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An Extension of the Win Theorem: Counting the

Number of Maximum Independent Sets∗

Wanpeng LEI1 Liming XIONG1 Junfeng DU1 Jun YIN2

Abstract Win proved a well-known result that the graph G of connectivity κ(G) with
α(G) ≤ κ(G) + k − 1 (k ≥ 2) has a spanning k-ended tree, i.e., a spanning tree with
at most k leaves. In this paper, the authors extended the Win theorem in case when
κ(G) = 1 to the following: Let G be a simple connected graph of order large enough such
that α(G) ≤ k + 1 (k ≥ 3) and such that the number of maximum independent sets of
cardinality k + 1 is at most n− 2k − 2. Then G has a spanning k-ended tree.
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1 Introduction

A graph is traceable if it contains a Hamilton path, and hamiltonian if it contains a Hamilton

cycle. In 1972, Chvátal and Erdős gave the following well-known sufficient condition for a

graph to be traceable. Given a graph G, let κ(G) and α(G) denote the connectivity and the

independence number of G, respectively.

Theorem 1.1 (see [6]) If G is a graph on at least 3 vertices such that α(G) ≤ κ(G) + 1,

then G is traceable.

Theorem 1.1 has been extended in many different directions (see [1–2, 7, 9–11]). For the

recent results, see [4, 8, 12].

A Hamiltonian path is a spanning tree having exactly two leaves. From this point of view,

some sufficient conditions for a graph to be traceable are modified to those for a spanning

tree having at most k leaves. A tree having at most k leaves is called a k-ended tree, and we

now turn our attention to spanning k-ended trees. It is clear that if s ≤ t then a spanning

s-ended tree is also a spanning t-ended tree. Theorem 1.1 says that every graph G satisfying

α(G) ≤ κ(G) + 1 is traceable. Las Vergnas conjectured the following theorem, which is a

generalization of Theorem 1.1. This conjecture was proved by Win, who introduced a new

proof technique called a k-ended system.
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Theorem 1.2 (see [14]) Let k ≥ 2 be an integer and G be a connected simple graph. If

α(G) ≤ κ(G) + k − 1, then G has a spanning k-ended tree.

Let m(H) denote the number of maximum independent sets of H for a subgraph H ⊆ G.

In [5], Chen et al. proved that it does not change the traceability of those graphs G with a

slight larger independence number (i.e., α(G) ≤ κ(G)+2) when we bound m(G). The complete

graph with s vertices is denoted by Ks and its complement is denoted by Ks, i.e., sK1. By

starting with a disjoint union of two graphs G and H and adding edges joining every vertex of

G to every vertex of H , one obtains the join of G and H , denote by G ∨H .

Theorem 1.3 (see [5]) Let G be a connected graph of order n ≥ 2κ2(G) such that α(G) ≤

κ(G) + 2, κ(G) = κ ≥ 1 and m(G) ≤ n− 2κ(G)− 1. Then either G is traceable or a subgraph

of Kκ ∨ ((κK1) ∪Kn−2κ).

In this paper, we extend Theorem 1.2 in the case when κ(G) = 1 by the following direction.

Theorem 1.4 Let k ≥ 3 and G be a connect graph of order n ≥ 2k+2 such that α(G) ≤ 1+k

and m(G) ≤ n− 2k − 2. Then G has a spanning k-ended tree.

2 Notation and Terminology

For graph-theoretic notation not explained in this paper, we refer the reader to [13]. Let

G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). We denote by N(v) the

neighborhood of vertex v in G. For a nonempty subset X of V (G), we write N(X) =
⋃

x∈X

N(x).

For S ⊆ V (G), we denote byG[S] the subgraph of G induced by S. LetH1 andH2 be two vertex

disjoint subgraphs of G, x, y ∈ V (G), and P is a path of G. A path xPy in G with end vertices

x and y is called a path from H1 to H2 if V (xPy)∩ V (H1) = {x} and V (xPy)∩ V (H2) = {y}.

A path from {x} to a vertex set U is also called an (x, U)-path. A subgraph F of G is called an

(x, U)-fan of width k if F is a union of (x, U)-paths P1, P2, · · · , Pk, where V (Pi)∩V (Pj) = {x}

for i 6= j. Let G0 be a subgraph of G. For the convenience, if G[{x}∪V (G0)] has a spanning path

one of whose end vertices is x, then we denote by xG0 (G0x, respectively) the spanning path

of G[{x}∪V (G0)], which starts at x (terminates at x, respectively). If G[V (G0)∪ {x, y}] has a

spanning path, then we denote by xG0y the spanning path of G[V (G0) ∪ {x, y}], which starts

at x and terminates at y. Let G1 and G2 be two subgraphs of G. If G[V (G1) ∪ {x} ∪ V (G2)]

has a spanning path, then we denote by G1xG2 the spanning path of G[V (G1)∪ {x} ∪ V (G2)].

We now introduce the concept of a k-ended system in order to prove Theorem 1.4. We

denote the set of all simple graph by G. Define a function f : G → {0, 1, 2} as follows: For each

element X of G,

f(X) =





2, if X is a path of order at least three,

1, if X is K1, K2 or a cycle,

0, otherwise.

(2.1)

Let S be a set of vertex-disjoint subgraphs X of G with f(X) ≥ 1, and

SP = {X ∈ S : f(X) = 2}, SC = {X ∈ S : f(X) = 1}.
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Then

S = SP ∪ SC , V (S) =
⋃

X∈S

V (X).

Moreover, V (SP ) and V (SC) can be defined analogously, and |S|, |SP |, |SC | denote the

number of elements in S,SP and SC , respectively. For each path P ∈ SP , let vL(P ) and vR(P )

denote the two end-vertices of P . For each element C ∈ SC , let vC be an arbitrarily chosen

vertex of C. Once we choose a vertex vC , each C corresponds the unique vertex vC . Then

define

End(SP ) =
⋃

P∈SP

{vL(P ), vR(P )}, End(SC) =
⋃

C∈SC

{vC},

End(S) = End(SP ) ∪ End(SC).

Then S is called a k-ended system if
∑

X∈S

f(X) = 2|SP |+ |SC | ≤ k. If V (S) = V (G), then S is

called a spanning k-ended system of G.

For any P ∈ SP , we orient P from vL(P ) to vR(P ), say
−→
P for the oriented path (from vR(P )

to vL(P ), say
←−
P , respectively). With a given orientation

−→
P and for every vertex x of P , we

will denote the first, second and ith predecessor (successor, respectively) of x as x−, x−− and

xi− (x+, x++, and xi+, respectively). If x = vR(P ) (x = vL(P ), respectively), we have only

predecessor of vR(P ) (successor of vL(P ), respectively). Given x and y on P , a section P (x, y)

is a path x+x2+x3+ · · ·xs+(= y−) of consecutive vertices of P , and a section P [x, y] is a path

xx+x2+ · · ·xs+(= y) of consecutive vertices of P . The section P [x, y] is trivial if x = y.

For each element C ∈ SC and |V (C)| ≥ 3, with a given orientation
−→
C and for every vertex

v of C, let v+ and v− denote the successor and the predecessor of v, respectively.

The following lemma shows why a k-ended system is important for spanning k-ended trees.

Lemma 2.1 (see [14]) Let k ≥ 3 be an integer, and G be a connected simple graph. If G

has a spanning k-ended system, then G has a spanning k-ended tree.

We call a k-ended system S of G a maximal k-ended system if there exists no k-ended

system S ′ in G such that V (S) ⊂ V (S ′). The following lemma expresses some nice properties

of k-ended systems. Note that we say that two distinct elements of S are connected by a path

in G − V (S) if there exists a path in G whose end-vertices are in S and whose inner vertices

are all contained in V (G) \ V (S), where a path may has no inner vertex.

Lemma 2.2 (see [3]) Let k ≥ 3 be an integer, and G be a connected simple graph. Suppose

that G has no spanning k-ended system, and let S be a maximal k-ended system of G such that

|SP | is maximum subject to the maximality of V (S). Then the following statements hold.

(i) No two elements of SC are connected by a path whose inner vertices are in V (G) \V (S).

(ii) No element of SC is connected to an end-vertex of an element of SP by a path whose

inner vertices are in V (G) \ V (S).

(iii) No end-vertex of an element of SP is connected to an end-vertex of another element of

SP by a path whose inner vertices are in V (G) \ V (S).
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(iv) No vertex u in V (G)\V (S) is connected to two distinct elements of SC by two internally

disjoint paths Q1 and Q2 in G− V (S) such that V (Q1) ∩ V (Q2) = {u}.

