(\mathcal{S})$ and k' < k.

Lemma 3.2 Suppose that there exists a path L from $v \in V(H)$ to S such that $V(L) \cap V(S) = \{x\}$ and $x \in V(P)$ for some $P \in S_P$. Then $N(x^+) \cap (\operatorname{End}(S_P) \setminus \{v_R(P)\}) = \emptyset$.

Proof By contradiction, suppose that $N(x^+) \cap (\text{End}(\mathcal{S}_P) \setminus \{v_R(P)\}) \neq \emptyset$, say $y \in N(x^+) \cap (\text{End}(\mathcal{S}_P) \setminus \{v_R(P)\})$. It is easy to check that $x \notin \{v_L(P), v_R(P)\}$. Let $N(x) \cap V(L) = \{v'\}$. Then, we distinguish the following two cases to obtain a contradiction:

(1) Suppose that $y \in \text{End}(\mathcal{S}_P) \setminus \{v_L(P), v_R(P)\}$. Without loss of generality, assume that $y = v_L(P')$ for $P' \in \mathcal{S}_P \setminus \{P\}$. Then $v_R(P) \overleftarrow{P} x^+ v_L(P') \overrightarrow{P'} v_R(P')$ and $v_L(P) \overrightarrow{P} xv'$ in G cover $V(P') \cup V(P) \cup \{v'\}$, contradicting (I).

(2) Suppose that $y = v_L(P)$. Then $v'x \overleftarrow{P} v_L(P)x^+ \overrightarrow{P} v_R(P)$ in G covers $V(P) \cup \{v'\}$, contradicting (I).

This contradiction proves Lemma 3.2.

Lemma 3.3 For any $v \in V(H)$, G has no (v, V(S))-fan of width 2.

Proof By contradiction, suppose that there exists a (v, V(S))-fan $\{L_1, L_2\}$ of width 2 for some $v \in V(H)$. Let $V(L_i) \cap V(S) = \{u_i\}$ for $i \in \{1, 2\}$. Denote $U = \{u_1, u_2\}$. If $U \cap V(S_C) \neq \emptyset$, then there exists at least one vertex $y \in U \cap V(S_C)$. Without loss of generality, we assume that $y = u_1$. By Lemma 2.2 (iv), $|\{C : C \in S_C \text{ and } U \cap V(C) \neq \emptyset\}| = 1$, say $C_1 \in S_C$ and $U \cap V(C_1) \neq \emptyset$. For each isolated vertex $\{x\}$ (say) of S_C , $N(x) \cap (V(G) \setminus V(S)) = \emptyset$. Thus no isolated vertex of S_C is adjacent to $V(G) \setminus V(S)$. Then $|V(C_1)| \ge 2$. If $|V(C_1)| = 2$, then we assume that C_1 contains a vertex of U, say v_{C_1} . Let $V(C_1) = \{v_{C_1}, v'_{C_1}\}$, where $v_{C_1} \in \text{End}(\mathcal{S}_C)$. Obviously v'_{C_1} is not contained in U. Denote

$$u_1^* = \begin{cases} u_1^+, & \text{if either } U \cap V(\mathcal{S}_C) \neq \emptyset \text{ and } |V(C_1)| > 2, \text{ or } U \cap V(\mathcal{S}_C) = \emptyset, \\ v_{C_1}', & \text{if } U \cap V(\mathcal{S}_C) \neq \emptyset \text{ and } |V(C_1)| = 2 \end{cases}$$

and $U^+ = \{u_1^*, u_2^+\}$. Let $Y = \text{End}(\mathcal{S}) \cup U^+ \cup \{v\}$. By Lemma 2.2, $\text{End}(\mathcal{S})$ is an independent set of G. It is easy to check that $u_i \notin \text{End}(\mathcal{S}_P)$ for $i \in \{1, 2\}$.

We distinguish the following three cases to prove that Y includes an independent set of G with size at least k + 2.

Case 1 $|U \cap V(\mathcal{S}_P)| = |U \cap V(\mathcal{S}_C)| = 1.$

Suppose that $u_1 \in V(C_1)$ and $u_2 \in V(P)$ for some $P \in \mathcal{S}_P$. By Lemma 2.2(iv), $\{u_1^*\} \cup (\operatorname{End}(\mathcal{S}) \setminus \{v_{C_1}\})$ is an independent set of G. Let $Q_1 = u_1^* \overleftarrow{C_1} u_1 L_1 v L_2 u_2$, $Q_2 = C u_2^+ \overrightarrow{P} v_R(P)$ and $Q_3 = \overrightarrow{Q}(u_2^+, P)$. Then, we distinguish the following four cases to prove that $Y \setminus \{v_{C_1}\}$ is an independent set of G with size k + 2:

(1) Suppose that $u_2^+ = v_R(P)$. Then Q_1 and $v_R(P)$ cover $V(C_1) \cup V(P) \cup \{v\}$, contradicting (I).

(2) Suppose that $N(u_2^+) \cap (\operatorname{End}(\mathcal{S}_C) \setminus \{v_{C_1}\}) \neq \emptyset$, say $v_C \in N(u_2^+) \cap (\operatorname{End}(\mathcal{S}_C) \setminus \{v_{C_1}\})$. Then Q_1 and Q_2 cover $V(C_1) \cup V(C) \cup V(P) \cup \{v\}$, contradicting (I).

(3) Suppose that $N(u_2^+) \cap \operatorname{End}(\mathcal{S}_P) \neq \emptyset$. By Lemma 3.2, $N(u_2^+) \cap \operatorname{End}(\mathcal{S}_P) = \{v_R(P)\}$. Then Q_1 and Q_3 cover $V(C_1) \cup V(P) \cup \{v\}$, contradicting (I).

(4) Suppose that $u_1^*u_2^+ \in E(G)$. Then $v_R(P) \overleftarrow{P} u_2^+ Q_1$ covers $V(C_1) \cup V(P) \cup \{v\}$, contradicting Lemma 3.1.

These contradictions show that $Y \setminus \{v_{C_1}\}$ is an independent set of G with size k+2.

Case 2 $U \subseteq V(\mathcal{S}_C)$.

If $u_1^+ \in V(C_1)$ and $u_2^+ \in V(C_1)$ are adjacent in G, then $vL_1u_1\overleftarrow{C_1}u_2^+u_1^+\overrightarrow{C_1}u_2L_2v$ covers $V(C_1) \cup \{v\}$, contradicting (I). This contradiction shows that U^+ is an independent set of G. Combining this with Lemma 2.2(iv), $Y \setminus \{v_{C_1}\}$ is an independent set of G with size k + 2.

Case 3 $U \cap V(\mathcal{S}_C) = \emptyset$, i.e., $U \subseteq V(\mathcal{S}_P)$.

Suppose first that $\operatorname{End}(\mathcal{S}) \cap U^+ = \emptyset$. Then |Y| = k + 3. By the assumption of this case, $\operatorname{End}(\mathcal{S}) \cup \{v\}$ is an independent set of G. Let $Q_4 = v_L(P)\overrightarrow{P}u_1L_1vL_2u_2$ and $Q_5 = Q_4u_2\overrightarrow{P}v_L(P')$. We shall show the following two claims.

Claim 1 G[Y] is triangle-free.

Proof We shall prove that U^+ is an independent set of G.

If $u_1^+ \in V(P)$ and $u_2^+ \in V(P)$, where $P \in \mathcal{S}_P$, are adjacent in G, without loss of generality, assume $P[v_L(P), u_1] \subset P[v_L(P), u_2]$, then $Q_4 u_2^- \overleftarrow{P} u_1^+ u_2^+ \overrightarrow{P} v_R(P)$ covers $V(P) \cup \{v\}$, contradicting (I). If $u_1^+ \in V(P)$ and $u_2^+ \in V(P')$, where $P, P' \in \mathcal{S}_P$ and $P \neq P'$, are adjacent in G, then $Q_5, v_R(P) \overleftarrow{P} u_1^+ u_2^+ \overrightarrow{P'} v_R(P')$ cover $V(P) \cup V(P') \cup \{v\}$, contradicting (I). It is shown that U^+ is an independent set of G. Then $(U^+, \operatorname{End}(\mathcal{S}) \cup \{v\})$ is a bipartition of the G[Y]. Therefore, G[Y] is triangle-free. **Claim 2** Y does not contain four distinct vertices y_1, y_2, y_3, y_4 such that $\{y_1y_2, y_3y_4\} \subseteq E(G)$.

Proof By contradiction, suppose that Y contains four distinct vertices y_1, y_2, y_3, y_4 such that $\{y_1y_2, y_3y_4\} \subseteq E(G)$. Without loss of generality, assume $y_2 = u_1^+ \in V(P), y_4 = u_2^+ \in V(P')$, and if they are in the same path P (say), then $P[v_L(P), u_1] \subset P[v_L(P), u_2]$ (say). Then, we distinguish the following three cases to obtain a contradiction.

(1) Suppose that $y_1 = v_C \in \operatorname{End}(\mathcal{S}_C)$, $y_3 = v_{C'} \in \operatorname{End}(\mathcal{S}_C)$ and $v_C \neq v_{C'}$. If $P \neq P'$, then Q_5 , $Cu_1^+ \overrightarrow{P} v_R(P)$ and $C'u_2^+ \overrightarrow{P'} v_R(P')$ cover $V(P) \cup V(P') \cup V(C) \cup V(C') \cup \{v\}$, contradicting (I). If P = P', then $Q_4u_2^- \overleftarrow{P}u_1^+C$, $C'u_2^+ \overrightarrow{P} v_R(P)$ cover $V(P) \cup V(C) \cup V(C') \cup \{v\}$, contradicting (I).

