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1 Introduction

It is well known that possessing infinite number of symmetries is a common property of the

classical integrable systems. There are many results on concrete forms of symmetries (see [1–3]).

The recursion operator is one kind of effective tools to generate symmetries of integrable systems

(see [4–5]). On the other hand, the recursion operator is also used to establish the Hamiltonian

structure of integrable systems (see [1, 6–7]) and integrable flows of curves (see [8]). So it is vital

to construct the recursion operator for integrable systems. The noncommutative theory gives

rise to various new physics such as the canonical commutation relation [q, p] = i~ in quantum

mechanics which leads to the so-called space-space uncertainty relation. In the context of the

effective theory of D-branes, the noncommutative gauge theories are found to be equivalent to

ordinary gauge theories in the presence of backgroundmagnetic fields. Noncommutative solitons

play important roles in the study of D-brane dynamics in which noncommutative coordinates

are known to emerge from limits of M theory and string theory as shown in [9].

The KP hierarchy (see [10–11]) is one of the most important integrable systems in math-

ematics and physics as Toda system. However, there are many noncommutative equations
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deserving to be studied, such as the noncommutative constrained KP (NcKP) hierarchy, the

noncommutative multi-component KP (NmKP) hierarchy, the multi-component noncommuta-

tive constrained KP hierarchy defined in this paper and so on. They have extensive effect on

systems in the noncommutative space. In the papers [7, 12–13], several different methods were

used to construct recursion operators. Furthermore, it was highly non-trivial to reduce some

results from the noncommutative KP hierarchy (NcKP) to the noncommutative constrained KP

hierarchy and the multi-component noncommutative constrained KP hierarchy. In the papers

[14–15], recursion operators for the commutative 1-constrained BKP and CKP hierarchies were

given. In addition, recursion operators for the noncommutative KP hierarchy were given in

[16], and recursion operator for the multi-component constrained KP (mcKP) hierarchy was

researched. The purpose of this paper is to give recursion operators of the noncommutative

constrained KP hierarchy and the multi-component noncommutative constrained KP hierarchy.

The organization of this paper is as follows. We recall some basic facts for the noncom-

mutative KP systems and constraints on the basis constrained KP (cKP) hierarchy in Section

2. In Section 3, the recursion operator for the noncommutative constrained KP hierarchy is

discussed and used to generate the flow equations, which are consistent with results given by

eigenfunction equations of this sub-hierarchy. Based on some basic knowledge of the multi-

component KP (mKP) hierarchy and the multi-component constrained KP (mcKP) hierarchy,

we give the Lax equation of the multi-component noncommutative constrained KP hierarchy

and its constraints in Section 4. In Section 5, the recursion operator for the two-component

noncommutative constrained KP hierarchy is discussed.

2 The Noncommutative KP Systems and Constraints

As we all know, the noncommutative KP hierarchy is one of the most important topics in

the area of classical integrable systems (see [17]). In the noncommutative system, ⋆ is defined

by

f(x) ⋆ g(x) = exp
( i

2
θuv∂au∂bv

)

f(a)g(b) |a=b=x= f(x)g(x) +
i

2
θuv∂uf(x)∂vg(x) + ϑ(θ2),

where ϑ(θ2) means the higher order terms of θ. We also get that [xu, xv]⋆ = xu ⋆ xv −xv ⋆ xu =

iθuv, and when θuv → 0, the noncommutative system can be reduced to the commutative

ones. The noncommutative KP hierarchy is constructed by the pseudo-differential Lax operator

L = ∂ + u2∂
−1 + u3∂

−2 + · · · as

Ltn = [Bn, L]⋆ := Bn ⋆ L− L ⋆ Bn,

where Bn = (Ln)+ and “+” means the nonnegative projection on powers of ∂. So we can get

the noncommutative KP equation by the t2 (denoted by y) flows and t3 (denoted by t) flows

(see [16, 18]):

(4ut − uxxx − 6u ⋆ ux − 6ux ⋆ u)x − 3uyy + 6[ux, uy]⋆ = 0, (2.1)
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where u = u2. To calculate the noncommutative quasi-differential operators, we need the

following definition.

