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Abstract In this paper, the author studies the existence and uniqueness of discrete pseudo

asymptotically periodic solutions for nonlinear Volterra difference equations of convolution

type, where the nonlinear perturbation is considered as Lipschitz condition or non-Lipschitz

case, respectively. The results are a consequence of application of different fixed point the-

orems, namely, the contraction mapping principle, the Leray-Schauder alternative theorem

and Matkowski’s fixed point technique.
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1 Introduction

Besides its theoretical interest, the study of asymptotic ω-periodicity is of great importance

in applications. Many contributions have been made to the study of existence of asymptotically

ω-periodic solutions for differential equations (see [3, 7, 22, 31, 33] for more details). On the

other hand, the notion of S-asymptotic ω-periodicity, introduced by Henŕıquez et al. in [24–

25], is related to and more general than that of asymptotic ω-periodicity. Since then, it has

attracted the attention of many researchers (see [10, 15, 17, 27]). Particularly, for discrete

S-asymptotic ω-periodicity, the subject was studied in [2], where the authors discussed the

existence of discrete S-asymptotically ω-periodic solutions of semilinear difference equations

with infinite delay. Recently, the concept of (continuous) pseudo S-asymptotic ω-periodicity

was introduced in [28] and some applications involving ordinary and partial differential equations

were presented in [4, 12, 16, 23, 32]. This paper is a continuation of this study, which introduces

the concept of discrete pseudo S-asymptotic ω-periodicity and deals with its property.

In this paper, we study the existence and uniqueness of discrete pseudo S-asymptotically

ω-periodic solutions of the Volterra difference equations of convolution type

u(n+ 1) = λ

n∑

j=−∞

a(n− j)u(j) + f(n,Au(n)), n ∈ Z, (1.1)

where λ ∈ C, a(·) is a summable function, A is a bounded linear operator on X and f : Z×X →

X is a function bounded on bounded sets of X .
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Volterra difference equations arise in numerical discrete approximations of Volterra integral

or integro-differential equations. The Volterra difference equations can be used in the modelling

of real phenomena in economy and ecology, the theory of viscoelasticity and the study of optimal

control problems (see [19–20]). The asymptotic behaviour of solutions of (1.1) is a classical

subject of dynamical systems and operator theory. Many researchers have made important

contributions to this topics, for example, almost periodicity (see [8, 30]), asymptotic almost

periodicity (see [5, 29]), almost automorphy (see [1, 6, 11]), lp-boundedness (see [9]), and S-

asymptotic ω-periodicity (see [2]). To our knowledge, there is no work reported in literature on

pseudo S-asymptotic ω-periodicity for (1.1). This is one of the key motivations of this study.

Motivated by the above mentioned papers, in this paper, we introduce a new class of func-

tions called discrete pseudo S-asymptotically ω-periodic functions, which generalize the nota-

tion of discrete S-asymptotically ω-periodic functions. We systematically explore its properties

in Banach spaces and discrete pseudo S-asymptotic ω-periodicity of (1.1) when the nonlinear

perturbation function f is considered as Lipschitz condition or non-Lipschitz case, respectively.

The paper is organized as follows. In Section 2, some notations and preliminary results

are presented, and the concept of discrete pseudo S-asymptotically ω-periodic functions is

given. Sections 3 is divided into two parts. In Subsection 3.1, we investigate the existence and

uniqueness of discrete pseudo S-asymptotically ω-periodic solution of (1.1) when f satisfies the

Lipschitz condition. In Subsection 3.2, when f is non-Lipschitz, we explore the properties of

solutions to the same equation.

2 Preliminaries and Basic Results

Let (X, ‖·‖) be Banach space and Z, Z+, R, R+, C stand for the sets of integers, nonnegative

integers, real numbers, nonnegative real numbers, complex numbers, respectively. Let Br(X)

be the closed ball with center at 0 and radius r in X . cardE denotes the number of elements in

any finite set E ⊂ R. Let v : Z+ → C. If
∞∑
k=0

|v(k)| <∞, we call that v is a summable function.

In order to facilitate the discussion below, we further introduce the following notations:

(1) l∞(Z, X) =
{
x | Z → X : ‖x‖d = sup

n∈Z

‖x(n)‖ <∞
}
.

(2) C0(Z, X) =
{
x ∈ l∞(Z, X) | lim

|n|→∞
‖x(n)‖ = 0

}
.

(3) Cω(Z, X) = {x ∈ l∞(Z, X) | x is ω-periodic}, where ω ∈ Z\{0}.