(2) Suppose that $y_1 = v_C \in \text{End}(\mathcal{S}_C)$ and $y_3 = v_R(P')$. If $P \neq P'$, then Q_5 , $Cu_1^+ \overrightarrow{P} v_R(P)$ and $\overrightarrow{\mathcal{Q}}(u_2^+, P')$ cover $V(P) \cup V(P') \cup V(C) \cup \{v\}$, contradicting (I). If P = P', then $Q_4u_2^- \overleftarrow{P} u_1^+C$, Q_3 cover $V(P) \cup V(C) \cup \{v\}$, contradicting (I).

(3) Suppose that $y_1 = v_R(P)$ and $y_3 = v_R(P')$, where $P \neq P'$. Then Q_5 , $\vec{\mathcal{Q}}(u_1^+, P)$ and $\vec{\mathcal{Q}}(u_2^+, P')$ cover $V(P) \cup V(P') \cup \{v\}$, contradicting (I).

This contradiction proves Claim 2.

By Claims 1–2, Y includes an independent set of G with size at least k + 2.

Next, suppose that $\operatorname{End}(S) \cap U^+ \neq \emptyset$. Then, there exists a path $P \in S_P$ such that $v_R(P) = u_i^+$ for $i \in \{1, 2\}$. Without loss of generality, say $v_R(P) = u_1^+$. If there exists another path $Q \in S_P \setminus \{P\}$ such that $v_R(Q) = u_2^+$, then Q_5 , $v_R(P)$, $v_R(Q)$ cover $V(P) \cup V(Q) \cup \{v\}$, contradicting (I). Thus $U^+ \cap \operatorname{End}(S) = \{v_R(P)\}$ for some $P \in S_P$, and |Y| = k + 2. we will show that Y is an independent set of G with size k + 2.

Assume that $v_C \in \operatorname{End}(\mathcal{S}_C)$ and $u_2^+ \in V(P')$ are adjacent in G. If $P \neq P'$, then Q_5 , $Cu_2^+ \overrightarrow{P'}v_R(P')$, $v_R(P)$ cover $V(P) \cup V(P') \cup V(C) \cup \{v\}$, contradicting (I). If P = P', then $v_L(P) \overrightarrow{P} u_2 L_2 v L_1 u_1 \overleftarrow{P} u_2^+ C$, $v_R(P)$ cover $V(P) \cup V(C) \cup \{v\}$, contradicting (I).

Assume that $v_R(P')$ and $u_2^+ \in V(P')$ are adjacent in G, where $P \neq P'$. Then Q_5 , $\overrightarrow{\mathcal{Q}}(u_2^+, P')$, $v_R(P)$ cover $V(P) \cup V(P') \cup \{v\}$, contradicting (I).

These contradictions shows that Y is an independent set of G with size k + 2.

In all cases, Y includes an independent set of G with size at least k + 2, contradicting $\alpha(G) = k + 1$. This contradiction shows that Lemma 3.3 holds.

Let w be a vertex in $V(G) \setminus V(S)$. Since G is connected, by Lemma 3.3, there exists exactly one (w, V(S))-path L such that $V(L) \cap V(S) = \{\mu_w\}$. Then w is connected to μ_w by the path L.

Lemma 3.4 $N(v) \cap \text{End}(\mathcal{S}_P) = \emptyset$ for any $v \in V(H)$.

 C_{μ_w} always means the vertex $\mu_w \in V(C_{\mu_w})$ where $C_{\mu_w} \in \mathcal{S}_C$. Then $|V(C_{\mu_w})| \ge 2$, since no isolated vertex of \mathcal{S}_C is adjacent to $V(G) \setminus V(\mathcal{S})$. If $|V(C_{\mu_w})| = 2$, say $V(C_{\mu_w}) = \{v_{C_{\mu_w}}, v'_{C_{\mu_w}}\}$, without loss of generality, then we assume that $\mu_w = v_{C_{\mu_w}}$. It means that $v_{C_{\mu_w}} \in \operatorname{End}(\mathcal{S}_C)$.

Denote

$$\mu_w^* = \begin{cases} \mu_w^+, & \text{if } |V(C_{\mu_w})| \ge 3 \text{ and } \mu_w \in V(C_{\mu_w}), \\ v'_{C_{\mu_w}}, & \text{if } |V(C_{\mu_w})| = 2 \text{ and } V(C_{\mu_w}) = \{v_{C_{\mu_w}}, v'_{C_{\mu_w}}\} \end{cases}$$

 P_{μ_w} always means that the vertex $\mu_w \in V(P_{\mu_w})$, where $P_{\mu_w} \in \mathcal{S}_P$. Let

$$X = \begin{cases} (\operatorname{End}(\mathcal{S}) \cup \{\mu_w^*, w\}) \setminus \{v_{C_{\mu_w}}\}, & \text{if } \mu_w \in V(\mathcal{S}_C), \\ \operatorname{End}(\mathcal{S}) \cup \{w\}, & \text{if } \mu_w \in V(\mathcal{S}_P). \end{cases}$$
(3.1)

Lemma 3.5 X is an independent set of G with size k + 1.

Proof By Lemma 2.2, End(S) is an independent set of G. Since $\mu_w \in V(S_P)$ or $V(S_C)$, by Lemmas 2.2 and 3.4, X is an independent set of G with size k + 1.

By Lemma 3.5, we have

$$N(v) \cap X \neq \emptyset$$
 for any $v \in V(G) \setminus X$. (3.2)

Otherwise, there exists a vertex $v_0 \in V(G) \setminus X$ such that $X \cup \{v_0\}$ is an independent set of cardinality k + 2, contradicting $\alpha(G) = k + 1$.

Lemma 3.6 Let $S \subset V(G)$ such that $S \cap X$ has exactly one vertex, say z, i.e., $S \cap X = \{z\}$. If $N(x) \cap X = \{z\}$ for any $x \in S \setminus \{z\}$, then G[S] is a clique.

Proof By contradiction, suppose that $x_1x_2 \notin E(G)$ for some pair of vertices $x_1, x_2 \in S$ with $x_1 \neq x_2$, then $(X \setminus \{z\}) \cup \{x_1, x_2\}$ is an independent set of G with size k+2, contradicting $\alpha(G) = 1 + k$. Hence, G[S] is a clique.

Denote

$$\mathcal{S}' = \mathcal{S} \setminus \{C_{\mu_w}, P_{\mu_w}\}, \quad \mathcal{S}'_C = \mathcal{S}' \cap \mathcal{S}_C, \quad \mathcal{S}'_P = \mathcal{S}' \cap \mathcal{S}_P.$$

Lemma 3.7 G[V(C)] is a clique for each $C \in \mathcal{S}'_C$.

Proof Since G[V(C)] is connected, it suffices to consider the case when $|V(C)| \geq 3$. Note that $V(C) \cap X = \{v_C\}$. By Lemma 2.2(i)–(ii), $N(x) \cap (X \setminus \{v_C\}) = \emptyset$ for each vertex $x \in V(C) \setminus \{v_C\}$. Note that $N(x) \cap X \neq \emptyset$. Therefore $N(x) \cap X = \{v_C\}$. Let S = V(C). Then, by Lemma 3.6, G[V(C)] is a clique.

Lemma 3.8 For any $P \in S_P$, there is no pair of adjacent vertices x, y in P such that $N(x) \cap V(S'_C) \neq \emptyset$ and $N(y) \cap V(S'_C) \neq \emptyset$.

Proof By contradiction, suppose that there exists a pair of vertices x_0 , y_0 in $P \in S_P$ such that $x_0y_0 \in E(P)$, $N(x_0) \cap V(\mathcal{S}'_C) \neq \emptyset$ and $N(y_0) \cap V(\mathcal{S}'_C) \neq \emptyset$. By Lemma 2.2(i)– (ii), $x_0 \notin \{v_L(P), v_R(P)\}$ and $y_0 \notin \{v_L(P), v_R(P)\}$. Without loss of generality, assume that $y_0 = x_0^+$. Suppose that $N(x_0) \cap V(\mathcal{S}'_C) = \{x'\}$ and $N(y_0) \cap V(\mathcal{S}'_C) = \{y'\}$. We distinguish the following two cases to obtain a contradiction.

(1) Suppose that $\{x', y'\} \subseteq V(C)$ with $C \in \mathcal{S}'_C$. If either |V(C)| = 1 or $x' \neq y'$, then by Lemma 3.7, $v_L(P)\overrightarrow{P}x_0Cx_0^+\overrightarrow{P}v_R(P)$ in G covers $V(P) \cup V(C)$, contradicting Lemma 3.1. If x' = y' and |V(C)| > 1, then $v_L(P)\overrightarrow{P}x_0x'x_0^+\overrightarrow{P}v_R(P)$ and $C(G[V(C) \setminus \{x'\}])$ in G cover $V(P) \cup V(C)$, satisfying (I),(II) but not (III), a contradiction.

(2) Suppose that $x' \in V(C)$ and $y' \in V(C')$ such that $\{C, C'\} \subseteq S'_C$ and $V(C) \cap V(C') = \emptyset$. Then, $Cx_0 \overleftarrow{P} v_L(P)$ and $C'y_0 \overrightarrow{P} v_R(P)$ in G cover $V(P) \cup V(C) \cup V(C')$, satisfying (I) but not (II), a contradiction.

This contradiction proves Lemma 3.8.

