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An Extension of the Win Theorem: Counting the
Number of Maximum Independent Sets*

Wanpeng LEI' Liming XIONG! Junfeng DU! Jun YIN?

Abstract Win proved a well-known result that the graph G of connectivity x(G) with
a(G) < k(G) + k —1 (k > 2) has a spanning k-ended tree, i.e., a spanning tree with
at most k leaves. In this paper, the authors extended the Win theorem in case when
k(G) =1 to the following: Let G be a simple connected graph of order large enough such
that «(G) < k41 (k > 3) and such that the number of maximum independent sets of
cardinality k£ + 1 is at most n — 2k — 2. Then G has a spanning k-ended tree.
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1 Introduction

A graph is traceable if it contains a Hamilton path, and hamiltonian if it contains a Hamilton
cycle. In 1972, Chvéatal and Erdds gave the following well-known sufficient condition for a
graph to be traceable. Given a graph G, let x(G) and «(G) denote the connectivity and the

independence number of G, respectively.

Theorem 1.1 (see [6]) If G is a graph on at least 3 vertices such that a(G) < k(G) + 1,

then G is traceable.

Theorem 1.1 has been extended in many different directions (see [1-2, 7, 9-11]). For the
recent results, see [4, 8, 12].

A Hamiltonian path is a spanning tree having exactly two leaves. From this point of view,
some sufficient conditions for a graph to be traceable are modified to those for a spanning
tree having at most k leaves. A tree having at most k leaves is called a k-ended tree, and we
now turn our attention to spanning k-ended trees. It is clear that if s < ¢ then a spanning
s-ended tree is also a spanning ¢-ended tree. Theorem 1.1 says that every graph G satisfying
a(G) < k(@) + 1 is traceable. Las Vergnas conjectured the following theorem, which is a
generalization of Theorem 1.1. This conjecture was proved by Win, who introduced a new

proof technique called a k-ended system.
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Theorem 1.2 (see [14]) Let k > 2 be an integer and G be a connected simple graph. If
a(G) < k(G)+ k—1, then G has a spanning k-ended tree.

Let m(H) denote the number of maximum independent sets of H for a subgraph H C G.
In [5], Chen et al. proved that it does not change the traceability of those graphs G with a
slight larger independence number (i.e., a(G) < k(G)+2) when we bound m(G). The complete
graph with s vertices is denoted by K, and its complement is denoted by K, i.e., sK;. By
starting with a disjoint union of two graphs G and H and adding edges joining every vertex of

G to every vertex of H, one obtains the join of G and H, denote by GV H.

Theorem 1.3 (see [5]) Let G be a connected graph of order n > 2k%(G) such that o(G) <
K(G)+2, K(G) =k >1 and m(G) < n —2k(G) — 1. Then either G is traceable or a subgraph
Of KK vV ((/QKl) U Kn_Q,{).

In this paper, we extend Theorem 1.2 in the case when x(G) = 1 by the following direction.

Theorem 1.4 Letk > 3 and G be a connect graph of order n > 2k+2 such that a(G) < 1+k
and m(G) <n —2k —2. Then G has a spanning k-ended tree.

2 Notation and Terminology

For graph-theoretic notation not explained in this paper, we refer the reader to [13]. Let
G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). We denote by N (v) the

neighborhood of vertex v in G. For a nonempty subset X of V(G), we write N(X) = |J N(z).
reX
For S C V(G), we denote by G[S] the subgraph of G induced by S. Let H; and Hs be two vertex

disjoint subgraphs of G, x,y € V(G), and P is a path of G. A path 2Py in G with end vertices
x and y is called a path from H; to He if V(zPy) NV (H;) = {z} and V(zPy) NV (Hsz) = {y}.
A path from {2} to a vertex set U is also called an (x, U)-path. A subgraph F of G is called an
(x,U)-fan of width & if F' is a union of (z,U)-paths Py, P, - - -, P, where V(P;) NV (P;) = {x}
for i # j. Let G be a subgraph of G. For the convenience, if G[{z}UV (Gp)] has a spanning path
one of whose end vertices is z, then we denote by Gy (Gox, respectively) the spanning path
of Gl{x} UV (Gy)], which starts at = (terminates at x, respectively). If G[V(Gp) U {x,y}| has a
spanning path, then we denote by xGoy the spanning path of G[V(Go) U {z, y}], which starts
at x and terminates at y. Let G; and G5 be two subgraphs of G. If G[V(G1) U {z} UV (G2)]
has a spanning path, then we denote by G;2G> the spanning path of G[V (G1) U {x} UV (G>)].

We now introduce the concept of a k-ended system in order to prove Theorem 1.4. We
denote the set of all simple graph by G. Define a function f : G — {0, 1,2} as follows: For each
element X of G,

2, if X is a path of order at least three,
f(X)=<1, if Xis K7, K5 or a cycle, (2.1)

0, otherwise.

Let S be a set of vertex-disjoint subgraphs X of G with f(X) > 1, and

Sp={XeS:fX)=2}, Sc={XeS: f(X)=1}.
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Then
S=8pUSc, V(S)= ] V(X)
Xes
Moreover, V(Sp) and V(S¢) can be defined analogously, and |S|,|Sp|,|Sc| denote the
number of elements in S, Sp and S¢, respectively. For each path P € Sp, let vy, (P) and vr(P)
denote the two end-vertices of P. For each element C' € S¢, let vo be an arbitrarily chosen

vertex of C'. Once we choose a vertex v, each C' corresponds the unique vertex ve. Then
define

End Sp U {’UL )}, End Sc U {Uc}

PeSp CeSc
End(S) = End(Sp) U End(S¢).

Then S is called a k-ended system if Y. f(X)=2|Sp|+ |Sc| < k. If V(S) = V(G), then S is
XeS
called a spanning k-ended system of G.

For any P € Sp, we orient P from vy, (P) to vg(P), say P for the oriented path (from vg(P)
to v (P), say ?, respectively). With a given orientation P and for every vertex x of P, we
will denote the first, second and ith predecessor (successor, respectively) of  as =, 7~ and

73—

' (2%, 2, and 2T, respectively). If z = vg(P) (z = v (P), respectively), we have only

predecessor of vr(P) (successor of vy, (P), respectively). Given z and y on P, a section P(z,y)

ta?t a3t .. a5 (= y7) of consecutive vertices of P, and a section P[x,y] is a path

is a path x
zata?t ... 2% (= y) of consecutive vertices of P. The section P[z,y] is trivial if z = y.

For each element C' € S¢ and |V(C)| > 3, with a given orientation C and for every vertex
v of C, let v and v~ denote the successor and the predecessor of v, respectively.

The following lemma shows why a k-ended system is important for spanning k-ended trees.

Lemma 2.1 (see [14]) Let k > 3 be an integer, and G be a connected simple graph. If G

has a spanning k-ended system, then G has a spanning k-ended tree.

We call a k-ended system S of G a maximal k-ended system if there exists no k-ended
system S’ in G such that V(S) C V(S’). The following lemma expresses some nice properties
of k-ended systems. Note that we say that two distinct elements of S are connected by a path
in G — V(8) if there exists a path in G whose end-vertices are in S and whose inner vertices

are all contained in V(G) \ V(S), where a path may has no inner vertex.