Definition 2.1 If the operator A is a differential operator and has form A :=
∞
∑

n=0

∂nan,

then we define A∗ ⋆ g(x) =
∞
∑

m=0

(−1)m(∂mg(x)) ⋆ am.

The eigenfunction q and conjugate eigenfunction r of noncommutative KP hierarchy are

defined by

qtm = Bm ⋆ q, rtm = −B∗
m ⋆ r. (2.2)

However, we should use a formal adjoint operation ∗ for an arbitrary pseudo-differential

operator P =
∑

i

pi ⋆ ∂
i, P ∗ =

∑

i

(−1)i∂ipi to define the noncommutative KP hierarchy, such

as, ∂∗ = −∂, (∂−1)∗ = −∂−1, and (A ⋆ B)∗ = B∗ ⋆ A∗ for two operators A,B.

What is more, in view of symmetry constraint, the so called “noncommutative constrained

KP hierarchy” (NcKP) is a very interesting sub-hierarchy, and the Lax operator for noncom-

mutative 1-constrained KP is given by

L = ∂ +

n
∑

i=1

qi ⋆ ∂
−1ri, (2.3)

where qi (ri) is the eigenfunction(adjoint eigenfunction) of L in (2.3). In the following context,

we take n = 1 for simplicity, i.e.,

L = ∂ + q ⋆ ∂−1r. (2.4)

Note that q and r satisfy the eigenfunction equations (2.2) associated with L in (2.4). The

1-constrained KP hierarchy whose evolution equations are as follows:

∂L

∂tn
= [Bn, L]⋆, n = 1, 2, · · · . (2.5)

In order to get the explicit form of the flow equations, we need Bn,

B1 = ∂,

B2 = ∂2 + 2(q ⋆ r),

B3 = ∂3 + 3q ⋆ r ⋆ ∂ + 3qx ⋆ r,

...

After computing from eigenfunction equations (2.2) directly, we can get the first few flows of

the noncommutative cKP hierarchy

{

qt1 = qx,

rt1 = rx,
(2.6)
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{

qt2 = qxx + 2(q ⋆ r ⋆ q),

rt2 = −rxx − 2(r ⋆ q ⋆ r),
(2.7)

{

qt3 = qxxx + 3qx ⋆ r ⋆ q + 3q ⋆ r ⋆ qx + q ⋆ rx ⋆ q + r ⋆ qx ⋆ q,

rt3 = rxxx + 3rx ⋆ q ⋆ r + 3r ⋆ q ⋆ rx,
(2.8)

...

It is very difficult to observe recursion operator from equations on t1 flows, t2 flows and t3

flows above. We shall find it in next section from eigenfunction equations on q and r, and may

use it to generate any higher order flows. To illustrate the validity of recursion operator, we

can use it to generate t4 flows from trivial flows, i.e., t3 flows, and further generate t5 flows

from t4 flows which will be omitted here.

3 The Recursion Operator for a Noncommutative Constrained KP

Hierarchy

In this section, the form of recursion operator R will be given, where Rq denotes to be right

multiplied by q.

In order to calculate recursion operator conveniently, we give the following lemma.

Lemma 3.1 The following four noncommutative identities hold true:

(Bnf ⋆ ∂−1g)− = Bn(f) ⋆ ∂
−1g, (3.1)

(f ⋆ ∂−1g ⋆ Bn)− = f ⋆ ∂−1B∗
n(g), (3.2)

f1 ⋆ ∂
−1g1 ⋆ f2 ⋆ ∂

−1g2 = f1 ⋆
(

∫

g1 ⋆ f2

)

⋆ ∂−1g2 − f1 ⋆ ∂
−1

(

∫

g1 ⋆ f2

)

⋆ g2. (3.3)

Now, we define the following four operators:

R11 = L+Rq ⋆ ∂
−1Rr,

R12 = q ⋆ ∂−1Rq +Rq ⋆ ∂
−1q,

R21 = Rr ⋆ ∂
−1Rr,

R22 = L+ q ⋆ ∂−1Rr +Rr ⋆ ∂
−1q.

