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The Rigidity of Hypersurfaces in Euclidean Space*

Chunhe LI! Yanyan XU!

Abstract In the present paper, the rigidity of hypersurfaces in Euclidean space is revisited.
The Darboux equation is highlighted and two new proofs of the rigidity are given via energy
method and maximal principle, respectively.
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1 Introduction

The isometric embedding problem is one of the fundamental problems in differential geom-
etry. Since Riemannian manifold was formulated by Riemann in 1868, naturally there arose
the question of whether an abstract Riemannian manifold is simply a submanifold of some Eu-
clidean space with its induced metric. In other words, it is the question of reality of Riemannian
manifold (see more details in an expository note (cf. [9])).

Mathematically, the isometric embedding problem is to solve the following system. For any
given Riemannian manifold (M, g), there is a surface 7: M — R"*! such that

dr - dr =g, (1.1)

where - denotes the Euclidean inner product. In the present paper we assume that 7 is a
hypersurface, i.e., M is a manifold of n dimension.

As is known the uniqueness of solution in PDEs is related to the existence, hence it is another
important topic. The counterpart of uniqueness in isometric embedding is global rigidity. The
rigidity is to characterize isometric deformation of surfaces which is closely related to the global
isometric embedding of surfaces.

Definition 1.1 An immersed surface 7 : M — R? is rigid if every immersion 7 : M — R3,
with the same induced metric, is congruent to 7, that is, differs from © by an isometry of R3.

If 7, 7 differ from by an isometry of R?, they are isometric naturally. Global rigidity says
that there is no other 7 which is isometric to 7 except such trivial ¥ congruent to 7, hence global
rigidity can be viewed as the uniqueness of the solution to isometric embedding problem.

The linearized version of global rigidity is infinitesimal rigidity. We say that 7 yields a first
order isometric deformation of ¥ = 7 if the induced metric g; = d7 - d7; has a critical point at
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d

Set 7= % at t = 0. Then the infinitesimal problem becomes

47 d7 = 0. (1.2)

As is known, the isometry group of R"*! is orthogonal group O(n + 1) and translation (cf.
[11]), namely affine group. Hence the 7 = A7+ b generated by its Lie algebra is always the
solution to homogeneous linearized equation, where A € o(n 4 1) is a skew matrix and b is
a constant vector. Such 7 is called a trivial solution to (1.2). For n = 2, it is equivalent to
F=axi+b for any constant @ and b.

Definition 1.2 The surface is infinitesimally rigid if (1.2) has only trivial solutions.

In the present paper we will revisit several kinds of rigid surfaces and give new proof which
is based on the equivalence of isometric embedding equation (1.1), Gauss-Codazzi equations
and Darboux equation.

For the case of n = 2, Cohn-Voseen [3] and Blaschke [2] proved the following theorems.

Theorem 1.1 Let M be a smooth closed surface with nonnegative curvature and let the
vanishing set of the curvature have no interior points. Then M is globally rigid.

Theorem 1.2 Let M be a smooth closed surface with nonnegative curvature and let the
vanishing set of the curvature have no interior points. Then M is infinitesimally rigid.

Another rigid surface is Alexandrov’s annuli (cf. [1]).

Definition 1.3 The 2-dimensional multiply-connected Riemannian manifold (M, g) satis-
fies Alexandrov’s assumption:

K>0 inM, (1.3)

/ Kdg = 4,
M

K=0, VK#0 onoM.

If 7 is the isometric embedding of (M, g) in R, we call ¥ Alezandrov’s annuli.
The following rigidity theorems are due to Alexandrov [1] and Yau [15], respectively.
Theorem 1.3 Alexandrov’s annuli 7 is globally rigid.
Theorem 1.4 Alexandrov’s annuli 7 is infinitesimally rigid.