Denote

$$T_{P,1} := \{ x \in V(P) : P \in \mathcal{S}_P, \ xv_L(P) \in E(G), \ x^+v_L(P) \notin E(G), \ x^+ \neq \mu_w \}, \\ T_{P,2} := \{ x \in V(P) : P \in \mathcal{S}_P, \ N(x) \cap V(\mathcal{S}'_C) \neq \emptyset, \ x^+ \neq \mu_w \}.$$

Lemma 3.9 Let $P \in S_P$. Then the following three statements hold.

- (1) If $x \in T_{P,1} \cup T_{P,2} \cup \{\mu_w\}$, then either $N(x^+) \cap X \subseteq (\text{End}(\mathcal{S}'_C) \cup \{v_R(P)\})$ or $x^+ = v_R(P)$.
- (2) If $x \in T_{P,2}$, then either $N(x^+) \cap X = \{v_R(P)\}$ or $x^+ = v_R(P)$.
- (3) If $x = \mu_w$, then either $N(x^-) \cap X \subseteq (\operatorname{End}(\mathcal{S}'_C) \cup \{v_L(P)\})$ or $x^- = v_L(P)$.

Proof First, we will prove Lemma 3.9(1). We denote set $\operatorname{End}(\mathcal{S}'_C) \cup \{v_R(P)\}$ by B_1 . If $x^+ \neq v_R(P)$, then we will show that $N(x^+) \cap X \subseteq B_1$. Since $B_1 \subseteq X$, we denote $X - B_1$ by B_2 . By the assumption of this case, $w \notin N(x^+) \cap X$.

Suppose that $x = \mu_w$. Then by Lemma 3.2, $N(x^+) \cap (\operatorname{End}(\mathcal{S}_P) \setminus \{v_R(P)\}) = \emptyset$. Combining this with (3.1), $N(x^+) \cap B_2 = \emptyset$. Hence, $N(x^+) \cap X \subseteq B_1$. By symmetry, Lemma 3.9(3) holds.

Suppose that $x \in T_{P,1} \cup T_{P,2}$. Then, suppose that there exists a vertex $x' \in N(x^+) \cap B_2$. We distinguish the following three cases to obtain a contradiction by the definition of X.

(1) Suppose that $x' \in \operatorname{End}(\mathcal{S}_P) \setminus \{v_L(P), v_R(P)\}$. Without loss of generality, assume that $x' = v_L(P')$ for $P' \in \mathcal{S}_P \setminus \{P\}$. If $x \in T_{P,1}$, then $v_R(P) \overleftarrow{P} x^+ v_L(P') \overrightarrow{P'} v_R(P')$ and $\overleftarrow{\mathcal{Q}}(x, P)$ in G cover $V(P') \cup V(P)$, contradicting Lemma 3.1. If $x \in T_{P,2}$, say $v_C \in N(x) \cap V(\mathcal{S}'_C)$, then $v_R(P) \overleftarrow{P} x^+ v_L(P') \overrightarrow{P'} v_R(P')$ and $Cx \overleftarrow{P} v_L(P)$ in G cover $V(P') \cup V(P) \cup V(C)$, contradicting Lemma 3.1.

(2) Suppose that $x' = v_L(P)$. If $x \in T_{P,2}$, say $v_C \in N(x) \cap V(\mathcal{S}'_C)$, then $Cx \overleftarrow{P} v_L(P) x^+ \overrightarrow{P} v_R(P)$ in G covers $V(P) \cup V(C)$, contradicting Lemma 3.1.

(3) Suppose that $x' = \mu_w^*$. Then, by Lemma 3.5 and (3.1), $\mu_w \in V(\mathcal{S}_C)$. If $x \in T_{P,1}$, then $wL\mu_wC_{\mu_w}x^+\overrightarrow{P}v_R(P)$ and $\overleftarrow{Q}(x,P)$ in G cover $V(P) \cup V(C_{\mu_w}) \cup \{w\}$, contradicting (I). If $x \in T_{P,2}$, say $v_C \in N(x) \cap V(\mathcal{S}'_C)$, then $wL\mu_wC_{\mu_w}x^+\overrightarrow{P}v_R(P)$ and $Cx\overleftarrow{P}v_L(P)$ in G cover $V(P) \cup V(C) \cup V(C_{\mu_w}) \cup \{w\}$, contradicting (I).

This contradiction proves that $N(x^+) \cap B_2 = \emptyset$. Hence, $N(x^+) \cap X \subseteq B_1$. Lemma 3.9(1) is proved.

If $x \in T_{P,2}$ then by Lemma 3.9(1), $N(x^+) \cap X \subseteq (\text{End}(\mathcal{S}'_C) \cup \{v_R(P)\})$ or $x^+ = v_R(P)$. By Lemma 3.8, $N(x^+) \cap V(\mathcal{S}'_C) = \emptyset$. Note that (3.2). Therefore Lemma 3.9(2) holds.

Lemma 3.10 Let $P \in S_P$ and $y \in V(P)$ with $yv_R(P) \in E(G)$, $|V(P[y, v_R(P)])| \ge 3$ and $\mu_w \notin V(P[y, v_R(P)])$. Then it holds that $N(y^+) \cap X = \{v_R(P)\}$.

Proof By contradiction, suppose that there exists at least one vertex $x \in N(y^+) \cap X$ such that $x \neq v_R(P)$. By the definition of X, we distinguish the following four cases to obtain a contradiction.

(1) Suppose that $x \in \text{End}(\mathcal{S}_C)$, say $x = v_C$. Then $Cy^+ \overrightarrow{P} v_R(P) y \overleftarrow{P} v_L(P)$ in G covers $V(P) \cup V(C)$, contradicting Lemma 3.1.

(2) Suppose that $x = v_L(P) \in \text{End}(\mathcal{S}_P)$. Then $v_R(P) \overleftarrow{P} y^+ v_L(P) \overrightarrow{P} y v_R(P) \in \mathcal{S}_C$ in G covers V(P), contradicting Lemma 3.1.

(3) Suppose that $x \in \text{End}(\mathcal{S}_P) \setminus \{v_L(P), v_R(P)\}$. Without loss of generality, assume that $x = v_L(P')$ for $P' \in \mathcal{S}_P \setminus \{P\}$. Then $v_R(P') \stackrel{\frown}{P'} v_L(P') y^+ \stackrel{\frown}{P} v_R(P) y \stackrel{\frown}{P} v_L(P)$ in G covers $V(P) \cup V(P')$, contradicting Lemma 3.1.

(4) Suppose that $x = \mu_w^*$. Then by Lemma 3.5 and (3.1), $\mu_w \in V(\mathcal{S}_C)$. Then $C_{\mu_w} y^+ \overrightarrow{P} v_R(P) y \overleftarrow{P} v_L(P)$ in G covers $V(P) \cup V(C_{\mu_w})$, contradicting Lemma 3.1.

This contradiction shows that $N(y^+) \cap X \subseteq \{v_R(P)\}$. By (3.2), $N(y^+) \cap X = \{v_R(P)\}$.

Lemma 3.11 The following two statements hold.

(1) Let $P \in S_P$ and $y \in V(P)$ with $yv_R(P) \in E(G)$ and $\mu_w \notin V(P[y, v_R(P)])$. Then it holds that $G[V(P[y^+, v_R(P)])]$ is a clique. Furthermore, if $N(y) \cap X = \{v_R(P)\}$, then $G[V(P[y, v_R(P)])]$ is a clique.

(2) Let $P \in S_P$ and $x \in V(P)$ with $xv_L(P) \in E(G)$ and $\mu_w \notin V(P[v_L(P), x])$. Then it holds that $G[V(P[v_L(P), x^-])]$ is a clique. Furthermore, if $N(x) \cap X = \{v_L(P)\}$, then $G[V(P[v_L(P), x])]$ is a clique.

Proof By symmetry, we may only prove that (1) is true. Since $G[V(P[y^+, v_R(P)])]$ is connected, it suffices to consider the case when $|V(P[y^+, v_R(P)])| \ge 3$. Note that $V(P[y^+, v_R(P)]) \cap X = \{v_R(P)\}$. Let $S = V(P[y^+, v_R(P)])$. Then by Lemma 3.6, it suffices to prove the following statement

$$N(y') \cap X = \{v_R(P)\} \quad \text{for each vertex } y' \in V(P[y^+, v_R(P)]). \tag{3.3}$$

We repeatedly apply Lemma 3.10 to obtain (3.3).

Furthermore, we will prove that if $N(y) \cap X = \{v_R(P)\}$, then $G[V(P[y, v_R(P)])]$ is a clique. Since $G[V(P[y, v_R(P)])]$ is connected, it suffices to consider the case when $|V(P[y, v_R(P)])| \ge 3$. Note that $N(y) \cap X = \{v_R(P)\}$. Combining this with (3.3), we have $N(x) \cap X = \{v_R(P)\}$ for each vertex $x \in V(P[y, v_R(P)])$. Let $S = V(P[y, v_R(P)])$. Then by Lemma 3.6, $G[V(P[y, v_R(P)])]$ is a clique.

Lemma 3.12 Let $P \in S_P$ and $x \in V(P) \setminus \{v_L(P), v_R(P)\}$ with $N(x) \cap \text{End}(S'_C) \neq \emptyset$. Then the following two statements hold.

- (1) If $\mu_w \notin V(P[x^+, v_R(P)])$, then $G[V(P[x^+, v_R(P)])]$ is a clique.
- (2) If $\mu_w \notin V(P[v_L(P), x^-])$, then $G[V(P[v_L(P), x^-])]$ is a clique.

