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Abstract Based on a concept of asymptotic exponential arbitrage proposed by Föllmer-

Schachermayer, the author introduces a new formulation of asymptotic arbitrage with two

main differences from the previous one: Firstly, the realising strategy does not depend on

the maturity time while the previous one does, and secondly, the probable maximum loss

is allowed to be small constant instead of a decreasing function of time. The main result

gives a sufficient condition on stock prices for the existence of such asymptotic arbitrage.

As a consequence, she gives a new proof of a conjecture of Föllmer and Schachermayer.
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1 Formulations of Asymptotic Exponential Arbitrage

Let (Ω,F ,F, P ) be a filtered probability space where the filtration F = (Ft)t≥0 satisfies

the usual conditions, and the discounted price process S = (St)t≥0 initially be any R
d-valued

semimartingale. Based on a result of Schweizer [4], let us assume that the price process S has

the form:

dSt = dMt + d〈M〉tλt, (1.1)

where M is a d-dimensional continuous local martingale with M0 = 0, λ is a d-dimensional

predictable process, the market price of risk, satisfying

∫ ∞

0

λ⊤ d〈M〉tλt < ∞, a.s.

The process 〈λ ·M〉 is called the mean-variance tradeoff.

Let L(S) be the set of all predictable processes integrable with respect to S, and define for

each T > 0 the set

HT := {H ∈ L(S) | (H · S)t ≥ −K for t ∈ [0, T ] and some K ∈ R+},

and in particular,

H0 := {H ∈ L(S) | (H · S)t ≥ −1, ∀ t}.

Clearly, H0 ⊂ HT for any T > 0.
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1.1 Föllmer-Schachermayer’s formulation

The following form of a long-term arbitrage was considered for the first time in Föllmer and

Schachermayer [3].

Definition 1.1 (Asymptotic Exponential Arbitrage) The process S = (St)t≥0 allows

asymptotic exponential arbitrage with exponentially decaying failure probability if there exist

0 < T̃ < ∞ and constants C, κ1, κ2 > 0 such that for all T ≥ T̃ , there is H ∈ HT satisfying

(a) (H · S)T ≥ −e−κ1T P-a.s.;

(b) P[(H · S)T ≤ eκ1T ] ≤ Ce−κ2T .

We should note that the choice of the realising strategy H depends on the maturity T .

Föllmer and Schachermayer [3] showed how such a notion is related to large deviation estimates

for the market price of risk. They derived the results for some concrete models (the geometric

Ornstein-Uhlenbeck process and the Black-Scholes model), and suggested the following general

result which has been proved by Du and Neufeld [2] by means of a time-change argument.

Theorem 1.1 (cf. [2]) Let the filtration F be continuous in the sense that all local martin-

gales are continuous. Assume that the market price of risk λ satisfies a large deviation estimate,

i.e., there are constant c1, c2 > 0 such that

lim sup
T→∞

1

T
logP

[ 1
T
〈λ ·M〉T ≤ c1

]
≤ −c2. (1.2)

Then S allows asymptotic exponential arbitrage.

1.2 Time-consistent asymptotic exponential arbitrage

In Föllmer-Schachermayer’s formulation, the realizing strategies for asymptotic exponential

arbitrage depend on the horizon, that means the strategies may change as T varies. From the

practical point of view, we expect that the arbitrage-realizing strategy can be independent of

the horizon, in other words, has time-consistence. As a cost, a constant but small probable

maximum loss is permitted.

Definition 1.2 (Time-Consistent Asymptotic Exponential Arbitrage) The process S =

(St)t≥0 allows time-consistent asymptotic exponential arbitrage if there exist H ∈ H0 and con-

stants T0, C, κ1, κ2 > 0 such that for all T ≥ T0,

(a) (H · S)T ≥ −1 P-a.s.;

(b) P[(H · S)T ≤ eκ1T ] ≤ Ce−κ2T .

This note aims to show that the condition (1.2) also suffices for time-consistent asymptotic

exponential arbitrage.

Assumption 1.1 The martingale M in (1.1) is continuous, and E(−αλ · M) is a true

martingale for each α > 0.

