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Abstract In this paper, the authors consider the problem of which (generalized) moment-
angle manifolds admit Ricci positive metrics. For a simple polytope P , the authors can cut
off one vertex v of P to get another simple polytope Pv, and prove that if the generalized
moment-angle manifold corresponding to P admits a Ricci positive metric, the generalized
moment-angle manifold corresponding to Pv also admits a Ricci positive metric. For a
special class of polytope called Fano polytopes, the authors prove that the moment-angle
manifolds corresponding to Fano polytopes admit Ricci positive metrics. Finally some
conjectures on this problem are given.
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1 Introduction

The moment-angle manifold Z comes from two different ways:

(1) The transverse intersections in Cn of real quadrics of the form
n
∑

i=1

ai|zi|
2 = 0 with the

unit Euclidean sphere of Cn.

(2) An abstract construction from a simple polytope Pn with m facets.

The study of the first one led to the discovery of a new special class of compact non-kähler

complex manifolds in the work of López, Verjovsky and Meersseman [10–12], now known as the

LV-M manifolds, which helps us understand the topology of non-kähler complex manifolds.

The study of the second one is related to the quasitoric manifolds in the following way: For

every quasitoric manifold π : M2n → Pn there is a principal Tm−n-bundle Z → M2n whose

composite map with π makes Z a Tm-manifold with orbit space Pn. The topology of the

manifolds Z provides an effective tool for understanding inter-relations between algebraic and

combinatorial aspects such as the Stanley-Reisner rings, the subspace arrangements and the

cubical complexes, etc.

Nowadays, studies of moment-angle manifolds are mainly focused on the following two

aspects:
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(1) The cohomology of moment-angle manifolds and topology of some special moment-angle

manifolds.

(2) The geometry of moment-angle manifolds in its convex, complex-analytic, symplectic

and Lagrangian aspects.

In this paper, we pay attention to the Riemannian metric property of moment-angle mani-

folds in aspect of Ricci curvature. In Riemannian geometry, one of the most important themes

is to study the relationship between the curvature and globally topological or geometrical prop-

erty of Riemannian manifolds. In three types of curvature, scalar curvature has the weakest

relationship with the geometrical property of the manifolds, but it is the best understood one

according to the work of Gromov-Lawson [8–9] and Schoen-Yau [13–14]. Sectional curvature has

the closest relationship with the topological and geometrical property. In some sense, sectional

curvature controls nearly all aspects of Riemannian geometry. In order to get some geometric

properties of manifolds, usually we should give some restriction of sectional curvature. Besides,

one of the most important problems in geometry is the classification of the Riemannian mani-

folds with sectional positive (or non-negative) metrics and sectional negative (or non-positive)

metrics, which as known is far from totally understanding. As a second order symmetric tensor,

Ricci curvature is closely related to many elliptic, parabolic and nonlinear differential equations

in geometry. Ricci curvature also plays an important role in the general relativity theory in

physics and the existence problem of Ricci positive metric (or Einstein metric, Kähler-Einstein

metric) on a given manifold is also important. However, we have few methods to determine

whether a given manifold can admit a Ricci positive metric. Until now, we have not known

many examples of manifolds with positive Ricci curvature (Biquotients, connected sums of

Sni × Smi (see [15, 17]), Fano varieties, some principal G bundles on Ricci positive manifolds

(see [6], etc).

For the moment-angle manifolds, the existence of scalar positive metric can be easily proved

(see [16]). As far as we know, [1] is the only paper concerned with the Ricci positive metrics

on moment-angle manifolds. The authors constructed Riemannian metrics of positive Ricci

curvature on 3 special moment-angle manifolds. In this paper, we also study the problem

of which moment-angle manifolds admit Ricci positive metrics. We prove the following two

theorems.

Theorem 1.1 Let P be a simple polytope, Pv be a simple polytope which is obtained by

cutting off one vertex v on P . If the generalized moment-angle manifold corresponding to P

admits a Ricci positive metric, then the generalized moment-angle manifold corresponding to

Pv also admits a Ricci positive metric.

Theorem 1.2 If P is a Fano polytope, then the moment-angle manifold corresponding to

P admits a Ricci positive metric.