3 Preparatory Works for Proving Theorem 1.4

In the following section, for the convenience, we assume the following: Let k ≥ 3 be an

integer, and G be a simple connected graph such that α(G) = 1 + k. Suppose that G has no

spanning k-ended system, and let S be a maximal k-ended system of G such that

(I) |V (S)| is maximized.

(II) |SP | is maximized subject to (I).

(III) |V (SP )| is maximized subject to (I) and (II).

Then S is a set of subgraphs of G satisfying the hypothesis of Lemma 2.2. LetH = G−V (S).

Then |V (H)| ≥ 1.

For the convenience, we assume that x ∈ V (P ). For any P ∈ SP , let
−→
Q(x, P ) = vR(P )

if x = vR(P ), and
−→
Q(x, P ) = xvR(P ) if x+ = vR(P ). In the case when x 6= vR(P ) and

x+ 6= vR(P ), we also let
−→
Q(x, P ) = x

−→
P vR(P )x if xvR(P ) ∈ E(G). Otherwise, we do not define

−→
Q(x, P ). Let

←−
Q(x, P ) = vL(P ) if x = vL(P ), and

←−
Q(x, P ) = xvL(P ) if x− = vL(P ). In the

case when x 6= vL(P ) and x− 6= vL(P ), we also let
←−
Q(x, P ) = x

←−
P vL(P )x if xvL(P ) ∈ E(G).

Otherwise, we do not define
←−
Q(x, P ). Then, f(

−→
Q(x, P )) = 1 (f(

←−
Q(x, P )) = 1, respectively).

Let G0 be a subgraph of G, C(G0) is called a spanning subgraph of G0 such that f(C(G0)) = 1.

Lemma 3.1 G has no k′-ended system T such that V (T ) ⊇ V (S) and k′ < k.

Lemma 3.2 Suppose that there exists a path L from v ∈ V (H) to S such that V (L)∩V (S) =

{x} and x ∈ V (P ) for some P ∈ SP . Then N(x+) ∩ (End(SP ) \ {vR(P )}) = ∅.

Proof By contradiction, suppose that N(x+)∩ (End(SP ) \ {vR(P )}) 6= ∅, say y ∈ N(x+)∩

(End(SP ) \ {vR(P )}). It is easy to check that x /∈ {vL(P ), vR(P )}. Let N(x) ∩ V (L) = {v′}.

Then, we distinguish the following two cases to obtain a contradiction:

(1) Suppose that y ∈ End(SP ) \ {vL(P ), vR(P )}. Without loss of generality, assume that

y = vL(P
′) for P ′ ∈ SP \ {P}. Then vR(P )

←−
P x+vL(P

′)
−→
P ′vR(P

′) and vL(P )
−→
P xv′ in G cover

V (P ′) ∪ V (P ) ∪ {v′}, contradicting (I).

(2) Suppose that y = vL(P ). Then v′x
←−
P vL(P )x+

−→
P vR(P ) in G covers V (P )∪ {v′}, contra-

dicting (I).

This contradiction proves Lemma 3.2.

Lemma 3.3 For any v ∈ V (H), G has no (v, V (S))-fan of width 2.

Proof By contradiction, suppose that there exists a (v, V (S))-fan {L1, L2} of width 2 for

some v ∈ V (H). Let V (Li)∩V (S) = {ui} for i ∈ {1, 2}. Denote U = {u1, u2}. If U∩V (SC) 6= ∅,

then there exists at least one vertex y ∈ U ∩ V (SC). Without loss of generality, we assume

that y = u1. By Lemma 2.2 (iv), |{C : C ∈ SC and U ∩ V (C) 6= ∅}| = 1, say C1 ∈ SC and

U ∩ V (C1) 6= ∅. For each isolated vertex {x}(say) of SC , N(x) ∩ (V (G) \ V (S)) = ∅. Thus no

isolated vertex of SC is adjacent to V (G) \ V (S). Then |V (C1)| ≥ 2. If |V (C1)| = 2, then we
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assume that C1 contains a vertex of U , say vC1
. Let V (C1) = {vC1

, v′C1
}, where vC1

∈ End(SC).

Obviously v′C1
is not contained in U . Denote

u∗
1 =

{
u+

1 , if either U ∩ V (SC) 6= ∅ and |V (C1)| > 2, or U ∩ V (SC) = ∅,

v′C1
, if U ∩ V (SC) 6= ∅ and |V (C1)| = 2

and U+ = {u∗
1, u

+

2 }. Let Y = End(S) ∪ U+ ∪ {v}. By Lemma 2.2, End(S) is an independent

set of G. It is easy to check that ui /∈ End(SP ) for i ∈ {1, 2}.

We distinguish the following three cases to prove that Y includes an independent set of G

with size at least k + 2.

Case 1 |U ∩ V (SP )| = |U ∩ V (SC)| = 1.

Suppose that u1 ∈ V (C1) and u2 ∈ V (P ) for some P ∈ SP . By Lemma 2.2(iv), {u∗
1} ∪

(End(S) \ {vC1
}) is an independent set of G. Let Q1 = u∗

1

←−
C1u1L1vL2u2, Q2 = Cu+

2

−→
P vR(P )

and Q3 =
−→
Q(u+

2 , P ). Then, we distinguish the following four cases to prove that Y \ {vC1
} is

an independent set of G with size k + 2:

(1) Suppose that u+
2 = vR(P ). Then Q1 and vR(P ) cover V (C1)∪V (P )∪{v}, contradicting

(I).

(2) Suppose that N(u+
2 ) ∩ (End(SC) \ {vC1

}) 6= ∅, say vC ∈ N(u+
2 ) ∩ (End(SC) \ {vC1

}).

Then Q1 and Q2 cover V (C1) ∪ V (C) ∪ V (P ) ∪ {v}, contradicting (I).

(3) Suppose that N(u+

2 ) ∩ End(SP ) 6= ∅. By Lemma 3.2, N(u+

2 ) ∩ End(SP ) = {vR(P )}.

Then Q1 and Q3 cover V (C1) ∪ V (P ) ∪ {v}, contradicting (I).

(4) Suppose that u∗
1u

+

2 ∈ E(G). Then vR(P )
←−
P u+

2 Q1 covers V (C1) ∪ V (P ) ∪ {v}, contra-

dicting Lemma 3.1.

These contradictions show that Y \ {vC1
} is an independent set of G with size k + 2.

Case 2 U ⊆ V (SC).

If u+

1 ∈ V (C1) and u+

2 ∈ V (C1) are adjacent in G, then vL1u1

←−
C1u

+

2 u
+

1

−→
C1u2L2v covers

V (C1) ∪ {v}, contradicting (I). This contradiction shows that U+ is an independent set of G.

Combining this with Lemma 2.2(iv), Y \ {vC1
} is an independent set of G with size k + 2.

Case 3 U ∩ V (SC) = ∅, i.e., U ⊆ V (SP ).

Suppose first that End(S) ∩ U+ = ∅. Then |Y | = k + 3. By the assumption of this

case, End(S) ∪ {v} is an independent set of G. Let Q4 = vL(P )
−→
P u1L1vL2u2 and Q5 =

Q4u
−
2

←−
P ′vL(P

′). We shall show the following two claims.

Claim 1 G[Y ] is triangle-free.

Proof We shall prove that U+ is an independent set of G.

If u+

1 ∈ V (P ) and u+

2 ∈ V (P ), where P ∈ SP , are adjacent in G, without loss of generality,

assume P [vL(P ), u1] ⊂ P [vL(P ), u2], then Q4u
−
2

←−
P u+

1 u
+
2

−→
P vR(P ) covers V (P )∪{v}, contradic-

ting (I). If u+

1 ∈ V (P ) and u+

2 ∈ V (P ′), where P, P ′ ∈ SP and P 6= P ′, are adjacent in G, then

Q5, vR(P )
←−
P u+

1 u
+
2

−→
P ′vR(P

′) cover V (P ) ∪ V (P ′) ∪ {v}, contradicting (I). It is shown that U+

is an independent set of G. Then (U+,End(S) ∪ {v}) is a bipartition of the G[Y ]. Therefore,

G[Y ] is triangle-free.
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Claim 2 Y does not contain four distinct vertices y1, y2, y3, y4 such that {y1y2, y3y4} ⊆

E(G).

Proof By contradiction, suppose that Y contains four distinct vertices y1, y2, y3, y4 such

that {y1y2, y3y4} ⊆ E(G). Without loss of generality, assume y2 = u+

1 ∈ V (P ), y4 = u+

2 ∈

V (P ′), and if they are in the same path P (say), then P [vL(P ), u1] ⊂ P [vL(P ), u2](say). Then,

we distinguish the following three cases to obtain a contradiction.