It is worth noting that here we do not require the continuity of filtration. The main result

of this note is as follows.

Theorem 1.2 Let Assumption 1.1 and the large deviation estimate (1.2) be satisfied. Then

S allows time-consistent asymptotic exponential arbitrage.
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We remark that a strategy realising time-consistent asymptotic exponential arbitrage nat-

urally yields Föllmer–Schachermayer’s asymptotic exponential arbitrage. Indeed, if Ht is a

realising strategy for the former, then e−
κ1T

2 Ht is the one for the latter, where T is the matu-

rity time. Moreover, Theorem 2.1 below gives a precise form of realising strategies.

2 Proofs

Since 1 ≪ eκ1T when T is large, a tiny adjustment of κ1 gives

(a′) 1 + (H · S)T ≥ 0 P-a.s.;

(b′) P[1 + (H · S)T ≤ eκ1T ] ≤ Ce−κ2T .

Now let us denote

Xt = Xt(H) := 1 + (H · S)t, H ∈ H0,

then we have the following lemma.

Lemma 2.1 If there are κ1, κ2 > 0 such that

inf
H∈H0

lim sup
T→∞

1

T
logP

[ 1
T
logXT (H) ≤ κ1

]
≤ −κ2,

then S allows time-consistent asymptotic exponential arbitrage.

Proof Take 0 < ε < κ2. There exist Hε ∈ H0 and T0 > 0 such that for any T ≥ T0,

1

T
logP

[ 1
T

logXT (H
ε) ≤ κ1

]
≤ −(κ2 − ε),

that is

P[XT (H
ε) ≤ eκ1T ] ≤ e−(κ2−ε)T ,

which concludes the result.

Let γ < 0. Chebyshev’s inequality gives

P

[ 1
T
logXT (H) ≤ κ

]
= P[XT (H) ≤ eκT ]

= P[(XT (H))γ ≥ eγκT ]

≤ e−γκT
E[(XT (H))γ ],

thus

1

T
logP

[ 1
T

logXT (H) ≤ κ
]
≤

1

T
logE[(XT (H))γ ]− γκ.

Taking limits and inferiors we have

inf
H∈H0

lim sup
T→∞

1

T
logP

[ 1
T

logXT (H) ≤ κ
]

≤ inf
γ<0

{
inf

H∈H0

lim sup
T→∞

1

T
logE[(XT (H))γ ]− γκ

}
. (2.1)
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Therefore S allows asymptotic exponential arbitrage provided the right-hand side is negative,

and the original problem is converted to bound from above the value function of a long-term

risk-sensitive control problem:

inf
H∈H0

lim sup
T→∞

1

T
logE[(XT (H))γ ], γ < 0.

We consider an investor trading in the above market. More specifically, the wealth process,

denoted by X = X(π), starting from 1, satisfies

X(π) = E(π ·M + π · 〈M〉λ),

where π denotes the strategy and E the stochastic exponential.

Define

V (γ, T ) = inf
π∈A

logE[(X
(π)
T )γ ], γ < 0, T > 0

and

χ(γ) = inf
π∈A

lim sup
T→∞

1

T
logE[(X

(π)
T )γ ], γ < 0, (2.2)

where A denotes the admissible set containing strategy π such that π ∈ L(M). Such an utility-

based optimal investment problem has been addressed in numerous literature.

Here we are going not to solve V (γ, T ) explicitly, but to give an appropriate upper bound

for it.

To this end, we select the following time-consistent strategy:

π⋆
t =

λt

1− γ
. (2.3)

Then

V (γ, T ) ≤ logE[(X
(π⋆)
T )γ ]

= logE exp
[
−

γ

γ − 1
(λ ·M)T −

γ(2γ − 1)

2(γ − 1)2
〈λ ·M〉T

]

= logE exp
[
− β(λ ·M)T −

β + β2

2
〈λ ·M〉T

]
,

where, for simplicity, we have denote

β :=
γ

γ − 1
∈ (0, 1).