Lemma 2.2 (see [3]) Let k > 3 be an integer, and G be a connected simple graph. Suppose
that G has no spanning k-ended system, and let S be a maximal k-ended system of G such that
|Sp| is mazimum subject to the mazimality of V(S). Then the following statements hold.

(i) No two elements of S¢ are connected by a path whose inner vertices are in V(G)\ V(S).

(i1) No element of S¢ is connected to an end-vertex of an element of Sp by a path whose
inner vertices are in V(G) \ V(S).

(iii) No end-vertex of an element of Sp is connected to an end-vertex of another element of

Sp by a path whose inner vertices are in V(G) \ V(S).
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(iv) No vertex w in V(G)\V(S) is connected to two distinct elements of S¢ by two internally
disjoint paths Q1 and Q2 in G — V(S) such that V(Q1) NV (Q2) = {u}.

3 Preparatory Works for Proving Theorem 1.4

In the following section, for the convenience, we assume the following: Let &k > 3 be an
integer, and G be a simple connected graph such that «(G) = 1+ k. Suppose that G has no
spanning k-ended system, and let S be a maximal k-ended system of G such that

(I) |V(S)] is maximized.

(IT) |Sp| is maximized subject to (I).

(III) |V (Sp)| is maximized subject to (I) and (IT).

Then S is a set of subgraphs of G satisfying the hypothesis of Lemma 2.2. Let H = G-V (S).
Then |V(H)| > 1.

For the convenience, we assume that € V(P). For any P € Sp, let a(x,P) = vgr(P)
if z = vg(P), and a(x,P) = zvg(P) if 2¥ = vr(P). In the case when z # vg(P) and
at #vg(P), we also let Q(z, P) = 2 Pug(P)x if zvr(P) € E(G). Otherwise, we do not define
a(x,P). Let Z(x,P) = vr(P) if & = v (P), and <Q(QC,P) = 2vr(P) if 27 = v (P). In the
case when x # v (P) and = # v (P), we also let Z(x,P) = x?vL(P)x it zvr(P) € E(G).
Otherwise, we do not define <é(x,P). Then, f(a(:z:,P)) =1 (f(a(:z:,P)) = 1, respectively).
Let Go be a subgraph of G, C(G)) is called a spanning subgraph of G such that f(C(Gp)) = 1.

Lemma 3.1 G has no k' -ended system T such that V(T) 2 V(S) and k' < k.

Lemma 3.2 Suppose that there exists a path L fromv € V(H) to S such that V(L)NV(S) =
{z} and x € V(P) for some P € Sp. Then N(z7)N (End(Sp) \ {vr(P)}) = 0.

Proof By contradiction, suppose that N(x%)N (End(Sp)\ {vr(P)}) # 0, say y € N(zT)N
(End(Sp) \ {vr(P)}). It is easy to check that = ¢ {vr(P),vr(P)}. Let N(x) NV (L) = {v'}.
Then, we distinguish the following two cases to obtain a contradiction:

(1) Suppose that y € End(Sp) \ {vr(P),vr(P)}. Without loss of generality, assume that
y =vp(P’) for P' € Sp\ {P}. Then UR(P)$x+UL(PI)?UR(PI) and ’UL(P)?CE’U/ in G cover
V(P)YUuV(P)U{v'}, contradicting (T).

(2) Suppose that y = v (P). Then v’:z:?vL(P):z:‘L?vR(P) in G covers V(P)U{v'}, contra-
dicting (T).

This contradiction proves Lemma 3.2.
Lemma 3.3 For anyv € V(H), G has no (v, V(S))-fan of width 2.

Proof By contradiction, suppose that there exists a (v, V(S))-fan {L;, L2} of width 2 for
somev € V(H). Let V(L;)NV(S) = {u;} fori € {1,2}. Denote U = {uy,uz}. HUNV(Sc) # 0,
then there exists at least one vertex y € U NV (Sc). Without loss of generality, we assume
that ¥y = u1. By Lemma 2.2 (iv), {C : C € S¢ and UNV(C) # 0} = 1, say C; € S¢ and
UNV(Cy) # (. For each isolated vertex {z}(say) of S¢, N(z) N (V(G)\ V(S)) = 0. Thus no
isolated vertex of S¢ is adjacent to V(G) \ V(S). Then |V (Cy)| > 2. If |[V(Cq)| = 2, then we
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assume that C contains a vertex of U, say vc,. Let V(C1) = {vc,,vg, }, where ve, € End(Sc).

Obviously ”Icl is not contained in U. Denote

. Juf, ifeither UNV(Se) #0 and [V(C1)| > 2, or UNV(Sc) =0,
Uy = .
Ve, HEUNV(Se) # 0 and [V(Cy)| =2

and Ut = {uf,uf}. Let Y = End(S) UU™* U {v}. By Lemma 2.2, End(S) is an independent
set of G. It is easy to check that u; ¢ End(Sp) for i € {1,2}.

We distinguish the following three cases to prove that Y includes an independent set of G
with size at least k + 2.

Case L [UNV(Sp)| =UNV(Sc)| =1.

Suppose that u; € V(Cy) and ug € V(P) for some P € Sp. By Lemma 2.2(iv), {uj} U
(End(S) \ {ve, }) is an independent set of G. Let Q1 = uT(Z(_'lulleLgug, Q2 = CugﬁvR(P)
and Q3 = Q(uj, P). Then, we distinguish the following four cases to prove that Y \ {vc, } is
an independent set of G with size k + 2:

(1) Suppose that uj = vr(P). Then Q; and vg(P) cover V(C;)UV (P)U{v}, contradicting
(I).

(2) Suppose that N(ug) N (End(Sc) \ {ve, }) # 0, say vo € N(ug) N (End(Sc) \ {ve, }).
Then Q1 and Q2 cover V(Cp) U V(C) UV (P)U{v}, contradicting (I).

(3) Suppose that N(uj) N End(Sp) # 0. By Lemma 3.2, N(uy) N End(Sp) = {vr(P)}.
Then @1 and Q3 cover V(C7) UV (P) U {v}, contradicting (I).

(4) Suppose that ujui € E(G). Then vR(P)ﬁu;Ql covers V(C1) UV (P) U {v}, contra-
dicting Lemma 3.1.

These contradictions show that Y \ {ve, } is an independent set of G with size k + 2.

Case 2 U C V(S¢).

If uf € V(Cy) and u; € V(Cy) are adjacent in G, then ULlulau;ufaungv covers
V(Cy) U {v}, contradicting (I). This contradiction shows that U™ is an independent set of G.
Combining this with Lemma 2.2(iv), Y \ {v¢, } is an independent set of G with size k + 2.

Case 3UNV(Sc)=0,1ie.,UCV(Sp).

Suppose first that End(S) N Ut = 0. Then [Y| = k + 3. By the assumption of this
case, End(S) U {v} is an independent set of G. Let Q4 = UL(P)?UlLl'ULQUQ and Q5 =
Qauy P'vr,(P’). We shall show the following two claims.

Claim 1 G[Y] is triangle-free.

Proof We shall prove that U™ is an independent set of G.