Ivan Izmestiev [10] proved the infinitesimal rigidity of convex surface in R? via the second
derivative of the Hilbert-Einstein functional. In [14], Lin and Wang proved the infinitesimal
rigidity of convex surface in H3. Li and Wang [13] reproved Lin-Wang’s theorem by Beltrami
map. Li, Miao and Wang [12] reproved Lin-Wang’s theorem by integral method. For the case
of n > 3, Dajczer-Rodriguez [4] proved the following theorem.
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Theorem 1.5 If the rank of the matriz (hi;) is greater than 2, where h = hijdxidxj 1s the
second fundamental form, then the hypersurface is globally and infinitesimally rigid.

Remark 1.1 Compared with the case of n = 2, Dajczer-Rodriguez’s theorem is local
without any topological restriction on M.

In [7], Guan and Shen proved a rigidity theorem for hypersurfaces in higher dimensional
space forms. In [13], Li and Wang showed that if a spherically symmetric (n 4+ 1)-manifold with

metric

1

g= 720 dr? + r2dsn, (1.4)

the sphere of symmetry r = ¢ is not globally rigid and infinitesimally rigid unless g is a space
form.

2 Set up and Formulation

Before discussing the rigidity of Alexandrov’s annuli, we need some geometric preliminaries.

We use the geodesic coordinates (s,t) = (2!, 2%) based on OM,

g = dt? + B%ds?,
B(s,0) =1, By(s,0) = ky,
where B(s,t) is a sufficiently smooth function and B(s,t) is periodic in s, and k, is geodesic

curvature.

Under the geodesic coordinates, Alexandrov proved the following lemma (cf. [1] or [9]).
Lemma 2.1 For Alexandrov’s annuli, the coefficients of the second fundamental form of 7,

L,M and N satisfy: Att =0,

L=M=0,

K
&L =+KB;, N=,/=t (2.1)
By

Since on OM, d7i = 0 and k,, = 0 where 7 and k,, are normal vector and normal curvature,
respectively, we have the following lemma.

Lemma 2.2 The components of boundary ¥(OM) are some planar curves o, 1 < k < m,
which are determined completely by their metric, and lie on the plane my, tangential to ¥ along
Of.

At the same time, Dong [5] proved the following lemma.

Lemma 2.3 If there exists sufficiently smooth isometric embedding

M= R, g=di?,
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then we have

Kiky >0 on oM, (2.2)
7( kyds = 2, (2.3)
ok
]{ exp (\/—1 / kgdo)ds ~0. (2.4)
Ok 0
In what follows we will formulate the rigidity.
Let
— 1" g N — "~ .-
p=35iT p=grT
W=7r-n, p=7-n. (2.5)
We have
7= g" pif’y + pi,
w=2p—|Vpl?,
and
hijit = pij — Gijs higli = Pij — Gijs (2.6)
det(hij) = det(hy;) = K|g], (2.7)

where h = hy;dzidzi, h = h;;dzidz? are the second fundamental forms, respectively, K is the
Gaussian curvature.
Let W;; = hij — h;j and ® = p — p. By (2.6)—(2.7) we have

(hij = Wight = Pij — iy — i = hight — i, (2.8)
(hij + WU),TL =pij+Pij—gij = hij,u + ®; 4, (2.9)
det(ﬁij — Wij) = det(hij + Wij). (210)

Taking the difference of (2.8)—(2.9) and the two sides of (2.10) yields

Wi (4 ) = 2®5 5 + (hij + hag) (1 — ), (2.11)
(hi1 + hi1)waz + (haz + haz)wir — 2(hi2 + hig)wiz = 0. (2.12)

Let h="h +7L,Eij = hij +Eij, then

_ 2®i; + hij(p — )

Wis e~ . 2.13

J P (213)
Gauss-Codazzi equations say

7w, =0, (2.14)

Wik = Wik.j, (2.15)

where (A7) = (7).
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There exists an orthogonal mapping which sends the frame {r1,r2,n} to {r1,72,n}. Let the
associated matrix be A, if h and h coincide which means A is constant, i.e., W = W;; dztdad =0,
7 and 7 differ from an isometry and so it’s globally rigid.

