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Abstract In this paper, the author first introduces the concept of generalized algebra-
ic cone metric spaces and some elementary results concerning generalized algebraic cone
metric spaces. Next, by using these results, some new fixed point theorems on generalized
(complete) algebraic cone metric spaces are proved and an example is given. As a conse-
quence, the main results generalize the corresponding results in complete algebraic cone
metric spaces and generalized complete metric spaces.
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1 Introduction

Cone metric spaces were introduced by Huang and Zhang [1], as a generalization of metric

spaces. The distance d(x, y) of two elements x and y in a cone metric space X is defined

to be a vector in an ordered Banach space E. In [1], Huang and Zhang proved that there

exists a unique fixed point for contractive mappings in complete cone metric spaces. Later on,

by omitting the assumption of normality in the results of [1], Rezapour and Hamlbarani [2]

obtained some fixed point theorems, as the generalizations of the relevant results in [1]. Since

then, many interesting results about cone metric spaces and fixed point theorems were studied

by a number of mathematicians (see [3–7]).

In 2013, Liu and Xu [8] introduced the concept of cone metric spaces with Banach algebras,

replacing Banach spaces by Banach algebras as the underlying spaces of cone metric spaces. In

this way, they proved some fixed point theorems of generalized Lipschitz mappings with weaker

and natural conditions on generalized Lipschitz constant L by means of spectral radius. In

2014, Xu and Radenović [9] deleted the superfluous assumption of normality in [8] and also

obtained the existence and uniqueness of the fixed point for the generalized Lipschitz mappings

in the setting of cone metric spaces with Banach algebras. Later on, Tootkaboni and Salec [10]

introduced the concept of algebraic cone metric spaces and replaced the condition “ρ(L) < 1”

by “
+∞
∑

n=1

‖Ln‖ < +∞” in the fixed point theorems.
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Generalized metric spaces are the generalization of metric spaces. Some fixed point theorems

of contractive mappings on generalized complete metric spaces have been proved. For further

information, see [11–12].

In this paper, we first introduce the concept of generalized algebraic cone metric spaces and

some elementary results concerning generalized algebraic cone metric spaces. Next, by using

these results, we prove some new fixed point theorems on generalized (complete) algebraic cone

metric spaces and give an example. As a consequence, our main results generalize the following

two fixed point theorems.

Theorem 1.1 (see [10]) Let (X, d) be a complete algebraic cone metric space with respect

to the algebraic cone P . Suppose that the mapping T : X → X satisfies the generalized Lipschitz

condition

d(Tx, T y) ≤ Ld(x, y)

for all x, y ∈ X, where L ∈ P such that
∞
∑

n=0

‖Ln‖ converges. Then T has a unique fixed point

in X. For any x ∈ X, iterative sequence {T nx} converges to the fixed point.

Theorem 1.2 (see [11]) Let (X, d) be a generalized complete metric space and let J : X →

X be a strictly contractive mapping with Lipschitz constant 0 < L < 1. Then for each given

element x ∈ X, either

d(Jnx, Jn+1x) = +∞

for all nonnegative integers n or there exists a nonnegative integer n0 such that

(1) d(Jnx, Jn+1x) < +∞ for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) < +∞};

(4) d(y, y∗) ≤ 1

1−L
d(y, Jy) for all y ∈ Y.

2 Generalized Algebraic Cone Metric Space

Throughout this paper, let A always be a real Banach algebra with a unit e. The following

theorem is well known.

Theorem 2.1 Let A be a Banach algebra with a unit e and L ∈ A. If
∞
∑

n=0

‖Ln‖ < +∞,

then e− L is invertible and (e− L)−1 =
∞
∑

n=0

Ln.

Remark 2.1 In Theorem 2.1, if the condition “
∞
∑

n=0

‖Ln‖ < +∞ ” is replaced by ‖L‖ < 1,

then the conclusion remains true.

Remark 2.2 If
∞
∑

n=0

‖Ln‖ < +∞, then ‖Ln‖ → 0.

Now we recall some definitions and results about cones.

Definition 2.1 Let E be a real Banach space. A subset P of E is called a cone if

(1) P is non-empty closed and P 6= {0};

(2) αP + βP ⊆ P for all non-negative numbers α, β;
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(3) P ∩ −P = {0}.