Proof By symmetry, we may only prove that $G[V(P[x^+, v_R(P)])]$ is a clique. Since $G[V(P[x^+, v_R(P)])]$ is connected, it suffices to consider the case when $|V(P[x^+, v_R(P)])| \ge 3$. By Lemma 3.9(2), $N(x^+) \cap X = \{v_R(P)\}$. By Lemma 3.11(1), $G[V(P[x^+, v_R(P)])]$ is a clique.

Lemma 3.13 For any pair of paths $P, P' \in S_P$, suppose that there exist two vertices $x \in V(P) \setminus \{v_L(P), v_R(P)\}$ and $y \in V(P') \setminus \{v_L(P'), v_R(P')\}$ such that $N(x) \cap \operatorname{End}(S'_C) \neq \emptyset$, $N(y) \cap \operatorname{End}(S'_C) \neq \emptyset$ and $\mu_w \notin (V(P) \setminus \{x\}) \cup (V(P') \setminus \{y\})$. Then any pair of vertices in $V(P) \setminus \{x\}$ and $V(P') \setminus \{y\}$ respectively are not adjacent.

Proof By symmetry, we only prove that any pair of vertices in $V(P[x^+, v_R(P)])$ and $V(P'[y^+, v_R(P')])$ are not adjacent.

By contradiction, suppose that there exists a pair of vertices $x_0 \in V(P[x^+, v_R(P)]), y_0 \in V(P'[y^+, v_R(P')])$ such that $x_0y_0 \in E(G)$. By Lemma 3.12(1), both $G[V(P[x^+, v_R(P)])]$ and $G[V(P'[y^+, v_R(P')])]$ are cliques. Let $Q_6 = G[V(P'[y^+, v_R(P')])]x_0G[V(P[x^+, v_R(P)] \setminus \{x_0\})]$ and $Q_7 = v_L(P)\overrightarrow{P}xv_Cy\overrightarrow{P'}v_L(P')$. To obtain our contradiction, we consider the following two cases:

(1) Suppose that $N(x) \cap \operatorname{End}(\mathcal{S}'_C) = N(y) \cap \operatorname{End}(\mathcal{S}'_C) = \{v_C\}$. If |V(C)| = 1, then by Lemma 3.12(1), Q_6 and Q_7 in G cover $V(P) \cup V(P') \cup V(C)$, contradicting Lemma 3.1. If |V(C)| > 1, then by Lemmas 3.7 and 3.12(1), Q_6 , Q_7 and $C(G[V(C) \setminus \{v_C\}])$ in G cover $V(P) \cup V(P') \cup V(C)$, satisfying (I),(II) but not (III), a contradiction.

(2) Suppose that there exist two distinct vertices $v_C \in V(C)$ and $v_{C'} \in V(C')$ such that $v_C \in N(x) \cap \text{End}(\mathcal{S}_C)$ and $v_{C'} \in N(y) \cap \text{End}(\mathcal{S}_C)$. By Lemma 3.12(1), Q_6 , $Cx \not P v_L(P)$ and $C'y \not P' v_L(P')$ in G cover $V(P) \cup V(P') \cup V(C) \cup V(C')$, satisfying (I) but not (II), a contradiction.

This contradiction shows that any pair of vertices in $V(P[x^+, v_R(P)])$ and $V(P'[y^+, v_R(P')])$ are not adjacent.

Lemma 3.14 Let $P \in S_P$ and $x \in V(P) \setminus \{v_L(P), v_R(P)\}$. Then the following two statements hold.

(1) Suppose that $\mu_w \notin V(P[v_L(P), x])$ and $N(x) \cap (\operatorname{End}(\mathcal{S}'_C) \cup \{v_L(P)\}) \neq \emptyset$. Then $N(V(C)) \cap V(P[v_L(P), x)) = \emptyset$ for any $C \in \mathcal{S}_C$.

(2) Suppose that $\mu_w \notin V(P[x, v_R(P)])$ and $N(x) \cap (\operatorname{End}(\mathcal{S}'_C) \cup \{v_R(P)\}) \neq \emptyset$. Then $N(V(C)) \cap V(P(x, v_R(P)]) = \emptyset$ for any $C \in \mathcal{S}_C$.

Proof By symmetry, we may only prove that (1) holds. By contradiction, suppose that there exists some element $C_0 \in \mathcal{S}_C$ such that $N(C_0) \cap V(P[v_L(P), x)) \neq \emptyset$, say $z \in N(V(C_0)) \cap$ $V(P[v_L(P), x))$. By Lemma 2.2(ii), $z \notin \operatorname{End}(\mathcal{S}_P)$. If $xv_L(P) \in E(G)$ or $N(x) \cap \operatorname{End}(\mathcal{S}_C) \neq \emptyset$, then by Lemmas 3.11(2) and 3.12(2), $G[V(P[v_L(P), x^-])]$ is a clique. Suppose that $z = x^-$. By Lemma 3.8, $N(x) \cap V(\mathcal{S}'_C) = \emptyset$. Then, $xv_L(P) \in E(G)$. Hence, if $z \in V(P(v_L(P), x^-])$, then by Lemmas 3.11(2) and 3.12(2), $C_0 z \not P v_L(P) z^+ \overrightarrow{P} v_R(P)$ in G covers $V(P) \cup V(C_0)$, contradicting Lemma 3.1. This contradiction proves Lemma 3.14(1).

For any path $P \in S_P$, we know $v_L(P)v_R(P) \notin E(G)$ by Lemma 3.1. We may take the vertex x_P of V(P) such that $V(P[v_L(P), x_P^-]) \subseteq N(v_L(P))$ and $x_P \notin N(v_L(P))$.

Lemma 3.15 For any $P \in S'_P$, the following two statements hold.

(1) Suppose that $N(V(\mathcal{S}'_C)) \cap V(P) = \emptyset$. Then $f(P[v_L(P), x_P^-]v_L(P)) = 1$ and $f(P[x_P, v_R(P)]x_P) = 1$.

(2) Suppose that $N(V(\mathcal{S}'_C)) \cap V(P) \neq \emptyset$. Then $N(V(\mathcal{S}'_C)) \cap V(P) = \{x\} \subseteq \{x_P^-, x_P\}, f(P[v_L(P), x_P^-]v_L(P)) = 1 \text{ and } f(P[x^+, v_R(P)]x^+) = 1.$ (3) $f(P[x_P^+, v_R(P)]x_P^+) = 1.$

Proof Since $P \in \mathcal{S}'_P$, $\mu_w \notin V(P)$. By Lemma 3.14(1), $N(V(C)) \cap V(P[v_L(P), x_P)) = \emptyset$ for any $C \in \mathcal{S}'_C$. We distinguish the following two cases to prove Lemma 3.15(1)–(2).

(1) Suppose that $N(V(\mathcal{S}'_C)) \cap V(P) = \emptyset$. If $x_P = v_R(P)$, then $f(P[v_L(P), x_P^-]v_L(P)) = 1$ and $f(P[x_P, v_R(P)]x_P) = 1$. If $x_P \neq v_R(P)$, then by Lemma 3.9(1), $N(x_P) \cap X \subseteq (\operatorname{End}(\mathcal{S}'_C) \cup \{v_R(P)\})$. By (3.2), $N(x_P) \cap X = \{v_R(P)\}$. So $f(P[v_L(P), x_P^-]v_L(P)) = 1$ and $f(P[x_P, v_R(P)]x_P) = 1$. Lemma 3.15(1) holds.

(2) Suppose that $N(V(\mathcal{S}'_C)) \cap V(P) \neq \emptyset$. If $x_P = v_R(P)$, then by Lemmas 2.2(ii) and 3.14, $N(V(\mathcal{S}'_C)) \cap V(P) = \{x_P^-\}$, $f(P[v_L(P), x_P^-]v_L(P)) = 1$ and $f(P[x_P, v_R(P)]x_P) = 1$. If $x_P \neq v_R(P)$, then we distinguish the following two cases to prove Lemma 3.15(2).

• Suppose that $N(x_P) \cap V(\mathcal{S}'_C) \neq \emptyset$. By Lemma 3.9(2), $f(P[x_P^+, v_R(P)]x_P) = 1$. By Lemmas 3.8 and 3.14, $N(\mathcal{S}'_C) \cap V(P) = \{x_P\}$.

• Suppose that $N(x_P) \cap V(\mathcal{S}'_C) = \emptyset$. Then by Lemma 3.9(1) and (3.2), $f(P[x_P, v_R(P) | x_P) = 1$. By the assumption of this case and Lemma 3.14, $N(V(\mathcal{S}'_C)) \cap V(P) = \{x_P^-\}$. Lemma 3.15(2) holds.

Next, we will prove Lemma 3.15(3). By Lemma 3.15(1)–(2), $f(P[x_P, v_R(P)]x_P) = 1$ or $f(P[x_P^+, v_R(P)]x_P^+) = 1$. If $f(P[x_P^+, v_R(P)]x_P^+) = 1$, then we are done. Otherwise, $f(P[x_P^+, v_R(P)] \neq 1$. Then we assume that $f(P[x_P, v_R(P)]x_P) = 1$. Since $G[V(P[x_P, v_R(P)])]$ is connected, it suffices to consider the case when $|V(P[x_P, v_R(P)])| \geq 2$. By Lemma 3.11(1), $G[V(P[x_P, v_R(P)])]$ is a clique. Then $f(P[x_P^+, v_R(P)]x_P^+) = 1$. Lemma 3.15(3) holds.