For the solution 7 to (1.2), let

w; =it -7 (2.16)

and

1
’LU——(’I:'Q'?l—’Fi'?Q). (217)

2/l
Note that u;dz’ = 7 - d7 is a globally well-defined 1-form, and w is a well-defined function.
Then we have

A =w |g|g%7_‘; + u i, (2.18)
7?2 = —w |g|g”7?i + 'LLQﬁ. (219)
Then for
Ul — ULTD —

A7 =Y x d7, (2.20)

+ wn,
Vgl
we call Y the rotation vector. Differentiating the above equation, we have
d?7 = dY x dF = 0,
which implies that dY is parallel to the tangent plane. Let Yj, = g% wgin x 7, k = 1,2, where
wijdzidz is a symmetric tensor. d2Y = 0 means
h 9w, = 0, (2.21)
Wij,k = Wik,j, (2-22)
where h = h;;dz’da? is the second fundamental form and (h/) = (h;;)~".

Remark 2.1 We note that 7 is infinitesimally rigid if and only if (2.21)—(2.22) have only
trivial solution w;; = 0 provided that M is simply connected. In fact w;; = 0 implies that Y is

a constant.
Let
b=7—-Y x7, @=b-F=7-7 (2.23)
We have
db = —dY x 7, (2.24)
= gpr, + £ L O0g (225)

(2.26)
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If the support function p # 0, w;; = 0 if and only if b is constant since 7 x 7, Ty X I are linearly
independent, i.e., (7, X 7) X (fa X 7) = /|g|7- i = \/|g|p. For convex surface, by a translation
we can assume the support function g > 0. Throughout the paper p > 0 if not specified.

3 The Rigidity of Surfaces in R®

In this section we will reprove Theorem 1.1, Theorem 1.3 and Theorem 1.2, Theorem 1.4.
The main ideas are from an unpublished note (cf. [12]).

To prove Theorem 1.1 and Theorem 1.3, we introduce the following inner product: For any
two (0, 2)-symmetric tensors o = qpda’ @ dz*, 3 = Bjda? ® dat,

Since b = h + h is positive definite, we can view h = hijdo® ® da? as a Riemannian metric
defined on M. Then the cotangent bundle is endowed with the metric

(dz',da?) = R”, (3.2)
and the metric induces a metric on the tensor bundle T*M ® T* M,
(dz' @ dz*,d2? @ dat) = . (3.3)
Note that det(h)(u + 1) > 0 on M. The integral defined by (3.1) is an inner product.
In what follows we will show the tensor W = 0 by (W, W) = 0, where W = W;;dz"da7 is

the solution to (2.14)—(2.15), hence prove Theorem 1.1 and Theorem 1.3.
A direct computation shows

det(ﬁ)—z]
W, W) = h”h Wy W;
(W, W) ' det(g) kWi (p + 1)
det(h) —ij—ki —
= h”h (29, hi w.
[ ST R i+ Tt = )
_ det(h)ﬁ”ﬁkl2<1>i7ijl
M det(g)
N det(ﬁ)—z]
=2 X - vdVgp — 2 D, RO w , 3.4
oM oM /M (det(g) jl)Jc (34
where X = ict(zg h”h Wi a =% and 7/ is outward normal along the OM. In the third equality,

we use h Wij =0, and the fourth equality is an application of divergence theorem.
Fori=1,

det ()RR W;)
Ak Wy + Apoh' sz) L+ (@R Wu + Ak’ Wzl)
—A 15 W2l + A12h W21),1 + (Anh le — A12h Wll)_]Q
Fraah Wy — hlﬁquz)J + (Ezgﬁqu + ElgﬁllW“)J
—(05Way) 1 + (35Wy)
= Wa1,2 — Waa
=0, (3.5)

(
= (
= (=
= (=
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where ZU = det(ﬁ)ﬁij is the cofactor of h. In the second equality and the last equality, we have
used 1"’ Wij = 0, Wi = Wi, ;. Similarly, for 7 = 2, we also have

(det ()RR W) 1 = 0.

If M = S?, in the integral by parts the boundary term vanishes; if M is Alexandrov’s annuli,
on the boundary W = 0 by Lemma 2.1 hence the boundary term vanishes too. Both of the two
terms in (3.4) vanish, (W, W) =0, W = 0.