(1) Suppose that y1 = vC ∈ End(SC), y3 = vC′ ∈ End(SC) and vC 6= vC′ . If P 6= P ′, then

Q5, Cu+

1

−→
P vR(P ) and C′u+

2

−→
P ′vR(P

′) cover V (P ) ∪ V (P ′) ∪ V (C) ∪ V (C′) ∪ {v}, contradicting

(I). If P = P ′, then Q4u
−
2

←−
P u+

1 C, C′u+
2

−→
P vR(P ) cover V (P )∪V (C)∪V (C′)∪{v}, contradicting

(I).

(2) Suppose that y1 = vC ∈ End(SC) and y3 = vR(P
′). If P 6= P ′, then Q5, Cu+

1

−→
P vR(P )

and
−→
Q(u+

2 , P
′) cover V (P )∪V (P ′)∪V (C)∪{v}, contradicting (I). If P = P ′, then Q4u

−
2

←−
P u+

1 C,

Q3 cover V (P ) ∪ V (C) ∪ {v}, contradicting (I).

(3) Suppose that y1 = vR(P ) and y3 = vR(P
′), where P 6= P ′. Then Q5,

−→
Q(u+

1 , P ) and
−→
Q(u+

2 , P
′) cover V (P ) ∪ V (P ′) ∪ {v}, contradicting (I).

This contradiction proves Claim 2.

By Claims 1–2, Y includes an independent set of G with size at least k + 2.

Next, suppose that End(S)∩U+ 6= ∅. Then, there exists a path P ∈ SP such that vR(P ) =

u+

i for i ∈ {1, 2}. Without loss of generality, say vR(P ) = u+

1 . If there exists another path

Q ∈ SP \ {P} such that vR(Q) = u+
2 , then Q5, vR(P ), vR(Q) cover V (P ) ∪ V (Q) ∪ {v},

contradicting (I). Thus U+ ∩ End(S) = {vR(P )} for some P ∈ SP , and |Y | = k + 2. we will

show that Y is an independent set of G with size k + 2.

Assume that vC ∈ End(SC) and u+

2 ∈ V (P ′) are adjacent in G. If P 6= P ′, then Q5,

Cu+
2

−→
P ′vR(P

′), vR(P ) cover V (P ) ∪ V (P ′) ∪ V (C) ∪ {v}, contradicting (I). If P = P ′, then

vL(P )
−→
P u2L2vL1u1

←−
P u+

2 C, vR(P ) cover V (P ) ∪ V (C) ∪ {v}, contradicting (I).

Assume that vR(P
′) and u+

2 ∈ V (P ′) are adjacent in G, where P 6= P ′. Then Q5,
−→
Q(u+

2 , P
′),

vR(P ) cover V (P ) ∪ V (P ′) ∪ {v}, contradicting (I).

These contradictions shows that Y is an independent set of G with size k + 2.

In all cases, Y includes an independent set of G with size at least k + 2, contradicting

α(G) = k + 1. This contradiction shows that Lemma 3.3 holds.

Let w be a vertex in V (G)\V (S). Since G is connected, by Lemma 3.3, there exists exactly

one (w, V (S))-path L such that V (L) ∩ V (S) = {µw}. Then w is connected to µw by the path

L.

Lemma 3.4 N(v) ∩ End(SP ) = ∅ for any v ∈ V (H).

Cµw
always means the vertex µw ∈ V (Cµw

) where Cµw
∈ SC . Then |V (Cµw

)| ≥ 2, since no

isolated vertex of SC is adjacent to V (G)\V (S). If |V (Cµw
)| = 2, say V (Cµw

) = {vCµw
, v′Cµw

},

without loss of generality, then we assume that µw = vCµw
. It means that vCµw

∈ End(SC).
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Denote

µ∗
w =

{
µ+
w , if |V (Cµw

)| ≥ 3 and µw ∈ V (Cµw
),

v′Cµw
, if |V (Cµw

)| = 2 and V (Cµw
) = {vCµw

, v′Cµw
}.

Pµw
always means that the vertex µw ∈ V (Pµw

), where Pµw
∈ SP . Let

X =

{
(End(S) ∪ {µ∗

w, w}) \ {vCµw
}, if µw ∈ V (SC),

End(S) ∪ {w}, if µw ∈ V (SP ).
(3.1)

Lemma 3.5 X is an independent set of G with size k + 1.

Proof By Lemma 2.2, End(S) is an independent set of G. Since µw ∈ V (SP ) or V (SC),

by Lemmas 2.2 and 3.4, X is an independent set of G with size k + 1.

By Lemma 3.5, we have

N(v) ∩X 6= ∅ for any v ∈ V (G) \X. (3.2)

Otherwise, there exists a vertex v0 ∈ V (G) \ X such that X ∪ {v0} is an independent set of

cardinality k + 2, contradicting α(G) = k + 1.

Lemma 3.6 Let S ⊂ V (G) such that S∩X has exactly one vertex, say z, i.e, S∩X = {z}.

If N(x) ∩X = {z} for any x ∈ S \ {z}, then G[S] is a clique.

Proof By contradiction, suppose that x1x2 /∈ E(G) for some pair of vertices x1, x2 ∈ S

with x1 6= x2 , then (X \{z)})∪{x1, x2} is an independent set of G with size k+2, contradicting

α(G) = 1 + k. Hence, G[S] is a clique.

Denote

S ′ = S \ {Cµw
, Pµw

}, S ′C = S ′ ∩ SC , S ′P = S ′ ∩ SP .

Lemma 3.7 G[V (C)] is a clique for each C ∈ S ′C .

Proof Since G[V (C)] is connected, it suffices to consider the case when |V (C)| ≥ 3.

Note that V (C) ∩ X = {vC}. By Lemma 2.2(i)–(ii), N(x) ∩ (X \ {vC}) = ∅ for each vertex

x ∈ V (C) \ {vC}. Note that N(x)∩X 6= ∅. Therefore N(x)∩X = {vC}. Let S = V (C). Then,

by Lemma 3.6, G[V (C)] is a clique.

Lemma 3.8 For any P ∈ SP , there is no pair of adjacent vertices x, y in P such that

N(x) ∩ V (S ′C) 6= ∅ and N(y) ∩ V (S ′C) 6= ∅.

Proof By contradiction, suppose that there exists a pair of vertices x0, y0 in P ∈ SP

such that x0y0 ∈ E(P ), N(x0) ∩ V (S ′C) 6= ∅ and N(y0) ∩ V (S ′C) 6= ∅. By Lemma 2.2(i)–

(ii), x0 /∈ {vL(P ), vR(P )} and y0 /∈ {vL(P ), vR(P )}. Without loss of generality, assume that

y0 = x+

0 . Suppose that N(x0) ∩ V (S ′C) = {x
′} and N(y0) ∩ V (S ′C) = {y

′}. We distinguish the

following two cases to obtain a contradiction.

(1) Suppose that {x′, y′} ⊆ V (C) with C ∈ S ′C . If either |V (C)| = 1 or x′ 6= y′, then

by Lemma 3.7, vL(P )
−→
P x0Cx+

0

−→
P vR(P ) in G covers V (P ) ∪ V (C), contradicting Lemma 3.1.
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If x′ = y′ and |V (C)| > 1, then vL(P )
−→
P x0x

′x+

0

−→
P vR(P ) and C(G[V (C) \ {x′}]) in G cover

V (P ) ∪ V (C), satisfying (I),(II) but not (III), a contradiction.

(2) Suppose that x′ ∈ V (C) and y′ ∈ V (C′) such that {C,C′} ⊆ S ′C and V (C)∩V (C′) = ∅.

Then, Cx0

←−
P vL(P ) and C′y0

−→
P vR(P ) in G cover V (P ) ∪ V (C) ∪ V (C′), satisfying (I) but not

(II), a contradiction.

This contradiction proves Lemma 3.8.

Denote

TP,1 := {x ∈ V (P ) : P ∈ SP , xvL(P ) ∈ E(G), x+vL(P ) /∈ E(G), x+ 6= µw},

TP,2 := {x ∈ V (P ) : P ∈ SP , N(x) ∩ V (S ′C) 6= ∅, x+ 6= µw}.

Lemma 3.9 Let P ∈ SP . Then the following three statements hold.