For any $P \in \mathcal{S}'_P$, by Lemma 3.15, $f(P[v_L(P), x_P^-]v_L(P)) = 1$ and $f(P[x_P^+, v_R(P)] x_P^+) = 1$. \mathcal{S}'_P be partitioned into classes $\mathcal{S}'_P = \mathcal{S}'_{P_1} \cup \mathcal{S}'_{P_2}$ as follows:

(1) $\mathcal{S}'_{P_1} = \{P : P \in \mathcal{S}'_P, N(V(\mathcal{S}'_C)) \cap V(P) = \{x_P\}\};$

(2) $S'_{P_2} = \{P : P \in S'_P, N(V(S'_C)) \cap V(P) \neq \{x_P\}\}.$

For any path $P \in \mathcal{S}'_{P_2}$, if $N(V(\mathcal{S}'_C)) \cap V(P) = \emptyset$, then by Lemma 3.15(1), $f(P[x_P, v_R(P)]x_P) = 1$; if $N(V(\mathcal{S}'_C)) \cap V(P) \neq \emptyset$, then by Lemma 3.15(2), $N(V(\mathcal{S}'_C)) \cap V(P) = \{x\} \subseteq \{x_P^-, x_P\}$. Note that $N(V(\mathcal{S}'_C)) \cap V(P) \neq \{x_P\}$. Then $N(V(\mathcal{S}'_C)) \cap V(P) = \{x_P^-\}$. By Lemma 3.9(2), $f(P[x_P, v_R(P)]x_P) = 1$. Hence, for any $P \in \mathcal{S}'_{P_2}$, $f(P[x_P, v_R(P)]x_P) = 1$ and $N(V(\mathcal{S}'_C)) \cap V(P) \subseteq \{x_P^-\}$ (i.e., $N(V(\mathcal{S}'_C)) \cap V(P) = \emptyset$ or $N(V(\mathcal{S}'_C)) \cap V(P) = \{x_P^-\}$).

For any $P \in \mathcal{S}_P$, $P^{\{v_e, x\}}$ is a subpath of P between x and $v_e \in \{v_L(P), v_R(P)\}$. Denote

$$x^{\star} = \begin{cases} x^{+}, & \text{if } v_{e} = v_{L}(P) \text{ for } x \in V(P), \\ x^{-}, & \text{if } v_{e} = v_{R}(P) \text{ for } x \in V(P). \end{cases}$$

Lemma 3.16 For any pair of $\{P, P'\} \subseteq S_P$, suppose there exists a pair of subpaths $P^{\{v_e,x\}} \subseteq P$ and $P'^{\{v'_e,y\}} \subseteq P'$. If $xv_e \in E(G)$, $yv'_e \in E(G)$ and $\mu_w \notin (V(P^{\{v_e,x\}}) \cup V(P'^{\{v'_e,y\}}))$. Then any pair of vertices in $V(P^{\{v_e,x\}}) \cup \{x^*\}$ and $V(P'^{\{v'_e,y\}}) \setminus \{y\}$ respectively are not adjacent. **Proof** By symmetry, we only prove that any pair of vertices in $V(P[v_L(P), x^+])$ and $V(P'(y, v_R(P')))$ are not adjacent.

By contradiction, suppose that there exists a pair of vertices $x_0 \in V(P[v_L(P), x^+])$ and $y_0 \in V(P'(y, v_R(P')])$ with $x_0y_0 \in E(G)$. By Lemma 3.11(1)–(2), we may obtain that $G[V(P[v_L(P), x^-])]$ and $G[V(P'[y^+, v_R(P')])]$ are cliques. To obtain our contradiction, we distinguish the following two cases:

(1) Suppose that $x_0 = v_L(P)$. Then by Lemma 3.11(1), $v_L(P')\overrightarrow{P'}y^-G[V(P'[y, v_R(P')])]x_0$ $\overrightarrow{P}v_R(P)$ in G covers $V(P) \cup V(P')$, contradicting Lemma 3.1.

(2) Suppose that $x_0 \in V(P(v_L(P), x^+])$. Then by Lemma 3.11(1), we may obtain that $\overleftarrow{\mathcal{Q}}(x_0^-, P)$ and $v_L(P')\overrightarrow{P'}y^-G[V(P'[y, v_R(P')])]x_0\overrightarrow{P}v_R(P)$ in G cover $V(P) \cup V(P')$, contradicting Lemma 3.1.

This contradiction proves Lemma 3.16.

4 Proof of Theorem 1.4

In this section, we present the proof of Theorem 1.4.

Let $k \ge 3$ and G be a graph of order n > 2k+2 such that $\alpha(G) \le k+1$ and $m(G) \le n-2k-2$. We assume on the contrary that G has no spanning k-ended tree. The assumption that G has no spanning k-ended tree and Theorem 1.2 imply the following two equations

$$\kappa(G) = 1 \tag{4.1}$$

and

$$\alpha(G) = k + 1. \tag{4.2}$$

Then G have no spanning k-ended system by Lemma 2.1. Choose a maximal k-ended system \mathcal{S} of G satisfying (I)–(III). Let $H = G - V(\mathcal{S})$. Then $|V(H)| \ge 1$.

Fact 1 $m(G) \ge n - 2k - 1$.

Proof Denote $G_0 = G[V(\mathcal{S}')], |V(G_0)| = n_0$ and $|\operatorname{End}(\mathcal{S}'_P) \cup \operatorname{End}(\mathcal{S}'_C)| = k_0$. Let $X_0 = X \cap V(G_0) = \operatorname{End}(\mathcal{S}'_P) \cup \operatorname{End}(\mathcal{S}'_C),$

$$\widehat{x}_P = \begin{cases} x_P^+, & \text{if } P \in \mathcal{S}'_{P_1}, \\ x_P, & \text{if } P \in \mathcal{S}'_{P_2}. \end{cases}$$

Claim 1 Let $P \in \mathcal{S}'_P$ and $y \in N_{G_0}(v_R(P))$. Then the following two statements hold:

(1) Suppose that $y = \hat{x}_P$. Then $N_{G_0}(y') \subseteq V(P[y^-, v_R(P)])$ for any $y' \in V(P(y, v_R(P)])$, $N_{G_0}(x') \subseteq V(P[v_L(P), x_P])$ for any $x' \in V(P[v_L(P), x_P])$.

(2) Suppose that $y = \widehat{x_P}$. If $P \in \mathcal{S}'_{P_1}$, then $N_{G_0}(y') \subseteq V(P[y^-, v_R(P)])$ for any $y' \in V(P(y, v_R(P)])$, $N_{G_0}(x') \subseteq V(P[v_L(P), x_P])$ for any $x' \in V(P[v_L(P), x_P])$. If $P \in \mathcal{S}'_{P_2}$, then $N_{G_0}(y') \subseteq V(P[y, v_R(P)])$ for any $y' \in V(P(y, v_R(P)])$, $N_{G_0}(x') \subseteq V(P[v_L(P), x_P])$ for any $x' \in V(P[v_L(P), x_P])$.

Proof By symmetry, we only consider y''s neighbourhood. Suppose that $y \in \{\hat{x}_P, \hat{x}_P^-\}$. Taking any $z \in N_{G_0}(y')$, we know $z \notin V(\mathcal{S}'_C)$ by Lemma 3.15(1)–(2). By Lemmas 3.15(1)–(2) and 3.16, $z \notin V(P')$ for any $P' \in \mathcal{S}'_P \setminus \{P\}$. Hence, $z \in V(P)$. We claim that $z \notin V(P[v_L(P), x_P^-))$. Suppose otherwise that $z \in V(P[v_L(P), x_P^-))$. Then by Lemma 3.11(1)–(2), $y'G[V(P[v_L(P), x_P^-])]x_P \overrightarrow{P}y'^-v_R(P)\overleftarrow{P}y'$ in G covers V(P), contradicting Lemma 3.1. This contradiction shows that our claim hold. By our claim, if $y \in \{\hat{x}_P, \hat{x}_P^-\}$, then

$$z \in V(P[x_P^-, v_R(P)]). \tag{4.3}$$

By (4.3), Claim 1(2) holds. Suppose that $y = \hat{x}_P$. If $P \in \mathcal{S}'_{P_1}$ and $z = x_P^-$. Then there exists at least one vertex $v_C \in N(x) \cap V(\mathcal{S}'_C)$, by Lemma 3.11(2), $Cx_P \overrightarrow{P} y'^- v_R(P) \overrightarrow{P} y' z \overleftarrow{P} v_L(P)$ in G covers $V(P) \cup V(C)$, contradicting Lemma 3.1. This contradiction shows that $z \in V(P[y^-, v_R(P)])$. Claim 1(1) is proved.

