© The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2019

Time-Consistent Asymptotic Exponential Arbitrage with Small Probable Maximum Loss

Jinfeng LI¹

Abstract Based on a concept of asymptotic exponential arbitrage proposed by Föllmer-Schachermayer, the author introduces a new formulation of asymptotic arbitrage with two main differences from the previous one: Firstly, the realising strategy does not depend on the maturity time while the previous one does, and secondly, the probable maximum loss is allowed to be small constant instead of a decreasing function of time. The main result gives a sufficient condition on stock prices for the existence of such asymptotic arbitrage. As a consequence, she gives a new proof of a conjecture of Föllmer and Schachermayer.

Keywords Asymptotic arbitrage, Time-consistent, Small probable maximum loss 2000 MR Subject Classification 91G10

1 Formulations of Asymptotic Exponential Arbitrage

Let $(\Omega, \mathscr{F}, \mathbb{F}, P)$ be a filtered probability space where the filtration $\mathbb{F} = (\mathscr{F}_t)_{t\geq 0}$ satisfies the usual conditions, and the discounted price process $S = (S_t)_{t\geq 0}$ initially be any \mathbb{R}^d -valued semimartingale. Based on a result of Schweizer [4], let us assume that the price process S has the form:

$$dS_t = dM_t + d\langle M \rangle_t \lambda_t, \tag{1.1}$$

where M is a d-dimensional continuous local martingale with $M_0 = 0$, λ is a d-dimensional predictable process, the market price of risk, satisfying

$$\int_0^\infty \lambda^\top d\langle M \rangle_t \lambda_t < \infty, \quad \text{a.s.}$$

The process $\langle \lambda \cdot M \rangle$ is called the mean-variance tradeoff.

Let L(S) be the set of all predictable processes integrable with respect to S, and define for each T > 0 the set

$$\mathcal{H}^T := \{ H \in L(S) \mid (H \cdot S)_t \ge -K \text{ for } t \in [0, T] \text{ and some } K \in \mathbb{R}_+ \},$$

and in particular,

$$\mathcal{H}_0 := \{ H \in L(S) \mid (H \cdot S)_t \ge -1, \ \forall t \}.$$

Clearly, $\mathcal{H}_0 \subset \mathcal{H}^T$ for any T > 0.

Manuscript received October 22, 2018.

¹School of Management, Fudan University, Shanghai 200433, China. E-mail: lijinfeng@fudan.edu.cn

496 J. F. Li

1.1 Föllmer-Schachermayer's formulation

The following form of a long-term arbitrage was considered for the first time in Föllmer and Schachermayer [3].

Definition 1.1 (Asymptotic Exponential Arbitrage) The process $S = (S_t)_{t\geq 0}$ allows asymptotic exponential arbitrage with exponentially decaying failure probability if there exist $0 < \tilde{T} < \infty$ and constants $C, \kappa_1, \kappa_2 > 0$ such that for all $T \geq \tilde{T}$, there is $H \in \mathcal{H}^T$ satisfying

- (a) $(H \cdot S)_T \ge -e^{-\kappa_1 T} \mathbb{P}$ -a.s.;
- (b) $\mathbb{P}[(H \cdot S)_T \le e^{\kappa_1 T}] \le C e^{-\kappa_2 T}$.

We should note that the choice of the realising strategy H depends on the maturity T. Föllmer and Schachermayer [3] showed how such a notion is related to large deviation estimates for the market price of risk. They derived the results for some concrete models (the geometric Ornstein-Uhlenbeck process and the Black-Scholes model), and suggested the following general result which has been proved by Du and Neufeld [2] by means of a time-change argument.

Theorem 1.1 (cf. [2]) Let the filtration \mathbb{F} be continuous in the sense that all local martingales are continuous. Assume that the market price of risk λ satisfies a large deviation estimate, i.e., there are constant $c_1, c_2 > 0$ such that

$$\limsup_{T \to \infty} \frac{1}{T} \log \mathbb{P} \left[\frac{1}{T} \langle \lambda \cdot M \rangle_T \le c_1 \right] \le -c_2. \tag{1.2}$$

Then S allows asymptotic exponential arbitrage.

1.2 Time-consistent asymptotic exponential arbitrage

In Föllmer-Schachermayer's formulation, the realizing strategies for asymptotic exponential arbitrage depend on the horizon, that means the strategies may change as T varies. From the practical point of view, we expect that the arbitrage-realizing strategy can be independent of the horizon, in other words, has time-consistence. As a cost, a constant but small probable maximum loss is permitted.