(4) L(X) denotes the space of bounded linear operators from X to X endowed with the

operator topology.

(5) UC(Z × X,X) denotes the set of all functions f : Z ×X → X satisfying that ∀ε > 0,

∃δ > 0 such that

‖f(k, x)− f(k, y)‖ ≤ ε

for all k ∈ Z and x, y ∈ X with ‖x− y‖ ≤ δ.

(6) UCk(Z ×X,X) denotes the set of all functions f : Z ×X → X satisfying that ∀ε > 0,

∃δ > 0 such that

‖f(k, x)− f(k, y)‖ ≤ Lf(k)ε

for all k ∈ Z and x, y ∈ X with ‖x− y‖ ≤ δ, where Lf : Z → R+ is a summable function.
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First, we recall a useful compactness criterion. Let h : Z → R
+ be a function such that

h(n) ≥ 1 for all n ∈ Z, and h(n) → ∞ as |n| → ∞. Define

C0
h(Z, X) =

{
ξ : Z → X

∣∣∣ lim
|n|→∞

‖ξ(n)‖

h(n)
= 0

}
,

endowed with the form ‖ξ‖h = sup
n∈Z

‖ξ(n)‖
h(n) .

It is clear that C0
h(Z, X) is a Banach space isometrically isomorphic with the space C0(Z, X).

According to a compactness criterion due to Cuevas and Pinto [14], one has the following result.

Lemma 2.1 (see [1]) Let S be a subset of C0
h(Z, X). Suppose that the following conditions

are satisfied:

(i) The set Hn(S) =
{

u(n)
h(n) | u ∈ S

}
is relatively compact in X for all n ∈ Z.

(ii) S is weighted equiconvergent at ±∞, that is for every ε > 0, there exists a T > 0 such

that ‖u(n)‖ < εh(n) for each |n| ≥ T for all u ∈ S.

Then S is relatively compact in C0
h(Z, X).

Now, we recall the so-called Matkowski’s fixed point theorem (see [26]) and the Leray-

Schauder alternative theorem (see [21]) which will be used in the sequel.

Theorem 2.1 (Matkowski’s Fixed Point Theorem) Let (X, d) be a complete metric space

and F : X → X be a map such that d(Fx,Fy) ≤ Φ(d(x, y)) for all x, y ∈ X, where Φ : [0,∞) →

[0,∞) is a nondecreasing function such that lim
n→∞

Φn(t) = 0 for t > 0. Then F has a unique

fixed point z ∈ X.

Theorem 2.2 (Leray-Schauder Alternative Theorem) Let D be a closed convex subset

of X such that 0 ∈ D. Let Γ : D → D be a completely continuous map. Then the set

{x ∈ D : x = λΓ(x), 0 < λ < 1} is unbounded or the map Γ has a fixed point in D.

Next, we give the concept of discrete pseudo S-asymptotically ω-periodic function.

Definition 2.1 f ∈ l∞(Z, X) is called discrete asymptotically ω-periodic if there exist g ∈

Cω(Z, X) and ϕ ∈ C0(Z, X) such that f = g + ϕ. The collection of those functions is denoted

by APω(Z, X).

Definition 2.2 f ∈ l∞(Z, X) is called discrete S-asymptotically ω-periodic if there exists

ω ∈ Z\{0} such that lim
|n|→∞

‖f(n+ ω)− f(n)‖ = 0. The collection of those functions is denoted

by SAPω(Z, X).

Definition 2.3 A sequence f ∈ l∞(Z, X) is called discrete pseudo S-asymptotically ω-

periodic if there exists ω ∈ Z\{0} such that lim
n→∞

1
2n

n∑
k=−n

‖f(k + ω) − f(k)‖ = 0. Denote by

PSAPω(Z, X) the set of such functions.

It is easy to see that PSAPω(Z, X) is a Banach space when endowed with the norm ‖f‖d :=

sup
n∈Z

‖f(n)‖ and SAPω(Z, X) ⊂ PSAPω(Z, X).

Definition 2.4 A sequence f ∈ l∞(Z × X,X) is called uniformly discrete pseudo S-
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asymptotically ω-periodic on bounded sets of X if for every bounded subset K ⊆ X,

lim
n→∞

1

2n

n∑

k=−n

sup
x∈K

‖f(k + ω, x)− f(k, x)‖ = 0.

Denote by PSAPω(Z×X,X) the set of such functions.