(1) If x ∈ TP,1∪TP,2∪{µw}, then either N(x+)∩X ⊆ (End(S ′C)∪{vR(P )}) or x+ = vR(P ).

(2) If x ∈ TP,2, then either N(x+) ∩X = {vR(P )} or x+ = vR(P ).

(3) If x = µw, then either N(x−) ∩X ⊆ (End(S ′C) ∪ {vL(P )}) or x− = vL(P ).

Proof First, we will prove Lemma 3.9(1). We denote set End(S ′C) ∪ {vR(P )} by B1. If

x+ 6= vR(P ), then we will show that N(x+) ∩X ⊆ B1. Since B1 ⊆ X , we denote X − B1 by

B2. By the assumption of this case, w /∈ N(x+) ∩X .

Suppose that x = µw. Then by Lemma 3.2, N(x+)∩ (End(SP ) \ {vR(P )}) = ∅. Combining

this with (3.1), N(x+)∩B2 = ∅. Hence, N(x+)∩X ⊆ B1. By symmetry, Lemma 3.9(3) holds.

Suppose that x ∈ TP,1 ∪ TP,2. Then, suppose that there exists a vertex x′ ∈ N(x+) ∩ B2.

We distinguish the following three cases to obtain a contradiction by the definition of X .

(1) Suppose that x′ ∈ End(SP ) \ {vL(P ), vR(P )}. Without loss of generality, assume that

x′ = vL(P
′) for P ′ ∈ SP \ {P}. If x ∈ TP,1, then vR(P )

←−
P x+vL(P

′)
−→
P ′vR(P

′) and
←−
Q(x, P ) in

G cover V (P ′) ∪ V (P ), contradicting Lemma 3.1. If x ∈ TP,2, say vC ∈ N(x) ∩ V (S ′C), then

vR(P )
←−
P x+vL(P

′)
−→
P ′vR(P

′) and Cx
←−
P vL(P ) in G cover V (P ′) ∪ V (P ) ∪ V (C), contradicting

Lemma 3.1.

(2) Suppose that x′ = vL(P ). If x ∈ TP,2, say vC ∈ N(x) ∩ V (S ′C), then Cx
←−
P vL(P )x+

−→
P

vR(P ) in G covers V (P ) ∪ V (C), contradicting Lemma 3.1.

(3) Suppose that x′ = µ∗
w. Then, by Lemma 3.5 and (3.1), µw ∈ V (SC). If x ∈ TP,1,

then wLµwCµw
x+
−→
P vR(P ) and

←−
Q(x, P ) in G cover V (P ) ∪ V (Cµw

) ∪ {w}, contradicting (I).

If x ∈ TP,2, say vC ∈ N(x) ∩ V (S ′C), then wLµwCµw
x+
−→
P vR(P ) and Cx

←−
P vL(P ) in G cover

V (P ) ∪ V (C) ∪ V (Cµw
) ∪ {w}, contradicting (I).

This contradiction proves that N(x+)∩B2 = ∅. Hence, N(x+)∩X ⊆ B1. Lemma 3.9(1) is

proved.

If x ∈ TP,2 then by Lemma 3.9(1), N(x+) ∩X ⊆ (End(S ′C) ∪ {vR(P )}) or x+ = vR(P ). By

Lemma 3.8, N(x+) ∩ V (S ′C) = ∅. Note that (3.2). Therefore Lemma 3.9(2) holds.

Lemma 3.10 Let P ∈ SP and y ∈ V (P ) with yvR(P ) ∈ E(G), |V (P [y, vR(P )])| ≥ 3 and

µw /∈ V (P [y, vR(P )]). Then it holds that N(y+) ∩X = {vR(P )}.
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Proof By contradiction, suppose that there exists at least one vertex x ∈ N(y+)∩X such

that x 6= vR(P ). By the definition of X , we distinguish the following four cases to obtain a

contradiction.

(1) Suppose that x ∈ End(SC), say x = vC . Then Cy+
−→
P vR(P )y

←−
P vL(P ) in G covers

V (P ) ∪ V (C), contradicting Lemma 3.1.

(2) Suppose that x = vL(P ) ∈ End(SP ). Then vR(P )
←−
P y+vL(P )

−→
P yvR(P ) ∈ SC in G covers

V (P ), contradicting Lemma 3.1.

(3) Suppose that x ∈ End(SP )\{vL(P ), vR(P )}. Without loss of generality, assume that x =

vL(P
′) for P ′ ∈ SP \{P}. Then vR(P

′)
←−
P ′vL(P

′)y+
−→
P vR(P )y

←−
P vL(P ) in G covers V (P )∪V (P ′),

contradicting Lemma 3.1.

(4) Suppose that x = µ∗
w. Then by Lemma 3.5 and (3.1), µw ∈ V (SC). Then Cµw

y+
−→
P

vR(P )y
←−
P vL(P ) in G covers V (P ) ∪ V (Cµw

), contradicting Lemma 3.1.

This contradiction shows that N(y+) ∩X ⊆ {vR(P )}. By (3.2), N(y+) ∩X = {vR(P )}.

Lemma 3.11 The following two statements hold.

(1) Let P ∈ SP and y ∈ V (P ) with yvR(P ) ∈ E(G) and µw /∈ V (P [y, vR(P )]). Then

it holds that G[V (P [y+, vR(P )])] is a clique. Furthermore, if N(y) ∩ X = {vR(P )}, then

G[V (P [y, vR(P )])] is a clique.

(2) Let P ∈ SP and x ∈ V (P ) with xvL(P ) ∈ E(G) and µw /∈ V (P [vL(P ), x]). Then

it holds that G[V (P [vL(P ), x−])] is a clique. Furthermore, if N(x) ∩ X = {vL(P )}, then

G[V (P [vL(P ), x])] is a clique.

Proof By symmetry, we may only prove that (1) is true. Since G[V (P [y+, vR(P )])] is con-

nected, it suffices to consider the case when |V (P [y+, vR(P )])| ≥ 3. Note that V (P [y+, vR(P )])∩

X = {vR(P )}. Let S = V (P [y+, vR(P )]). Then by Lemma 3.6, it suffices to prove the following

statement

N(y′) ∩X = {vR(P )} for each vertex y′ ∈ V (P [y+, vR(P )]). (3.3)

We repeatedly apply Lemma 3.10 to obtain (3.3).

Furthermore, we will prove that if N(y) ∩ X = {vR(P )}, then G[V (P [y, vR(P )])] is a

clique. Since G[V (P [y, vR(P )])] is connected, it suffices to consider the case when |V (P [y,

vR(P )])| ≥ 3. Note that N(y)∩X = {vR(P )}. Combining this with (3.3), we have N(x)∩X =

{vR(P )} for each vertex x ∈ V (P [y, vR(P ))). Let S = V (P [y, vR(P )]). Then by Lemma 3.6,

G[V (P [y, vR(P )])] is a clique.

Lemma 3.12 Let P ∈ SP and x ∈ V (P )\{vL(P ), vR(P )} with N(x)∩End(S ′C) 6= ∅. Then

the following two statements hold.

(1) If µw /∈ V (P [x+, vR(P )]), then G[V (P [x+, vR(P )])] is a clique.

(2) If µw /∈ V (P [vL(P ), x−]), then G[V (P [vL(P ), x−])] is a clique.

Proof By symmetry, we may only prove that G[V (P [x+, vR(P )])] is a clique. Since G[V (P

[x+, vR(P )])] is connected, it suffices to consider the case when |V (P [x+, vR(P )])| ≥ 3. By

Lemma 3.9(2), N(x+) ∩X = {vR(P )}. By Lemma 3.11(1), G[V (P [x+, vR(P )])] is a clique.
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Lemma 3.13 For any pair of paths P, P ′ ∈ SP , suppose that there exist two vertices x ∈

V (P ) \ {vL(P ), vR(P )} and y ∈ V (P ′) \ {vL(P ′), vR(P
′)} such that N(x) ∩ End(S ′C) 6= ∅,

N(y) ∩ End(S ′C) 6= ∅ and µw /∈ (V (P ) \ {x}) ∪ (V (P ′) \ {y}). Then any pair of vertices in

V (P ) \ {x} and V (P ′) \ {y} respectively are not adjacent.

Proof By symmetry, we only prove that any pair of vertices in V (P [x+, vR(P )]) and

V (P ′[y+, vR(P
′)]) are not adjacent.