If u € V(P) and ud € V(P), where P € Sp, are adjacent in G, without loss of generality,
assume Plvr,(P),u1] C Plog(P),us), then Qquy ?ufu}r?vR(P) covers V (P) U {v}, contradic-
ting (I). If uf € V(P) and ug € V(P'), where P, P’ € Sp and P # P’', are adjacent in G, then
Qs, vR(P)ﬁquu;ﬁvR(P’) cover V(P) UV (P")U{v}, contradicting (I). It is shown that U™
is an independent set of G. Then (UT,End(S) U {v}) is a bipartition of the G[Y]. Therefore,
G[Y] is triangle-free.
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Claim 2 Y does not contain four distinct vertices yi,y2,ys, ya such that {y1y2, ysys} C
E(G).

Proof By contradiction, suppose that Y contains four distinct vertices y1,ys, y3, ¥4 such
that {y1y2,y3ya} € E(G). Without loss of generality, assume y» = uj € V(P), y4s = uj €
V(P'), and if they are in the same path P (say), then Plvr(P),u1] C Plvr(P),us](say). Then,
we distinguish the following three cases to obtain a contradiction.

(1) Suppose that y1 = vo € End(Se), y3 = ver € End(Se) and ve # ver. If P # P/, then
Qs, Cuf?vR(P) and C’ujlij(P’) cover V(P)UV(P)UV(C)UV(C")U{v}, contradicting
(I). If P = P/, then Qquy Puy C, C'uf Pg(P) cover V(P)UV(C)UV (C")U{v}, contradicting
(D).

(2) Suppose that y1 = vo € End(S¢) and y3 = vg(P’). If P # P’, then @s, Ouf?vR(P)
and B(ug, P’) cover V(P)UV (P)UV(C)U{v}, contradicting (I). If P = P’, then Q4u2_$uf0,
Q3 cover V(P)UV(C)U{v}, contradicting (I).

(3) Suppose that y1 = vg(P) and y3 = vg(P’), where P # P’. Then Qs, B(uf,P) and

(ug, P") cover V(P) UV (P") U {v}, contradicting (I).

This contradiction proves Claim 2.

By Claims 1-2, Y includes an independent set of G with size at least k + 2.

Next, suppose that End(S)NU™ # (. Then, there exists a path P € Sp such that vg(P) =
uj for i € {1,2}. Without loss of generality, say vgr(P) = uj. If there exists another path
Q € Sp \ {P} such that vgr(Q) = ug, then Qs, vr(P), vr(Q) cover V(P) U V(Q) U {v},
contradicting (I). Thus U N End(S) = {vr(P)} for some P € Sp, and |Y| = k + 2. we will
show that Y is an independent set of G with size k + 2.

Assume that ve € End(S¢) and ugy € V(P') are adjacent in G. If P # P', then Qs,
Cu;ﬁvR(P'), vr(P) cover V(P)U V(P")UV(C)U {v}, contradicting (I). If P = P’, then
UL(P)?UQLQULlUl?U;—O, vr(P) cover V(P) UV (C) U {v}, contradicting (I).

Assume that vg(P') and ug € V(P') are adjacent in G, where P # P’. Then Qs, B(ug, P,
vr(P) cover V(P)UV(P") U{v}, contradicting (I).

These contradictions shows that Y is an independent set of G with size k + 2.

In all cases, Y includes an independent set of G with size at least k + 2, contradicting
a(G) = k + 1. This contradiction shows that Lemma 3.3 holds.

Let w be a vertex in V(G)\ V(S). Since G is connected, by Lemma 3.3, there exists exactly
one (w, V(S))-path L such that V(L) NV (S) = {uw}. Then w is connected to p.,, by the path
L.

Lemma 3.4 N(v) NEnd(Sp) =0 for any v € V(H).

C,, always means the vertex p,, € V(C,,,) where C,, € Sc. Then |V(C,,)| > 2, since no
isolated vertex of S is adjacent to V/(G)\V(S). If [V(Cy, )| = 2, say V(Cy,,) = {vc,,, . ve, }
without loss of generality, then we assume that p, = vc, . It means that ve, € End(Sc).
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Denote

if [V(C, )

. {uz, |23 and py € V(Cy,),
v =\, i V(G|

>
=2and V(C,,) = {vc,,ve

3
2 ).

Hw

P,, always means that the vertex ju,, € V(P,, ), where P, € Sp. Let

_ {(End<8> U{i wP) \ve,, }o i e € V(Se), 51)

End(S) U {w}, if g € V(Sp).
Lemma 3.5 X is an independent set of G with size k + 1.

Proof By Lemma 2.2, End(S) is an independent set of G. Since u,, € V(Sp) or V(S¢),
by Lemmas 2.2 and 3.4, X is an independent set of G with size k + 1.

By Lemma 3.5, we have
Nw)NnX #0 foranyveV(G)\X. (3.2)

Otherwise, there exists a vertex vg € V(G) \ X such that X U {vg} is an independent set of
cardinality k + 2, contradicting o(G) = k + 1.

Lemma 3.6 Let S C V(G) such that SNX has exactly one vertezx, say z, i.e, SNX = {z}.
If N(x) N X = {2z} for any x € S\ {z}, then G[S] is a clique.

Proof By contradiction, suppose that z1x2 ¢ E(G) for some pair of vertices x1, x2 € S
with o1 # 2, then (X \{z)})U{x1, 22} is an independent set of G with size k+ 2, contradicting
a(G) =1+ k. Hence, G[5] is a clique.

Denote
S’zS\{CNw,PNw}, S'CzS’ﬂSc, Sp=8NS8p.

Lemma 3.7 G[V(C)] is a clique for each C € Sf..

Proof Since G[V(C)] is connected, it suffices to consider the case when |V (C)| > 3.
Note that V(C) N X = {vc}. By Lemma 2.2(1)—(ii), N(x) N (X \ {vc}) = 0 for each vertex
x € V(C)\{vc}. Note that N(x)NX # @. Therefore N(z)NX = {vc}. Let S = V(C). Then,
by Lemma 3.6, G[V(C)] is a clique.

Lemma 3.8 For any P € Sp, there is no pair of adjacent vertices x, y in P such that
N(z)NV(SL) # 0 and N(y) NV (SE) # 0.

Proof By contradiction, suppose that there exists a pair of vertices zg, yo in P € Sp
such that zoyg € E(P), N(xzo) N V(Sy) # 0 and N(yo) NV (S;) # 0. By Lemma 2.2(i)-
(ii), o ¢ {vr(P),vr(P)} and yo ¢ {vr(P),vr(P)}. Without loss of generality, assume that
Yo = xg . Suppose that N(z¢) NV (S,) = {2’} and N(yo) NV (SL) = {y'}. We distinguish the
following two cases to obtain a contradiction.

(1) Suppose that {z',y'} C V(C) with C € S;,. If either |[V(C)| = 1 or 2/ # ¥, then
by Lemma 3.7, vL(P)?zoCxar?vR(P) in G covers V(P) U V(C), contradicting Lemma 3.1.
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If 2/ =y and |V(C)| > 1, then ’UL(P)?{E()I'/CL'S_?’UR(P) and C(G[V(C) \ {2'}]) in G cover
V(P) UV (C), satisfying (I),(II) but not (III), a contradiction.

(2) Suppose that 2’ € V(C') and ' € V(C’) such that {C,C’} C S/, and V(C)NV(C") = 0.
Then, C’x()%vL(P) and C’yO?vR(P) in G cover V(P)UV(C)UV(C"), satistying (I) but not
(IT), a contradiction.