Finally, we show some properties of PSAPω(Z, X). We have the following results.

Lemma 2.2 If A ∈ L(X) and u ∈ PSAPω(Z, X), then Au ∈ PSAPω(Z, X).

Lemma 2.3 Let f ∈ PSAPω(Z, X). Then f(·+ τ) ∈ PSAPω(Z, X) for all τ ∈ Z.

Lemma 2.4 Let f ∈ l∞(Z, X). Then f ∈ PSAPω(Z, X) if and only if for any ε > 0,

lim
n→∞

cardEf (n, ε)

2n
= 0,

where Ef (n, ε) = {k ∈ [−n, n] ∩ Z | ‖f(k + ω)− f(k)‖ ≥ ε}.

The proof of Lemma 2.4 is similar to that of [18, Lemma 2.9]. Here we omit it.

Theorem 2.3 Let f : Z × X → X be a function bounded on bounded sets of X. Assume

that f ∈ PSAPω(Z × X,X) ∩ UCk(Z × X,X). Then ψ(·) = f(·, u(·)) ∈ PSAPω(Z, X) if

u ∈ PSAPω(Z, X).

Proof Since f ∈ UCk(Z×X,X), for any ε > 0, there exists δ > 0 such that ‖f(k, u(k+ω))−

f(k, u(k))‖ ≤ Lf(k)ε for all k ∈ Z, ‖u(k+ω)−u(k)‖ ≤ δ. Let K = {u(n) | n ∈ Z}. Then for the

above ε > 0, there exists N ∈ N such that for n > N , 1
2n

n∑
k=−n

sup
x∈K

‖f(k + ω, x)− f(k, x)‖ ≤ ε.

Denote

Eu(n, δ) = {k ∈ [−n, n] ∩ Z | ‖u(k + ω)− u(k)‖ ≥ δ}.

Then lim
n→∞

cardEu(n,δ)
2n = 0 by Lemma 2.4. So

1

2n

n∑

k=−n

‖f(k, u(k + ω))− f(k, u(k))‖

=
1

2n

∑

k∈Eu(n,δ)

‖f(k, u(k + ω))− f(k, u(k))‖

+
1

2n

∑

k∈([−n,n]∩Z)\Eu(n,δ)

‖f(k, u(k + ω))− f(k, u(k))‖

≤ 2‖ψ‖d
cardEu(n, δ)

2n
+

‖Lf‖1
2n

ε,

where ‖ψ‖d = sup
n∈Z

‖ψ(n)‖ and ‖Lf‖1 =
∑
k∈Z

Lf(k). For n > N , one has

1

2n

n∑

k=−n

‖f(k + ω, u(k + ω))− f(k, u(k))‖

≤
1

2n

n∑

k=−n

‖f(k + ω, u(k + ω))− f(k, u(k + ω))‖+
1

2n

n∑

k=−n

‖f(k, u(k + ω))− f(k, u(k))‖
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≤ ε+ 2‖ψ‖d
cardEu(n, δ)

2n
+

‖Lf‖1
2n

ε,

which implies that ψ(·) ∈ PSAPω(Z, X).

Corollary 2.1 Let f : Z ×X → X be a function bounded on bounded sets of X. Assume

that f ∈ PSAPω(Z×X,X) and satisfies the following Lipschitze type condition:

‖f(k, u)− f(k, v)‖ ≤ Lf (k)‖u− v‖, ∀k ∈ Z, u, v ∈ X,

where Lf : Z → R+ is a summable function. Then f(·, u(·)) ∈ PSAPω(Z, X) if u ∈ PSAPω(Z,

X).

By making some revisions of the proof of Theorem 2.3, one get the following conclusions.

Theorem 2.4 Let f : Z×X → X be a function bounded on bounded sets of X. Assume that

f ∈ PSAPω(Z×X,X)∩ UC(Z×X,X). Then f(·, u(·)) ∈ PSAPω(Z, X) if u ∈ PSAPω(Z, X).

Corollary 2.2 Let f : Z ×X → X be a function bounded on bounded sets of X. Assume

that f ∈ PSAPω(Z×X,X) and there exists a constant Lf > 0 such that

‖f(k, u)− f(k, v)‖ ≤ Lf‖u− v‖, ∀k ∈ Z, u, v ∈ X.

Then f(·, u(·)) ∈ PSAPω(Z, X) if u ∈ PSAPω(Z, X).