By contradiction, suppose that there exists a pair of vertices x0 ∈ V (P [x+, vR(P )]), y0 ∈

V (P ′[y+, vR(P
′)]) such that x0y0 ∈ E(G). By Lemma 3.12(1), both G[V (P [x+, vR(P )])] and

G[V (P ′[y+, vR(P
′)])] are cliques. Let Q6 = G[V (P ′[y+, vR(P

′)])]x0G[V (P [x+, vR(P )] \ {x0})]

and Q7 = vL(P )
−→
P xvCy

←−
P ′vL(P

′). To obtain our contradiction, we consider the following two

cases:

(1) Suppose that N(x) ∩ End(S ′C) = N(y) ∩ End(S ′C) = {vC}. If |V (C)| = 1, then by

Lemma 3.12(1), Q6 and Q7 in G cover V (P ) ∪ V (P ′) ∪ V (C), contradicting Lemma 3.1. If

|V (C)| > 1, then by Lemmas 3.7 and 3.12(1), Q6, Q7 and C(G[V (C) \ {vC}]) in G cover

V (P ) ∪ V (P ′) ∪ V (C), satisfying (I),(II) but not (III), a contradiction.

(2) Suppose that there exist two distinct vertices vC ∈ V (C) and vC′ ∈ V (C′) such that

vC ∈ N(x) ∩ End(SC) and vC′ ∈ N(y) ∩ End(SC). By Lemma 3.12(1), Q6, Cx
←−
P vL(P ) and

C′y
←−
P ′vL(P

′) in G cover V (P )∪V (P ′)∪V (C)∪V (C′), satisfying (I) but not (II), a contradiction.

This contradiction shows that any pair of vertices in V (P [x+, vR(P )]) and V (P ′[y+, vR(P
′)])

are not adjacent.

Lemma 3.14 Let P ∈ SP and x ∈ V (P ) \ {vL(P ), vR(P )}. Then the following two state-

ments hold.

(1) Suppose that µw /∈ V (P [vL(P ), x]) and N(x) ∩ (End(S ′C) ∪ {vL(P )}) 6= ∅. Then

N(V (C)) ∩ V (P [vL(P ), x)) = ∅ for any C ∈ SC .

(2) Suppose that µw /∈ V (P [x, vR(P )]) and N(x) ∩ (End(S ′C) ∪ {vR(P )}) 6= ∅. Then

N(V (C)) ∩ V (P (x, vR(P )]) = ∅ for any C ∈ SC .

Proof By symmetry, we may only prove that (1) holds. By contradiction, suppose that

there exists some element C0 ∈ SC such that N(C0)∩V (P [vL(P ), x)) 6= ∅, say z ∈ N(V (C0))∩

V (P [vL(P ), x)). By Lemma 2.2(ii), z /∈ End(SP ). If xvL(P ) ∈ E(G) or N(x) ∩ End(SC) 6= ∅,

then by Lemmas 3.11(2) and 3.12(2), G[V (P [vL(P ), x−])] is a clique. Suppose that z = x−. By

Lemma 3.8, N(x)∩V (S ′C) = ∅. Then, xvL(P ) ∈ E(G). Hence, if z ∈ V (P (vL(P ), x−]), then by

Lemmas 3.11(2) and 3.12(2), C0z
←−
P vL(P )z+

−→
P vR(P ) in G covers V (P ) ∪ V (C0), contradicting

Lemma 3.1. This contradiction proves Lemma 3.14(1).

For any path P ∈ SP , we know vL(P )vR(P ) /∈ E(G) by Lemma 3.1. We may take the

vertex xP of V (P ) such that V (P [vL(P ), x−
P ]) ⊆ N(vL(P )) and xP /∈ N(vL(P )).

Lemma 3.15 For any P ∈ S ′P , the following two statements hold.

(1) Suppose that N(V (S ′C)) ∩ V (P ) = ∅. Then f(P [vL(P ), x−
P ]vL(P )) = 1 and f(P [xP ,

vR(P )]xP ) = 1.
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(2) Suppose that N(V (S ′C)) ∩ V (P ) 6= ∅. Then N(V (S ′C)) ∩ V (P ) = {x} ⊆ {x−
P , xP },

f(P [vL(P ), x−
P ]vL(P )) = 1 and f(P [x+, vR(P )]x+) = 1.

(3) f(P [x+

P , vR(P )]x+

P ) = 1.

Proof Since P ∈ S ′P , µw /∈ V (P ). By Lemma 3.14(1), N(V (C)) ∩ V (P [vL(P ), x−
P )) = ∅

for any C ∈ S ′C . We distinguish the following two cases to prove Lemma 3.15(1)–(2).

(1) Suppose that N(V (S ′C)) ∩ V (P ) = ∅. If xP = vR(P ), then f(P [vL(P ), x−
P ]vL(P )) =

1 and f(P [xP , vR(P )]xP ) = 1. If xP 6= vR(P ), then by Lemma 3.9(1), N(xP ) ∩ X ⊆

(End(S ′C) ∪ {vR(P )}). By (3.2), N(xP ) ∩ X = {vR(P )}. So f(P [vL(P ), x−
P ]vL(P )) = 1 and

f(P [xP , vR(P )]xP ) = 1. Lemma 3.15(1) holds.

(2) Suppose that N(V (S ′C)) ∩ V (P ) 6= ∅. If xP = vR(P ), then by Lemmas 2.2(ii) and

3.14, N(V (S ′C)) ∩ V (P ) = {x−
P }, f(P [vL(P ), x−

P ]vL(P )) = 1 and f(P [xP , vR(P )]xP ) = 1. If

xP 6= vR(P ), then we distinguish the following two cases to prove Lemma 3.15(2).

• Suppose that N(xP ) ∩ V (S ′C) 6= ∅. By Lemma 3.9(2), f(P [x+

P , vR(P )]xP ) = 1. By

Lemmas 3.8 and 3.14, N(S ′C) ∩ V (P ) = {xP }.

• Suppose that N(xP ) ∩ V (S ′C) = ∅. Then by Lemma 3.9(1) and (3.2), f(P [xP ,

vR(P ) ]xP ) = 1. By the assumption of this case and Lemma 3.14, N(V (S ′C)) ∩ V (P ) = {x−
P }.

Lemma 3.15(2) holds.

Next, we will prove Lemma 3.15(3). By Lemma 3.15(1)–(2), f(P [xP , vR(P )]xP ) = 1

or f(P [x+

P , vR(P )]x+

P ) = 1. If f(P [x+

P , vR(P )]x+

P ) = 1, then we are done. Otherwise,

f(P [x+

P , vR(P )] 6= 1. Then we assume that f(P [xP , vR(P )]xP ) = 1. Since G[V (P [xP , vR(P )])]

is connected, it suffices to consider the case when |V (P [xP , vR(P )])| ≥ 2. By Lemma 3.11(1),

G[V (P [xP , vR(P )])] is a clique. Then f(P [x+

P , vR(P )]x+

P ) = 1. Lemma 3.15(3) holds.

For any P ∈ S ′P , by Lemma 3.15, f(P [vL(P ), x−
P ]vL(P )) = 1 and f(P [x+

P , vR(P )] x+

P ) = 1.

S ′P be partitioned into classes S ′P = S ′P1
∪ S ′P2

as follows:

(1) S ′P1
= {P : P ∈ S ′P , N(V (S ′C)) ∩ V (P ) = {xP }};

(2) S ′P2
= {P : P ∈ S ′P , N(V (S ′C)) ∩ V (P ) 6= {xP }}.

For any path P ∈ S ′P2
, if N(V (S ′C))∩V (P ) = ∅, then by Lemma 3.15(1), f(P [xP , vR(P )]xP )

= 1; if N(V (S ′C)) ∩ V (P ) 6= ∅, then by Lemma 3.15(2), N(V (S ′C)) ∩ V (P ) = {x} ⊆ {x−
P , xP }.

Note that N(V (S ′C)) ∩ V (P ) 6= {xP }. Then N(V (S ′C)) ∩ V (P ) = {x−
P }. By Lemma 3.9(2),

f(P [xP , vR(P )]xP ) = 1. Hence, for any P ∈ S ′P2
, f(P [xP , vR(P )]xP ) = 1 and N(V (S ′C)) ∩

V (P ) ⊆ {x−
P } (i.e., N(V (S ′C)) ∩ V (P ) = ∅ or N(V (S ′C)) ∩ V (P ) = {x−

P }).

For any P ∈ SP , P {ve,x} is a subpath of P between x and ve ∈ {vL(P ), vR(P )}. Denote

x⋆ =

{
x+, if ve = vL(P ) for x ∈ V (P ),

x−, if ve = vR(P ) for x ∈ V (P ).