This contradiction proves Lemma 3.8.

Denote

Tp1:={x e V(P): Pe€Sp, zv,(P) € E(G), ztv,(P) ¢ E(G), % # uw},
Tpo:={x € V(P): P€Sp, N(x)NV(S,) #0, 7 # i}

Lemma 3.9 Let P € Sp. Then the following three statements hold.

(1) If x € Tp1UTpoU{puw}, then either N(zT)NX C (End(S,)U{vr(P)}) or z™ = vg(P).
(2) If x € Tpo, then either N(zt)N X = {vr(P)} or T = vr(P).

(3) If © = ptw, then either N(z~)NX C (End(S;) U{vr(P)}) or = = vr(P).

Proof First, we will prove Lemma 3.9(1). We denote set End(S,) U {vg(P)} by B;. If
't # vg(P), then we will show that N(z7) N X C Bj. Since B; C X, we denote X — By by
Bs. By the assumption of this case, w ¢ N(z) N X.

Suppose that = p,,. Then by Lemma 3.2, N (%) N (End(Sp) \ {vr(P)}) = 0. Combining
this with (3.1), N(2*)N By = (). Hence, N(z")N X C B;y. By symmetry, Lemma 3.9(3) holds.

Suppose that © € Tp;y U Tp2. Then, suppose that there exists a vertex 2’ € N(z) N Ba.
We distinguish the following three cases to obtain a contradiction by the definition of X.

(1) Suppose that 2’ € End(Sp) \ {vr(P),vr(P)}. Without loss of generality, assume that
' = v (P') for P € Sp\ {P}. If © € Tp1, then vR(P)?x"’vL(P')?UR(P') and <Q(QC,P) in
G cover V(P') UV(P), contradicting Lemma 3.1. If x € Tps, say vc € N(z) NV (S,), then
vr(P)Pator(P)Plor(P) and CzPur(P) in G cover V(P') U V(P) U V(C), contradicting
Lemma 3.1.

(2) Suppose that @’ = v (P). If © € Tps, say ve € N(z) NV(S5), then Cx?vL(P)x*‘?
vr(P) in G covers V(P) U V(C), contradicting Lemma 3.1.

(3) Suppose that =’ = pf. Then, by Lemma 3.5 and (3.1), uy € V(Se). If x € Tpy,
then wLuwCwa"’?vR(P) and <Q(QC,P) in G cover V(P)UV(C,,) U {w}, contradicting (I).
If © € Tpo, say v € N(z) N V(S,), then wLuwCwa"’?vR(P) and Cx?vL(P) in G cover
V(P)uV(C)UV(C,,)U{w}, contradicting (I).

This contradiction proves that N(z )N By = . Hence, N(zT)N X C B;. Lemma 3.9(1) is

proved.

If x € Tpo then by Lemma 3.9(1), N(z™)NX C (End(S.) U{vr(P)}) or 7 = vr(P). By
Lemma 3.8, N(z1) N V(S) = 0. Note that (3.2). Therefore Lemma 3.9(2) holds.

Lemma 3.10 Let P € Sp and y € V(P) with yvr(P) € E(G), |V(Ply, vg(P)])] > 3 and
pw & V(Ply,vr(P)]). Then it holds that N(yT) N X = {vg(P)}.
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Proof By contradiction, suppose that there exists at least one vertex z € N(y*) N X such
that  # vg(P). By the definition of X, we distinguish the following four cases to obtain a
contradiction.

(1) Suppose that © € End(S¢), say © = ve. Then Cy‘*?vR(P)y?vL(P) in G covers
V(P)UV(C), contradicting Lemma 3.1.

(2) Suppose that x = vy, (P) € End(Sp). Then vR(P)$y+vL ?va ) € S¢ in G covers
V(P), contradicting Lemma 3.1.

(3) Suppose that x € End(Sp)\{vL(P),vr(P)}. Without loss of generality, assume that x =
v (P') for P € Sp\{P}. Then ’UR(PI)PI’UL(Pl)y+?UR(P)y$UL(P) in G covers V(P)UV (P’),
contradicting Lemma 3.1.

(4) Suppose that = pZ. Then by Lemma 3.5 and (3.1), pw € V(Sc). Then Cuwy*?
vR(P)yﬁvL(P) in G covers V(P)UV(Cy,), contradicting Lemma 3.1.

This contradiction shows that N(y™) N X C {vg(P)}. By (3.2), N(yT) N X = {vr(P)}.

Lemma 3.11 The following two statements hold.

(1) Let P € Sp and y € V(P) with yvg(P) € E(G) and p, ¢ V(Ply,vr(P)]). Then
it holds that G[V (PlyT,vgr(P)])] is a clique. Furthermore, if N(y) N X = {vg(P)}, then
G[V(Ply,vr(P)])] is a clique.

(2) Let P € Sp and x € V(P) with zv,(P) € E(G) and py, ¢ V(Plvn(P),z]). Then
it holds that G[V(Plvr(P),x7])] is a cligue. Furthermore, if N(z) N X = {vp(P)}, then
G|V (Plv(P),z])] is a clique.

Proof By symmetry, we may only prove that (1) is true. Since G[V (P[y™, vr(P)])] is con-
nected, it suffices to consider the case when |V (P[y*, vg(P)])| > 3. Note that V(P[y*,vr(P)])N
X = {vg(P)}. Let S = V(P[y*,vr(P)]). Then by Lemma 3.6, it suffices to prove the following
statement

N(y)N X = {vr(P)} for each vertex y' € V(Ply™,vr(P)]). (3.3)

We repeatedly apply Lemma 3.10 to obtain (3.3).

Furthermore, we will prove that if N(y) N X = {vg(P)}, then G[V(Ply,vr(P)])] is a
clique. Since G[V(P[y,vr(P)])] is connected, it suffices to consider the case when |V (Ply,
vr(P)])| > 3. Note that N(y) N X = {vg(P)}. Combining this with (3.3), we have N(z)NX =
{vr(P)} for each vertex x € V(Ply,vr(P))). Let S = V(Ply,vr(P)]). Then by Lemma 3.6,
G[V(Ply,vr(P)])] is a clique.

Lemma 3.12 Let P € Sp and x € V(P)\{vL(P),vgr(P)} with N(z)NEnd(S;) # 0. Then
the following two statements hold.

(1) If oy & V(PlzT,vr(P)]), then G[V (P[zT,vg(P)])] is a clique.

(2) If p & V(Plon(P),x7]), then GV (Plvr(P),x~])] is a clique.

Proof By symmetry, we may only prove that G[V (P[z™,vr(P)])] is a clique. Since G[V (P
[2F, vr(P)])] is connected, it suffices to consider the case when |V (P[z™,vr(P)])| > 3. By
Lemma 3.9(2), N(z")N X = {vr(P)}. By Lemma 3.11(1), G|V (P[z",vg (P)])] is a clique.
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Lemma 3.13 For any pair of paths P, P’ € Sp, suppose that there exist two vertices x €
V(P) \ {v.(P), vg(P)} and y € V(P') \ {vr(P’),vr(P")} such that N(z) N End(S;) # 0,
N(y) NEnd(S;) # 0 and p ¢ (V(P)\ {z}) U (V(P')\ {y}). Then any pair of vertices in
V(P)\ {z} and V(P')\ {y} respectively are not adjacent.