Denote $S'_{P_{21}} = \{P : P \in S'_{P_2} \text{ and } x_P \neq v_R(P)\}, S'_{P_{22}} = \{P : P \in S'_{P_2} \text{ and } x_P = v_R(P)\}.$ Then S'_{P_2} can be partitioned into two subsets $S'_{P_{21}}$ and $S'_{P_{22}}$. Define $A_P = \{x_P^- \mid P \in S'_{P_1} \cup S'_{P_{21}}\} \cup \{x_P \mid P \in S'_{P_1} \cup S'_{P_{21}}\} \cup \{x_P^- \mid P \in S'_{P_{22}}\}, A_1 = \bigcup_{P \in S'_P} A_P$ and

$$A_{2} = \begin{cases} \{\mu_{w}\}, & \text{if either } \mu_{w} \in V(\mathcal{S}_{C}) \text{ or } \mu_{w} \in V(\mathcal{S}_{P}), v_{L}(P_{\mu_{w}}) = \mu_{w}^{-}, v_{R}(P_{\mu_{w}}) = \mu_{w}^{+}, \\ \{\mu_{w}^{-}, \mu_{w}, \mu_{w}^{+}\}, & \text{if } \mu_{w} \in V(\mathcal{S}_{P}), v_{L}(P_{\mu_{w}}) \neq \mu_{w}^{-} \text{ and } v_{R}(P_{\mu_{w}}) \neq \mu_{w}^{+}, \\ \{\mu_{w}^{-}, \mu_{w}^{+}\}, & \text{if } \mu_{w} \in V(\mathcal{S}_{P}), v_{L}(P_{\mu_{w}}) = \mu_{w}^{-} \text{ and } v_{R}(P_{\mu_{w}}) \neq \mu_{w}^{+}, \\ \{\mu_{w}^{-}, \mu_{w}\}, & \text{if } \mu_{w} \in V(\mathcal{S}_{P}), v_{L}(P_{\mu_{w}}) \neq \mu_{w}^{-} \text{ and } v_{R}(P_{\mu_{w}}) = \mu_{w}^{+}. \end{cases}$$

Let $A = A_1 \cup A_2$. Then $X \cap A = \emptyset$ and $X_0 \cap A_1 = \emptyset$.

Claim 2 $\omega(G_0 - A_1) = |X_0|$ and each component of $G_0 - A_1$ is a clique.

Proof Denote $\mathcal{Z} = \mathcal{S}'_C \cup \{P[v_L(P), x_P^-) \mid P \in \mathcal{S}'_P\} \cup \{v_R(P) \mid \hat{x}_P = v_R(P), P \in \mathcal{S}'_P\} \cup \{P(x_P, v_R(P)] \mid \hat{x}_P \neq v_R(P), P \in \mathcal{S}'_{P_2}\} \cup \{P[x_P^+, v_R(P)] \mid \hat{x}_P \neq v_R(P), P \in \mathcal{S}'_{P_1}\}.$ Let $Z \in \mathcal{Z}$. Then $G_0 - A_1 = \bigcup_{Z \in \mathcal{Z}} Z$. We will prove that $N_{G_0}(V(Z)) \cap V(G_0 \setminus Z) \subseteq A_1$ by considering the following two cases:

(1) Suppose that $Z \in (\mathcal{Z} \setminus \{P[x_P^+, v_R(P)] \mid \hat{x}_P \neq v_R(P), P \in \mathcal{S}'_{P_1}\})$. By Lemma 3.15(1)–(2) and Claim 1(1)–(2), $N_{G_0}(V(Z)) \cap V(G_0 \setminus Z) \subseteq A_1$.

(2) Suppose that $Z = \{P[x_P^+, v_R(P)] \mid \hat{x}_P \neq v_R(P), P \in \mathcal{S}'_{P_1}\}$. By Claim 1(1), $N(V(Z \setminus \{x_P^+\})) \cap V(G_0 \setminus Z) \subseteq A_1$. Hence, we consider the vertex x_P^+ 's neighbourhood. By the definition of \mathcal{S}'_{P_1} , $N(x_P) \cap V(\mathcal{S}'_C) \neq \emptyset$, say $v_C \in (N(x_P) \cap V(\mathcal{S}'_C))$. Taking any $z \in N_{G_0-Z}(x_P^+)$, we know that $z \notin V(\mathcal{S}'_C)$ by Lemma 3.8. For any $P' \in \mathcal{S}'_P \setminus \{P\}$, if $P' \in \mathcal{S}'_{P_1}$, then by Lemma 3.13, $z \notin V(P') \setminus A_1$; if $P' \in \mathcal{S}'_{P_2}$, then by Lemma 3.16, $z \notin V(P') \setminus A_1$. We claim that $z \notin V(P[v_L(P), x_P^-))$. Suppose otherwise that $z \in V(P[v_L(P), x_P^-))$. Then, by Lemma 3.12(2), $Cx_P \not P z^+ v_L(P) \not P z G[V(P[x_P^+, v_R(P)])]$ in G covers $V(P) \cup V(C)$, contradicting Lemma 3.1. Hence, $z \in A_1$. Then $N_{G_0}(V(Z)) \cap V(G_0 \setminus Z) \subseteq A_1$.

Hence, Z is a component of $G_0 - A_1$. By Lemmas 3.7, 3.11(1) - (2) and 3.12(1) - (2), G[V(Z)] is a clique. By the definition of G_0 , it is easy to check that $|X_0 \cap V(Z)| = 1$, then $\omega(G_0 - A_1) = |X_0|$.

Suppose that $|S'_C| = x \ge 0$, $|S'_{P_1}| = y \ge 0$, $|S'_{P_{21}}| = z \ge 0$, $|S'_{P_{22}}| = t \ge 0$. Then we obtain that

$$x + 2(y + z + t) = k_0. ag{4.4}$$

$$\begin{split} m(G_0) &\geq \prod_{P \in \mathcal{S}'_{P_1}} (|V(P[v_L(P), x_P^{2-}])| \cdot |V(P[x_P^+, v_R(P)])|) \cdot \prod_{P \in \mathcal{S}'_{P_{21}}} (|V(P[v_L(P), x_P^{2-}])| \cdot \\ |V(P[x_P^+, v_R(P)])|) \cdot \prod_{P \in \mathcal{S}'_{P_{22}}} |V(P[v_L(P), x_P^{2-}])| \cdot \prod_{C \in \mathcal{S}'_C} |V(C)| \\ &\geq \underbrace{1 \cdot 1 \cdot \dots \cdot 1 \cdot 1}_{k_0 - 1} \cdot [n_0 - (4y + 4z + 3t + x - 1)] \\ &\geq n_0 - (4y + 4z + 3t + x) + 1. \end{split}$$

Combining this with (4.4), we have

$$m(G_0) \ge n_0 - (y+z) - \frac{3}{2}k_0 + \frac{1}{2}x + 1 \ge n_0 - 2k_0 + 1.$$
(4.5)

Denote

$$v_C^* = \begin{cases} v_C^+, & \text{if } |V(C)| \ge 3 \text{ and } v_C \in V(C), \\ v_C', & \text{if } |V(C)| = 2 \text{ and } V(C) = \{v_C, v_C'\}. \end{cases}$$

By Lemma 2.2, we distinguish the following two cases to prove Fact 1.

Case 1 $\mu_w \in V(\mathcal{S}_C)$, i.e., $\mu_w \in V(C_{\mu_w})$.

By the choice of S, $|S_P| \ge 1$. By (3.1) and Lemma 3.5, $X = \{\mu_w^*, w\} \cup (\text{End}(S) \setminus \{\mu_w\})$ is an independent set of G with size k + 1.

Claim 3 $G[V(C_{\mu_w}) \setminus {\mu_w}]$ is a clique.

Proof Since $G[V(C_{\mu_w}) \setminus {\{\mu_w\}}]$ is connected, it suffices to consider the case when $|V(C_{\mu_w}) \setminus {\{\mu_w\}}| \geq 3$. For each vertex $v \in V(C_{\mu_w}) \setminus {\{\mu_w, \mu_w^+\}}$, $v \notin \operatorname{End}(\mathcal{S}) \setminus {\{\mu_w\}}$ by Lemma 2.2(i)–(ii). Hence, by the definition of X and (3.2), $N(v) \cap X = {\{\mu_w^+\}}$ for each vertex $v \in V(C_{\mu_w}) \setminus {\{\mu_w, \mu_w^+\}}$. Note that $(V(C_{\mu_w}) \setminus {\{\mu_w\}}) \cap X = {\{\mu_w^+\}}$. Let $S = V(C_{\mu_w}) \setminus {\{\mu_w\}}$. By Lemma 3.6, $G[V(C_{\mu_w}) \setminus {\{\mu_w\}}]$ is a clique.

Claim 4 If $N(V(P)) \cap V(C_{\mu_w}) \neq \emptyset$ for any $P \in \mathcal{S}_P$, then $N(V(P)) \cap V(C_{\mu_w}) = \{\mu_w\}$.

Proof By contradiction, suppose that there exists some $P \in S_P$ such that $N(V(P)) \cap V(C_{\mu_w}) \neq \emptyset$ and $N(V(P)) \cap V(C_{\mu_w}) \neq \{\mu_w\}$, say $v' \in N(V(P)) \cap V(C_{\mu_w})$ satisfying $v' \neq \mu_w$. Then there exists a vertex $z \in V(P)$ such that $v'z \in E(G)$. By Lemma 2.2(ii), $z \notin \text{End}(S_P)$. Suppose that $z \in V(P) \setminus \{v_L(P), v_R(P)\}$. Then, by Lemmas 3.11(1)–(2) and 3.15(1)–(2), there exists $Q' \in \{P[v_L(P), z^-]v_L(P), P[z^+, v_R(P)]z^+\}$ such that f(Q') = 1. By Claim 3, $G[E(P \setminus Q')]v'C_{\mu_w}\mu_w Lw$ and Q' in G cover $V(P) \cup V(C_{\mu_w}) \cup \{w\}$, contradicting (I). This contradiction shows that Claim 4 holds.

Claim 5 G[V(H)] is a clique.

424

Proof First, we will show that G[V(H)] is connected.