Theorem 3.1 The recursion relation of flows for the noncommutative 1-cKP hierarchy

(2.5) is as follows:

(

q

r

)

tm+1

=

(

R11 R12

R21 R22

)(

q

r

)

tm

. (3.4)

Proof Denote An as (Ln)−, n = 1, 2, · · · . By considering the noncommutative KP condition

and (2.2), q and r should satisfy the same equation, i.e.,

Bm(q) = qtm , B∗
m(r) = −rtm , (3.5)
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then

qtm+1
= (L ⋆ Lm)+ ⋆ q = B1 ⋆ Bm ⋆ q + (B1 ⋆ Am)+ ⋆ q + (A1 ⋆ Bm)+ ⋆ q, (3.6)

rtm+1
= (L ⋆ Lm)+ ⋆ r = B1 ⋆ Bm ⋆ r + (B1 ⋆ Am)+ ⋆ r + (A1 ⋆ Bm)+ ⋆ r. (3.7)

Let us firstly calculate (B1 ⋆Am)+. We set Am = ∂−1a1+∂−2a2+ · · · . So (B1 ⋆Am)+ = a1.

The identity Res∂ [L
m,L]⋆ = 0 yields

Res∂ [Bm,L]⋆ = Res∂ [−Am,L]⋆ = Res∂ [−Am, B1]⋆. (3.8)

The first residue of (3.8) equals Res∂Ltm = qtm ⋆ r + q ⋆ rtm and the last residue of (3.8) yields

Res∂ [∂, ∂
−1a1 + ∂−2a2 + · · · ]⋆ = a1x. So a1 can be expressed as

a1 =

∫

qtm ⋆ r + q ⋆ rtm . (3.9)

Hence, we can directly calculate (B1 ⋆ Am)+ as

(B1 ⋆ Am)+ =

∫

qtm ⋆ r + q ⋆ rtm .

Considering the term (A1 ⋆ Bm)+, we write it as A1 ⋆ Bm − (A1 ⋆ Bm)−. The first term is

relevant to tm flow. By using the Lemma 3.1, we can compute the second term

(A1 ⋆ Bm)− = (q∂−1r ⋆ Bm)− = q∂−1B∗
m(r) = −q ⋆ ∂−1rtm .

After bringing these results into (3.6), we get the recursion flow of q,

qtm+1
= [L+Rq ⋆ ∂

−1Rr] ⋆ qtm + [q ⋆ ∂−1Rq +Rq ⋆ ∂
−1q] ⋆ rtm .

Similarly after bringing these results into (3.7), we get the recursion flow of r,

rtm+1
= [Rr ⋆ ∂

−1Rr] ⋆ qtm + [L+ q ⋆ ∂−1Rr +Rr ⋆ ∂
−1q] ⋆ rtm .

Therefore, we get the recursion operator written in (3.4).

Let us inspect whether the results from this recursion operator are consistent with what

from the eigenfunction (2.2). After tedious calculating, we can show that they are consistent

which contains the t2 flows and t3 flows. Of course we can generate any higher order flows.

4 Lax Equations of the Multi-component Noncommutative

Constrained KP Hierarchy

The multi-component noncommutative constrained KP hierarchy can be defined by the

following Lax operator

L = ∂ +

n
∑

i=1

qi ⋆ ∂
−1ri, (4.1)
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where qi and ri are N ×N matrix functions take values in noncommutative coordinate space.

In the following context, we take n = 1 for simplicity. We consider the Lax operator of the

multi-component commutative constrained KP hierarchy as

L = ∂ + q ⋆ ∂−1r. (4.2)

In order to get q
t
j
n
and r

t
j
n
, we need the following definition.

Definition 4.1 If the matrix operator B is a differential operator and has form B :=
∞
∑

n=0

∂nan, then we define B∗ ⋆ g(x) =
∞
∑

m=0

(−1)m(∂mg(x)) ⋆ am.