In the next two sections, we respectively prove these two theorems and finally give two

conjectures concerned with the existence of positive Ricci curvature on moment-angle manifolds.

2 Cutting off One Vertex on a Simple Polytope

Definition 2.1 A convex polytope P is the convex hull of a finite set of points in some
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R
n. 0-dimensional faces are called vertices, codimension one faces are called facets. If there

are exactly n facets meeting at each vertex of n-dimensional convex polytope Pn, this polytope

are called simple.

Given a simple polytope Pn, let F = {F1, · · · , Fm} be the set of facets of P . For each facet

Fi ∈ F , we use TFi
to denote the 1-dimensional coordinate subgroup of TF ∼= Tm corresponding

to Fi. Then assign to every face G the coordinate subtorus TG =
∏

Fi⊃G

TFi
⊂ TF . For every

point q ∈ P we denote by G(q) the unique face containing q in the relative interior. We can

define the moment-angle manifold corresponding to P by the following way.

Definition 2.2 For a simple polytope P introduce the moment-angle manifold ZP = (TF ×

P )/ ∼, where (t1, p) ∼ (t2, q) if and only if p = q and t1t
−1
2 ∈ TG(q).

Alternatively, we can define moment-angle manifold in another way: Since P is a simple

polytope, the dual of the boundary of P is a simplicial (n− 1)-sphere, which we denote by K.

Let [m] = {1, · · · ,m} represent the vertices of K, σ be a simplex in the complex K. Define

(D2)σ × Tσ̂ = {(z1, z2, · · · , zm) ∈ (D2)m : |zj| = 1 for j /∈ σ}

and define the moment-angle complex ZK corresponding to K as

ZK =
⋃

σ∈K

(D2)σ × Tσ̂ ⊂ (D2)m.

From [2], ZK is homeomorphic to ZP . When we study the topology of moment-angle mani-

fold corresponding to simple polytopes (or simplicial complexes), we consider the behavior of

moment-angle manifolds under some surgeries on the simple polytopes (or simplicial complex-

es). One important surgery is cutting off faces of polytopes (or bistellar moves on simplicial

complexes).

Definition 2.3 Let P be a simple polytope of dimension n with m facets, which is the

convex hull of finitely many vertices in Rn. For any face G in P , we can find a hyperplane

H(x) =
n
∑

i=1

aixi = b satisfying that H(v) > b and H(w) < b for any vertex v ∈ G and w 6∈ G.

The set P ∩ {x | H(x) ≤ b} is a new simple polytope PG, which is called to be obtained from P

by cutting off the face G.

Let K be the dual simplicial complex of the boundary of P on the vertex set [m], and σ ∈ K

be the simplex dual to the face G of P . Then the dual simplicial complex KG of the boundary

of PG can be expressed as

KG := (K − σ ∗ linkKσ) ∪ (∂σ ∗ linkKσ ∗ {∗}),

where linkKσ = {τ ∈ K : τ ∗ σ ∈ K} and {∗} is an additional point.

We consider a simple case that linkKσ is the boundary of k-simplex τ . In this case,

KG := (K − σ ∗ ∂τ) ∪ (∂σ ∗ ∂τ ∗ {∗}).

By the definition, the moment-angle complex corresponding to KG is

ZKG
= (ZK × S1 − Tm−n−1 ×D2(n−k)

σ × S2k+1
τ × S1) ∪ Tm−n−1 × S2(n−k)−1

σ × S2k+1
τ ×D2,
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where Tm−n−1 × S
2(n−k)−1
σ × S2k+1

τ ×D2 is attached along its boundary

Tm−n−1 × S2(n−k)−1
σ × S2k+1

τ × S1.

Obviously, ZKG
is diffeomorphic to ∂[(ZK − Tm−n−1 ×D

2(n−k)
σ × S2k+1

τ )×D2], which can

be interpreted as performing an “equivariant surgery operation” on ZK × S1.

It may be very complicated if we consider the topology of the moment-angle manifold

corresponding to KG when G is a high dimensional face. However, we have known the change

of topology of the moment-angle manifold after cutting off a vertex v on a polytope P .