To prove Theorem 1.2 and Theorem 1.4, we introduce the following inner product: For any
two (0, 2)-symmetric tensors o = qpdr’da”, B = ﬁjldxjdxl,

det(h) ;.
(a,8) = /S ] F&h”hklaikﬁﬂud‘@.

In what follows we will show the tensor w = 0 by (w,w) = 0, where w = w;;dz’dz? is the
solution to (2.21)—(2.22), hence prove Theorem 1.2 and Theorem 1.4.

A direct computation shows

det(h)
det(g)
det(h) ,ij pif higvy
/M R GO
det(h) im
/M det(g) Jot(g) " ek

d t(h) ..
/ X - 7dVyuy — / ¢ h”h“wﬂ) , (3.6)
oM g Jk

(w,w) = — R hklwikwjlu

where X = f{z: h) pid hkl%wﬂa—gk and 7 is outward normal along the OM.

If M =S§?, a similar argument in (3.5) yields (w,w) =0, w = 0.

If M is Alexandrov’s annuli, we have

(w, w) = X - ﬁdVaM. (3.7)
oM

Note the right-hand side of (3.7) is invariant under coordinate change. So we use geodesic
coordinates based on dM. Without loss of generality, we merely consider the case that M is a
disk, and then O M is a planar curve denoted by o. On the boundary, we have hy; = h1o = 0,
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wi; = 0 and p is constant.
X - vdVyum

= [ ——p¥ h2l<piwjlds

(pl(hllh22w12 —|—h12h21w21 +h11h21w11 +h12h22’UJ22)

det
+/ dit g) 0o (W h?2w1g + h22h? war + A2 W2 wy1 + h22h?2wey)

(
det(h) 11722 127721 11 22
= h*h h*“(h h h
| det(y) o1 ( wiz + A2 (h* wey + h w11 + ¥ wag))
_ det(h) 11722 12712
—Ldet(g)@l(h h w12 h h w21)
=/<p1w21, (38)

where in the third equality we use the fact h1;1 = h12 = 0, w11 = 0 and in the fourth equality
we use hw;; = 0.
In what follows we will show

1
—f@SFdSSO,
HJe

where F' = wyapt.
Recall on the boundary o, h11 = h12 =0, wy; = 0 and '}y = -T'}, = k,,I'l; =T%, = 0. By
(2.26), we have on the boundary

Pss = kf‘g(pta (3 9)
pts = —kgps + F, .

which is nothing else but an ODE of ¢ and ¢;. We can rewrite (3.9) in complex form

(00 + VT + Ty (s + V) = VIR

For convenience, we introduce a new variable 6 = fos kg € [0,27] and let c1 = ¢,(0), c2 = ¢:(0).
Then the solution to (3.9) is

ps(0) = —cosO@(u(f) — ¢1) + sinb(v(0) + ¢2), (3.10)

where f = ki and
g

0 0
u(@):/o f(x)sin zdx, U(G):/O f(x) cos zdx.

Suppose that the boundary lies on the plane z = 0. By the motion of moving frame we have
on the boundary

Trs = —kyTs.

{'Fss = kg?"t, (3 11)
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It is easy to check

{FS(G) = (cos(0 + ), sin(0 + «), 0), (3.12)

7:(0) = (—sin(f + «), cos(6 + «), 0),

where « is a fixed constant.
In fact (2.4) follows from 7 (27) = 74(0). Note that on o, Yy = —wys7s and p is constant.

By [, Y, = 0, we have u(27) = v(27) = 0.

Since §_pyds =0,
2 1
% psds = / Ps (9)—d9
o 0 kg

_ /277(— cos 0u(8) + sin 9v(9))kid9
0

g
0, (3.13)

where we use (2.3)—(2.4).
Hence

2
psF'ds = /0 (—fcosO(u(d) —c1)+ fsinb(v(0) + c2))db
. /Qﬂ(—fcos 0u(0) + f sinOv(0))d0
0
_ /O " (<o (O)u() + v(O) (6))d0
27
—9 /0 o/ (0)u(6)d0. (3.14)

We define a new closed planar curve I' by parameter equations

2
21(6) = cos:z:dz’
/Oe ]Zfl(l‘? (3.15)
132(9): . mdil?