For a given cone P , one can define a partial ordering (denoted by ≤) with respect to P by

u ≤ v if and only if v−u ∈ P . The notation u < v indicates that u ≤ v and u 6= v, while u ≪ v

stands for v− u ∈ intP , where intP denotes the interior of P . From now on, it is assumed that

intP 6= ∅. Note that intP + intP ⊆ intP and λintP ⊆ intP for all λ > 0.

Lemma 2.1 Let E be a real Banach space with a cone P . If u ≤ v and v ≪ w, then u ≪ w.

Lemma 2.2 Let E be a real Banach space with a cone P . If 0 ≤ u ≪ c for all 0 ≪ c, then

u = 0.

Lemma 2.3 Let E be a real Banach space with a cone P and {an} ⊆ E. If ‖an‖ → 0, then

for each 0 ≪ c, there exists N ∈ N such that an ≪ c for all n ≥ N .

Next, we introduce the definition of generalized algebraic cone metric spaces.

Definition 2.2 A subset P of A is called a algebraic cone if

(1) P is a cone and e ∈ P ;

(2) P 2 = PP ⊆ P.

From now on, let P always be an algebraic cone of A. We introduce a new element “∞”,

which satisfies

(1) ∞+∞ = ∞;

(2) a+∞ = ∞+ a = ∞ for all a ∈ A;

(3) a · ∞ = ∞ · a = ∞ for all a ∈ P \ {0};

(4) 0 · ∞ = ∞ · 0 = 0;

(5) ∞ ·∞ = ∞.

And we introduce a new partial ordering (also denoted by ≤) such that

(1) a < ∞ for all a ∈ A;

(2) ∞ ≤ ∞;

(3) if a, b ∈ A, a ≤ b if and only if b − a ∈ P .

Definition 2.3 Let X be a non-empty set. Suppose that the mapping d : X×X → P ∪{∞}

satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X ;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Then d is called a generalized algebraic cone metric on X, and (X, d) is called a generalized

algebraic cone metric space.

If every two points in (X, d) have a distance in P , then d is called an algebraic cone metric

on X , and (X, d) is called an algebraic cone metric space.

Definition 2.4 Let (X, d) be a generalized algebraic cone metric space and {xn} be a se-

quence in X. Then

(1) {xn} converges to x if for every c ∈ A with 0 ≪ c, there is a natural number N such

that d(xn, x) ≪ c for all n ≥ N . It is denoted by lim
n→∞

xn = x or xn → x;
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(2) {xn} is a Cauchy sequence if for every c ∈ A with 0 ≪ c, there is a natural number N

such that d(xn, xm) ≪ c for all n,m ≥ N ;

(3) (X, d) is a generalized complete algebraic cone metric space if every Cauchy sequence is

convergent.

Lemma 2.4 Let (X, d) be a generalized algebraic cone metric space. If {xn} is a convergent

sequence in X, then the limit of {xn} is unique.

Proof If xn → x and xn → y, then for every c ∈ A with 0 ≪ c, there is a natural number N

such that d(xn, x) ≪
c
2
and d(xn, y) ≪

c
2
for all n ≥ N . Thus d(x, y) ≤ d(xn, x)+d(xn, y) ≪ c.

By Lemma 2.2, we get d(x, y) = 0.

3 Decomposition

Let {(Xα, dα) | α ∈ Λ} be a family of disjoint algebraic cone metric spaces. Then there is a

natural way of obtaining a generalized algebraic cone metric space (X, d) from {(Xα, dα) | α ∈

Λ} in the following manner. Let X be the union of {Xα | α ∈ Λ}. For any x, y ∈ X , define

d(x, y) =

{

dα(x, y), if x, y ∈ Xα for some α ∈ Λ,
∞, if x ∈ Xα, y ∈ Xβ for some α, β ∈ Λ with α 6= β.

Clearly, (X, d) is a generalized algebraic cone metric space. Moreover, if each (Xα, dα) is also

complete, then (X, d) is a generalized complete algebraic cone metric space. The main purpose

of this section is to show that the above procedure is the only way to obtain generalized

(complete) algebraic cone metric spaces.

Let (X, d) be a generalized algebraic cone metric space. Define a relation ∼ on X as follows:

x ∼ y if and only if d(x, y) < ∞. Then ∼ is obviously an equivalence relation on X and X is

decomposed uniquely into disjoint equivalence classes Xα, α ∈ Λ. We call this decomposition

of X the canonical decomposition.