After cutting off one vertex v of the simple polytope P , we obtain a new simple polytope

Pv. Let KP and KPv
be the duals of the boundary of P and Pv, σ be the maximal simplex in

KP dual to the vertex v of the simple polytope P . Then we have KPv
= KP#σ∂ △n (△n is

the standard n-dimensional simplex, and the choice of a maximal simplex in ∂△n is irrelevant).

By the definition, the moment-angle complex corresponding to P (or KP ) is

ZP =
⋃

σ∈KP

(D2)σ × Tσ̂ ⊂ (D2)m.

Then we can express the moment-angle complex corresponding to Pv (or KPv
) as follows

(see [2, 6.4]):

ZPv

∼= (ZP × S1 − Tm−n ×D2n
σ × S1)

⋃

Tm−n×S
2n−1

σ ×S1

Tm−n × S2n−1
σ ×D2

∼= ∂[(Z − Tm−n
σ̂

×D2n
σ )×D2].

In [7], Gitler and López conjectured that ZPv
is diffeomorphic to

∂[(ZP −Dn+m)×D2]#
m−n

#
j=1

(

m− n

j

)

(Sj+2 × Sm+n−j−1).

In [3], we proved this conjecture by the following way.

First, we construct an isotopy of Tm−n
σ̂ in Z to move it to the regular embedding (see

Remark 2.1) Tm−n ⊆ Dm−n+1 ⊆ Dm+n ⊆ Z. The key lemma in the construction is as follows.

Lemma 2.1 We have two embeddings of T k in Dk+2 :

(1) T k = T k−1 × S1 ⊆ Dk ×D2, where T k−1 is the regular embedding in Dk.

(2) T k ⊆ Dk+1 ⊆ Dk+1 ×D1, where T k is the regular embedding in Dk+1.

These two embeddings are isotopic.

Proof The normal bundle of the regular embedding T k−1 in Dk is trivial, so we can choose

a neighborhood of T k−1 which is diffeomorphic to T k−1 × R1. We can construct an isotopy of

T k in Dk+2 :

H : T k−1 × S1 × I → T k−1 × R×D2,

H(x, eiθ, t) = (x, t cos θ, (1 − t) cos θ, sin θ).

An examination of this isotopy proves the lemma.

Using this lemma, we can inductively construct an isotopy of Tm−n
σ̂

in Z to move it to the

regular embedding Tm−n ⊆ Dm−n+1 ⊆ Dm+n ⊆ Z, thus prove the following proposition.
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Proposition 2.1 ZPv
is diffeomorphic to

∂[(ZP −Dn+m)×D2] # ∂[(Sm+n − Tm−n ×D2n)×D2],

where Tm−n ×D2n is the regular embedding in Sm+n.

Remark 2.1 We construct the regular embedding of T k into Rk+1 as follows: S1 ⊆ D2 ⊆

R2. Assume that we have constructed the embedding of T i−1 into Di ⊆ Ri. Represent (i+ 1)-

sphere as Si+1 = Di × S1 ∪ Si−1 × D2. By the assumption, the torus T i = T i−1 × S1

can be embedded into Di × S1 and therefore into Si+1. Since T i is compact and Si+1 is

the one-point compactification of Ri+1, we have T i ⊆ Ri+1. Inductively, we can construct

the regular embedding of T k into Rk+1 (or Dk+1). The regular embedding of T k into Rn is

T k ⊆ Rk+1 × {0} ⊆ Rk+1 × Rn−k−1, where T k ⊆ Rk+1 × {0} is the regular embedding of T k

into Rk+1.

Similarly, we can construct the regular embedding of (Sn)k into Rnk+1.

Then we prove the following by induction.

Proposition 2.2 ∂[(Sm+n − Tm−n ×D2n)×D2] is diffeomorphic to

m−n

#
j=1

(

m− n

j

)

(Sj+2 × Sm+n−j−1),

where Tm−n ×D2n is the regular embedding in Sm+n.