A direct computation shows that the curvature of I' is k, and the area bounded by the curve is

And we introduce two new functions

sinx

0
U(0) = u() + C/o ToES) dz,

o COS ™
V() = v(0) + 0/0 [
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where

o= —.
—dx
0 kg(z)

Then we have U'(0) cot @ = V’(9) and U(0) = U(w) = 0. Therefore

27 27
2/0 v (9)U(9)d9:2/0 _U(O)U"(6) cot 66

27
= —/ sec? OUZ(0)do
0

<0

and integral by parts yields
2m
/ VI (0)U(6)d0
0

- /O%—(v’(ﬂ)+C;§(s:))(u(9)+0/09 %dx)d@

_ /0277 —v'(0)u(0)do + 0/02#(1](9) sin 6 — cos 0u(9))kid9 _ o2

g

27
_ / o/ (O)u(0)d6 + C28,
0

where in the third equality we use (3.13).
Combining (3.14)—(3.17), we have

]{%Fds <0,

and then

os<w,w>s/

o

1
prwor = — ?{ psFds <0.
wJs

C. H. Li and

% $2d$1
r

Y. Y. Xu

(3.16)

(3.17)

(3.18)

(3.19)

In what follows we give another proof of Theorem 1.2 and Theorem 1.4. The proof is more

geometric than above, correspondingly for Theorem 1.4 we restrict that the component number
of boundary of Alexandrov’s positive annuli is 1 (disk) or 2 (annulus). We need the following

lemma.

Lemma 3.1 For any vector valued E:M—R3 satisfying
d7- dE =0,

the 1-form defined on M,

is closed.

(3.20)
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Proof It is obvious that w is a 1-form. Exterior differentiation yields
dw = 0, (Y, - E)da? A da®
= ((Ya1 — Vo) - E+ (Yo - By — Yy - By))da! A da?
= (}72 -El — ?1 . Eg)dxl A da?.

By (3.20), we have

7B =0,
- By =0, (3.21)
gl -Ez-i-Fz-El =0.
We can rewrite dY as
_ 1 . N
Y, = Tou (—wi2™ + w11T2),
. (3.22)
Y, = (—woaT1 + w21T2).

:

det g
Hence by (3.22) we get

—_

Lo S o w o
1/'2'E1—Y1'E2=\/dz}—tgf’2'E1+

w is a closed 1- form.

Case 1 Let M be a disk D called Alexandrov’s positive disk, k be the normal along the
boundary o, and Z,; and k form an orthogonal basis. Assume 7 k = 0 on the boundary o, and
7k > 0 at the interior points. We have

— — —

E=k or E=ix7 or E:fxf’

satisfy (3.20). Since 7= g¥p;7; + it = g“ p;7; L 7 on o, and i L, j L, we have that E is
parallel 77 = k and then w =dY - E =0 on o.
For convenience, we write
Yy = ay i,
where af, is a (1,1) tensor. The relationship between w;; and a! is released in (3.22). Since
the first de Rham cohomology of disk is trivial, i.e., H%, r(D) = 0, there exists some smooth

function v defined on the disk, such that
w = do = pda®.
Hence we have
Vp=Yy-E=d\r - E. (3.23)

We will show that v is constant hence w = 0, which is one key step to prove Theorem 1.4.
It is worth pointing out that the following idea is borrowed from [8] which proves the rigidity
in prescribed curvature problem.
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A simple computation shows
Yr,j = afwﬁ E+ afchjlﬁ "E+ agcﬁ E‘;
Then
hkjd’k.,j = hkjaﬁc_’jfz E+ ayi - E+ h*iak 7 - Ej