Proof By symmetry, we only prove that any pair of vertices in V(P[zt,vr(P)]) and
V(P'[yT,vr(P")]) are not adjacent.

By contradiction, suppose that there exists a pair of vertices zg € V(P[z",vg(P)]), yo €
V(P'[y",vr(P’)]) such that zoyo € E(G). By Lemma 3.12(1), both G[V (P[zT,vg(P)])] and
GIV(P'[y*", vr(P")))] are cliques. Let Qs = G[V(P'[y*, vr(P')])]zoG[V (Pla™, vr(P)] \ {z0})]
and Q7 = vL(P)?xvcy};vL(P’ ). To obtain our contradiction, we consider the following two
cases:

(1) Suppose that N(z) N End(S;,) = N(y) N End(S) = {vc}. If [V(C)| = 1, then by
Lemma 3.12(1), Q¢ and Q7 in G cover V(P)U V(P') U V(C), contradicting Lemma 3.1. If
[V(C)| > 1, then by Lemmas 3.7 and 3.12(1), Qg, Q7 and C(G[V(C) \ {vc}]) in G cover
V(P)UV(P") UV (C), satistying (I),(II) but not (III), a contradiction.

(2) Suppose that there exist two distinct vertices ve € V(C') and ver € V(C”) such that
ve <E_N(;zc) N End(S¢) and ver € N(y) NEnd(S¢). By Lemma 3.12(1), Q, Cx?vL(P) and
C'yP'vr,(P') in G cover V(P)UV (P ) UV (C)UV (C"), satisfying (I) but not (IT), a contradiction.

This contradiction shows that any pair of vertices in V(P[z ™, vr(P)]) and V(P'[y", vr(P’)])
are not adjacent.

Lemma 3.14 Let P € Sp and v € V(P) \ {vr(P),vr(P)}. Then the following two state-
ments hold.

(1) Suppose that p, ¢ V(Plvr(P),z]) and N(z) N (End(Sy) U {vr(P)}) # 0. Then
NWV(C)NV(Plvr(P),z)) =0 for any C € S¢.

(2) Suppose that p,, ¢ V(Plz,vr(P)]) and N(z) N (End(Sy) U {vr(P)}) # 0. Then
NWV(O)NV(P(z,vr(P)]) =0 for any C € Sc.

Proof By symmetry, we may only prove that (1) holds. By contradiction, suppose that
there exists some element Cy € S¢ such that N(Co) NV (Plvr(P),z)) # 0, say z € N(V(Cp))N
V(Plvr(P),z)). By Lemma 2.2(ii), z ¢ End(Sp). If zvr(P) € E(G) or N(z) NEnd(Sc) # 0,
then by Lemmas 3.11(2) and 3.12(2), G[V (P[vr(P),2z7])] is a clique. Suppose that z = x~. By
Lemma 3.8, N(z)NV(S;) = 0. Then, 2vr,(P) € E(G). Hence, if z € V(P(v(P),z~]), then by
Lemmas 3.11(2) and 3.12(2), C()Z$’UL(P)Z+?’UR(P) in G covers V(P)UV(C)), contradicting

Lemma 3.1. This contradiction proves Lemma 3.14(1).

For any path P € Sp, we know v (P)vr(P) ¢ E(G) by Lemma 3.1. We may take the
vertex zp of V(P) such that V(P[vr(P),zp5]) C N(vr(P)) and xp ¢ N(vr(P)).

Lemma 3.15 For any P € Sp, the following two statements hold.
(1) Suppose that N(V(S;)) NV (P) = 0. Then f(Plvr(P),zplvr(P)) = 1 and f(Plzp,
vr(P)]xp) = 1.
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(2) Suppose that N(V(Sp)) NV (P) # 0. Then N(V(Si)) N V(P) = {z} C {zp,zp},
f(Plor(P), 2plur(P)) =1 and f(Plz*,vr(P)]2") = L.
(3) f(Plap,vr(P)lap) = 1.

Proof Since P € Sp, pw ¢ V(P). By Lemma 3.14(1), N(V(C)) NV (P[vr(P),
for any C' € Si.. We distinguish the following two cases to prove Lemma 3.15(1)—(2).

(1) Suppose that N(V(S;)) NV(P) = 0. If xp = vr(P), then f(Plvr(P),zplvr(P))
1 and f(Plzp,vr(P)lzp) = 1. If zp # vg(P), then by Lemma 3.9(1), N(zp) N X C
(End(S;) U {vr(P)}). By (3.2), N(zp) N X = {vr(P)}. So f(Pvr(P),zplvL(P)) =1 and
f(Plzp,vr(P)]xp) = 1. Lemma 3.15(1) holds.

(2) Suppose that N(V(S;)) NV (P) # 0. If xp = vr(P), then by Lemmas 2.2(ii) and
3.14, N(V(Sp)) nV(P) = {xp}, f(Plvp(P),zplve(P)) = 1 and f(Plzp,vr(P)lzp) = 1. If
xp # vr(P), then we distinguish the following two cases to prove Lemma 3.15(2).

e Suppose that N(zp) N V(S,) # 0. By Lemma 3.9(2), f(P[z},vr(P)zp) = 1. By
Lemmas 3.8 and 3.14, N(S,) NV (P) = {zp}.

e Suppose that N(zp) N V(S;) = 0. Then by Lemma 3.9(1) and (3.2), f(P[zp,
vr(P) Jzp) = 1. By the assumption of this case and Lemma 3.14, N(V(S;)) NV(P) = {zp}.

Lemma 3.15(2) holds.

Next, we will prove Lemma 3.15(3). By Lemma 3.15(1)—(2), f(P[zp,vr(P)lzp) = 1
or f(Plz}p, vr(P)azth) = 1. If f(Plz}, vr(P)]z5) = 1, then we are done. Otherwise,
f(Plz},vr(P)] # 1. Then we assume that f(Plxp,vg(P)]zp) = 1. Since G[V (Plzp,vr(P)])]
is connected, it suffices to consider the case when |V (P[xp,vg(P)])| > 2. By Lemma 3.11(1),
GV (Plzp,vr(P)])] is a clique. Then f(P[x},vgr(P)]z}) = 1. Lemma 3.15(3) holds.

=

rp)) =

For any P € Sp, by Lemma 3.15, f(Plvr(P),zp]v(P)) =1 and f(Plz}5,vr(P)] ) = 1.
Sp be partitioned into classes Sp = Sp, U Sp, as follows:

(1) Sy = (P P € Sp N(V(SL) N V(P) = {ar} s

(2) Sh, = {P: P € Sp, N(V(SL)) N V(P) # {wp}}.

For any path P € S, , if N(V(S;))NV (P) = 0, then by Lemma 3.15(1), f(P[zp,vr(P)]zp)
= 1;if N(V(S;)) NV (P) # 0, then by Lemma 3.15(2), N(V(S;)) NV (P) = {z} C {zp,zp}.
Note that N(V(S;)) N V(P) # {zp}. Then N(V(S;)) NV (P) = {zp}. By Lemma 3.9(2),
f(Plzp,vr(P)]zp) = 1. Hence, for any P € Sp,, f(Plxp,vr(P)lzp) = 1 and N(V(S;)) N
V(P) S {zp} (ie., N(V(Sp)) NV(P) =0 or N(V(S¢)) NV(P) = {ap}).