Combining these two propositions, the conjecture is proved. However, we can replace the

pair (D2, S1) with (Dk+1, Sk) (k ≥ 2) in the definition of moment-angle manifolds to obtain

generalized moment-angle manifolds. We use ZP,k to denote the generalized moment-angle

manifold corresponding to P , then the generalized moment-angle manifold ZPv ,k corresponding

to Pv is diffeomorphic to ZPv ,k
∼= ∂[(Z − (Sk)m−n

σ̂
× (Dk+1)nσ)×Dk+1]. In a way similar to the

case of k = 1, we construct an isotopy of (Sk)m−n
σ̂ in ZP,k to move it to the regular embedding

(Sk)m−n ⊆ Dk(m−n)+1 ⊆ Dkm+n ⊆ ZP,k and we have a lemma similar to Lemma 2.1.

Lemma 2.2 There are two embedding of (Sn)k into Dnk+2 :

(1) (Sn)k ⊆ Dnk+1 × {0} ⊆ Dnk+2, where (Sn)k ⊆ Dnk+1 × {0} is the regular embedding.

(2) (Sn)k = (Sn)k−1 × Sn ⊆ Dnk−n+1 × Dn+1 = Dnk+2, where (Sn)k−1 ⊆ Dnk−n+1 and

Sn ⊆ Dn+1 are regular embeddings.

These two embeddings are isotopic to each other in Dnk+2.

Proof The normal bundle of the regular embedding (Sn)k−1 in Dn(k−1)+1 is trivial, so

we can choose a neighborhood of (Sn)k−1 which is diffeomorphic to (Sn)k−1 × R1. We can

construct an isotopy of (Sn)k in Dnk+2 :

H : (Sn)k−1 × Sn × I → (Sn)k−1 × R
1 ×Dn+1,

H(x, (y1, y2, · · · , yn+1), t) = (x, tyn+1, (y1, y2, · · · , yn, (1− t)yn+1)),

where we use (y1, y2, · · · , yn+1) to express the unit sphere Sn(1) in Rn+1. An examination of

this isotopy proves the lemma.

By this lemma, we can construct an isotopy of (Sk)m−n
σ̂

in ZP,k to move it to the regular

embedding (Sk)m−n ⊆ Dk(m−n)+1 ⊆ Dkm+n ⊆ ZP,k, thus prove the following proposition.
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Proposition 2.3 ZPv,k is diffeomorphic to

∂[(ZP,k −Dkm+n)×Dk+1] # ∂[(Skm+n − (Sk)m−n ×D(k+1)n)×Dk+1],

where (Sk)m−n ×D(k+1)n is the regular embedding in Skm+n.

Then using the same method of proving Proposition 1.2 in [3], we can prove the following

by induction (see Section 4).

Proposition 2.4 ∂[(Skm+n − (Sk)m−n ×D(k+1)n)×Dk+1] is diffeomorphic to

m−n

#
j=1

(

m− n

j

)

(Sk(j+1)+1 × Sk(m−j)+n−1),

where (Sk)m−n ×D(k+1)n is the regular embedding in Skm+n.

Combining these two propositions, we can prove the following theorem.

Theorem 2.1 If P is a simple polytope, the generalized moment-angle manifold ZPv,k cor-

responding to Pv is diffeomorphic to

∂[(ZP,k −Dn+km)×Dk+1]#
m−n

#
j=1

(

m− n

j

)

(Sk(j+1)+1 × Sk(m−j)+n−1).

In order to prove Theorem 1.1, we firstly recall some notations and theorems.

Suppose that we are given a Riemannian manifold Mp+d having positive Ricci curvature

and an isometric embedding: ι : Sp(ρ) ×Dd(R,N) → M where Sp(ρ) is the p-sphere with the

round metric of radius ρ, Dd(R,N) denotes a geodesic ball of radius R in the d-sphere with

the round metric of radius N . We can regard ι as a trivialization of the normal bundle of

ι(Sp × {0}). A corollary of the main Lemma 1 in [15] is the following result.

Theorem 2.2 (see [17, Section 4, Theorem ]) Let M ∼= (M−Sp×Dd)∪Dp+1×Sd−1 be the

result of performing surgery on ι(Sp ×{0}) using the trivialization ι, and assume p ≥ 1, d ≥ 3.

Then there exists κ(p, d,RN−1) > 0 such that if ρ
N

< κ then M can be equipped with a Ricci

positive curvature, the metric on a neighborhood Sd−1 × Dp+1 of Sd−1 is the product of the

metric on a round sphere Sd−1 and the metric on a geodesic ball Dp+1 in the (p+ 1)-sphere.