:hkjl_—'_E'_i_( —Wi2 wm) B
@h.g"t Vdetg +/detg

+ hlkaifg . El + h%akrl . E2
= hkjaﬁc_’jf'l E + (hlkak h2k 1)7’2 El
R w;; 7
detg

Sl

=hMaj 7 E+

B

&1

= WMl - (3.24)

By [8, Lemma 4], we have

(a1)? + (a3)* + (a})® + (a3)* < —C det(a)).
We conclude that
Bl Q/Jm

U0 det a
Here B;" is the cofactor of a;*. We also have for [ =1,

hj¢ 7_7—th

ij 1 11 12 1 21 1 22 1
h”ai)jzh aj;+h-a;o+h>as; +h7ay

1
= m(_hllwlzl — h'Pwi99 — K wan 1 — h*waz )
1
= - \/m(hllwlm + h'2wig.0 + A war o + h*waz 2)

1 i 1

— _ Wy o — ij

hw;; 9 = hw;;.
Vdet g Wis2 Vdet g 2t

Similarly, we have
1 g
2
h” zg = detgh?{’wij.
Hopf’s strong maximum principle (cf. [6, §3.2, Theorem 3.5]) tells us that ¢ is a constant
function on the disk since on the boundary v is a constant, hence

w=dy =0.

Let
S={z|zeD, i-k==+1or7 k=0}

We have in D\ S, at least one of the following mixed products is nonzero:

{({ F k) = (- B)(7- D), (3.25)
(7 x 7k, 7T) = = (7 k)(7T - j)

Recall that

=
Il
el

or E=ix7 or E=jXT
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since w = dY - E and dY - 1 = 0, dY = 0in D \ S. Note that S is zero measured, by the
continuity dY =0in D.

Case 2 M is Alexandrov’s positive annulus. Lemma 2.2 says that the boundary consists
of two planar curves. We will discuss two different cases, respectively. Subcase 2.1: The two
boundary planes are parallel; Subcase 2.2: The two boundary planes are not parallel.

Different from Case 1, we need some extra topology preliminary.

Lemma 3.2 Ifﬁ =axr+ l;for any constant @ and b which is the trivial solution to (1.2),

we have for any component of boundary ox,1 < k < m,

f‘wzf‘&?ﬁzm (3.26)

hence there exists some smooth function v defined on the M, such that
w = dv.

Proof Integral by parts yields

=0, (3.27)

where we use (2.20).

For Subcase 2.1, let k be a unit vector in R3 which is parallel to the normals of the two
boundary planes and choose E=Fk Thenw =dY -k =0 on OM. In particular the normal
derivative % = 0. Similar to Case 1, by maximum principle on Neumann problem (cf. [6, §3.2,
Theorem 3.6]), v is constant. Hence dip =Y - kda' = 0,

1 2 = T

(D () - 6) 020
Note that on M at least one of 7 - E, T - k is not zero, otherwise k is parallel to some normal
on M, but as a convex surface, its Gauss map is one-to-one and any normal on M differs
from the normals on M therefore is not parallel to k. Hence the coefficient determinant
det(a%) = dztc(&”g) = 0, ie., det(w;;) = det(w) = 0. (2.21) says try(w;;) = tr(h~'w) = 0, in
addition det(h~lw) = (;Cett((z)) =0, then h=*w = 0 and w = 0 because h and w are symmetric,

ie., dY =0.
For Subcase 2.2, let the constant normals on o7, 02 be 7i(01), 7(02), and the constant support

functions on o1, 09 be p(o1), p(o2), respectively. We choose E as

—

FE = (ﬁ(al) X ﬁ(UQ)) X (’I:'—F Clﬁ(Ul) + CQﬁ(O'Q)), (329)
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(500 0 ") () == (i) (3.30)

Since (01 ), 7i(02) are not parallel, the coefficient matrix in algebraic equation (3.30) is invertible
and thereby (3.30) is solvable.

where ¢, ¢o solves

.. 2 —
Note that 7= g™ p;7; + pii, it is easy to check that on OM = |J oy, such E is parallel to
k=1

normal. Then w = dY - E = 0 on M.
Similar to Subcase 2.1, if at least one of 7, - E, - E is not zero, the tensor w = w;;datdz? = 0.
We will see the set