Lemma 2.5 Let v : Z+ → C be a summable function. Then Ψ(·) ∈ PSAPω(Z, X) if

u ∈ PSAPω(Z, X), where Ψ(k) =
k∑

l=−∞

|v(k − l)|u(l), k ∈ Z.

Proof Note that

‖Ψ(k)‖ ≤

∞∑

l=0

|v(l)|‖u(k − l)‖ ≤ ‖u‖d

∞∑

l=0

|v(l)| <∞,

‖Ψ(k + ω)−Ψ(k)‖ ≤
k∑

l=−∞

|v(k − l)|‖u(l+ ω)− u(l)‖ =
∞∑

l=0

|v(l)|‖u(k − l + ω)− u(k − l)‖.

Then

1

2n

n∑

k=−n

‖Ψ(k + ω)−Ψ(k)‖ ≤
1

2n

n∑

k=−n

∞∑

l=0

|v(l)|‖u(k − l + ω)− u(k − l)‖

=

∞∑

l=0

|v(l)|
( 1

2n

n∑

k=−n

‖u(k − l + ω)− u(k − l)‖
)
.

By Lemma 2.3 and Lebesgue dominated convergence theorem, one has Ψ(·) ∈ PSAPω(Z, X).

3 Volterra Difference Equation

This section is devoted to establish some sufficient criteria for the existence and uniqueness

of PSAPω solutions of (1.1).

Consider the linear Volterra difference equations

u(n+ 1) = λ

n∑

j=−∞

a(n− j)u(j) + f(n), n ∈ Z, (3.1)
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where λ ∈ C, a(·) is a summable function.

For a given λ ∈ C, let s(λ, k) ∈ C be the solution of the difference equation

s(λ, k + 1) = λ

k∑

j=0

a(k − j)s(λ, j), k = 0, 1, 2, · · · ,

s(λ, 0) = 1.

(3.2)

In this case, s(λ, k) is called the fundamental solution to (3.1) generated by a(·). We define

the set

Ωs =
{
λ ∈ C

∣∣∣ ‖s(λ, ·)‖1 :=

∞∑

k=0

|s(λ, k)| <∞
}
.

By [11], if λ ∈ Ωs, the solution to (3.1) is given by

u(n+ 1) =

n∑

k=−∞

s(λ, n− k)f(k).

To establish our results, we introduce the following conditions:

(H1) λ ∈ Ωs, A ∈ L(X).

(H2) f ∈ PSAPω(Z×X,X).

(H31) There exists a constant Lf > 0 such that

‖f(k, u)− f(k, v)‖ ≤ Lf‖u− v‖, ∀k ∈ Z, u, v ∈ X.

(H32) There exists a linear nondecreasing function Φ : [0,∞) → [0,∞) and f satisfies

‖f(k, u)− f(k, v)‖ ≤ Φ(‖u− v‖), ∀k ∈ Z, u, v ∈ X.

(H33) f satisfies the following Lipschitze type condition:

‖f(k, u)− f(k, v)‖ ≤ Lf (k)‖u− v‖, ∀k ∈ Z, u, v ∈ X,

where Lf : Z → R+ is a summable function.

(H34) f satisfies the locally Lipschitze condition, that is, for each σ > 0, k ∈ Z and u, v ∈ X

with ‖u‖ ≤ σ, ‖v‖ ≤ σ, one has

‖f(k, u)− f(k, v)‖ ≤ Lf(σ)‖u − v‖,

where Lf : R+ → R+ is a nondecreasing function.

(H4) f ∈ UCk(Z×X,X) or f ∈ UC(Z×X,X).

3.1 Lipschitz case

In this subsection, we study the existence and uniqueness of discrete pseudo S-asymptotically

ω-periodic solution of (1.1) when the perturbation f satisfies the Lipschitz condition.

Theorem 3.1 Assume that (H1), (H2), (H31) hold and Lf‖A‖|s(λ, ·)|1 < 1. Then (1.1)

has a unique solution u ∈ PSAPω(Z, X) which is given by

u(n+ 1) =

n∑

k=−∞

s(λ, n− k)f(k,Au(k)). (3.3)
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Proof Similar as the proof in [11], it can be shown that u(·) given by (3.3) is the solution

to (1.1).

Define the operator F : PSAPω(Z, X) → PSAPω(Z, X) by

(Fu)(n) =

n−1∑

k=−∞

s(λ, n− 1− k)f(k,Au(k)). (3.4)

Since u ∈ PSAPω(Z, X) and (H31) holds, f(·, Au(·)) ∈ PSAPω(Z, X) by Lemma 2.2 and

Corollary 2.2. By Lemma 2.5, Fu ∈ PSAPω(Z, X). Hence F is well defined.