Remark 2.2 In [15], the authors used the warped product to construct a Ricci positive

metric on Dd × Sp such that the metric on a submanifold (Sd−1 × I)× Sp ⊆ Dd × Sp (Sd−1 ×

{0} × Sp is the boundary ∂Dd × Sp) is Ricci positive satisfying that

(1) the metric on the submanifold Sd−1 × [0, ǫ] × Sp is isomeric to a neighborhood of the

boundary of the product of a geodesic ball Dd in the d-sphere and a round sphere Sp,

(2) the metric on the submanifold Sd−1× [1− ǫ, 1]×Sp is isometric to a neighborhood of the

boundary of the product of a round sphere Sd−1 and a geodesic ball Dp+1 in the (p+1)-sphere.

So there exists a Ricci positive metric on

M ∼= (M − Sp ×Dd) ∪Dp+1 × Sd−1 = (M − Sp ×Dd) ∪ Sd−1 × I × Sp ∪Dp+1 × Sd−1

such that

(1) the metric on M − Sp ×Dd inherits from the Ricci positive metric on M ,

(2) the metric on Sd−1 × I × Sp is the Ricci positive metric constructed above,
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(3) the metric on Dp+1 × Sd−1 is isometric to the product of the metric on a geodesic ball

Dp+1 in the (p+ 1)-sphere and the metric on a round sphere Sd−1.

The proof of Theorem A in [17] shows the following theorem.

Theorem 2.3 Let Sm ×Dn (m > n ≥ 3) be a neighborhood of an embedded sphere Sm in

M . If manifold M admits a Ricci positive metric such that the restricted metric on Sm ×Dn

is the product metric of the round metric of sphere Sm and a geodesic ball Dn in the n-sphere,

then any connected sum M#Sm1 × Sn1# · · ·#Smk × Snk admits a metric of positive Ricci

curvature for mi, ni ≥ 3 and mi + ni = m+ n for all i.

Remark 2.3 Consider the Ricci positive metrics on Dn×Sp+q+1, where n ≥ 3, p ≥ 2, q ≥

1. Let Dn+q+1×Sp = Dn×(Dq+1×Sp) ⊆ Dn×Sp+q+1 be the product of embedding Dn Id
→Dn

and Dq+1 × Sp ⊆ Sp+q+1. Then there is a Ricci nonnegative metric on Dn × Sp+q+1 such that

(1) a neighborhood of ∂Dn × Sp+q+1 is isomeric to a neighborhood of the boundary of the

product of a geodesic ball Dn in the n-sphere and a round sphere Sp+q+1,

(2) the submanifoldDn+q+1×Sp is isometric to the product metric of a geodesic ballDn+q+1

in the (n+ q + 1)-sphere and a round sphere Sp.

Without loss of generality, assume that mi ≥ ni, so m − ni ≥ 1. M#Smi × Sni can be

expressed by (M − Sni−1 ×Dmi+1) ∪ Dni × Smi , where Sni−1 ×Dmi+1 ⊆ Sm ×Dn ⊆ M is

the product of embedding (Sni−1 × Dm+1−ni) ⊆ Sm and Dn Id
→Dn. So there exists a Ricci

nonnegative metric on (M − Sni−1 ×Dmi+1) ∪Dni × Smi such that

(1) the metric on M − Sm ×Dn inherits from the Ricci positive metric on M ,

(2) the metric on Sm ×Dn − Sni−1 ×Dmi+1 inherits from the Ricci nonnegative metric on

Sm ×Dn constructed by the method above,

(3) the metric on Dni ×Smi is isometric to the product of the metric on a geodesic ball Dni

in the ni-sphere and the metric on a round sphere Smi .

By choosing several small geodesic sub-balls Dn of Dn and constructing a Ricci nonnegative

metric on each Sm×Dn by the method above, we obtain a metric of nonnegative Ricci curvature

on M#Sm1 ×Sn1# · · ·#Smk ×Snk . As the metric is Ricci positive at many points, by [5] this

metric can be deformed to one with everywhere strictly positive Ricci curvature.

Now we come to the proof of Theorem 1.1.