The eigenfunction q and the adjoint eigenfunction r of the multi-component noncommutative

constrained KP hierarchy satisfy the following Sato equations

q
t
j
n
= (Bj

n)+ ⋆ q, r
t
j
n
= −(Bj

n)
∗
+ ⋆ r, (4.3)

where Bj
n will be defined later. For an arbitrary matrix-valued pseudo-differential operator

P = Σpi∂
i, we can denote ∗ as a formal adjoint operation which is defined by P ∗ = Σ(−1)i∂ipTi ,

and we have (f ⋆g)∗ = g∗⋆f∗ for two operators f and g. Here, we list some identities, which will

be used in the following sections: A∗ = AT, (A ⋆B)∗ = BT ⋆AT, (A ⋆ ∂ ⋆B)∗ = −BT ⋆ ∂ ⋆AT,

where A and B are N ×N matrix functions. We can rewrite the operator L in a dressing form

as

L = P ⋆ ∂ ⋆ P−1, (4.4)

where

P = E +
∑

i≥1

pi ⋆ ∂
−i. (4.5)

So the equations of the multi-component noncommutative constrained KP hierarchy is

∂
t
j
n
L = [(Bj

n)+, L]⋆, n = 1, 2, 3, · · · , (4.6)

where

Bj
n = Ln ⋆ Cj , Cj = P ⋆ Ejj ⋆ P

−1. (4.7)

In the following part, we give the Lax equations of the two-component noncommutative

constrained KP hierarchy. The Lax operator has form

L = ∂ + q ⋆ ∂−1 ⋆ r, (4.8)

where q and r are 2 × 2 matrix functions. The Lax equations of the two-component noncom-

mutative constrained KP hierarchy are defined by

∂
t
j
n
L = [(Bj

n)+, L]⋆, n = 1, 2, 3, · · · , j = 1, 2, (4.9)
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Bj
n = Ln ⋆ Cj , (4.10)

and we give the following constraint on C1 and C2,

C1 = E11 + α ⋆ ∂−1 ⋆ β, C2 = E22 − α ⋆ ∂−1 ⋆ β, (4.11)

where α and β are 2× 2 matrix functions. We have C1 +C2 = E. The eigenfunction α and the

adjoint eigenfunction β are defined respectively by

∂α

∂t
j
n

= (Bj
n)+ ⋆ α,

∂β

∂t
j
n

= −(Bj
n)

∗
+ ⋆ β, j = 1, 2. (4.12)

5 Recursion Operator for Two-component Noncommutative

Constrained KP Hierarchy

In this section, we shall give the recursion operator for the two-component noncommutative

constrained KP hierarchy.

Theorem 5.1 The recursion operators of tjm (j = 1, 2) flows for (4.9) are as follows:

q
t
j

m+1

= Aj1 ⋆ qtjm +Aj2 ⋆ rtjm +Aj3 ⋆ αt
j
m
+Aj4 ⋆ βt

j
m
, (5.1)

r
t
j

m+1

= Bj1 ⋆ qtjm +Bj2 ⋆ rtjm +Bj3 ⋆ αt
j
m
+Bj4 ⋆ βt

j
m
, (5.2)

α
t
j

m+1

= Cj1 ⋆ qtjm + Cj2 ⋆ rtjm + Cj3 ⋆ αt
j
m
+ Cj4 ⋆ βt

j
m
, (5.3)

β
t
j

m+1

= Dj1 ⋆ qtjm +Dj2 ⋆ rtjm +Dj3 ⋆ αt
j
m
+Dj4 ⋆ βt

j
m
. (5.4)

The specific form of Ajn, Bjn, Cjn, Djn (j = 1, 2, n = 1, 2, 3, 4) will be shown in the following

context.