By contradiction, suppose that H has at least two components. Choose any vertex v such that w and v belong to different components of H. We claim that $N(v) \cap V(C_{\mu_w}) \neq \emptyset$. Suppose otherwise that $N(v) \cap V(C_{\mu_w}) = \emptyset$. Then $v\mu_w^* \notin E(G)$. By Lemma 3.4, $N(v) \cap \text{End}(\mathcal{S}_P) = \emptyset$. Suppose that $N(v) \cap \text{End}(\mathcal{S}'_C) \neq \emptyset$, say $vv_C \in E(G)$ ($v_C \neq v_{C_{\mu_w}}$). Then $|V(C)| \ge 2$. Otherwise, $v_C v \in \mathcal{S}_C$, contradicting (I). By Lemma 3.3, $wv_C^* \notin E(G)$. Combining this with Lemma 2.2(i)–(ii), $\{v, v_C^*\} \cup (X \setminus \{v_C\})$ is an independent set of G with cardinality k + 2, contradicting (4.2). Hence, $N(v) \cap \text{End}(\mathcal{S}'_C) = \emptyset$. Then $N(v) \cap X = \emptyset$, contradicting (3.2). Hence, $N(v) \cap V(C_{\mu_w}) \neq \emptyset$.

By our claim and Lemma 3.3, $N(V(P)) \cap V(H) = \emptyset$ for any $P \in S_P$. Since G is connected, there exists at least one path $P \in S_P$ such that $N(V(P)) \cap V(C_{\mu_w}) \neq \emptyset$. By the arbitrariness of vertex w and Claim 4, $N(v) \cap V(C_{\mu_w}) = \{\mu_w\}$. By Lemma 3.5, $\{v, w, \mu_w^*\} \cup (\text{End}(S) \setminus \{\mu_w\})$ is an independent set of G with cardinality k+2, contradicting (4.2). This contradiction proves that G[V(H)] is connected.

Next, we will show that G[V(H)] is a clique. Since G[V(H)] is connected, it suffices to consider the case when $|V(H)| \geq 3$. Since G[V(H)] is connected, by Lemma 3.3, $N(v) \cap (V(S) \setminus \{\mu_w\}) = \emptyset$ for each vertex $v \in V(H) \setminus \{w\}$. Note that (3.2), therefore, $N(v) \cap X = \{w\}$ for every vertex $v \in V(H) \setminus \{w\}$. Note that $V(H) \cap X = \{w\}$. Let S = V(H), then by Lemma 3.6, G[V(H)] is a clique.

Since G is connected, by Lemma 3.3 and Claims 4-5, we have the following claim.

Claim 6 $N(V(H)) \cap V(S) = \{\mu_w\}$ and $N(V(S')) \cap V(C_{\mu_w}) = \{\mu_w\}.$

By Claims 2–6, $\omega(G - A) = k + 1$ and each component of G - A is a clique. In this case, $n_0 = n - |V(C_{\mu_w})| - |V(H)|$ and $k_0 = k - 1$. Then,

$$\begin{split} m(G) &\geq |V(C_{\mu_w}) \setminus \{\mu_w\}| \cdot |V(H)| \cdot m(G_0) \\ &\geq |V(C_{\mu_w}) \setminus \{\mu_w\}| \cdot |V(H)| \cdot [(n - |V(C_{\mu_w})| - |V(H)|) - 2(k - 1) + 1] \\ &\geq 1 \cdot 1 \cdot [(n - |V(C_{\mu_w})| - |V(H)|) - 2(k - 1) + 1 + (|V(C_{\mu_w})| - 2) + |V(H)| - 1] \\ &= n - 2k, \end{split}$$

which proves Fact 1 in this case.

Case 2 $\mu_w \in V(\mathcal{S}_P)$, i.e., $\mu_w \in V(P_{\mu_w})$. By (3.1) and Lemma 3.5, $X = \text{End}(\mathcal{S}) \cup \{w\}$ is an independent set of G with size k + 1. **Claim 7** G[V(H)] is a clique.

Proof It suffices to consider the case when $|V(H)| \ge 2$. By (3.2), $N(v) \cap X \ne \emptyset$ for each vertex $v \in V(H) \setminus \{w\}$. Suppose that there exists a vertex $x \in N(v) \cap X$ such that $x \ne w$. We claim that $x \notin \operatorname{End}(\mathcal{S}_C)$. Otherwise suppose that $x \in \operatorname{End}(\mathcal{S}_C)$, say $x = v_C$. Then $|V(C)| \ge 2$. Otherwise, $xv \in \mathcal{S}_C$, contradicting (I). By Lemma 3.5, $\{v, v_C^*\} \cup (\operatorname{End}(\mathcal{S}) \setminus \{v_C\})$ is an independent set of G with size k + 1. By Lemma 3.3, $N(w) \cap (V(\mathcal{S}) \setminus \{\mu_w\}) = \emptyset$. Hence, $\{w, v, v_C^*\} \cup (\text{End}(S) \setminus \{v_C\})$ would have an independent set of cardinality k + 2, contradicting (4.2). This contradiction shows that our claim holds.

By Lemma 3.4 and our claim, $N(v) \cap X \subseteq \{w\}$. Note that (3.2), therefore, $N(v) \cap X = \{w\}$ for each vertex $v \in V(H) \setminus \{w\}$. Let S = V(H). Then by Lemma 3.6, G[V(H)] is a clique.

Claim 8 The following two statements hold:

(1) If $\mu_w^+ \neq v_R(P_{\mu_w})$, then $G[V(P_{\mu_w}[\mu_w^{2+}, v_R(P_{\mu_w})])]$ is a clique.

(2) If $\mu_w^- \neq v_L(P_{\mu_w})$, then $G[V(P_{\mu_w}[v_L(P_{\mu_w}), \mu_w^{2-}])]$ is a clique.

Proof By symmetry, we may only prove that $G[V(P_{\mu_w}[\mu_w^{2+}, v_R(P_{\mu_w})])]$ is a clique. Since $G[V(P_{\mu_w}[\mu_w^{2+}, v_R(P_{\mu_w})])]$ is connected, it suffices to consider the case when $|V(P_{\mu_w}[\mu_w^{2+}, v_R(P_{\mu_w})])| \ge 3$. By Lemma 3.9(1) and (3.2), $N(\mu_w^+) \cap (\operatorname{End}(\mathcal{S}'_C) \cup \{v_R(P_{\mu_w})\}) \ne \emptyset$. Then by Lemmas 3.11(1) and 3.12(1), $G[V(P_{\mu_w}[\mu_w^{2+}, v_R(P_{\mu_w})])]$ is a clique.

Since G is connected, by Lemma 3.3 and Claim 7, we have the following claim.

Claim 9 $N(V(H)) \cap V(S) = \{\mu_w\}.$

By Claim 9, μ_w is the unique vertex μ (say) for any $w \in V(H)$. Then denote

$$\mathcal{B}_1 = V(P_\mu[v_L(P_\mu), \mu]) \setminus A_2,$$

$$\mathcal{B}_2 = V(P_\mu[\mu, v_R(P_\mu)]) \setminus A_2.$$

Claim 10 $xy \notin E(G)$ for any pair of vertices $x \in \mathcal{B}_1$ and $y \in \mathcal{B}_2$.

Proof By contradiction, suppose that there exists a pair of vertices $x_0 \in \mathcal{B}_1$ and $y_0 \in \mathcal{B}_2$ such that $x_0y_0 \in E(G)$. To obtain our contradiction, we distinguish the following three cases.

(1) Suppose that $N(\mu^{-}) \cap \operatorname{End}(\mathcal{S}_{C}) \neq \emptyset$, say $v_{C} \in (N(\mu^{-}) \cap \operatorname{End}(\mathcal{S}_{C}))$, and $N(\mu^{+}) \cap \operatorname{End}(\mathcal{S}_{C}) \neq \emptyset$, say $v_{C'} \in (N(\mu^{+}) \cap \operatorname{End}(\mathcal{S}_{C}))$. By Claim 8, $G[V(P_{\mu}[v_{L}(P_{\mu}), \mu^{2-}])]$ and $G[V(P_{\mu}[\mu^{2+}, v_{R}(P_{\mu})])]$ are cliques. Let $Q^{1} = G[V(P_{\mu}[v_{L}(P_{\mu}), \mu^{2-}])]y_{0}P_{\mu}\mu^{+}C\mu^{-}$ and $Q^{2} = G[V(P_{\mu}[v_{L}(P_{\mu}), \mu^{2-}])]y_{0}G[V(P_{\mu}[\mu^{2+}, v_{R}(P_{\mu})]) \setminus \{y_{0}\}]$. To obtain our contradiction, we distinguish the following two cases:

• Suppose that $N(\mu^{-}) \cap \text{End}(\mathcal{S}_{C}) = N(\mu^{+}) \cap \text{End}(\mathcal{S}_{C}) = \{v_{C}\}$. To obtain our contradiction, we distinguish the following two cases:

- Either |V(C)| = 1 or |V(C)| > 1 and $\mu^+ v_C^* \in E(G)$ is true. If $y_0 = v_R(P_\mu)$, then by Claim 8, $Q^1\mu$ in G covers $V(P_\mu) \cup V(C)$, contradicting Lemma 3.1. If $y_0 \neq v_R(P_\mu)$, then by Claim 8, $Q^1\mu Lw$ and $\overrightarrow{Q}(y_0^+, P_\mu)$ in G cover $V(P_\mu) \cup V(C) \cup \{w\}$, contradicting (I).