Lemma 3.16 For any pair of {P, P ′} ⊆ SP , suppose there exists a pair of subpath-

s P {ve,x} ⊆ P and P ′{v′

e,y} ⊆ P ′. If xve ∈ E(G), yv′e ∈ E(G) and µw /∈ (V (P {ve,x}) ∪

V (P ′{v′

e,y})). Then any pair of vertices in V (P {ve,x}) ∪ {x⋆} and V (P ′{v′

e,y}) \ {y} respectively

are not adjacent.
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Proof By symmetry, we only prove that any pair of vertices in V (P [vL(P ), x+]) and

V (P ′(y, vR(P
′)]) are not adjacent.

By contradiction, suppose that there exists a pair of vertices x0 ∈ V (P [vL(P ), x+]) and y0 ∈

V (P ′(y, vR(P
′)]) with x0y0 ∈ E(G). By Lemma 3.11(1)–(2), we may obtain that G[V (P [vL(P ),

x−])] and G[V (P ′[y+, vR(P
′)])] are cliques. To obtain our contradiction, we distinguish the

following two cases:

(1) Suppose that x0 = vL(P ). Then by Lemma 3.11(1), vL(P
′)
−→
P ′y−G[V (P ′[y, vR(P

′)])]x0
−→
P vR(P ) in G covers V (P ) ∪ V (P ′), contradicting Lemma 3.1.

(2) Suppose that x0 ∈ V (P (vL(P ), x+]). Then by Lemma 3.11(1), we may obtain that
←−
Q(x−

0 , P ) and vL(P
′)
−→
P ′y−G[V (P ′[y, vR(P

′)])]x0

−→
P vR(P ) in G cover V (P ) ∪ V (P ′), contradic-

ting Lemma 3.1.

This contradiction proves Lemma 3.16.

4 Proof of Theorem 1.4

In this section, we present the proof of Theorem 1.4.

Let k ≥ 3 and G be a graph of order n > 2k+2 such that α(G) ≤ k+1 andm(G) ≤ n−2k−2.

We assume on the contrary that G has no spanning k-ended tree. The assumption that G has

no spanning k-ended tree and Theorem 1.2 imply the following two equations

κ(G) = 1 (4.1)

and

α(G) = k + 1. (4.2)

Then G have no spanning k-ended system by Lemma 2.1. Choose a maximal k-ended system

S of G satisfying (I)–(III). Let H = G− V (S). Then |V (H)| ≥ 1.

Fact 1 m(G) ≥ n− 2k − 1.

Proof Denote G0 = G[V (S ′)], |V (G0)| = n0 and |End(S ′P ) ∪ End(S ′C)| = k0. Let X0 =

X ∩ V (G0) = End(S ′P ) ∪ End(S ′C),

x̂P =

{
x+

P , if P ∈ S ′P1
,

xP , if P ∈ S ′P2
.

Claim 1 Let P ∈ S ′P and y ∈ NG0
(vR(P )). Then the following two statements hold:

(1) Suppose that y = x̂P . Then NG0
(y′) ⊆ V (P [y−, vR(P )]) for any y′ ∈ V (P (y, vR(P )]),

NG0
(x′) ⊆ V (P [vL(P ), xP ]) for any x′ ∈ V (P [vL(P ), x−

P )).

(2) Suppose that y = x̂−
P . If P ∈ S ′P

1

, then NG0
(y′) ⊆ V (P [y−, vR(P )]) for any y′ ∈

V (P (y, vR(P )]), NG0
(x′) ⊆ V (P [vL(P ), xP ]) for any x′ ∈ V (P [vL(P ), x−

P )). If P ∈ S ′P
2

, then

NG0
(y′) ⊆ V (P [y, vR(P )]) for any y′ ∈ V (P (y, vR(P )]), NG0

(x′) ⊆ V (P [vL(P ), x−
P ]) for any

x′ ∈ V (P [vL(P ), x−
P )).
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Proof By symmetry, we only consider y′’s neighbourhood. Suppose that y ∈ {x̂P , x̂
−
P }.

Taking any z ∈ NG0
(y′), we know z /∈ V (S ′C) by Lemma 3.15(1)–(2). By Lemmas 3.15(1)–

(2) and 3.16, z /∈ V (P ′) for any P ′ ∈ S ′P \ {P}. Hence, z ∈ V (P ). We claim that z /∈

V (P [vL(P ), x−
P )). Suppose otherwise that z ∈ V (P [vL(P ), x−

P )). Then by Lemma 3.11(1)–

(2), y′G[V (P [vL(P ), x−
P ])]xP

−→
P y′−vR(P )

←−
P y′ in G covers V (P ), contradicting Lemma 3.1. This

contradiction shows that our claim hold. By our claim, if y ∈ {x̂P , x̂
−
P }, then

z ∈ V (P [x−
P , vR(P )]). (4.3)

By (4.3), Claim 1(2) holds. Suppose that y = x̂P . If P ∈ S ′P1
and z = x−

P . Then there exists at

least one vertex vC ∈ N(x)∩V (S ′C), by Lemma 3.11(2), CxP

−→
P y′−vR(P )

←−
P y′z

←−
P vL(P ) in G cov-

ers V (P )∪V (C), contradicting Lemma 3.1. This contradiction shows that z ∈ V (P [y−, vR(P )]).

Claim 1(1) is proved.

Denote S ′P21
= {P : P ∈ S ′P2

and xP 6= vR(P )}, S ′P22
= {P : P ∈ S ′P2

and xP = vR(P )}.

Then S ′P2
can be partitioned into two subsets S ′P21

and S ′P22
. Define AP = {x−

P | P ∈ S
′
P1
∪

S ′P21
} ∪ {xP | P ∈ S ′P1

∪ S ′P21
} ∪ {x−

P | P ∈ S
′
P22
}, A1 =

⋃
P∈S′

P

AP and

A2 =





{µw}, if either µw ∈ V (SC) or µw ∈ V (SP ), vL(Pµw
) = µ−

w , vR(Pµw
) = µ+

w ,

{µ−
w , µw, µ

+
w}, if µw ∈ V (SP ), vL(Pµw

) 6= µ−
w and vR(Pµw

) 6= µ+
w ,

{µw, µ
+
w}, if µw ∈ V (SP ), vL(Pµw

) = µ−
w and vR(Pµw

) 6= µ+
w ,

{µ−
w , µw}, if µw ∈ V (SP ), vL(Pµw

) 6= µ−
w and vR(Pµw

) = µ+
w .

Let A = A1 ∪ A2. Then X ∩A = ∅ and X0 ∩ A1 = ∅.

Claim 2 ω(G0 −A1) = |X0| and each component of G0 −A1 is a clique.

Proof Denote Z = S ′C ∪ {P [vL(P ), x−
P ) | P ∈ S

′
P } ∪ {vR(P ) | x̂P = vR(P ), P ∈ S ′P } ∪

{P (xP , vR(P )] | x̂P 6= vR(P ), P ∈ S ′P2
} ∪ {P [x+

P , vR(P )] | x̂P 6= vR(P ), P ∈ S ′P1
}. Let Z ∈ Z.

Then G0 − A1 =
⋃

Z∈Z

Z. We will prove that NG0
(V (Z)) ∩ V (G0 \ Z) ⊆ A1 by considering the

following two cases:

(1) Suppose that Z ∈ (Z \ {P [x+

P , vR(P )] | x̂P 6= vR(P ), P ∈ S ′P1
}). By Lemma 3.15(1)–(2)

and Claim 1(1)–(2), NG0
(V (Z)) ∩ V (G0 \ Z) ⊆ A1.

(2) Suppose that Z = {P [x+

P , vR(P )] | x̂P 6= vR(P ), P ∈ S ′P1
}. By Claim 1(1), N(V (Z \

{x+

P }))∩V (G0 \Z) ⊆ A1. Hence, we consider the vertex x+

P ’s neighbourhood. By the definition

of S ′P1
, N(xP )∩ V (S ′C) 6= ∅, say vC ∈ (N(xP )∩ V (S ′C)). Taking any z ∈ NG0−Z(x

+

P ), we know

that z /∈ V (S ′C) by Lemma 3.8. For any P ′ ∈ S ′P \ {P}, if P
′ ∈ S ′P1

, then by Lemma 3.13,

z /∈ V (P ′) \ A1; if P ′ ∈ S ′P2
, then by Lemma 3.16, z /∈ V (P ′) \ A1. We claim that z /∈

V (P [vL(P ), x−
P )). Suppose otherwise that z ∈ V (P [vL(P ), x−

P )). Then, by Lemma 3.12(2),

CxP

←−
P z+vL(P )

−→
P zG[V (P [x+

P , vR(P )])] in G covers V (P ) ∪ V (C), contradicting Lemma 3.1.