For u, v ∈ PSAPω(Z, X),

‖Fu−Fv‖d ≤ sup
n∈Z

n−1∑

k=−∞

|s(λ, n− 1− k)|‖f(k,Au(k))− f(k,Av(k))‖

≤ Lf‖A‖ sup
n∈Z

n−1∑

k=−∞

|s(λ, n− 1− k)|‖u(k)− v(k)‖

≤ Lf‖A‖|s(λ, ·)|1‖u− v‖d.

By the Banach contraction mapping principle, F has a unique fixed point u ∈ PSAPω(Z, X),

which is the unique PSAPω solution to (1.1).

Example 3.1 For a(k) = pk, where |p| < 1, after a calculation using in (3.2) the unilateral-

Z transform, we have s(λ, k) = λ(λ+ p)k−1, k ≥ 1, and define

D(−p, 1) := {z ∈ C | |z + p| < 1} ⊆ Ωs.

Consider the following difference equation:

u(n+ 1) = λ

n∑

k=−∞

pn−ku(k) + µg(k)u(k), n ∈ Z, (3.5)

where |p| < 1, λ ∈ D(−p, 1), g ∈ PSAPω(Z, X). It is easy to see that (H1), (H2), (H31) hold

with Lf = |µ|‖g‖d. By Theorem 3.1, if |λ||µ|‖g‖d
∞∑
k=0

|λ + p|k−1 < 1, then (3.5) has a unique

solution u ∈ PSAPω(Z, X).

Theorem 3.2 Assume that (H1), (H2), (H32) hold. Then (1.1) has a unique solution

u ∈ PSAPω(Z, X) if (‖A‖|s(λ, ·)|1Φ)
n(t) → 0 as n→ ∞ for each t > 0.

Proof Define the operator F as in (3.4), so F is well defined. For u, v ∈ PSAPω(Z, X),

one has

‖(Fu)(n)− (Fv)(n)‖ ≤

n−1∑

k=−∞

|s(λ, n− 1− k)|‖f(k,Au(k))− f(k,Av(k))‖

≤

n−1∑

k=−∞

|s(λ, n− 1− k)|Φ(‖Au(k)−Av(k)‖)

≤ ‖A‖|s(λ, ·)|1Φ(‖u(k)− v(k)‖).

Since (‖A‖|s(λ, ·)|1Φ)
n(t) → 0 as n→ ∞ for each t > 0, by Theorem 2.1, F has a unique fixed

point u ∈ PSAPω(Z, X), which is the unique PSAPω solution to (1.1).



508 Z. N. Xia

Theorem 3.3 Assume that (H1), (H2), (H33) hold. Then (1.1) has a unique solution

u ∈ PSAPω(Z, X).

Proof Define the operator F as in (3.4), and F is well defined by Corollary 2.1 and Lemma

2.5. For u, v ∈ PSAPω(Z, X), one has

‖(Fu)(n)− (Fv)(n)‖ ≤

n−1∑

k=−∞

|s(λ, n− 1− k)|‖f(k,Au(k))− f(k,Av(k))‖

≤ ‖A‖

n−1∑

k=−∞

Lf (k)|s(λ, n− 1− k)|‖u(k)− v(k)‖

≤ ‖A‖|s(λ, ·)|∞

( n−1∑

k=−∞

Lf (k)
)
‖u− v‖d,

where |s(λ, ·)|∞ = sup
n∈Z

|s(λ, n)|.

Similarly, by [13, Lemma 3.2], one has

‖(F2u)(n)− (F2v)(n)‖ ≤ ‖A‖

n−1∑

k=−∞

Lf(k)|s(λ, n− 1− k)|‖(Fu)(k)− (Fv)(k)‖

≤ (‖A‖|s(λ, ·)|∞)2
( n−1∑

k=−∞

Lf (k)
( k−1∑

j=−∞

Lf (j)
))

‖u− v‖d,

≤
(‖A‖|s(λ, ·)|∞)2

2!

( n−1∑

k=−∞

Lf (k)
)2

‖u− v‖d.

By the method of mathematical induction, we have

‖(Fnu)(n)− (Fnv)(n)‖ ≤
(‖A‖|s(λ, ·)|∞)n

n!

( n−1∑

k=−∞

Lf(k)
)n

‖u− v‖d.