Proof of Theorem 1.1 As noted in [15, p. 134], if manifold Mm admits a Ricci positive

metric, then the metric can be deformed to be a Ricci positive one containing a geodesic ball

Dm in the m-sphere. So we can always assume that the manifold M with a Ricci positive

metric contains a geodesic ball Dm in the m-sphere. If the generalized moment-angle manifold

ZP,k admits a Ricci positive metric, the product of the metric on ZP,k and a round metric on

Sk is Ricci positive containing Dn+km × Sk the metric of which is the product of the metric

on a geodesic ball Dn+km in the (n+ km)-sphere and the metric on a round sphere Sk. With

Theorem 2.2, we can prove that

∂[(ZP,k −Dn+km)×Dk+1] ∼= (ZP,k × Sk −Dn+km × Sk) ∪ Sn+km−1 ×Dk+1

admits a Ricci positive metric, the restricted metric on a neighborhood Sn+km−1 × Dk+1 of

Sn+km−1 is the product of the metric on a round sphere Sn+km−1 and the metric on a geodesic
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ball Dk+1 in the (k + 1)-sphere, when m,n, k ≥ 2, n+ km− 1 > k + 1. By Theorems 2.2–2.3,

we can prove that the generalized moment-angle manifold

ZPv ,k
∼= ∂[(ZP,k −Dn+km)×Dk+1]#

m−n

#
j=1

(

m− n

j

)

(Sk(j+1)+1 × Sk(m−j)+n−1)

admits a Ricci positive metric if generalized moment-angle manifold ZP,k admits a Ricci positive

metric.

3 Fano Polytope

In this section, we will prove that the moment-angle manifolds corresponding to Fano poly-

topes admit Ricci positive metrics. Now we come to the definition of Fano polytope.

Definition 3.1 Let Q be a simplicial convex polytope in Rn whose vertices are primitive

lattice vectors {li} (li ∈ Zn), and which contains 0 in the interior. If a1, · · · , an are the vertices

of a facet of Q, we suppose det(a1, · · · , an) = ±1 for every facet. Then we call Q a Fano

polytope.

The boundary of Q is a simplicial sphere K, from which we can construct a moment-angle

manifold ZK . Alternatively, we can define the moment-angle manifold in another way: The

dual of Q: P = {u ∈ Rn | 〈u, v〉 ≤ 1, ∀v ∈ Q} is a simple polytope. The normal vector of

each facet can be chosen as one of the lattice vectors {li}, we assume that the lattice vector

corresponding to facet Fi is li. We can construct the moment-angle manifold ZP corresponding

to P which is homeomorphic to ZK .

In order to prove Theorem 1.2, we firstly recall a theorem in [6].

Theorem 3.1 Let Y be a compact connected Riemannian manifold with a metric of positive

Ricci curvature. Let π : P → Y be a principal bundle over Y with compact connected structure

group G. If the fundamental group of P is finite, then P admits a G invariant metric with

positive Ricci curvature so that π is a Riemannian submersion.

Now we come to the proof of Theorem 1.2.

Proof of Theorem 1.2 Given a Fano polytope Q, we can define the complete fan Σ(Q)

whose cones are generated by those sets of vertices li1 , · · · , lik which are in one face of Q. From

this fan, we can construct a toric variety MP . This toric variety is smooth and Fano (see [4])

(Fano means that the anticanonical divisor is ample). By Calabi-Yau’s theorem (see [18]), the

Fano variety MP admits a Ricci positive metric.

Topologically, toric Fano variety can be constructed from the polytope P and the lattice

vectors {li} by the following way (see [2]): We identify the torus T n with the quotient Rn/Zn.

For each point q ∈ P , define G(q) as the smallest face that contains q in its relative interior.

The normal subspace to G(q) is spanned by the primitive vectors li corresponding to those

facets Fi which contain G(q). Since N is a rational space, it projects to a subtorus of T n, which

we denote by T (q). Then as a topological space, the toric Fano variety

MP = T n × P/ ∼,

where (t1, p) ∼ (t2, q) if and only if p = q and t1t
−1
2 ∈ T (q).
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From [2], the moment-angle manifold ZP is a principal Tm−n bundle ZP → MP . Since

ZP is simply connected and MP admits a Ricci positive metric, by Theorem 3.1, ZP admits a

Tm−n invariant metric with positive Ricci curvature.