Thus from Hölder’s inequality, for 1 < p ≤ 1 + 1
β
,

exp(V (γ, T )) ≤
{
E

[
exp(−

p

p− 1

β + (1 − p)β2

2
〈λ ·M〉T )

]} p−1

p

{E[E(−pβλ ·M)T ]}
1

p

=
{
E

[
exp

(
−

p

p− 1

β + (1 − p)β2

2
〈λ ·M〉T )

]} p−1

p

< ∞.

Thus

V (γ, T ) ≤ inf
1<p≤1+ 1

β

p− 1

p
logE

[
exp

(
−

p

p− 1

β − (p− 1)β2

2
〈λ ·M〉T

)]
.
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To get the exact infimum is not easy, so we take, for simplicity,

p = 2,

then

V (γ, T ) ≤
1

2
logE[exp(−β(1 − β)〈λ ·M〉T )]

=
1

2
logE exp

[ γ

(1− γ)2
〈λ ·M〉T

]
.

Since the strategy π⋆ is independent of T , we have

χ(γ) ≤
1

2
lim sup
T→∞

1

T
logE exp

[ γ

(1 − γ)2
〈λ ·M〉T

]
.

To sum up, we have proved the following proposition.

Proposition 2.1 Under Assumption 1.1, the wealth process X = X(π⋆) realized by the

strategy:

π⋆
t =

λt

1− γ
, γ < 0

satisfies

logE[(X
(π⋆)
T )γ ] ≤

1

2
logE exp

[ γ

(1− γ)2
〈λ ·M〉T

]

≤
1

2
logE exp(γ〈π⋆ ·M〉T ) (2.4)

for each T > 0. Consequently, the function χ(·) define in (2.2) satisfies

χ(γ) ≤
1

2
lim sup
T→∞

1

T
logE exp

[ γ

(1 − γ)2
〈λ ·M〉T

]
. (2.5)

By means of Varadhan’s integral lemma (cf. [1, Theorem 4.3.1]), we have the following

lemma.

Lemma 2.2 Suppose that {T−1〈λ · M〉T } satisfies a large deviation principle with a rate

function I(x). Then

χ(γ) ≤ −
1

2
inf
x>0

{
I(x) −

γx

(1− γ)2

}
, γ < 0. (2.6)

Recalling Lemma 2.1 and relation (2.1), we have actually proved the following theorem.

Theorem 2.1 Let Assumption 1.1 be satisfied. Suppose that {T−1〈λ ·M〉T } satisfies a large

deviation principle with a rate function I(x). Then the wealth process X· = X·(H
⋆) realized by

H⋆
t =

Xtλt

1− γ
(2.7)

satisfies

lim sup
T→∞

1

T
log P

[ 1
T

logXT ≤ κ
]

≤ − sup
γ<0

{
γκ+

1

2
inf
x>0

{
I(x)−

γx

(1− γ)2

}}
. (2.8)
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Consequently, S allows time-consistent asymptotic exponential arbitrage provided the right-hand

side of (2.8) is negative for some κ > 0.

In fact, the condition (1.2) is sufficient to ensure time-consistent asymptotic exponential

arbitrage of S.

Proof of Theorem 1.2 Let X· = X·(H
⋆) be the process defined in Theorem 2.1. For

K > 0,we have

E[exp(−K〈λ ·M〉T )] ≤ e−Kc1T P[〈λ ·M〉T > c1T ] + P[〈λ ·M〉T ≤ c1T ],

thus by (1.2),

lim sup
T→∞

1

T
logE[exp(−K〈λ ·M〉T )] ≤ −min{Kc1, c2}.

Recalling (2.4), we gain

lim sup
T→∞

1

T
logE[(XT )

γ ] ≤ −
1

2
min

{ −γc1

(1− γ)2
, c2

}
,

which along with (2.1) yields

lim sup
T→∞

1

T
logP[XT ≤ eκT ] ≤ − sup

γ<0

{
γκ+

1

2
min

{ −γc1

(1 − γ)2
, c2

}}
.

A proper choice of κ can ensure the negativeness of the right-hand side. The proof of Theorem

1.2 is complete.
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