For any P € Sp, P{v*} is a subpath of P between x and v, € {vr(P),vg(P)}. Denote

. x ¥, if v, = v (P) for x € V(P),
T x~, if v, =wvr(P) for z € V(P).

Lemma 3.16 For any pair of {P,P'} C Sp, suppose there exists a pair of subpath-
s Plver} € P and Pvevt C P/ If zv, € E(G), y, € E(G) and p, ¢ (V(Perh)y
V(P'1vev})). Then any pair of vertices in V(P{e=}) U {z*} and V (P'{e¥})\ {y} respectively

are not adjacent.
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Proof By symmetry, we only prove that any pair of vertices in V(P[vy(P),z"]) and
V(P (y,vr(P")]) are not adjacent.

By contradiction, suppose that there exists a pair of vertices xg € V(Plvr(P),2"]) and yo €
V(P (y,vr(P")]) with zgyo € E(G). By Lemma 3.11(1)—(2), we may obtain that G[V (P[vL(P),
x7])] and G[V(P'[y",vr(P")])] are cliques. To obtain our contradiction, we distinguish the
following two cases:

(1) Suppose that 2y = vr,(P). Then by Lemma 3.11(1), UL(P')?y_G[V(P'[y,UR(P’)])]xo

vr(P) in G covers V(P) UV (P’), contradicting Lemma 3.1.

(2) Suppose that z9 € V(P(vr(P),z"]). Then by Lemma 3.11(1), we may obtain that
5(960_, P) and vL(P')?y_G[V(P’[y, vR(P’)])]xO?vR(P) in G cover V(P)UV(P'), contradic-
ting Lemma 3.1.

This contradiction proves Lemma 3.16.

4 Proof of Theorem 1.4

In this section, we present the proof of Theorem 1.4.
Let k > 3 and G be a graph of order n > 2k+2 such that a(G) < k+1 and m(G) < n—2k—2.
We assume on the contrary that G has no spanning k-ended tree. The assumption that G has

no spanning k-ended tree and Theorem 1.2 imply the following two equations
k(G) =1 (4.1)
and
a(G) =k +1. (4.2)

Then G have no spanning k-ended system by Lemma 2.1. Choose a maximal k-ended system
S of G satisfying (I)~(III). Let H = G — V(S). Then |V(H)| > 1.

Fact 1 m(G) >n—2k— 1.

Proof Denote Gy = G[V(S)], [V(Go)| = no and |End(Sp) U End(S;)| = ko. Let Xo =
X N V(Go) = End(S}) UEnd(SL),
+ 3 /
~ _Jap, if PeSp
= {xp, it Pesy,
Claim 1 Let P € 8, and y € Ng,(vg(P)). Then the following two statements hold:
(1) Suppose that y = Zp. Then Ng,(y') € V(P[y—,vr(P)]) for any y' € V(P(y,vr(P)]),
Ng,(2") CV(P[v(P),xzp]) for any 2’ € V(Plvr(P),zp)).
(2) Suppose that y = zp. If P € S}Jl, then Ng,(y') € V(Ply~,vr(P)]) for any y' €
V(P(y,vr(P)]), Ng,(2") € V(P[vr(P),zp]) for any ' € V(Plvr(P),zp)). If P € S}J , then

[vr
Ne,(y') € V(Ply,vr(P)]) for any y' € V(P(y,vr(P)]), Ng,(z') € V(PvL(P),zp]) for any
' € V(Plvr(P),xp)).
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Proof By symmetry, we only consider y"’s neighbourhood. Suppose that y € {Zp,Z}.
Taking any z € Ng,(y'), we know z ¢ V(S;) by Lemma 3.15(1)-(2). By Lemmas 3.15(1)—
(2) and 3.16, z ¢ V(P’) for any P’ € Sp \ {P}. Hence, z € V(P). We claim that z ¢
V(Plvr(P),x5)). Suppose otherwise that z € V(P[vr(P),z5)). Then by Lemma 3.11(1)-
(2), ¥'GIV (P[vL(P), x;])]xp?y'_vR(P)?y' in G covers V(P), contradicting Lemma 3.1. This

contradiction shows that our claim hold. By our claim, if y € {Zp,Z5}, then
z € V(Plzp,vr(P)]). (4.3)

By (4.3), Claim 1(2) holds. Suppose that y = Zp. If P € S and 2z = x. Then there exists at
least one vertex ve € N(z)NV (S;), by Lemma 3.11(2) Ca:p?y vr(P ?y z?vL ) in G cov-
ers V(P)UV (C), contradicting Lemma 3.1. This contradiction shows that z € V(P[y~, vg(P)]).
Claim 1(1) is proved.

Denote Sp, = {P : P € Sp, and zp # vg(P)}, Sp,, = {P : P € Sp, and zp = vr(P)}.

Then Sp, can be partitioned into two subsets Sp, and Sp,,. Define Ap = {2 | P € Sp U
Sp, tU{zp | P€Sp USp, }U{zp | PE€SE,}, Ai= U Ap and

Pesy,
{tw}, if either ju,, € V(Sc) or py € V(Sp),vr(Pu,) = ti, Vr(Pu, ) = pf,
A2 _ {:Uﬁ;?,u’wnu'lt}v lf ,uw S V(SP) (Pﬂw) 7é :u'w a’nd UR(PMw) 7é /”L’lt7
{/'I’UH /’l’$}7 lf /’l’w € V(SP) L(Pﬂw) a'nd UR(PNw) 75 /’Lq-’1;7
{/Jfl_uaﬂw}a if Pw € V(SP)7 UL(PHw) 7& Mw and UR(PNw) = M1t

Let A=Ay UAs. Then XNA=0and XoNA; =0.
Claim 2 w(Gy — A1) = | Xp| and each component of Gy — A; is a clique.

Proof Denote Z = S;, U{P[vL(P),zp) | P € Sp} U{vr(P) | Zp = vg(P),P € Sp} U
{P(l‘p,’l}R(P)] | Ip # ’UR(P),P € 8232} U {P[l‘;,’l}R(P)] | Ip # ’UR(P),P € 8331} Let Z € Z.

Then Gy — A1 = |J Z. We will prove that N, (V(Z)) NV (Gp \ Z) C A; by considering the
zez
following two cases:

(1) Suppose that Z € (2 \ {P[z}, vr(P)] | Zp # vr(P),P € 8, }). By Lemma 3.15(1)~(2)
and Claim 1(1)—(2), N, (V(Z2)) NV (G \ Z) C A;.

(2) Suppose that Z = {P[z},vr(P)] | Tp # vr(P),P € Sp }. By Claim 1(1), N(V(Z \
{z5}))NV(Go\ Z) C A;. Hence, we consider the vertex z}’s neighbourhood. By the definition
of 8p , N(zp) NV (Sp) # 0, say vo € (N(zp) NV (Sg)). Taking any z € Ng,—z(27), we know
that z ¢ V(S¢) by Lemma 3.8. For any P’ € S \ {P}, if P’ € Sp, then by Lemma 3.13,
z ¢ V(P')\ Ay; if P' € Sp, then by Lemma 3.16, 2 ¢ V(P') \ A;. We claim that z ¢
V(Plvr(P),xp)). Suppose otherwise that z € V(Plvr(P),zp)). Then, by Lemma 3.12(2),
C’xpﬁz v, (P )?zG[V(P[:z:;,vR(P)])] in G covers V(P) UV(C), contradicting Lemma 3.1.
Hence, z € A;. Then Ng,(V(2))NV(Go \ Z) C A;.