Proof The equations of the multi-component noncommutative constrained KP hierarchy

are defined by

∂
t
j
n
L = [(Bj

n)+, L]⋆, n = 1, 2, 3, · · · , (5.5)

where

Bj
n = Ln ⋆ Cj , Cj = P ⋆ Ejj ⋆ P

−1. (5.6)

So we have

B
j
1 = L ⋆ Cj , Cj = Ejj + (−1)j−1α ⋆ ∂−1 ⋆ β,

therefore

B
j
1 = Ejj∂ + (−1)j−1α ⋆ β + q∂−1

[

r ⋆ Ejj − (−1)j−1

(

∫

r ⋆ α
)

⋆ β
]

+ (−1)j−1

[

αx + q ⋆
(

∫

r ⋆ α
)]

∂−1β.
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Denote Aj
n as (Bj

n)−, n = 1, 2, · · · . By considering (4.3) and (4.12), we have the following

results:

(Bj
m)∗+(q) = −q

t
j
m
, (Bj

m)∗+(r) = −r
t
j
m
, (Bj

m)∗+(α) = −α
t
j
m
, (Bj

m)∗+(β) = −β
t
j
m
. (5.7)

Then we have

q
t
j

m+1

= (Bj
1 ⋆ B

j
m)+ ⋆ q

= (Bj
1)+ ⋆ (Bj

m)+ ⋆ q + ((Bj
1)+ ⋆ Aj

m)+ ⋆ q + (Aj
1 ⋆ (B

j
m)+)+ ⋆ q, (5.8)

r
t
j

m+1

= (Bj
1 ⋆ B

j
m)+ ⋆ r

= (Bj
1)+ ⋆ (Bj

m)+ ⋆ r + ((Bj
1)+ ⋆ Aj

m)+ ⋆ r + (Aj
1 ⋆ (B

j
m)+)+ ⋆ r, (5.9)

α
t
j

m+1

= (Bj
1 ⋆ B

j
m)+ ⋆ α

= (Bj
1)+ ⋆ (Bj

m)+ ⋆ α+ ((Bj
1)+ ⋆ Aj

m)+ ⋆ α+ (Aj
1 ⋆ (B

j
m)+)+ ⋆ α, (5.10)

β
t
j

m+1

= (Bj
1 ⋆ B

j
m)+ ⋆ β

= (Bj
1)+ ⋆ (Bj

m)+ ⋆ β + ((Bj
1)+ ⋆ Aj

m)+ ⋆ β + (Aj
1 ⋆ (B

j
m)+)+ ⋆ β. (5.11)

Firstly, we shall calculate ((Bj
1)+ ⋆ Aj

m)+. Set Aj
m = ∂−1a1 + ∂−2a2 + · · · . Then we have

((Bj
1)+ ⋆ Aj

m)+ = Ejj ⋆ a1. The identity Res∂ [B
j
m, B

j
1]⋆ = 0 yields

Res∂ [(B
j
m)+, B

1
1 +B2

1 ]⋆ = Res∂ [−Aj
m, (B1

1 +B2
1)+]⋆ = Res∂ [(B

1
1 +B2

1)+, A
j
m]⋆. (5.12)

The first residue of (5.12) equals

Res∂Lt
j
m
= (q ⋆ r)

t
j
m
,

and the last residue of (5.12) yields

Res∂ [∂, ∂
−1a1 + ∂−2a2 + · · · ]⋆ = a1x.

So we get

a1 =

∫

(q ⋆ r)
t
j
m
. (5.13)

Hence

((Bj
1)+ ⋆ Aj

m)+ = Ejj ⋆

∫

(q ⋆ r)
t
j
m
. (5.14)

Next, we consider the term (Aj
1 ⋆ (B

j
m)+)+. We write it as Aj

1 ⋆ (B
j
m)+ − (Aj

1 ⋆ (B
j
m)+)−. Using

the identity (3.1), we can compute the second term

(Aj
1 ⋆ (B

j
m)+)− =

[

q∂−1

(

r ⋆ Ejj − (−1)j−1

(

∫

r ⋆ α
)

⋆ β
)

+ (−1)j−1

(

αx + q ⋆
(

∫

r ⋆ α
))

∂−1β ⋆ (Bj
m)+

]

−
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= q∂−1(Bj
m)∗+ ⋆ C∗

j (r) − (−1)j−1

(

αx + q ⋆
(

∫

r ⋆ α
))

∂−1β
t
j
m
.