S,:={peM, H-E=0, 7 E=0} (3.31)

is of zero measure. Then w = 0 everywhere on M by the continuity.
Let X =7+ c1mi(o1) + comi(o2), and define

omlp)=ii-X, peM. (3.32)

We have that S, is contained in the level set {p € M, pm(p) = 0} since 7 is parallel to
E = (ii(01) x ii(03)) x X on S,. We will check on the level set, Vo # 0 if X # 0.

ipm =7+ X -0 = —X - hlm. (3.33)

Let X = a’7; since on the level set 7 - X = 0, if Vioar =0, we have

(% ;g>(§)::GD’ (3.34)

hence a/ = 0 and X = 0. 7 is regular surface and the translation X is regular too, then the
{p € M, X(p) = 0} is finite. The level set {p € M, ©r(p) = 0} is zero measured. As a subset
of {p € M, prm(p) =0}, S, is also zero measured.

Remark 3.1 If M = S?, i.e., the case of closed convex surface, we choose

—

E=k or E=1i or E:;
Similar but simpler argument yields dY = 0. Thus we complete the proof of Theorem 1.2.

As we have seen, the new proofs we give highlight the roles that the function p defined in
(2.5) and its linearized version ¢ defined in (2.23) play. In fact we can extract all information
from p which satisfies Darboux equation in isometric embedding problem as we work on the
support function in Minkowski problem.

4 The Rigidity of Hypersurfaces in R**1,n > 3

Similarly in the case of higher dimension, for the equation (1.2) we can assume that

d7 =Y x dF
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for some vector Y € Gp.(n —1,n+1) =2 G,(2,n + 1), where G,.(r,n + 1) is Grassmannian.
Let
dF = de?, dY =VYida', 1<i,j<n

and
Y, = w ea/\eg, 1<a,8<n+1,

where 7,41 is the normal vector, and the basis eq A eg in G,(2,n + 1) is defined by

eaNeg = ﬁ ,sz(n UTSZBH)T’“ AThy Ao s AT, (4.1)
where § is generalized Kronecker symbol. Obviously e, A eg = —eg A eq, we set
WP = —whe (4.2)
By
dY AdF =0,
we have
WPeo Neg AFdat Ada? =0, (4.3)
i.e.,
! aBglz -t A Fm A AT, ATdat Ada? =0. (4.4)

(n_l)l i Tkikzkno1af

Define a basis E,,1 <y <n+1in Gr(n,n+1) = G,(1,n+1) by

Py ATy A - ATy AT = 5lfk2(nknl)7fj(:+l)E (45)
hence
(n —1 1! iaﬂ 11?1@2(”!«"1)?&73“)511?1@2(%:)?3(:“)17 dat A da?
" (n o= Ty Wi SapBrda’ A da?
- (4.6)

i.e., for fixed 7,7 and v,
wPsl — wersl, = o, (4.7)
hence
Wi =w. (4.8)
We claim the following lemma.
Lemma 4.1 If1 <14,j,v <mn, then

Wi =0. (4.9)
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For the left-hand side of (4.9), by (4.2) and (4.8),

W)Y = W) = Wi = Wi,

K2

And on the other hand, for the right-hand side of (4.9), by (2.2) and (4.8)

vy _ i _ Ji
M/j = M/j =W R
SO

Wi =W,

Hence we can rewrite
= I(n+1
Y = 2w/ e Ay

At the same time note that for fixed i, j,

1 12 (n—)n(n+1) -

> — I(n+1)
VAT = 2V T kbl TRy

/\Fkg/\"'/\Fk /\Fj

n—1

_ j(n+1) 1 12-(n—1)n(n+1) - o . .
- W (n — 1)!5k1k2---kn71j<n+1>”1 AThy Noo s NThy g AT

= 2w/ " /g[Fna,

Y. Y. Xu

(4.10)

(4.11)

(4.12)

(4.13)

hence letting w;; = 2W/ (+1) /19l the quadratic form w;;datdz’ is globally well-defined.