Moreover, since Lf is a summable function, defining ‖Lf‖1 :=
∑
k∈Z

Lf(k), one has

‖(Fnu)(n)− (Fnv)(n)‖ ≤
(‖A‖|s(λ, ·)|∞‖Lf‖1)

n

n!
‖u− v‖d,

which implies that ‖(Fnu) − (Fnv)‖d ≤
(‖A‖|s(λ,·)|∞‖Lf‖1)

n

n! ‖u − v‖d. For sufficiently large n,

we have
(‖A‖|s(λ,·)|∞‖Lf‖1)

n

n! < 1. By the Banach contraction mapping principle, F has a unique

fixed point in PSAPω(Z, X), which is the unique PSAPω solution to (1.1).

Next, consider with the local condition on the perturbation f , we have the following result.

Theorem 3.4 Assume that (H1), (H2), (H34) hold, and if there exists r > 0 such that

|s(λ, ·)|1

(
Lf(‖A‖r)‖A‖+

‖f(·, 0)‖d
r

)
< 1, (3.6)

then (1.1) has a unique solution u ∈ Br(PSAPω(Z, X)).
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Proof Let u be in Br(PSAPω(Z, X)) and define

F : Br(PSAPω(Z, X)) → Br(PSAPω(Z, X))

by

(Fu)(n) =

n−1∑

k=−∞

s(λ, n− 1− k)f(k,Au(k)).

Similar as the proof of Theorem 3.1, Fu ∈ PSAPω(Z, X). Let u ∈ Br(PSAPω(Z, X)). One has

‖Fu)(n)‖ ≤

n−1∑

k=−∞

|s(λ, n− 1− k)|‖f(k,Au(k))− f(k, 0)‖+

n−1∑

k=−∞

|s(λ, n− 1− k)|‖f(k, 0)‖

≤ Lf (‖A‖r)
n−1∑

k=−∞

|s(λ, n− 1− k)|‖Au‖d + |s(λ, ·)|1‖f(·, 0)‖d

≤ |s(λ, ·)|1

(
Lf(‖A‖r)‖A‖ +

‖f(·, 0)‖d
r

)
r ≤ r.

Hence Fu ∈ Br(PSAPω(Z, X)) and F is well defined.

Moreover, for u, v ∈ Br(PSAPω(Z, X)),

‖Fu−Fv‖d ≤ sup
n∈Z

n−1∑

k=−∞

|s(λ, n− 1− k)|‖f(k,Au(k))− f(k,Av(k))‖

≤ Lf(‖A‖r) sup
n∈Z

n−1∑

k=−∞

|s(λ, n− 1− k)|‖Au(k)−Av(k)‖

≤ Lf(‖A‖r)‖A‖|s(λ, ·)|1‖u− v‖d.

By (3.6), Lf (‖A‖r)‖A‖|s(λ, ·)|1 < 1. It follows that F is a contraction on Br(PSAPω(Z, X)).

By the Banach contraction mapping principle, F has a unique fixed point in Br(PSAPω(Z, X)),

which is the unique PSAPω solution to (1.1).

3.2 Non-Lipschitz case

In this subsection, we study the existence of discrete pseudo S-asymptotically ω-periodic

solution of (1.1) when the perturbation f is a non-Lipschitz nonlinearity.

Theorem 3.5 Assume that (H1), (H2), (H4) hold and the following conditions are satisfied:

(A1) There are nondecreasing function W : R+ → R+ and a function M : Z → R+ such

that ‖f(k, x)‖ ≤M(k)W (‖x‖) for all k ∈ Z, x ∈ X.

(A2) For each ν > 0, lim
|n|→∞

1
h(n+1)

n∑
k=−∞

|s(λ, n − k)|M(k)W (νh(k)) = 0, where h is given

by Lemma 2.1.

(A3) For each ε > 0, there exists δ > 0 such that for every u, v ∈ C0
h(Z, X), ‖u − v‖h ≤ δ

implies that
n∑

k=−∞

|s(λ, n− k)|‖f(k,Au(k))− f(k,Av(k))‖ ≤ ε

for all n ∈ Z.
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(A4) For all a, b ∈ Z, a ≤ b, σ > 0, the set {f(k, x) | a ≤ k ≤ b, ‖x‖ ≤ σ} is relatively

compact in X.

(A5) lim inf
r→∞

r

β̃(r)
> 1, where β̃(r) = sup

n∈Z

(
1

h(n+1)

n∑
k=−∞

|s(λ, n− k)|M(k)W (r‖A‖h(k))
)
.