Theorem 3.1 Let (X, d) be a generalized algebraic cone metric space. Suppose that

X = ∪{Xα | α ∈ Λ}

is the canonical decomposition and

dα = d|Xα×Xα

for each α ∈ Λ. Then

(1) (Xα, dα) is an algebraic cone metric space for each α ∈ Λ,

(2) for any α, β ∈ Λ with α 6= β, d(x, y) = ∞ for all x ∈ Xα and y ∈ Xβ,

(3) (X, d) be a generalized complete algebraic cone metric space if and only if (Xα, dα) is a

complete algebraic cone metric space for each α ∈ Λ.

Proof (1) and (2) are clear.

(3) Suppose that (X, d) is a generalized complete algebraic cone metric space and {xn} is a

dα-Cauchy sequence in Xα. Then {xn} is a d-Cauchy sequence in X . Thus there exists x ∈ X

such that {xn} is d-convergent to x. Since for sufficiently large n ∈ N, d(xn, x) < ∞ and the

limits of sequences are unique, x ∈ Xα and {xn} is dα-convergent to x.
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Conversely, suppose that (Xα, dα) is a complete algebraic cone metric space for each α ∈ Λ

and {xn} is a d-Cauchy sequence in X . Then there exists N ∈ N such that d(xn, xm) < ∞

for all n,m ≥ N . Hence there exists α ∈ Λ such that xn ∈ Xα for all n ≥ N and {xn} is a

dα-Cauchy sequence in Xα. Therefore, there exists x ∈ Xα such that {xn} is dα-convergent to

x. Obviously, {xn} is d-convergent to x.

4 Fixed Point Theorems

In this section we prove some new fixed point theorems on generalized (complete) algebraic

cone metric spaces.

Theorem 4.1 Let (X, d) be a generalized algebraic cone metric space and X = ∪{Xα | α ∈

Λ} be the canonical decomposition. Suppose that T : X → X is a mapping such that

d(T (x), T (y)) < ∞,

whenever x, y ∈ X and d(x, y) < ∞. Then T has a fixed point if and only if

Tα = T |Xα
: Xα → Xα

has a fixed point for some α ∈ Λ.

Proof Let x0 be a fixed point of T . Then there exists α ∈ Λ such that x0 ∈ Xα. For each

x ∈ Xα, we have

d(Tx, x0) = d(Tx, Tx0) < ∞.

This implies Tx ∈ Xα for all x ∈ Xα. Therefore, x0 is a fixed point of Tα. The converse is

clear.

Furthermore, we can obtain a local version of Theorem 4.1 as follows.

Theorem 4.2 Let (X, d) be a generalized algebraic cone metric space and X = ∪{Xα | α ∈

Λ} be the canonical decomposition. Suppose that T : X → X is a mapping. If there exists a ∈ P

such that

d(Tx, T y) ≤ a,

whenever x, y ∈ X and d(x, y) ≤ a, then T has a fixed point if and only if for some subset

Y ⊆ X such that d(x, y) ≤ 2a for all x, y ∈ Y , the restriction

T |Y : Y → Y

has a fixed point.

Proof If x0 is a fixed point of T , let Y = {x ∈ X | d(x, x0) ≤ a}. Then

d(x, y) ≤ d(x, x0) + d(x0, y) ≤ 2a

for all x, y ∈ Y . For each x ∈ Y , we have

d(Tx, x0) = d(Tx, Tx0) ≤ a.

This implies Tx ∈ Y for all x ∈ Y . Therefore, x0 is a fixed point of T |Y . The converse is clear.
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Theorem 4.3 Let (X, d) be a generalized algebraic cone metric space and X = ∪{Xα |

α ∈ Λ} be the canonical decomposition. Suppose that the mapping T : X → X satisfies the

generalized Lipschitz condition

d(Tx, T y) ≤ Ld(x, y),

whenever x, y ∈ X and d(x, y) < ∞, where L ∈ P such that
∞
∑

n=0

‖Ln‖ converges. If there exists

x0 ∈ X such that d(x0, T x0) < ∞, then for some α ∈ Λ, the restriction

Tα = T |Xα
: Xα → Xα

satisfies the generalized Lipschitz condition.

Proof Since d(x0, T x0) < ∞, both x0 and Tx0 belong to the same Xα for some α ∈ Λ.