Definition 1.2 (Time-Consistent Asymptotic Exponential Arbitrage) The process $S = (S_t)_{t\geq 0}$ allows time-consistent asymptotic exponential arbitrage if there exist $H \in \mathcal{H}_0$ and constants $T_0, C, \kappa_1, \kappa_2 > 0$ such that for all $T \geq T_0$,

- (a) $(H \cdot S)_T \geq -1$ \mathbb{P} -a.s.;
- (b) $\mathbb{P}[(H \cdot S)_T \le e^{\kappa_1 T}] \le C e^{-\kappa_2 T}$.

This note aims to show that the condition (1.2) also suffices for time-consistent asymptotic exponential arbitrage.

Assumption 1.1 The martingale M in (1.1) is continuous, and $\mathcal{E}(-\alpha\lambda \cdot M)$ is a true martingale for each $\alpha > 0$.

It is worth noting that here we do not require the continuity of filtration. The main result of this note is as follows.

Theorem 1.2 Let Assumption 1.1 and the large deviation estimate (1.2) be satisfied. Then S allows time-consistent asymptotic exponential arbitrage.

Asymptotic Arbitrage 497

We remark that a strategy realising time-consistent asymptotic exponential arbitrage naturally yields Föllmer–Schachermayer's asymptotic exponential arbitrage. Indeed, if H_t is a realising strategy for the former, then $e^{-\frac{\kappa_1 T}{2}}H_t$ is the one for the latter, where T is the maturity time. Moreover, Theorem 2.1 below gives a precise form of realising strategies.

2 Proofs

Since $1 \ll e^{\kappa_1 T}$ when T is large, a tiny adjustment of κ_1 gives

(a')
$$1 + (H \cdot S)_T \ge 0$$
 P-a.s.;

(b')
$$\mathbb{P}[1 + (H \cdot S)_T \le e^{\kappa_1 T}] \le C e^{-\kappa_2 T}$$
.

Now let us denote

$$X_t = X_t(H) := 1 + (H \cdot S)_t, \quad H \in \mathcal{H}_0,$$

then we have the following lemma.

Lemma 2.1 If there are $\kappa_1, \kappa_2 > 0$ such that

$$\inf_{H \in \mathcal{H}_0} \limsup_{T \to \infty} \frac{1}{T} \log \mathbb{P} \Big[\frac{1}{T} \log X_T(H) \le \kappa_1 \Big] \le -\kappa_2,$$

then S allows time-consistent asymptotic exponential arbitrage.

Proof Take $0 < \varepsilon < \kappa_2$. There exist $H^{\varepsilon} \in \mathcal{H}_0$ and $T_0 > 0$ such that for any $T \geq T_0$,

$$\frac{1}{T}\log \mathbb{P}\Big[\frac{1}{T}\log X_T(H^{\varepsilon}) \le \kappa_1\Big] \le -(\kappa_2 - \varepsilon),$$

that is

$$\mathbb{P}[X_T(H^{\varepsilon}) \le e^{\kappa_1 T}] \le e^{-(\kappa_2 - \varepsilon)T},$$

which concludes the result.

Let $\gamma < 0$. Chebyshev's inequality gives

$$\mathbb{P}\left[\frac{1}{T}\log X_T(H) \le \kappa\right] = \mathbb{P}[X_T(H) \le e^{\kappa T}]$$
$$= \mathbb{P}[(X_T(H))^{\gamma} \ge e^{\gamma \kappa T}]$$
$$\le e^{-\gamma \kappa T} \mathbb{E}[(X_T(H))^{\gamma}],$$

thus

$$\frac{1}{T}\log \mathbb{P}\Big[\frac{1}{T}\log X_T(H) \le \kappa\Big] \le \frac{1}{T}\log \mathbb{E}[(X_T(H))^{\gamma}] - \gamma \kappa.$$

Taking limits and inferiors we have

$$\inf_{H \in \mathcal{H}_0} \limsup_{T \to \infty} \frac{1}{T} \log \mathbb{P} \left[\frac{1}{T} \log X_T(H) \le \kappa \right]$$

$$\le \inf_{\gamma < 0} \left\{ \inf_{H \in \mathcal{H}_0} \limsup_{T \to \infty} \frac{1}{T} \log \mathbb{E}[(X_T(H))^{\gamma}] - \gamma \kappa \right\}.$$
(2.1)

498 J. F. Li

Therefore S allows asymptotic exponential arbitrage provided the right-hand side is negative, and the original problem is converted to bound from above the value function of a long-term risk-sensitive control problem:

$$\inf_{H \in \mathcal{H}_0} \limsup_{T \to \infty} \frac{1}{T} \log \mathbb{E}[(X_T(H))^{\gamma}], \quad \gamma < 0.$$

We consider an investor trading in the above market. More specifically, the wealth process, denoted by $X = X^{(\pi)}$, starting from 1, satisfies

$$X^{(\pi)} = \mathcal{E}(\pi \cdot M + \pi \cdot \langle M \rangle \lambda),$$

where π denotes the strategy and \mathcal{E} the stochastic exponential.