Now we give a conjecture.

Conjecture 3.1 P is a simple polytope.

(1) k ≥ 1. If a generalized moment-angle manifold ZP,k admits a Ricci positive metric, so

does ZP,k+1.

(2) For k ≥ 2, ZP,k admits a Ricci positive metric for every simple polytope P . Moment-

angle manifold ZP admits a Ricci positive metric for every irreducible simple polytope P .

If the conjecture (1) is true, by Theorem 1.2, the generalized moment-angle manifolds corre-

sponding to Fano polytopes admit Ricci positive metrics; by Theorem 1.1, we can prove that the

generalized moment-angle manifolds corresponding to polytopes obtained by cutting off vertices

of Fano polytopes admit Ricci positive metrics. So we can obtain a class of polytopes that the

corresponding generalized moment-angle manifolds admit Ricci positive metrics. Besides, in [1],

the authors constructed a Ricci positive metric on the moment-angle manifold corresponding

to the polytope Pv obtained by cutting off one vertex v on the 3-cube P 3. However, the dual of

Pv is a Fano polytope. So by Theorem 1.2, we can prove that the corresponding moment-angle

manifold admits a Ricci positive metric.

From [8], we know that any manifold obtained from a manifold which admits scalar positive

curvature by performing surgeries in codimension ≥ 3 also admits a scalar positive curvature.

For the Ricci curvature, when we perform surgery on manifolds with Ricci positive metrics,

whether the manifold (M − Sp × Dn−p) ∪ Dp+1 × Sn−p−1 obtained by surgery can admit

Ricci positive curvature may depend on the restricted metric of Sp ×Dn−p in M (see [15, 17]).

Similarly, suppose that the generalized moment-angle manifold ZP,k corresponding to P admits

a Ricci positive metric. After cutting off a face G of P , the dual simplicial complex KG of the

boundary of PG can be expressed as

KG := (K − σ ∗ linkKσ) ∪ (∂σ ∗ linkKσ ∗ {∗}),

where linkKσ = {τ ∈ K : τ ∗σ ∈ K} and {∗} is an additional point. We hope that the restricted

metric of the submanifold in ZP,k corresponding to σ ∗ linkKσ can be “good” enough that we

can extend the Ricci positive metric to ZPG,k.

4 Appendix

In this appendix, we will prove Proposition 2.4 by induction.

While m− n = 1, the manifold

∂[(Skm+n − (Sk)m−n ×D(k+1)n)×Dk+1]

= ∂[(S(k+1)n+k − Sk ×D(k+1)n)×Dk+1]

∼= ∂(S(k+1)n−1 ×D2k+2)

∼= S(k+1)n−1 × S2k+1.
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Inductively suppose that we have proved that ∂[(S(k+1)n+ki − (Sk)i × D(k+1)n) × Dk+1] is

diffeomorphic to
i

#
j=1

(

i

j

)

(Sk(j+1)+1 × Sk(n+i−j)+n−1).

We proceed to prove that ∂[(S(k+1)n+k(i+1) − (Sk)i+1 ×D(k+1)n)×Dk+1] is diffeomorphic to

i+1

#
j=1

(

i+ 1

j

)

(Sk(j+1)+1 × Sk(n+i+1−j)+n−1).

Since (Sk)i+1 ×D(k+1)n ⊆ D(k+1)n+k(i+1) ⊆ S(k+1)n+k(i+1) is the regular embedding,

(Sk)i+1 ×D(k+1)n

= Sk × ((Sk)i ×D(k+1)n)

⊆ Sk ×D(k+1)n+ki

⊆ Sk ×D(k+1)n+ki ∪Dk+1 × S(k+1)n+ki−1

= S(k+1)n+k(i+1),

where (Sk)i×D(k+1)n ⊆ D(k+1)n+ki is the regular embedding. So the manifold ∂[(S(k+1)n+k(i+1)−

(Sk)i+1 ×D(k+1)n)×Dk+1] is diffeomorphic to

∂[(Sk ×D(k+1)n+ki ∪Dk+1 × S(k+1)n+ki−1 − (Sk)i+1 ×D(k+1)n)×Dk+1]