For each x ∈ Xα,

d(Tx, Tx0) ≤ Ld(x, x0) < ∞.

Thus TXα ⊆ Xα and Tα satisfies the generalized Lipschitz condition.

Theorem 4.4 Let (X, d) be a generalized complete algebraic cone metric space. Suppose

that the mapping T : X → X satisfies the generalized Lipschitz condition

d(Tx, T y) ≤ Ld(x, y),

whenever x, y ∈ X and d(x, y) < ∞, where L ∈ P such that
∞
∑

n=0

‖Ln‖ converges. Then for each

given element x ∈ X, either

d(T nx, T n+1x) = ∞

for all nonnegative integers n or there exists a nonnegative integer n0 such that

(1) d(T nx, T n+1x) < ∞ for all n ≥ n0;

(2) the sequence {T nx} converges to a fixed point y∗ of T ;

(3) y∗ is the unique fixed point of T in the set Y = {y ∈ X : d(T n0x, y) < ∞};

(4) d(y, y∗) ≤ (e− L)−1d(y, T y) for all y ∈ Y.

Proof Consider the sequence {d(T nx, T n+1x)}, n = 0, 1, 2 · · · . There are two mutually

exclusive possibilities: Either

(a) for all nonnegative integers n,

d(T nx, T n+1x) = ∞,

or

(b) there exists a nonnegative integer n0 such that

d(T n0x, T n0+1x) < ∞.

If (a) does not hold, let x0 = T n0x and X = ∪{Xα | α ∈ Λ} be the canonical decomposition.

It follows from Theorem 4.3 that

Tα = T |Xα
: Xα → Xα
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satisfies the generalized Lipschitz condition, where Xα is the complete algebraic cone metric

space containing x0. By Theorem 1.1, the sequence {T nx} dα-converges to a fixed point y∗ of

Tα. Then the sequence {T nx} converges to a fixed point y∗ of T . Now if z is another fixed

point of T in the set Y = {y ∈ X : d(T n0x, y) < ∞}, then

d(y∗, z) = d(Ty∗, T z) ≤ Ld(y∗, z).

That is

(e− L)d(y∗, z) ≤ 0.

Multiplying both sides above by (e − L)−1 =
∞
∑

n=0

Ln, we get d(y∗, z) ≤ 0. Thus d(y∗, z) = 0,

which implies that y∗ = z. For all y ∈ Y ,

d(y, y∗) ≤ d(y, T y) + d(Ty, T y∗) ≤ d(y, T y) + Ld(y, y∗).

Then

(e− L)d(y, y∗) ≤ d(y, T y)

for all y ∈ Y . Multiplying both sides above by (e− L)−1 =
∞
∑

n=0

Ln, we get

d(y, y∗) ≤ (e − L)−1d(y, T y)

for all y ∈ Y .

If the cone P satisfies that a−1 ∈ P for every invertible element a ∈ P , we have the next

theorem.

Theorem 4.5 Let (X, d) be a generalized complete algebraic cone metric space. Suppose

that the mapping T : X → X satisfies the condition

d(Tx, T y) ≤ Ld(x, y),

whenever x, y ∈ X and d(x, y) ≤ C, where C,L ∈ P such that C ∈ intP and
∞
∑

n=0

‖Ln‖ converges.

Then for each given element x ∈ X, either

d(T nx, T n+1x) 
 C

for all nonnegative integers n or there exists a nonnegative integer n0 such that

(1) d(T nx, T n+1x) ≤ C for all n ≥ n0;

(2) the sequence {T nx} converges to a fixed point y∗ of T ;

(3) y∗ is the unique fixed point of T in the set Y = {y ∈ X : d(y∗, y) ≤ C};

(4) d(y, y∗) ≤ (e− L)−1d(y, T y) for all y ∈ Y.

Proof Since
∞
∑

n=0

‖Ln‖ converges, e − L is invertible and (e − L)−1 =
∞
∑

n=0

Ln ≥ 0. Thus

e−L ≥ 0. This implies a−La = (e−L)a ≥ 0, i.e., La ≤ a for all a ∈ P . Consider the sequence

{d(T nx, T n+1x)}, n = 0, 1, 2 · · · . If there exists a nonnegative integer n0 such that

d(T n0x, T n0+1x) ≤ C,
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then we have

d(T n0+1x, T n0+2x) = d(TT n0x, TT n0+1x) ≤ Ld(T n0x, T n0+1x) ≤ LC ≤ C.