Define

$$V(\gamma,T) = \inf_{\pi \in \mathcal{A}} \log \mathbb{E}[(X_T^{(\pi)})^{\gamma}], \quad \gamma < 0, \ T > 0$$

and

$$\chi(\gamma) = \inf_{\pi \in \mathcal{A}} \limsup_{T \to \infty} \frac{1}{T} \log \mathbb{E}[(X_T^{(\pi)})^{\gamma}], \quad \gamma < 0,$$
(2.2)

where \mathcal{A} denotes the admissible set containing strategy π such that $\pi \in L(M)$. Such an utility-based optimal investment problem has been addressed in numerous literature.

Here we are going not to solve $V(\gamma, T)$ explicitly, but to give an appropriate upper bound for it.

To this end, we select the following time-consistent strategy:

$$\pi_t^{\star} = \frac{\lambda_t}{1 - \gamma}.\tag{2.3}$$

Then

$$\begin{split} V(\gamma,T) &\leq \log \mathbb{E}[(X_T^{(\pi^*)})^{\gamma}] \\ &= \log \mathbb{E} \exp \Big[-\frac{\gamma}{\gamma-1} (\lambda \cdot M)_T - \frac{\gamma(2\gamma-1)}{2(\gamma-1)^2} \langle \lambda \cdot M \rangle_T \Big] \\ &= \log \mathbb{E} \exp \Big[-\beta (\lambda \cdot M)_T - \frac{\beta+\beta^2}{2} \langle \lambda \cdot M \rangle_T \Big], \end{split}$$

where, for simplicity, we have denote

$$\beta := \frac{\gamma}{\gamma - 1} \in (0, 1).$$

Thus from Hölder's inequality, for 1 ,

$$\begin{split} \exp(V(\gamma,T)) &\leq \left\{ \mathbb{E} \Big[\exp(-\frac{p}{p-1} \frac{\beta + (1-p)\beta^2}{2} \langle \lambda \cdot M \rangle_T) \Big] \right\}^{\frac{p-1}{p}} \left\{ \mathbb{E} [\mathcal{E}(-p\beta\lambda \cdot M)_T] \right\}^{\frac{1}{p}} \\ &= \left\{ \mathbb{E} \Big[\exp\Big(-\frac{p}{p-1} \frac{\beta + (1-p)\beta^2}{2} \langle \lambda \cdot M \rangle_T) \Big] \right\}^{\frac{p-1}{p}} < \infty. \end{split}$$

Thus

$$V(\gamma,T) \leq \inf_{1$$

Asymptotic Arbitrage 499

To get the exact infimum is not easy, so we take, for simplicity,

$$p = 2$$
,

then

$$\begin{split} V(\gamma,T) &\leq \frac{1}{2} \log \mathbb{E}[\exp(-\beta(1-\beta)\langle\lambda\cdot M\rangle_T)] \\ &= \frac{1}{2} \log \mathbb{E} \exp\left[\frac{\gamma}{(1-\gamma)^2}\langle\lambda\cdot M\rangle_T\right]. \end{split}$$

Since the strategy π^* is independent of T, we have

$$\chi(\gamma) \leq \frac{1}{2} \limsup_{T \to \infty} \frac{1}{T} \log \mathbb{E} \exp \left[\frac{\gamma}{(1 - \gamma)^2} \langle \lambda \cdot M \rangle_T \right].$$

To sum up, we have proved the following proposition.