Hence, we should calculate the following term

(Bj
m)∗+ ⋆ C∗

j (r) = C∗
j ⋆ (Bj

m)∗+(r) + [(Bj
m)∗+, C

∗
j ]⋆(r)

= −C∗
j (rtjm)− (C∗

j )tjm(r)

= −r
t
j
m
⋆ Ejj + (−1)j−1

(

∫

r
t
j
m
⋆ α

)

⋆ β + (−1)j−1
(

∫

r ⋆ α
)

⋆ β
t
j
m

+ (−1)j−1

(

∫

r ⋆ α
t
j
m

)

⋆ β.

Therefore, we can get

(Aj
1 ⋆ (B

j
m)+)− = −q∂−1r

t
j
m
⋆ Ejj + (−1)j−1q∂−1

(

∫

r
t
j
m
⋆ α

)

⋆ β

+ (−1)j−1q∂−1

(

∫

r ⋆ α
)

⋆ β
t
j
m
+ (−1)j−1q∂−1

(

∫

r ⋆ α
t
j
m

)

⋆ β

− (−1)j−1αx∂
−1β

t
j
m
− (−1)j−1q ⋆

(

∫

r ⋆ α
)

∂−1β
t
j
m
.

After bringing these results into (5.8), we get the recursion flow of q as follows:

q
t
j

m+1

= (Bj
1)+ ⋆ (Bj

m)+ ⋆ q + ((Bj
1)+ ⋆ Aj

m)+ ⋆ q + (Aj
1 ⋆ (B

j
m)+)+ ⋆ q

= B
j
1 ⋆ qtjm + ((Bj

1)+ ⋆ Aj
m)+ ⋆ q − (Aj

1 ⋆ (B
j
m)+)− ⋆ q

=
[

Ejj∂ + (−1)j−1α ⋆ β + q∂−1r ⋆ Ejj − (−1)j−1q∂−1

(

∫

r ⋆ α
)

⋆ β

+ (−1)j−1αx∂
−1β + (−1)j−1q ⋆

(

∫

r ⋆ α
)

∂−1β + Ejj ⋆ Rq∂
−1Rr

]

⋆ q
t
j
m

+ [Ejj ⋆ Rq∂
−1q + q∂−1Rq ⋆ REjj

− (−1)j−1q∂−1Rq ⋆ Rβ∂
−1Rα] ⋆ rtjm

+ [−(−1)j−1q∂−1Rq ⋆ Rβ∂
−1r] ⋆ α

t
j
m
+
[

− (−1)j−1q∂−1

(

∫

r ⋆ α
)

∂−1Rq

]

⋆ β
t
j
m
.

Similarly, we can get the other recursion flows:

r
t
j

m+1

= (Bj
1)+ ⋆ (Bj

m)+ ⋆ r + ((Bj
1)+ ⋆ Aj

m)+ ⋆ r + (Aj
1 ⋆ (B

j
m)+)+ ⋆ r

= B
j
1 ⋆ rtjm + ((Bj

1)+ ⋆ Aj
m)+ ⋆ r − (Aj

1 ⋆ (B
j
m)+)− ⋆ r

= Ejj ⋆ Rr∂
−1Rr ⋆ qtjm +

[

Ejj∂ + (−1)j−1α ⋆ β + q∂−1r ⋆ Ejj

− (−1)j−1q∂−1
(

∫

r ⋆ α
)

⋆ β + (−1)j−1αx∂
−1β + (−1)j−1q ⋆

(

∫

r ⋆ α
)

∂−1β

+ Ejj ⋆ Rr∂
−1q + q∂−1Rr ⋆ REjj

− (−1)j−1q∂−1Rr ⋆ Rβ∂
−1Rα

]

⋆ r
t
j
m

+ [−(−1)j−1q∂−1Rr ⋆ Rβ∂
−1r] ⋆ α

t
j
m
+
[

− (−1)j−1q∂−1

(

∫

r ⋆ α
)