By mathematical induction, we get

d(T n0+ix, T n0+i+1x) ≤ Lid(T n0x, T n0+1x) ≤ C

for all i ∈ N. Thus

d(T nx, T n+lx) ≤
l

∑

i=1

d(T n+i−1x, T n+ix)

≤
l

∑

i=1

Ln+i−1−n0d(T n0x, T n0+1x)

≤ Ln−n0

(

∞
∑

i=0

Li
)

d(T n0x, T n0+1x)

= Ln−n0(e− L)−1d(T n0x, T n0+1x)

for any l ∈ N. By Lemma 2.3 and the fact that ‖Ln−n0(e − L)−1d(T n0x, T n0+1x)‖ → 0, we

have that for any 0 ≪ c, there exists N ∈ N such that

d(T nx, T n+lx) ≤ Ln−n0(e− L)−1d(T n0x, T n0+1x) ≪ c

for all n ≥ N . Hence {T nx} is a Cauchy sequence. By the completeness of X , there exists

y∗ ∈ X such that T nx → y∗. Furthermore, we have

d(Ty∗, y∗) ≤ d(Ty∗, T nx) + d(T nx, y∗)

≤ Ld(y∗, T n−1x) + d(T nx, y∗)

≤ d(y∗, T n−1x) + d(T nx, y∗)

for sufficiently large n ∈ N. Therefore, d(Ty∗, y∗) ≪ c for any 0 ≪ c. This implies that

Ty∗ = y∗. The rest proof is similar to that of Theorem 4.4, we omit it.

Remark 4.1 (a) Theorem 1.1 is a special case of Theorem 4.4. This can be seen as follows:

If X is a complete algebraic cone metric space, then d(x, y) < ∞ for all x, y ∈ X , and

Y = {y ∈ X : d(T n0x, y) < ∞} = X.

It follows from Theorem 4.4 that T has a unique fixed point in Y = X.

(b) Since generalized complete metric spaces are generalized complete algebraic cone metric

spaces with Banach algebra R, Theorem 1.2 is a special case of Theorem 4.4.

Example 4.1 Let A = R2. For each(x1, x2) ∈ A,

‖(x1, x2)‖ = |x1|+ |x2|.

The multiplication is defined by

xy = (x1, x2)(y1, y2) = (x1y1, x1y2 + x2y1).
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Then A is a Banach algebra with unit e = (1, 0). Let P = {(x1, x2) ∈ R2 | x1, x2 ≥ 0}. Let

X = (R ∪ {ω})2 and the metric d be defined by

d(x, y) =























(|x1 − y1|, |x2 − y2|), when x = (x1, x2), y = (y1, y2) ∈ R2,

(0, |x2 − y2|), when x = (ω, x2), y = (ω, y2), x2, y2 ∈ R,
(|x1 − y1|, 0), when x = (x1, ω), y = (y1, ω), x1, y1 ∈ R,
(0, 0), when x = (ω, ω), y = (ω, ω),
∞, other situations.

Then (X, d) is a generalized complete algebraic cone metric space. Now we define the mapping

T : X → X by

Tx =























(log(2 + |x1|), arctan(3 + |x2|) + θx1), when x = (x1, x2) ∈ R2,

(

log(2 + |x1|),
π

2
+ θx1

)

, when x = (x1, ω), x1 ∈ R,

(ω, ω), when x = (ω, x2), x2 ∈ R,
(ω, ω), when x = (ω, ω),

where θ is a positive real number. Through calculation, we have

d(Tx, T y) ≤
(1

2
, θ
)

d(x, y)

for all x, y ∈ X , and

∥

∥

∥

(1

2
, θ
)n∥

∥

∥

1

n

=
∥

∥

∥

((1

2

)n

, θn
(1

2

)n−1)∥
∥

∥

1

n

→
1

2
< 1.

It follows from Theorem 4.4 that T has a unique fixed point in R2. But T has another fixed

point (ω, ω).

Remark 4.2 In Example 4.1, we see that

(1

2
, θ
)

≮ (1, 0) = e

and
∥

∥

∥

(1

2
, θ
)
∥

∥

∥
=

1 + 2θ

2
> 1

for θ > 1.
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