Proposition 2.1 Under Assumption 1.1, the wealth process $X = X^{(\pi^*)}$ realized by the strategy:

$$\pi_t^{\star} = \frac{\lambda_t}{1 - \gamma}, \quad \gamma < 0$$

satisfies

$$\log \mathbb{E}[(X_T^{(\pi^*)})^{\gamma}] \leq \frac{1}{2} \log \mathbb{E} \exp\left[\frac{\gamma}{(1-\gamma)^2} \langle \lambda \cdot M \rangle_T\right]$$

$$\leq \frac{1}{2} \log \mathbb{E} \exp(\gamma \langle \pi^* \cdot M \rangle_T)$$
 (2.4)

for each T>0. Consequently, the function $\chi(\cdot)$ define in (2.2) satisfies

$$\chi(\gamma) \le \frac{1}{2} \limsup_{T \to \infty} \frac{1}{T} \log \mathbb{E} \exp\left[\frac{\gamma}{(1-\gamma)^2} \langle \lambda \cdot M \rangle_T\right].$$
(2.5)

By means of Varadhan's integral lemma (cf. [1, Theorem 4.3.1]), we have the following lemma.

Lemma 2.2 Suppose that $\{T^{-1}\langle\lambda\cdot M\rangle_T\}$ satisfies a large deviation principle with a rate function I(x). Then

$$\chi(\gamma) \le -\frac{1}{2} \inf_{x>0} \left\{ I(x) - \frac{\gamma x}{(1-\gamma)^2} \right\}, \quad \gamma < 0.$$
 (2.6)

Recalling Lemma 2.1 and relation (2.1), we have actually proved the following theorem.

Theorem 2.1 Let Assumption 1.1 be satisfied. Suppose that $\{T^{-1}\langle\lambda\cdot M\rangle_T\}$ satisfies a large deviation principle with a rate function I(x). Then the wealth process $X = X \cdot (H^*)$ realized by

$$H_t^{\star} = \frac{X_t \lambda_t}{1 - \gamma} \tag{2.7}$$

satisfies

$$\limsup_{T \to \infty} \frac{1}{T} \log \mathbb{P} \left[\frac{1}{T} \log X_T \le \kappa \right]$$

$$\le -\sup_{\gamma \le 0} \left\{ \gamma \kappa + \frac{1}{2} \inf_{x > 0} \left\{ I(x) - \frac{\gamma x}{(1 - \gamma)^2} \right\} \right\}. \tag{2.8}$$

500 J. F. Li

Consequently, S allows time-consistent asymptotic exponential arbitrage provided the right-hand side of (2.8) is negative for some $\kappa > 0$.

In fact, the condition (1.2) is sufficient to ensure time-consistent asymptotic exponential arbitrage of S.

Proof of Theorem 1.2 Let $X = X \cdot (H^*)$ be the process defined in Theorem 2.1. For K > 0, we have

$$\mathbb{E}[\exp(-K\langle\lambda\cdot M\rangle_T)] \le e^{-Kc_1T} \,\mathbb{P}[\langle\lambda\cdot M\rangle_T > c_1T] + \mathbb{P}[\langle\lambda\cdot M\rangle_T \le c_1T],$$

thus by (1.2),

$$\limsup_{T \to \infty} \frac{1}{T} \log \mathbb{E}[\exp(-K\langle \lambda \cdot M \rangle_T)] \le -\min\{Kc_1, c_2\}.$$

Recalling (2.4), we gain

$$\limsup_{T \to \infty} \frac{1}{T} \log \mathbb{E}[(X_T)^{\gamma}] \le -\frac{1}{2} \min \left\{ \frac{-\gamma c_1}{(1-\gamma)^2}, c_2 \right\},\,$$

which along with (2.1) yields

$$\limsup_{T \to \infty} \frac{1}{T} \log \mathbb{P}[X_T \le e^{\kappa T}] \le -\sup_{\gamma < 0} \left\{ \gamma \kappa + \frac{1}{2} \min \left\{ \frac{-\gamma c_1}{(1 - \gamma)^2}, c_2 \right\} \right\}.$$

A proper choice of κ can ensure the negativeness of the right-hand side. The proof of Theorem 1.2 is complete.

References

- Dembo, A. and Zeitouni, O., Large Deviations Techniques and Applications, Springer-Verlag, New York, 1998.
- [2] Du, K. and Neufeld, A. D., A note on asymptotic exponential arbitrage with exponentially decaying failure probability, *Journal of Applied Probability*, **50**(3), 2013, 801–809.
- [3] Föllmer, H. and Schachermayer, W., Asymptotic arbitrage and large deviations, *Mathematics and Financial Economics*, 1(3–4), 2008, 213–249.
- [4] Schweizer, M., On the minimal martingale measure and the Föllmer-Schweizer decomposition, Stochastic Analysis and Applications, 13(5), 1995, 573–599.