Hence, z ∈ A1. Then NG0
(V (Z)) ∩ V (G0 \ Z) ⊆ A1.

Hence, Z is a component ofG0−A1. By Lemmas 3.7, 3.11(1)–(2) and 3.12(1)–(2),G[V (Z)] is

a clique. By the definition ofG0, it is easy to check that |X0∩V (Z)| = 1, then ω(G0−A1) = |X0|.
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Suppose that |S ′C | = x ≥ 0, |S ′P1
| = y ≥ 0, |S ′P21

| = z ≥ 0, |S ′P22
| = t ≥ 0. Then we obtain

that

x+ 2(y + z + t) = k0. (4.4)

m(G0) ≥
∏

P∈S′

P1

(|V (P [vL(P ), x2−
P ])| · |V (P [x+

P , vR(P )])|) ·
∏

P∈S′

P21

(|V (P [vL(P ), x2−
P ])|·

|V (P [x+

P , vR(P )])|) ·
∏

P∈S′

P22

|V (P [vL(P ), x2−
P ])| ·

∏

C∈S′

C

|V (C)|

≥ 1 · 1 · · · · · 1 · 1︸ ︷︷ ︸
k0−1

·[n0 − (4y + 4z + 3t+ x− 1)]

≥ n0 − (4y + 4z + 3t+ x) + 1.

Combining this with (4.4), we have

m(G0) ≥ n0 − (y + z)−
3

2
k0 +

1

2
x+ 1 ≥ n0 − 2k0 + 1. (4.5)

Denote

v∗C =

{
v+C , if |V (C)| ≥ 3 and vC ∈ V (C),

v′C , if |V (C)| = 2 and V (C) = {vC , v′C}.

By Lemma 2.2, we distinguish the following two cases to prove Fact 1.

Case 1 µw ∈ V (SC), i.e., µw ∈ V (Cµw
).

By the choice of S, | SP |≥ 1. By (3.1) and Lemma 3.5, X = {µ∗
w, w} ∪ (End(S) \ {µw}) is

an independent set of G with size k + 1.

Claim 3 G[V (Cµw
) \ {µw}] is a clique.

Proof Since G[V (Cµw
)\{µw}] is connected, it suffices to consider the case when |V (Cµw

)\

{µw}| ≥ 3. For each vertex v ∈ V (Cµw
) \ {µw, µ

+
w}, v /∈ End(S) \ {µw} by Lemma 2.2(i)–(ii).

Hence, by the definition of X and (3.2), N(v) ∩ X = {µ+
w} for each vertex v ∈ V (Cµw

) \

{µw, µ
+
w}. Note that (V (Cµw

) \ {µw}) ∩X = {µ+
w}. Let S = V (Cµw

) \ {µw}. By Lemma 3.6,

G[V (Cµw
) \ {µw}] is a clique.

Claim 4 If N(V (P )) ∩ V (Cµw
) 6= ∅ for any P ∈ SP , then N(V (P )) ∩ V (Cµw

) = {µw}.

Proof By contradiction, suppose that there exists some P ∈ SP such that N(V (P ))

∩V (Cµw
) 6= ∅ and N(V (P ))∩V (Cµw

) 6= {µw}, say v′ ∈ N(V (P ))∩V (Cµw
) satisfying v′ 6= µw.

Then there exists a vertex z ∈ V (P ) such that v′z ∈ E(G). By Lemma 2.2(ii), z /∈ End(SP ).

Suppose that z ∈ V (P ) \ {vL(P ), vR(P )}. Then, by Lemmas 3.11(1)–(2) and 3.15(1)–(2),

there exists Q′ ∈ {P [vL(P ), z−]vL(P ), P [z+, vR(P )]z+} such that f(Q′) = 1. By Claim 3,

G[E(P \ Q′)]v′Cµw
µwLw and Q′ in G cover V (P ) ∪ V (Cµw

) ∪ {w}, contradicting (I). This

contradiction shows that Claim 4 holds.

Claim 5 G[V (H)] is a clique.
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Proof First, we will show that G[V (H)] is connected.

By contradiction, suppose that H has at least two components. Choose any vertex v such

that w and v belong to different components of H . We claim that N(v)∩V (Cµw
) 6= ∅. Suppose

otherwise that N(v) ∩ V (Cµw
) = ∅. Then vµ∗

w /∈ E(G). By Lemma 3.4, N(v) ∩ End(SP ) = ∅.

Suppose that N(v)∩End(S ′C) 6= ∅, say vvC ∈ E(G) (vC 6= vCµw
). Then |V (C)| ≥ 2. Otherwise,

vCv ∈ SC , contradicting (I). By Lemma 3.3, wv∗C /∈ E(G). Combining this with Lemma 2.2(i)–

(ii), {v, v∗C} ∪ (X \ {vC}) is an independent set of G with cardinality k+2, contradicting (4.2).

Hence, N(v)∩End(S ′C) = ∅. Then N(v)∩X = ∅, contradicting (3.2). Hence, N(v)∩V (Cµw
) 6=

∅.

By our claim and Lemma 3.3, N(V (P ))∩ V (H) = ∅ for any P ∈ SP . Since G is connected,

there exists at least one path P ∈ SP such that N(V (P )) ∩ V (Cµw
) 6= ∅. By the arbitrariness

of vertex w and Claim 4, N(v)∩V (Cµw
) = {µw}. By Lemma 3.5, {v, w, µ∗

w}∪ (End(S)\ {µw})

is an independent set of G with cardinality k+2, contradicting (4.2). This contradiction proves

that G[V (H)] is connected.

Next, we will show that G[V (H)] is a clique. Since G[V (H)] is connected, it suffices to

consider the case when |V (H)| ≥ 3. Since G[V (H)] is connected, by Lemma 3.3, N(v) ∩

(V (S) \ {µw}) = ∅ for each vertex v ∈ V (H) \ {w}. Note that (3.2), therefore, N(v) ∩ X =

{w} for every vertex v ∈ V (H) \ {w}. Note that V (H) ∩ X = {w}. Let S = V (H), then by

Lemma 3.6, G[V (H)] is a clique.

Since G is connected, by Lemma 3.3 and Claims 4–5, we have the following claim.

Claim 6 N(V (H)) ∩ V (S) = {µw} and N(V (S ′)) ∩ V (Cµw
) = {µw}.

By Claims 2–6, ω(G−A) = k + 1 and each component of G−A is a clique.

In this case, n0 = n− |V (Cµw
)| − |V (H)| and k0 = k − 1. Then,

m(G) ≥ |V (Cµw
) \ {µw}| · |V (H)| ·m(G0)

≥ |V (Cµw
) \ {µw}| · |V (H)| · [(n− |V (Cµw

)| − |V (H)|)− 2(k − 1) + 1]

≥ 1 · 1 · [(n− |V (Cµw
)| − |V (H)|)− 2(k − 1) + 1 + (|V (Cµw

)| − 2) + |V (H)| − 1]

= n− 2k,

which proves Fact 1 in this case.

Case 2 µw ∈ V (SP ), i.e., µw ∈ V (Pµw
).

By (3.1) and Lemma 3.5, X = End(S) ∪ {w} is an independent set of G with size k + 1.

Claim 7 G[V (H)] is a clique.

Proof It suffices to consider the case when |V (H)| ≥ 2. By (3.2), N(v) ∩ X 6= ∅ for

each vertex v ∈ V (H) \ {w}. Suppose that there exists a vertex x ∈ N(v) ∩ X such that

x 6= w. We claim that x /∈ End(SC). Otherwise suppose that x ∈ End(SC), say x = vC . Then

|V (C)| ≥ 2. Otherwise, xv ∈ SC , contradicting (I). By Lemma 3.5, {v, v∗C} ∪ (End(S) \ {vC})

is an independent set of G with size k + 1. By Lemma 3.3, N(w) ∩ (V (S) \ {µw}) = ∅. Hence,
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{w, v, v∗C} ∪ (End(S) \ {vC}) would have an independent set of cardinality k + 2, contradicting

(4.2). This contradiction shows that our claim holds.

By Lemma 3.4 and our claim, N(v) ∩ X ⊆ {w}. Note that (3.2), therefore, N(v) ∩ X =

{w} for each vertex v ∈ V (H) \ {w}. Let S = V (H). Then by Lemma 3.6, G[V (H)] is a clique.