Then (1.1) has a solution u ∈ PSAPω(Z, X).

Proof Define Γ : C0
h(Z, X) → C0

h(Z, X) by

(Γu)(n) =

n−1∑

k=−∞

s(λ, n− 1− k)f(k,Au(k)).

Next, we will prove that Γ has a fixed point in PSAPω(Z, X). We divide the proof into several

steps.

(i) For u ∈ C0
h(Z, X), by (A1), one has

‖(Γu)(n)‖ ≤
n−1∑

k=−∞

|s(λ, n− 1− k)|M(k)W (‖A‖‖u(k)‖)

≤

n−1∑

k=−∞

|s(λ, n− 1− k)|M(k)W (‖A‖‖u‖hh(k)),

whence
‖(Γu)(n)‖

h(n)
≤

1

h(n)

n−1∑

k=−∞

|s(λ, n− 1− k)|M(k)W (‖A‖‖u‖hh(k)).

It follows from (A2) that Γ is well defined.

(ii) Γ is continuous. In fact, for each ε > 0, by (A3), there exists δ > 0, such that for

u, v ∈ C0
h(Z, X), ‖u− v‖h ≤ δ, one has

‖Γu− Γv‖ ≤

n−1∑

k=−∞

|s(λ, n− 1− k)|‖f(k,Au(k))− f(k,Av(k))‖.

Taking into account that h(n) ≥ 1, by (A3), one has ‖Γu−Γv‖
h(n) ≤ ε, which implies that ‖Γu −

Γv‖h ≤ ε. Hence Γ is continuous.

(iii) Γ is complete continuous. Let V = Γ(Br(C
0
h(Z, X))) and v = Γ(u) for u ∈ Br(C

0
h(Z, X)).

Initially, we prove that Hn(V ) :=
{

v(n)
h(n) : v ∈ V

}
is relatively compact in X for each n ∈ Z. By

(A2), for ε > 0, we can choose l ∈ Z+ such that

1

h(n)

∞∑

k=l

|s(λ, k)|M(n− 1− k)W (r‖A‖h(n− 1− k)) ≤ ε.

Since v = Γ(u) for u ∈ Br(C
0
h(Z, X)), we have

v(n) =

l−1∑

k=0

s(λ, k)f(n− 1− k,Au(n− 1− k)) +

∞∑

k=l

s(λ, k)f(n− 1− k,Au(n− 1− k)),

so

v(n)

h(n)
=

l

h(n)

(1
l

l−1∑

k=0

s(λ, k)f(n− 1− k,Au(n− 1− k))
)
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+
1

h(n)

∞∑

k=l

s(λ, k)f(n− 1− k,Au(n− 1− k)).

Note that

1

h(n)

∥∥∥
∞∑

k=l

s(λ, k)f(n− 1− k,Au(n− 1− k))
∥∥∥

≤
1

h(n)

∞∑

k=l

|s(λ, k)|M(n− 1− k)W (‖A‖‖u‖hh(n− 1− k))

≤
1

h(n)

∞∑

k=l

|s(λ, k)|M(n− 1− k)W (r‖A‖h(n− 1− k)) ≤ ε.

So
v(n)

h(n)
∈

l

h(n)
co(K) +Bε(X),

where co(K) denotes the convex hull of K and

K =

l−1⋃

k=0

{s(λ, k)f(ξ, x) | ξ ∈ [n− l, n− 1] ∩ Z, ‖x‖ ≤ R},

whereR = r max
ξ∈[n−l,n−1]∩Z

h(ξ), andK is relatively compact by (A4). SinceHn(V ) ⊆ l
h(n)co(K)+

Bε(X), we infer that Hn(V ) is relatively compact in X for all n ∈ Z.

Next, we show that V is weighted equiconvergent at ±∞. In fact,

‖v(n)‖

h(n)
≤

1

h(n)

n−1∑

k=−∞

|s(λ, n− 1− k)|M(k)W (r‖A‖h(k)),

so ‖v(n)‖
h(n) → 0 as |n| → ∞ and this convergence is independent of u ∈ Br(C

0
h(Z, X)). Hence

V satisfies Lemma 2.1(i)–(ii), which completes the proof that V is a relatively compact set in

C0
h(Z, X).