⋆ Rr

+ (−1)j−1αx∂
−1Rr + (−1)j−1q ⋆

(

∫

r ⋆ α
)

∂−1Rr

]

⋆ β
t
j
m
,

α
t
j

m+1

= (Bj
1)+ ⋆ (Bj

m)+ ⋆ α+ ((Bj
1)+ ⋆ Aj

m)+ ⋆ α+ (Aj
1 ⋆ (B

j
m)+)+ ⋆ α



466 Q. F. Liu and C. Z. Li

= B
j
1 ⋆ αt

j
m
+ ((Bj

1)+ ⋆ Aj
m)+ ⋆ α− (Aj

1 ⋆ (B
j
m)+)− ⋆ α

= Ejj ⋆ Rα∂
−1Rr ⋆ qtjm + [Ejj ⋆ Rα∂

−1q + q∂−1Rα ⋆ REjj

− (−1)j−1q∂−1Rα ⋆ Rβ∂
−1Rα] ⋆ rtjm +

[

Ejj∂ + (−1)j−1α ⋆ β + q∂−1r ⋆ Ejj

− (−1)j−1q∂−1

(

∫

r ⋆ α
)

⋆ β + (−1)j−1αx∂
−1β + (−1)j−1q ⋆

(

∫

r ⋆ α
)

∂−1β

− (−1)j−1q∂−1Rα ⋆ Rβ∂
−1r

]

⋆ α
t
j
m
+
[

− (−1)j−1q∂−1

(

∫

r ⋆ α
)

⋆ Rα

+ (−1)j−1αx∂
−1Rα + (−1)j−1q ⋆

(

∫

r ⋆ α
)

∂−1Rα

]

⋆ β
t
j
m
,

β
t
j

m+1

= (Bj
1)+ ⋆ (Bj

m)+ ⋆ β + ((Bj
1)+ ⋆ Aj

m)+ ⋆ β + (Aj
1 ⋆ (B

j
m)+)+ ⋆ β

= B
j
1 ⋆ βt

j
m
+ ((Bj

1)+ ⋆ Aj
m)+ ⋆ β − (Aj

1 ⋆ (B
j
m)+)− ⋆ β

= Ejj ⋆ Rβ∂
−1Rr ⋆ qtjm + [Ejj ⋆ Rβ∂

−1q + q∂−1Rβ ⋆ REjj

− (−1)j−1q∂−1Rβ ⋆ Rβ∂
−1Rα] ⋆ rtjm + [−(−1)j−1q∂−1Rβ ⋆ Rβ∂

−1r] ⋆ α
t
j
m

+
[

Ejj∂ + (−1)j−1α ⋆ β + q∂−1r ⋆ Ejj − (−1)j−1q∂−1

(

∫

r ⋆ α
)

⋆ β

+ (−1)j−1αx∂
−1β + (−1)j−1q ⋆

(

∫

r ⋆ α
)

∂−1β − (−1)j−1q∂−1

(

∫

r ⋆ α
)

⋆ Rβ

+ (−1)j−1αx∂
−1Rβ + (−1)j−1q ⋆

(

∫

r ⋆ α
)

∂−1Rβ

]

⋆ β
t
j
m
.

Here, we have

Aj1 = Ejj∂ + (−1)j−1α ⋆ β + q∂−1r ⋆ Ejj − (−1)j−1q∂−1

(

∫

r ⋆ α
)

⋆ β + (−1)j−1αx∂
−1β

+ (−1)j−1q ⋆
(

∫

r ⋆ α
)

∂−1β + Ejj ⋆ Rq∂
−1Rr,

Aj2 = Ejj ⋆ Rq∂
−1q + q∂−1Rq ⋆ REjj

− (−1)j−1q∂−1Rq ⋆ Rβ∂
−1Rα,

Aj3 = −(−1)j−1q∂−1Rq ⋆ Rβ∂
−1r,

Aj4 = −(−1)j−1q∂−1

(

∫

r ⋆ α
)