Claim 8 The following two statements hold:

(1) If µ+
w 6= vR(Pµw

), then G[V (Pµw
[µ2+

w , vR(Pµw
)])] is a clique.

(2) If µ−
w 6= vL(Pµw

), then G[V (Pµw
[vL(Pµw

), µ2−
w ])] is a clique.

Proof By symmetry, we may only prove that G[V (Pµw
[µ2+

w , vR(Pµw
)])] is a clique. Since

G[V (Pµw
[µ2+

w , vR(Pµw
)])] is connected, it suffices to consider the case when |V (Pµw

[µ2+
w , vR

(Pµw
)])| ≥ 3. By Lemma 3.9(1) and (3.2), N(µ+

w) ∩ (End(S ′C) ∪ {vR(Pµw
)}) 6= ∅. Then by

Lemmas 3.11(1) and 3.12(1), G[V (Pµw
[µ2+

w , vR(Pµw
)])] is a clique.

Since G is connected, by Lemma 3.3 and Claim 7, we have the following claim.

Claim 9 N(V (H)) ∩ V (S) = {µw}.

By Claim 9, µw is the unique vertex µ (say) for any w ∈ V (H). Then denote

B1 = V (Pµ[vL(Pµ), µ]) \A2,

B2 = V (Pµ[µ, vR(Pµ)]) \A2.

Claim 10 xy 6∈ E(G) for any pair of vertices x ∈ B1 and y ∈ B2.

Proof By contradiction, suppose that there exists a pair of vertices x0 ∈ B1 and y0 ∈ B2

such that x0y0 ∈ E(G). To obtain our contradiction, we distinguish the following three cases.

(1) Suppose that N(µ−) ∩ End(SC) 6= ∅, say vC ∈ (N(µ−) ∩ End(SC)), and N(µ+) ∩

End(SC) 6= ∅, say vC′ ∈ (N(µ+) ∩ End(SC)). By Claim 8, G[V (Pµ[vL(Pµ), µ
2−])] and G[V (Pµ

[µ2+, vR(Pµ)])] are cliques. Let Q1 = G[V (Pµ[vL(Pµ), µ
2−])]y0

←−
Pµµ

+Cµ− and Q2 = G[V (Pµ

[vL(Pµ), µ
2−])]y0G[V (Pµ[µ

2+, vR(Pµ)]) \ {y0}]. To obtain our contradiction, we distinguish the

following two cases:

• Suppose that N(µ−)∩End(SC) = N(µ+)∩End(SC) = {vC}. To obtain our contradiction,

we distinguish the following two cases:

− Either |V (C)| = 1 or |V (C)| > 1 and µ+v∗C ∈ E(G) is true. If y0 = vR(Pµ), then by

Claim 8, Q1µ in G covers V (Pµ) ∪ V (C), contradicting Lemma 3.1. If y0 6= vR(Pµ), then by

Claim 8, Q1µLw and
−→
Q(y+0 , Pµ) in G cover V (Pµ) ∪ V (C) ∪ {w}, contradicting (I).

− Suppose that |V (C)| > 1 and µ+v∗C /∈ E(G). Note that N(µ+) ∩ End(SC) = {vC}. If

µ+vR(Pµ) /∈ E(G), then by Lemma 3.9(1) and (3.2), N(µ+) ∩ X = {vC}. By Lemma 2.2(ii),

N(v∗C) ∩X = {vC}. The set (X \ {vC}) ∪ {µ+, v∗C} would be an independent set of cardinality

k + 2, contradicting (4.2). But if µ+vR(Pµ) ∈ E(G), then Q2µ+vCµ
−µLw and C(G[V (C) \

{vC}]) in G cover V (Pµ) ∪ V (C) ∪ {w}, contradicting (I).

• Suppose that there exist two distinct vertices vC ∈ V (C) and vC′ ∈ V (C′) such that

vC ∈ N(µ−) ∩ End(SC) and vC′ ∈ N(µ+) ∩ End(SC). Then, Q2 and Cµ−µµ+C′ in G cover

V (Pµ) ∪ V (C) ∪ V (C′), satisfying (I) but not (II), a contradiction.
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(2) Suppose that either N(µ−) ∩ End(SC) 6= ∅ and N(µ+) ∩ End(SC) = ∅, or N(µ−) ∩

End(SC) = ∅ and N(µ+)∩End(SC) 6= ∅. By symmetry, assume that N(µ−)∩End(SC) 6= ∅ and

N(µ+) ∩ End(SC) = ∅. By Lemma 3.9(1) and (3.2), f(
−→
Q(µ+, Pµ)) = 1. By Lemma 3.11(1),

then G[V (Pµ[vL(Pµ), µ
2−])]y0G[V (Pµ[µ

+, vR(Pµ)]) \ {y0}]µµ−C in G covers V (Pµ) ∪ V (C),

contradicting Lemma 3.1.

(3) Suppose that N(µ−) ∩ End(SC) = ∅ and N(µ+) ∩ End(SC) = ∅. By Lemma 3.9(1)–(3)

and (3.2), f(
←−
Q(µ−, Pµ)) = 1 and f(

−→
Q(µ+, Pµ)) = 1. By Lemma 3.11(1)–(2), then µG[V (Pµ

[vL(Pµ)µ
−])]y0G[V (Pµ[µ

+, vR(Pµ)]) \ {y0}]µ in G covers V (Pµ), contradicting Lemma 3.1.

This contradiction shows that Claim 10 holds.

Claim 11 N(V (P ) \A1) ∩ Bi = ∅ for any P ∈ S ′P and for any i ∈ {1, 2}.

Proof By the symmetry, we may only prove that N(V (P ) \A1) ∩ B1 = ∅ for any P ∈ S ′P .

We distinguish the following two cases to prove Claim 11.

(1) Suppose that N(µ−) ∩ End(SC) = ∅. By Lemma 3.9(3) and (3.2), f(
←−
Q(µ−, Pµ)) = 1.

By Lemmas 3.15(1)–(2) and 3.16, N(V (P ) \A1) ∩ B1 = ∅.

(2) Suppose that N(µ−) ∩ End(SC) 6= ∅. By Claim 8, G[V (Pµ[vL(Pµ), µ
2−])] is a clique.

If P ∈ S ′P1
, then by Lemma 3.13, N(V (P ) \ A1) ∩ B1 = ∅. If P ∈ S ′P2

, then by Lemma 3.16,

N(V (P ) \A1) ∩ B1 = ∅.

Hence, Claim 11 is proved.

By Lemma 3.14, N(V (C))∩(V (Pµ)\A2) = ∅ for any C ∈ SC . Combining this with Claims 2

and 7–11, ω(G−A) = k + 1 and each component of G−A is a clique.

In this case, n0 = n− |V (Pµ)| − |V (H)| and k0 + 2 = k. We distinguish the following three

cases to prove Fact 1.

(1) Suppose that vL(Pµ) 6= µ− and vR(Pµ) 6= µ+. By Claims 7–11, we have the following:

m(G) ≥ |V (H)| · |V (Pµ[vL(Pµ), µ
2−])| · |V (Pµ[µ

2+, vR(Pµ)])| ·m(G0)

≥ 1 · 1 · 1 · [(n− |V (Pµ)| − |V (H)| − 2(k − 2) + 1 + (|V (Pµ)| − 5) + (|V (H)| − 1)]

= n− 2k − 1.

(2) Suppose that either vL(Pµ) = µ− and vR(Pµ) 6= µ+, or vL(Pµ) 6= µ− and vR(Pµ) = µ+.

By symmetry, we assume that µ− = vL(Pµ) and vR(Pµ) 6= µ+. By Claims 7–11, we have the

following:

m(G) ≥ |V (H)| · |V (Pµ[µ
2+, vR(Pµ)])| ·m(G0)

≥ 1 · 1 · [(n− |V (Pµ)| − |V (H)|)− 2(k − 2) + 1 + (|V (Pµ)| − 4) + (|V (H)| − 1)]

= n− 2k.

(3) Suppose that vL(Pµ) = µ− and vR(Pµ) = µ+. By Claims 7–11, we have the following:

m(G) ≥ |V (H)| ·m(G0)

≥ 1 · [(n− |V (Pµ)| − |V (H)|) − 2(k − 2− x) + 1 + (|V (Pµ)| − 3) + (|V (H)| − 1)]
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= n− 2k + 1.

Therefore, m(G) ≥ n− 2k + 1 > n− 2k > n− 2k − 1. This completes the proof of Fact 1 and

also the proof of Theorem 1.4.
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maximum independent sets, Graphs Combin, 31, 2015, 885–896.
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