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Abstract This paper is mainly concerned with the solutions to both forward and backward

mean-field stochastic partial differential equation and the corresponding optimal control

problem for mean-field stochastic partial differential equation. The authors first prove the

continuous dependence theorems of forward and backward mean-field stochastic partial

differential equations and show the existence and uniqueness of solutions to them. Then

they establish necessary and sufficient optimality conditions of the control problem in the

form of Pontryagin’s maximum principles. To illustrate the theoretical results, the authors

apply stochastic maximum principles to study the infinite-dimensional linear-quadratic

control problem of mean-field type. Further, an application to a Cauchy problem for a

controlled stochastic linear PDE of mean-field type is studied.
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1 Introduction

In recent years, due to many practical and theory applications, in the finite dimensional

cases, the stochastic differential equation of mean-field type, also called mean-field stochastic

differential equation (MF-SDE for short), and the corresponding optimal control problem and

financial applications have been studied expensively. For more details on these topics, the

interested reader is referred to [1, 4, 6, 11, 13–17, 19–22] and therein. On the other hand,

intuitively speaking, the adjoint equation of a controlled state process driven by the MF-SDE

is a mean-field backward stochastic differential equation (MF-BSDE for short). So it is not

until Buckdahn et al. [3, 5] established the theory of the MF-BSDEs that the optimal control

problem of mean-field type has become a popular topic where the adjoint equation associated

with the stochastic maximum principle is a MF-BSDE.
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The purpose of this paper is to extend the finite dimensional MF-SDE and MF-BSDE

and the corresponding optimal control problem to infinite dimensional case, i.e., to mean-field

stochastic partial differential equations (MF-SPDE for short) and backward mean-field stochas-

tic partial differential equations (MF-BSPDE for short). We will establish the basic theory of

MF-SPDE and MF-BSPDE and the basic optimal control theory for MF-SPDE. Precisely s-

peaking, by Itô’s formula in the Gelfand triple and under some proper assumptions, we firstly

prove continuous dependence property of the solution to both MF-SPDE and MF-BSPDE on

the parameter. Then the existence and uniqueness of solutions to MF-SPDE and MF-BSPDE

is proved by the continuous dependence theorem and the classic parameter extension approach.

The second main result established in this paper is the corresponding sufficient and neces-

sary stochastic maximum principle for the optimal control problem of MF-BSPDE, which are

obtained by establishing a convex variation formula under the convexity assumption of the con-

trol domain. Finally, to illustrate our results, we apply the stochastic maximum principles to a

mean-field linear-quadratic (LQ for short) control problem of MF-SPDE. Using the necessary

and sufficient maximum principles, the optimal control strategy is given explicitly in a dual

representation. As an application, a LQ problem for a concrete cauchy problem of controlled

mean-field stochastic partial equation is solved.

The rest of this paper is organized as follows. Section 2 gives notations and framework.

In Section 3, we prove the continuous dependence theory and the existence and uniqueness of

solutions to MF-SPDE in the abstract form. In Section 4, we prove the continuous dependence

theory and the existence and uniqueness of solutions to MF-BSPDE in the abstract form. In

Section 5, the optimal control problem of MF-SPDE is studied in detail where we establish the

stochastic sufficient and necessary maximum principles under convex control domain assump-

tion. Sections 6 applies the stochastic maximum principles to solve linear-quadratic optimal

control problems of MF-SPDE. The final section concludes the paper.

Moreover, we refer to [7–9, 12] on the existence, uniqueness and regularity of solutions to

infinite dimensional BSEEs as well as backward stochastic partial differential equations.

2 Notations

Let (Ω,F ,F,P) be a complete probability space on which one-dimensional real-valued Brow-

nian motion {W (t), 0 ≤ t ≤ T } is defined with F , {Ft, 0 ≤ t ≤ T} being its natural filtration

augmented by all the P-null sets. Denote by E[·] the expectation with respect to the probability

P. We denote by P the predictable σ-algebra associated with F. For any topological space

Λ, we denote by B(Λ) its Borel σ-algebra. Let X be any Hilbert space in which the norm is

denoted by‖ · ‖X . Next we introduce the following spaces:

• M2
F
(0, T ;X): The Space of all X-valued F -adapted processes f , {f(t, ω), (t, ω) ∈

[0, T ]× Ω} endowed with the norm ‖f‖M2
F
(0,T ;X) ,

√
E
[ ∫ T

0
‖f(t)‖2Xdt

]
< ∞;
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• S2
F
(0, T ;X): The space of all X-valued F -adapted càdlàg processes f , {f(t, ω), (t, ω) ∈

[0, T ]× Ω} endowed with the norm ‖f‖S2
F
(0,T ;X) ,

√
E
[
sup0≤t≤T ‖f(t)‖2X

]
< ∞;

• Lp(Ω,F ,P;X): The space of all X-valued F -measurable random variables ξ endowed

with the norm ‖ξ‖Lp(Ω,F ,P;X) ,
√
E[‖ξ‖pX ] < ∞, where p ≥ 1 are given real number.