∂−1Rq,

Bj1 = Ejj ⋆ Rr∂
−1Rr,

Bj2 = Ejj∂ + (−1)j−1α ⋆ β + q∂−1r ⋆ Ejj − (−1)j−1q∂−1

(

∫

r ⋆ α
)

⋆ β

+ (−1)j−1αx∂
−1β + (−1)j−1q ⋆

(

∫

r ⋆ α
)

∂−1β + Ejj ⋆ Rr∂
−1q

+ q∂−1Rr ⋆ REjj
− (−1)j−1q∂−1Rr ⋆ Rβ∂

−1Rα,

Bj3 = −(−1)j−1q∂−1Rr ⋆ Rβ∂
−1r,

Bj4 = −(−1)j−1q∂−1

(

∫

r ⋆ α
)

⋆ Rr + (−1)j−1αx∂
−1Rr + (−1)j−1q ⋆

(

∫

r ⋆ α
)

∂−1Rr,

Cj1 = Ejj ⋆ Rα∂
−1Rr,

Cj2 = Ejj ⋆ Rα∂
−1q + q∂−1Rα ⋆ REjj

− (−1)j−1q∂−1Rα ⋆ Rβ∂
−1Rα,

Cj3 = Ejj∂ + (−1)j−1α ⋆ β + q∂−1r ⋆ Ejj − (−1)j−1q∂−1

(

∫

r ⋆ α
)

⋆ β
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+ (−1)j−1αx∂
−1β + (−1)j−1q ⋆

(

∫

r ⋆ α
)

∂−1β − (−1)j−1q∂−1Rα ⋆ Rβ∂
−1r,

Cj4 = −(−1)j−1q∂−1

(

∫

r ⋆ α
)

⋆ Rα + (−1)j−1αx∂
−1Rα + (−1)j−1q ⋆

(

∫

r ⋆ α
)

∂−1Rα,

Dj1 = Ejj ⋆ Rβ∂
−1Rr,

Dj2 = Ejj ⋆ Rβ∂
−1q + q∂−1Rβ ⋆ REjj

− (−1)j−1q∂−1Rβ ⋆ Rβ∂
−1Rα,

Dj3 = −(−1)j−1q∂−1Rβ ⋆ Rβ∂
−1r,

Dj4 = Ejj∂ + (−1)j−1α ⋆ β + q∂−1r ⋆ Ejj − (−1)j−1q∂−1

(

∫

r ⋆ α
)

⋆ β + (−1)j−1αx∂
−1β

+ (−1)j−1q ⋆
(

∫

r ⋆ α
)

∂−1β − (−1)j−1q∂−1
(

∫

r ⋆ α
)

⋆ Rβ + (−1)j−1αx∂
−1Rβ

+ (−1)j−1q ⋆
(

∫

r ⋆ α
)

∂−1Rβ.

6 Conclusions and Discussions

The recursion operators in (3.4) for the noncommutative cKP system are found from the

eigenfunction equations on q and r. These operators are used to generate t2 flows (see (2.8))

from the t1 flows of this special hierarchy, which are consistent with flows from eigenfunction

(3.5). The validity of the recursion operators are demonstrated. Of course one can also use it to

generate higher order flows. Moreover, the Lax equation of multi-component noncommutative

constrained KP hierarchy is discussed and we construct recursion operators for two-component

noncommutative constrained hierarchy. Moreover, we can also get the following reduction chain:

NmKP hierarchy
L=∂+q⋆∂−1r
−−−−−−−−−→ NmcKP hierarchy

N=1
−−−→ NcKP hierarchy. (6.1)

Also, we can get the following reduction chain after taking θ = 0:

mKP hierarchy
L=∂+q∂−1r
−−−−−−−−→ mcKP hierarchy

N=1
−−−→ cKP hierarchy. (6.2)

In our future works, we shall try to discuss the recursion operators for the multi-component non-

commutative constrained BKP and CKP hierarchies which might be useful in multi-orthogonal

polynomials in a noncommutative space.
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