(iv) If uλ ∈ C0
h(Z, X) is a solution of the equation uλ = λΓ(uλ) for some 0 < λ < 1, then

‖uλ(n)‖ ≤

n−1∑

k=−∞

|s(λ, n− 1− k)|M(k)W (‖A‖‖uλ‖hh(k)) ≤ h(n)β̃(‖uλ‖h).

Hence, one has
‖uλ‖h

β̃(‖uλ‖h)
≤ 1,

and by (A5), we conclude that the set {uλ : uλ = λΓ(uλ), λ ∈ (0, 1)} is bounded.

(v) It follows fromTheorems 2.3–2.4 and Lemma 2.5 that Γ(PSAPω(Z, X)) ⊆ PSAPω(Z, X).

Similar to the proof of (iv), we claim that there exists r0 > 0 such that Γ(Br0(C
0
h(Z, X))) ⊆

Br0(C
0
h(Z, X)). Consequently, we infer that

Γ(Br0(C
0
h(Z, X)) ∩ PSAPω(Z, X)) ⊂ Br0(C

0
h(Z, X)) ∩ PSAPω(Z, X).

Hence we derive the following conclusion:

Γ(Br0(C
0
h(Z, X)) ∩ PSAPω(Z, X)

C0

h(Z,X)
) ⊆ Γ(Br0(C

0
h(Z, X)) ∩ PSAPω(Z, X))

C0

h(Z,X)
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⊆ Br0(C
0
h(Z, X)) ∩ PSAPω(Z, X)

C0

h(Z,X)
,

where B
C0

h(Z,X)
denotes the closure of a set B in the space C0

h(Z, X). Consider the operator

Γ : Br0(C
0
h(Z, X)) ∩ PSAPω(Z, X)

C0

h(Z,X)
→ Br0(C

0
h(Z, X)) ∩ PSAPω(Z, X)

C0

h(Z,X)
.

By (i)–(iii), we see that Γ is completely continuous. Applying (iv) and Theorem 2.2, we deduce

that Γ has a fixed point u ∈ Br0(C
0
h(Z, X)) ∩ PSAPω(Z, X)

C0

h(Z,X)
.

Let un be a sequence in Br0(C
0
h(Z, X)) ∩ PSAPω(Z, X) such that it converges to u in the

norm C0
h(Z, X). For ε > 0, let δ > 0 be the constant in (A3). There exists n0 ∈ Z+ such that

‖un − u‖h ≤ δ for all n ≥ n0. For n ≥ n0,

‖Γun − Γu‖d ≤ sup
m∈Z

m−1∑

k=−∞

|s(λ,m− 1− k)|‖f(k,Aun(k))− f(k,Au(k))‖ ≤ ε,

which implies that (Γun)n converges to Γu = u uniformly in Z. Whence u ∈ PSAPω(Z, X).

Corollary 3.1 Assume that (H1)–(H2) hold and the following conditions are satisfied

(a) f(k, 0) = q(k) for k ∈ Z.

(b) f satisfies the Hölder type condition

‖f(k, u)− f(k, v)‖ ≤ C1‖u− v‖α, u, v ∈ X, k ∈ Z.

where 0 < α < 1, C1 > 0 is a constant.

(c) For all a, b ∈ Z, a ≤ b, σ > 0, the set {f(k, x) : a ≤ k ≤ b, ‖x‖ ≤ σ} is relatively compact

in X.

Then (1.1) has a solution u ∈ PSAPω(Z, X).

Proof By (c), it is easy to see that (A4) holds. Let C0 = ‖q‖d, M(·) = 1 and W (ξ) =

C0+C1ξ
α. Then (A1) is satisfied. Take a function h such that sup

n∈Z

( n∑
k=−∞

|s(λ, n−k)|h(k)α
)
:=

C2 <∞. It is not difficult to see that (A2) is satisfied. To verify (A3), note that for each ε > 0,

there exists 0 < δ < 1
‖A‖

(
ε

C1C2

) 1

α , such that for every u, v ∈ C0
h(Z, X), ‖u − v‖h ≤ δ implies

that

n∑

k=−∞

|s(λ, n− k)|‖f(k,Au(k))− f(k,Av(k))‖

≤ C1‖A‖
α

n∑

k=−∞

|s(λ, n− k)|‖u(k)− v(k)‖α

≤ C1‖A‖
α

n∑

k=−∞

|s(λ, n− k)|h(k)α‖u− v‖αh ≤ ε

for all n ∈ Z. Moreover, (A5) can be easily verified using the definition of W . By Theorem 3.5,

(1.1) has a solution u ∈ PSAPω(Z, X).
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