- Suppose that |V(C)| > 1 and $\mu^+ v_C^* \notin E(G)$. Note that $N(\mu^+) \cap \operatorname{End}(\mathcal{S}_C) = \{v_C\}$. If $\mu^+ v_R(P_\mu) \notin E(G)$, then by Lemma 3.9(1) and (3.2), $N(\mu^+) \cap X = \{v_C\}$. By Lemma 2.2(ii), $N(v_C^*) \cap X = \{v_C\}$. The set $(X \setminus \{v_C\}) \cup \{\mu^+, v_C^*\}$ would be an independent set of cardinality k + 2, contradicting (4.2). But if $\mu^+ v_R(P_\mu) \in E(G)$, then $Q^2 \mu^+ v_C \mu^- \mu L w$ and $C(G[V(C) \setminus \{v_C\}])$ in G cover $V(P_\mu) \cup V(C) \cup \{w\}$, contradicting (I).

• Suppose that there exist two distinct vertices $v_C \in V(C)$ and $v_{C'} \in V(C')$ such that $v_C \in N(\mu^-) \cap \operatorname{End}(\mathcal{S}_C)$ and $v_{C'} \in N(\mu^+) \cap \operatorname{End}(\mathcal{S}_C)$. Then, Q^2 and $C\mu^-\mu\mu^+C'$ in G cover $V(P_\mu) \cup V(C) \cup V(C')$, satisfying (I) but not (II), a contradiction.

(2) Suppose that either $N(\mu^-) \cap \operatorname{End}(\mathcal{S}_C) \neq \emptyset$ and $N(\mu^+) \cap \operatorname{End}(\mathcal{S}_C) = \emptyset$, or $N(\mu^-) \cap \operatorname{End}(\mathcal{S}_C) = \emptyset$ and $N(\mu^+) \cap \operatorname{End}(\mathcal{S}_C) \neq \emptyset$. By symmetry, assume that $N(\mu^-) \cap \operatorname{End}(\mathcal{S}_C) \neq \emptyset$ and $N(\mu^+) \cap \operatorname{End}(\mathcal{S}_C) = \emptyset$. By Lemma 3.9(1) and (3.2), $f(\overrightarrow{\mathcal{Q}}(\mu^+, P_\mu)) = 1$. By Lemma 3.11(1), then $G[V(P_\mu[v_L(P_\mu), \mu^{2-}])]y_0G[V(P_\mu[\mu^+, v_R(P_\mu)]) \setminus \{y_0\}]\mu\mu^-C$ in G covers $V(P_\mu) \cup V(C)$, contradicting Lemma 3.1.

(3) Suppose that $N(\mu^-) \cap \operatorname{End}(\mathcal{S}_C) = \emptyset$ and $N(\mu^+) \cap \operatorname{End}(\mathcal{S}_C) = \emptyset$. By Lemma 3.9(1)–(3) and (3.2), $f(\overleftarrow{\mathcal{Q}}(\mu^-, P_\mu)) = 1$ and $f(\overrightarrow{\mathcal{Q}}(\mu^+, P_\mu)) = 1$. By Lemma 3.11(1)–(2), then $\mu G[V(P_\mu [\nu^+, \nu_R(P_\mu)])] y_0 G[V(P_\mu [\mu^+, \nu_R(P_\mu)]) \setminus \{y_0\}] \mu$ in G covers $V(P_\mu)$, contradicting Lemma 3.1.

This contradiction shows that Claim 10 holds.

Claim 11 $N(V(P) \setminus A_1) \cap \mathcal{B}_i = \emptyset$ for any $P \in \mathcal{S}'_P$ and for any $i \in \{1, 2\}$.

Proof By the symmetry, we may only prove that $N(V(P) \setminus A_1) \cap \mathcal{B}_1 = \emptyset$ for any $P \in \mathcal{S}'_P$. We distinguish the following two cases to prove Claim 11.

(1) Suppose that $N(\mu^-) \cap \text{End}(\mathcal{S}_C) = \emptyset$. By Lemma 3.9(3) and (3.2), $f(\overleftarrow{\mathcal{Q}}(\mu^-, P_\mu)) = 1$. By Lemmas 3.15(1)–(2) and 3.16, $N(V(P) \setminus A_1) \cap \mathcal{B}_1 = \emptyset$.

(2) Suppose that $N(\mu^{-}) \cap \operatorname{End}(\mathcal{S}_{C}) \neq \emptyset$. By Claim 8, $G[V(P_{\mu}[v_{L}(P_{\mu}), \mu^{2^{-}}])]$ is a clique. If $P \in \mathcal{S}'_{P_{1}}$, then by Lemma 3.13, $N(V(P) \setminus A_{1}) \cap \mathcal{B}_{1} = \emptyset$. If $P \in \mathcal{S}'_{P_{2}}$, then by Lemma 3.16, $N(V(P) \setminus A_{1}) \cap \mathcal{B}_{1} = \emptyset$.

Hence, Claim 11 is proved.

By Lemma 3.14, $N(V(C)) \cap (V(P_{\mu}) \setminus A_2) = \emptyset$ for any $C \in S_C$. Combining this with Claims 2 and 7–11, $\omega(G - A) = k + 1$ and each component of G - A is a clique.

In this case, $n_0 = n - |V(P_{\mu})| - |V(H)|$ and $k_0 + 2 = k$. We distinguish the following three cases to prove Fact 1.

(1) Suppose that $v_L(P_\mu) \neq \mu^-$ and $v_R(P_\mu) \neq \mu^+$. By Claims 7–11, we have the following:

$$m(G) \ge |V(H)| \cdot |V(P_{\mu}[v_{L}(P_{\mu}), \mu^{2-}])| \cdot |V(P_{\mu}[\mu^{2+}, v_{R}(P_{\mu})])| \cdot m(G_{0})$$

$$\ge 1 \cdot 1 \cdot 1 \cdot [(n - |V(P_{\mu})| - |V(H)| - 2(k - 2) + 1 + (|V(P_{\mu})| - 5) + (|V(H)| - 1)]$$

$$= n - 2k - 1.$$

(2) Suppose that either $v_L(P_\mu) = \mu^-$ and $v_R(P_\mu) \neq \mu^+$, or $v_L(P_\mu) \neq \mu^-$ and $v_R(P_\mu) = \mu^+$. By symmetry, we assume that $\mu^- = v_L(P_\mu)$ and $v_R(P_\mu) \neq \mu^+$. By Claims 7–11, we have the following:

$$\begin{split} m(G) &\geq |V(H)| \cdot |V(P_{\mu}[\mu^{2+}, v_{R}(P_{\mu})])| \cdot m(G_{0}) \\ &\geq 1 \cdot 1 \cdot [(n - |V(P_{\mu})| - |V(H)|) - 2(k - 2) + 1 + (|V(P_{\mu})| - 4) + (|V(H)| - 1)] \\ &= n - 2k. \end{split}$$

(3) Suppose that $v_L(P_\mu) = \mu^-$ and $v_R(P_\mu) = \mu^+$. By Claims 7–11, we have the following: $m(G) \ge |V(H)| \cdot m(G_0)$ $\ge 1 \cdot [(n - |V(P_\mu)| - |V(H)|) - 2(k - 2 - x) + 1 + (|V(P_\mu)| - 3) + (|V(H)| - 1)]$

$$= n - 2k + 1.$$

Therefore, $m(G) \ge n - 2k + 1 > n - 2k > n - 2k - 1$. This completes the proof of Fact 1 and also the proof of Theorem 1.4.

References

- Ahmed, T., A survey on the Chvátal-Erdős theorem, http://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.90.9100&rep=rep1&type=pdf.
- [2] Ainouche, A., Common generalization of Chvátal-Erdős and Fraisse's sufficient conditions for Hamiltonian graphs, *Discrete Math.*, 142, 1995, 21–26.
- [3] Akiyama, J. and Kano, M., Factors and Factorizations of Graphs: Proof Techniques in Factor Theory, Lecture Notes in Mathematics, 2031, Springer-Verlag, Heidelberg, 2011.
- [4] Chen, G., Hu, Z. and Wu, Y., Circumferences of k-connected graphs involving independence numbers, J. Graph Theory, 68, 2011, 55–76.
- [5] Chen, G., Li, Y., Ma, H., et al., An extension of the Chvátal-Erdős theorem: Counting the number of maximum independent sets, *Graphs Combin*, **31**, 2015, 885–896.
- [6] Chvátal, V. and Erdős, P., A note on Hamiltonian circuits, Discrete Math., 2, 1972, 111–113.
- [7] Enomoto, H., Kaneko, A., Saito, A. and Wei, B., Long cycles in triangle-free graphs with prescribed independence number and connectivity, J. Combin. Theory Ser. B, 91, 2004, 43–55.
- [8] Han, L., Lai, H.-J., Xiong, L. and Yan, H., The Chvátal-Erdős condition for supereulerian graphs and the Hamiltonian index, *Discrete Math.*, **310**, 2010, 2082–2090.
- [9] Heuvel, van den J., Extentions and consequences of Chvátal-Erdős theorem, Graphs Combin., 12, 1996, 231–237.
- [10] Jackson, B. and Oradaz, O., Chvátal-Erdős conditions for paths and cycles in graphs and digraphs, A survey, Discrete Math., 84, 1990, 241–254.
- [11] Neumann-Lara, V. and Rivera-Campo, E., Spanning trees with bounded degrees, Combinatorica, 11, 1991, 55–61.
- [12] Saito, A., Chvátal-Erdős theorem —old theorem with new aspects, Lect. Notes Comput. Sci., 2535, 2008, 191–200.
- [13] West, D. B., Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper Saddle River, 2001.
- [14] Win, S., On a conjecture of Las Vergnas concerning certain spanning trees in graphs, Results Math., 2, 1979, 215–224.