∼= ∂[((Sk × S(k+1)n+ki − Sk ×D(k+1)n+ki) ∪Dk+1 × S(k+1)n+ki−1

− Sk × (Sk)i ×D(k+1)n)×Dk+1]

∼= ∂[((Sk × (S(k+1)n+ki − (Sk)i ×D(k+1)n)

− Sk ×D(k+1)n+ki) ∪Dk+1 × S(k+1)n+ki−1)×Dk+1]

∼= (∂[Sk × (S(k+1)n+ki − (Sk)i ×D(k+1)n)×Dk+1]

− Sk ×D(k+1)n+ki × Sk) ∪Dk+1 × S(k+1)n+ki−1 × Sk

∼=
(

Sk ×
( i

#
j=1

(

i

j

)

(Sk(j+1)+1 × Sk(n+i−j)+n−1)
)

− Sk ×D(k+1)n+ki × Sk
)

∪Dk+1 × S(k+1)n+ki−1 × Sk.

By induction, it is diffeomorphic to

∂
[( i

#
j=1

(

i

j

)

(Sk(j+1)+1 × Sk(n+i−j)+n−1)−D(k+1)n+ki × Sk
)

×Dk+1
]

.

As

D(k+1)n+ki × Sk ⊆ D(n+i+1)k+n ⊆
i

#
j=1

(

i

j

)

(Sk(j+1)+1 × Sk(n+i−j)+n−1),

∂
[( i

#
j=1

(

i

j

)

(Sk(j+1)+1 × Sk(n+i−j)+n−1)−D(k+1)n+ki × Sk
)

×Dk+1
]

is diffeomorphic to

∂
[( i

#
j=1

(

i

j

)

(Sk(j+1)+1 × Sk(n+i−j)+n−1)#(Sk(n+i+1)+n −D(k+1)n+ki × Sk)
)

×Dk+1
]

∼= ∂
[( i

#
j=1

(

i

j

)

(Sk(j+1)+1 × Sk(n+i−j)+n−1)#S(k+1)n+ki−1 ×Dk+1
)

×Dk+1
]

,
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Recalling Lemmas 1–2 in [7], we can generalize these two lemmas as the following.

Lemma 4.1 Assume k ≥ 2,

(1) Let M and N be connected and closed n-manifolds. Then ∂[(M#N − Dn) × Dk] is

diffeomorphic to ∂[(M −Dn)×Dk]#∂[(N −Dn)×Dk].

(2) Let M,N be connected n-manifolds. If M is closed but N has non-empty boundary, then

∂[(M#N)×Dk] is diffeomorphic to ∂[(M −Dn)×Dk]#∂(N ×Dk).

(3) ∂[(Sp × Sq −Dp+q)×Dk] = Sp × Sq+k−1#Sp+k−1 × Sq.

The proof of the lemma is the same as that of Lemma 1 and Lemma 2 in [7].

Using this lemma, ∂
[(

i

#
j=1

(

i
j

)

(Sk(j+1)+1 × Sk(n+i−j)+n−1)#S(k+1)n+ki−1 ×Dk+1
)

×Dk+1
]

is diffeomorphic to

∂
[( i

#
j=1

(

i

j

)

(Sk(j+1)+1 × Sk(n+i−j)+n−1)−D(k+1)n+(i+1)k
)

×Dk+1
]

#∂[S(k+1)n+ki−1 ×Dk+1 ×Dk+1]

∼=
i

#
j=1

(

i

j

)

∂[(Sk(j+1)+1 × Sk(n+i−j)+n−1 −D(k+1)n+(i+1)k)×Dk+1]#S(k+1)n+ki−1 × S2k+1

∼=
i

#
j=1

(

i

j

)

(Sk(j+1)+1 × Sk(n+i+1−j)+n−1#Sk(j+1)+1+k × Sk(n+i−j)+n−1)

#S(k+1)n+ki−1 × S2k+1

∼=
i+1

#
j=1

(

i+ 1

j

)

(Sk(j+1)+1 × Sk(n+i+1−j)+n−1)

By induction, we can prove Proposition 2.4.
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