Hence, Z is a component of Go— A;. By Lemmas 3.7, 3.11(1)—(2) and 3.12(1)—(2), G[V(Z)] is
a clique. By the definition of Gy, it is easy to check that | XoNV(Z)| = 1, then w(Go—A1) = | X0
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Suppose that |S¢| =2 >0, [Sp | =y >0, |Sp, | =2 >0, [Sp,,| =t > 0. Then we obtain
that

r+2(y+z+1t) = ko. (4.4)

m(Go) > (V(Plor(P), 25 DI - V(Plap,or(P) - [T (V(Ploc(P), 23 )|

! !
PeS PeS),

V(Plbvr(P)) - [ WV@po(P).27 )l [ V©)
PeSh,, ces,,
>1-1-----1-1:ng— Ay + 4243t +z —1)]
ko—1

>ng— (dy +4z+ 3t + ) + 1.

Combining this with (4.4), we have
3 1
m(GO)Zno—(y+z)—§ko+§x+l2n0—2k0—|—1. (4.5)

Denote

. v, i [V(C)| >3 and ve € V(O),
YO vk, i [V(O)] =2 and V(C) = {ve, vl ).

By Lemma 2.2, we distinguish the following two cases to prove Fact 1.

Case 1 p, € V(Sc), ie., pw € V(Cp,).
By the choice of S, | Sp |[> 1. By (3.1) and Lemma 3.5, X = {u},w} U (End(S) \ {pw}) is
an independent set of G with size k + 1.

Claim 3 G[V(Cy, )\ {pw}] is a clique.

Proof Since G[V (Cp, )\ {tw}] is connected, it suffices to consider the case when |V (C),,, )\
{uw}] > 3. For each vertex v € V(C,,) \ {ptw, 11}, v ¢ End(S) \ {ptw } by Lemma 2.2(1)—(ii).
Hence, by the definition of X and (3.2), N(v) N X = {uf} for each vertex v € V(Cy,) \
{pw, pt}. Note that (V(Cpu,) \ {pw}) N X = {ul}. Let S =V (Cp,)\ {#w}. By Lemma 3.6,
GIV(Cu,) \ {1tw}] is a clique.

Claim 4 If N(V(P))NV(Cp,) # 0 for any P € Sp, then N(V(P)) NV (Cy,) = {pw}-

Proof By contradiction, suppose that there exists some P € Sp such that N(V(P))
NV(Cy,) # 0 and N(V(P))NV(Cyu,) # {1}, say v € N(V(P))NV(C,,, ) satisfying v # fu,,.
Then there exists a vertex z € V(P) such that v’z € E(G). By Lemma 2.2(ii), z ¢ End(Sp).
Suppose that z € V(P) \ {vp(P),vr(P)}. Then, by Lemmas 3.11(1)—(2) and 3.15(1)—(2),
there exists Q' € {P[vr(P),z" |vr(P), Plzt,vr(P)]2*} such that f(Q') = 1. By Claim 3,
GIE(P \ Q") C,, pwLlw and Q" in G cover V(P) UV(C,,) U {w}, contradicting (I). This
contradiction shows that Claim 4 holds.

Claim 5 G[V(H)] is a clique.
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Proof First, we will show that G[V(H)] is connected.

By contradiction, suppose that H has at least two components. Choose any vertex v such
that w and v belong to different components of H. We claim that N(v)NV(C,,,, ) # 0. Suppose
otherwise that N(v) NV (C,,) = 0. Then vy} ¢ E(G). By Lemma 3.4, N(v) N End(Sp) = 0.
Suppose that N (v) NEnd(S) # 0, say vue € E(G) (ve # ve,, ). Then [V(C)| > 2. Otherwise,
vev € Sc, contradicting (I). By Lemma 3.3, wv§ ¢ E(G). Combining this with Lemma 2.2(i)-
(i), {v,vE U (X \ {ve}) is an independent set of G with cardinality & + 2, contradicting (4.2).
Hence, N (v)NEnd(S;;) = 0. Then N(v)NX = 0, contradicting (3.2). Hence, N(v)NV(C,,) #
0.

By our claim and Lemma 3.3, N(V(P))NV(H) = for any P € Sp. Since G is connected,
there exists at least one path P € Sp such that N(V(P)) NV (C,,) # 0. By the arbitrariness
of vertex w and Claim 4, N(v)NV(C,,) = {itw}. By Lemma 3.5, {v, w, p,} U (End(S) \ {#tw })
is an independent set of G with cardinality k+ 2, contradicting (4.2). This contradiction proves
that G[V (H)] is connected.

Next, we will show that G[V (H)] is a clique. Since G[V(H)] is connected, it suffices to
consider the case when |V(H)| > 3. Since G[V(H)] is connected, by Lemma 3.3, N(v) N
(V(8)\ {ptw}) = 0 for each vertex v € V(H) \ {w}. Note that (3.2), therefore, N(v) N X =
{w} for every vertex v € V(H) \ {w}. Note that V(H) N X = {w}. Let S = V(H), then by
Lemma 3.6, G[V(H)] is a clique.

Since G is connected, by Lemma 3.3 and Claims 4-5, we have the following claim.
Claim 6 N(V(H))NV(S) = {pw} and N(V(S")) NV (C,,) = {tw}-
By Claims 2-6, w(G — A) = k + 1 and each component of G — A is a clique.
In this case, ng =n —|V(Cy, )| — |[V(H)| and kg = k — 1. Then,
m(G) = [V(Cpu, ) \ At} - [VH)[ - m(Go)
= [V(Cu) \Apw - [VH)] - [(n = [V(Cp)| = [VH)]) = 2(k = 1) +1]
Z1-1-[(n = [V(Cu,)l = V(H)|) = 2(k = 1) + 1+ (V(Cp, )| = 2) + [V(H)| = 1]

=n — 2k,

which proves Fact 1 in this case.

Case 2 p, € V(Sp), ie., ptw € V(P,,).
By (3.1) and Lemma 3.5, X = End(S) U {w} is an independent set of G with size k + 1.

Claim 7 G[V(H)] is a clique.

Proof It suffices to consider the case when |V(H)| > 2. By (3.2), N(v) N X # § for
each vertex v € V(H) \ {w}. Suppose that there exists a vertex x € N(v) N X such that
x # w. We claim that ¢ End(S¢). Otherwise suppose that © € End(S¢), say = vc. Then
[V(C)| > 2. Otherwise, zv € S¢, contradicting (I). By Lemma 3.5, {v, v} U (End(S) \ {vc})
is an independent set of G with size k + 1. By Lemma 3.3, N(w) N (V(S) \ {iw}) = 0. Hence,
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{w, v, v} U (End(S) \ {ve}) would have an independent set of cardinality k + 2, contradicting
(4.2). This contradiction shows that our claim holds.