We rewrite (4.12) as

—

1
Y = wy——=e; N epyr1.

Vgl
In what follows we will compute the covariant derivative of e; A €,41.
At first we notice that
ki,k2, o kn—1#£lLn+1
el A eni1 = 3 O ) Py ATy A AT
ki <ka<--<kn_1

therefore

k1>k27”')k7171#l7n+1
o 12---(n—1)n(n+1) N . i
(el /\en+1)j = E 5k1k2---kn,1l(n+l)(hklajrn-i'l ATy Noo s NTr,
k1<ka<--<kn_1

+ hkz;ij1 ANTpgr N AT +- 4+ hkn—lijkl ATy Ao /\Fn-i-l)'

n—1

Since

512---(n—1)n(n+1) -

k1k2..-kn,1l(n+1)rn+l
12---(n—1)n(n+1) - - .

_5(71_,_1)1@2...1%71%1 Tl ATy Ao s AT,y

12---(n—1)n(n+1) - i -
_5k2"'kn71("+1)lk1’rk2 At ATy g AT,

ANThy Ao AT

n—1

and for ko < ks <--- < kp_1<n+1, ko, ks, kn_1,mn+1 7& l, k1, we have

12--(n—1)n(n+1) - . - .
(5k1k2___kn71l(n+1)rn+1 ANThy N - ATk, = —€1 N €k, .

n—1

(4.14)

(4.15)

(4.16)

(4.17)
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Similarly we have

(el A €n+1)j = Z hkjek A ej. (4.18)
k#ln+1
Thus
- 1
Y= ﬁ (wil_jel N €ny1 + wi Z hkjek A el),
g
B ] k#ln+l (4.19)
}/j-,i = (wjl,iel N ent1+ wj Z hrierp N el).
V lg] k#ln+1
By compatibility }_}” = }7”, we have
Wil 5 = Wil iy (4.20)
hijwi — hijwix = hgiwj — hyw;. (4.21)

Remark 4.1 (4.20) shows that w;; is Codazzi. In fact, (4.20)-(4.21) is a homogeneous
linearized Gauss-Codazzi system.

Similar to the case of n = 2,
o, hi
h”Yi)j = ——wj i€ N\ eni1. (4.22)
Vgl
Hence for hypersurface in R™*!, we can use maximal principle to get the infinitesimal
rigidity. But we can make use of (4.21) to reprove Theorem 1.5.

Proof of Theorem 1.5 We want to show w;; = 0. In view that wijdxida:j is invariant
under variable transformation, we consider the diagonal case, i.e., hj; = 0,7 # j, since at any
point on the hypersurface we can diagonalize the matrix (h;;) by variable transformation.

If the rank of the matrix (h;;) is greater than 2, without loss of generality we can assume
hi1, haa, haz # 0. By (4.21),

hi1wag + hoowi1 = higway + horwiz,
hi1wsz + hazwir = hizwsy + h3iwis, (4.23)

haowss + hazwaz = hogwsa + hzawas.

Since hi; =0, i # j, (4.23) is just a linear system of w1, waa, wss,

ha2 hiy 0O w1 0
h33 0 hll w22 = 0]. (424)
0  haz ha w33 0

The coefficient matrix in (4.24) is invertible, hence w11 = wae = ws3. For other w;;, by (4.21),
hiiwij + hijwiy = hywy + hijwg, (4.25)

since ¢ 75 1, j 7é 1 and w11 = 0, hllwij =0.
As for the part of global rigidity, without loss of generality we assume that the block Hs =
(hij)sxs is of full rank, then its adjoint matrix Hj is of full rank too. By Gauss equation,
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every element in H3 is an entry of Riemannian curvature tensor which is totally determined by
metric. Therefore H} is intrinsic and we can recover Hz from Hj. H? is intrinsic too, and as
we proceed in the part of infinitesimal rigidity the H = (h;;)nxn is intrinsic too.

In the proof of Theorem 1.5, we just deal with the algebraic equations, Gauss equations or
its linearized equations, so we can say Theorem 1.5 is algebraic.
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