By Lemma 3.4 and our claim, N(v) N X C {w}. Note that (3.2), therefore, N(v) N X =
{w} for each vertex v € V(H)\ {w}. Let S = V(H). Then by Lemma 3.6, G[V (H)] is a clique.

Claim 8 The following two statements hold:
(1) If puf # vr(Py, ), then GV (P, [u3t,vr(P,,)])] is a clique.
(2) If py, # v (P,,), then GV (P, [vr(P.,), u27])] is a clique.

Proof By symmetry, we may only prove that G[V (P, [u%", vr(Py.,)])] is a clique. Since
GV (P, 12T, vr(Py,)])] is connected, it suffices to consider the case when |V (P, [u2F, vr
(Pu.)])| > 3. By Lemma 3.9(1) and (3.2), N(x) N (End(S;) U {vr(P,,)}) # 0. Then by
Lemmas 3.11(1) and 3.12(1), G[V (P, [#5", vr(Pyu,)])] is a clique.

Since G is connected, by Lemma 3.3 and Claim 7, we have the following claim.

Claim 9 N(V(H))NV(S) = {pw}-
By Claim 9, p,, is the unique vertex p (say) for any w € V(H). Then denote

By = V(Puloc(Pu), u) \ Az,
By = V(Bu[p, vr(Pu)]) \ As.

Claim 10 zy ¢ F(G) for any pair of vertices x € By and y € Bs.

Proof By contradiction, suppose that there exists a pair of vertices xg € By and yg € By
such that xoyo € F(G). To obtain our contradiction, we distinguish the following three cases.

(1) Suppose that N(p~) N End(Sc) # 0, say ve € (N(p~) NEnd(S¢)), and N(ut) N
End(Sc) # 0, say ver € (N(u™) NEnd(S¢)). By Claim 8, G[V (P,[v(P,), u*"])] and G[V (P,
(12T, vr(P,)])] are cliques. Let Q' = GV (P,[vr(P.), p* yoPupn™Cu~ and Q? = G[V (P,
(oL (Py), k>~ Dy GV (Pu[p* T, vr(P)]) \ {vo}]. To obtain our contradiction, we distinguish the
following two cases:

e Suppose that N(z~)NEnd(S¢) = N(pT)NEnd(Sc) = {vc}. To obtain our contradiction,
we distinguish the following two cases:

— Either [V(C)| = 1 or [V(C)| > 1 and ptof € E(Q) is true. If yo = vg(P,), then by
Claim 8, Q' in G covers V(P,) U V(C), contradicting Lemma 3.1. If yo # vg(P,), then by
Claim 8, Q'uLw and a(yar, P,) in G cover V(P,) UV (C)U {w}, contradicting (I).

— Suppose that |[V(C)| > 1 and ptof ¢ E(G). Note that N(pt) NEnd(Se) = {vc}. If
ptor(P,) ¢ E(G), then by Lemma 3.9(1) and (3.2), N(u*) N X = {vc}. By Lemma 2.2(ii),
N@E)NX ={vc}. The set (X \ {ve}) U{pt,vE} would be an independent set of cardinality
k + 2, contradicting (4.2). But if uTvg(P,) € E(G), then Q*uTveop™pLw and C(G[V(C) \
{vc}]) in G cover V(P,) UV(C) U {w}, contradicting (I).

e Suppose that there exist two distinct vertices v € V(C) and ver € V(C') such that
ve € N(p~) NEnd(S¢) and ver € N(ut) NEnd(Sc). Then, Q% and Cpu~pup™C’ in G cover
V(P,) UV(C)UuV(C), satistying (I) but not (II), a contradiction.
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(2) Suppose that either N(u~) N End(S¢) # 0 and N(u*) N End(S¢) = 0, or N(p™) N
End(S¢) = 0 and N(u")NEnd(Sc) # 0. By symmetry, assume that N(u~)NEnd(Sc) # 0 and
N(pt)NEnd(Sc) = 0. By Lemma 3.9(1) and (3.2), f(a(,u"',Pﬂ)) = 1. By Lemma 3.11(1),
then GIV (Puloz (Py), 12 DGl (Pulir®, vn(Bu)]) \ {yo} i C i G covers V(P,) U V(C),
contradicting Lemma 3.1.

(3) Suppose that N(1~) NEnd(S¢) = 0 and N(u™) NEnd(S¢) = 0. By Lemma 3.9(1)—(3)
and (3.2), f(Q(u~,P.)) = 1 and f(3(u+, P.)) = 1. By Lemma 3.11(1)~(2), then uG[V (P,
L (P DyoGlV (Pulpt, vr(Pu)]) \ {yo}u in G covers V(P,), contradicting Lemma 3.1.

This contradiction shows that Claim 10 holds.

Claim 11 N(V(P)\ A1) N B; = 0 for any P € Sp and for any 7 € {1, 2}.

Proof By the symmetry, we may only prove that N(V(P)\ A1) N By =0 for any P € Sp.
We distinguish the following two cases to prove Claim 11.

(1) Suppose that N(x~) N End(S¢) = . By Lemma 3.9(3) and (3.2), f(a(/f,PM)) =1
By Lemmas 3.15(1)—(2) and 3.16, N(V(P)\ A1) N By = 0.

(2) Suppose that N(u~) NEnd(S¢) # 0. By Claim 8, G[V (P,[vr(P.),u*])] is a clique.
If P € Sp, then by Lemma 3.13, N(V(P)\ A1) N By = (. If P € Sp,, then by Lemma 3.16,
N((V(P)\ A1) NBy = 0.

Hence, Claim 11 is proved.

By Lemma 3.14, N(V(C))N(V(P,)\ A2) = 0 for any C € S¢. Combining this with Claims 2
and 7-11, w(G — A) = k + 1 and each component of G — A is a clique.

In this case, ng =n — [V(P,)| — |V(H)| and ko + 2 = k. We distinguish the following three
cases to prove Fact 1.

(1) Suppose that v (P,) # p~ and vg(P,) # p. By Claims 7-11, we have the following:

m(G) = [V(H)| - [V (Bulor(Pu), 1?7 DI - [V (Pl vr(P)])] - m(Go)
2111 [(n= V(P = [VH)] =2k =2) + 1+ ([V(Bu)| = 5) + (V(H)| = 1)]
=n—2k—1.

(2) Suppose that either vy, (P,) = p~ and vg(P,) # p*, or v (P,) # p~ and vg(P,) = p™.

By symmetry, we assume that x4~ = v (P,) and vg(P,) # p*. By Claims 7-11, we have the
following:

m(G) = [V(H)| - [V (Pulp", vr(Py)])| - m(Go)
21-1-[(n=[V(P)| = V(H)]) = 2(k =2) + 1+ ([V(Bu)| = 4) + (V(H)| = 1)]
=n —2k.

(3) Suppose that vy, (P,) = p~ and vg(P,) = p*. By Claims 7-11, we have the following:

m(G) = |V (H)[ - m(Go)

> 1-[(n= V(B = VH)]) = 2(k =2 —2) + 1+ (V(F,)] = 3) + ([V(H)| = 1)]
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=n-—2k+1.

Therefore, m(G) > n — 2k +1 > n — 2k > n — 2k — 1. This completes the proof of Fact 1 and
also the proof of Theorem 1.4.
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