3 Mean-Field Stochastic Partial Differential Equation

This section is devoted to the study of the MF-SPDE in an abstract form. Let (Ω,F ,P) =

(Ω × Ω,F × F ,P × P) be the product of (Ω,F ,P) with itself. We endow this product space

with the filtration {F t}0≤t≤T = {Ft×Ft}0≤t≤T . By P we denote the product P ×P. Let E

denote the expectation with respect to the product probability space Ω. Denote byM2
F
(0, T ;X)

the set of all X-valued F -adapted processes f , {f(t, ω′, ω), (t, ω′, ω) ∈ [0, T ]× Ω} such that

‖f‖M2
F
(0,T ;X) ,

√
E
[ ∫ T

0
‖f(t)‖2Xdt

]
< ∞. For p ≥ 1, a random variable ξ ∈ Lp(Ω,F ,P;X)

originally defined on Ω can be extended canonically to Ω: ξ′(ω′, ω) = ξ(ω′), (ω′, ω) ∈ Ω. For

any θ ∈ Lp(Ω,F ,P;X), the variable θ(·, ω) : Ω → X belongs to Lp(Ω,F ,P;X), P(dω)-a.s., we

denote its expectation by

E
′[θ(·, ω)] =

∫

Ω

θ(ω′, ω)P(dω′).

Notice that E′[θ] = E
′[θ(·, ω)] ∈ Lp(Ω,F ,P;X) and

E[θ](=

∫

Ω

θdP =

∫

Ω

E
′[θ(·, ω)]Pd(ω)) = E[E′[θ]].

Let

V ⊂ H = H∗ ⊂ V ∗

be Gelfand triple, i.e., (H, (·, ·)H) is a separable Hilbert spaces and V is a reflextive Banach

space such that H is identified with its dual space H∗ by the Riesz isomorphism and V is

densely embedded in H . We denote by 〈·, ·〉 the duality product between V and V ∗. Moreover,

we denote by L (V, V ∗) the set of all bounded linear operators from V into V ∗. In the Gelfand

triple (V,H, V ∗), consider the following operators

A = A(t, ω) : [0, T ]× Ω → L (V, V ∗),

b = b(t, ω′, ω, x′, x) : [0, T ]× Ω×H ×H → H,

g = g(t, ω′, ω, x′, x) : [0, T ]× Ω×H ×H → H,

(3.1)

which satisfy the following standard assumption.

Assumption 3.1 Suppose that there exist constant α > 0, λ, and C such that the following

conditions holds for all x, x′, x, x′ and a.e. (t, ω′, ω) ∈ [0, T ]× Ω.

(i) (Measurability) The operator A is P/B(L (V, V ∗)) measurable; b and g are P⊗B(H)⊗

B(H)/B(H) measurable;

(ii) (Integrality) b(·, 0, 0), g(·, 0, 0) ∈ M2
F
(0, T ;H);
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(iii) (Coercivity)

〈A(t)x, x〉 + λ‖x‖2H ≥ α‖x‖2V ; (3.2)

(iv) (Boundedness)

sup
(t,ω)∈[0,T ]×Ω

‖A(t, ω)‖L (V,V ∗) ≤ C; (3.3)

(v) (Lipschitz Continuity)

‖b(t, x′, x) − b(t, x′, x)‖H + ‖g(t, x′, x)− g(t, x′, x)‖H ≤ C[‖x− x‖H + ‖x′ − x′‖H ]. (3.4)

Using the above notations, in the Gelfand triple (V,H, V ∗), we consider the MF-SPDE in

the following abstract form with the coefficients (A, b, g) defined by (3.1) and the initial value

x ∈ H :




dX(t) = {−A(t)X(t) + E
′[b(t,X ′(t), X(t)]}dt+ E

′[g(t,X ′(t), X(t))]dW (t),

t ∈ [0, T ],

X(t) = x ∈ H,

(3.5)

where we have used the following notation defined by

E
′[b(t,X ′(t), X(t)] =

∫

Ω

b(t, ω′, ω,X(t, ω′), X(t, ω))P(dω′) (3.6)

and

E
′[g(t,X ′(t), X(t)] =

∫

Ω

g(t, ω′, ω,X(t, ω′), X(t, ω))P(dω′). (3.7)

Now we give the definition of the solution to the MF-SPDE (3.5).

Definition 3.1 An V -valued, F-adapted process X(·) is said to be a solution to MF-SPDE

(3.5), if X(·) ∈ M2
F
(0, T ;V ) such that for a.e. (t, ω) ∈ [0, T ]× Ω and every φ ∈ V, we have

(X(t), φ)H = (x, φ)H −

∫ t

0

〈A(s)X(s), φ〉 ds+

∫ t

0

(E′[b(s,X ′(s), X(s))], φ)Hds

+

∫ t

0

(E′[g(s,X ′(s), X(s))], φ)HdW (s), t ∈ [0, T ], (3.8)

or alternatively, in the sense of V ∗, X(·) have the following Itô form:

X(t) = x−

∫ t

0

A(s)X(s)ds+

∫ t

0

E
′[b(s,X ′(s), X(s))]ds

+

∫ t

0

E
′[g(s,X ′(s), X(s))]dW (s). (3.9)

The following result is the continuous dependence theorem of the solution to the MF-SPDE

(3.5) on the coefficients (A, b, g) and the initial value x which is also called a priori estimate for

the solution.
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Theorem 3.1 (Continuous Dependence Theorem of MF-SPDE) Suppose that X(·) is a

solution to MF-SPDE (3.5) with the initial value x and the coefficients (A, b, g) satisfying As-

sumptions 3.1. Then we have the following estimate:

E

[
sup

0≤t≤T

‖X(t)‖2H

]
+ E

[ ∫ T

0

‖X(t)‖2V dt
]

≤ K
{
E[‖x‖2H ] + E

[ ∫ T

0

‖b(t, 0, 0)‖2Hdt
]
+ E

[ ∫ T

0

‖g(t, 0, 0)‖2Hdt
]}

, (3.10)

where K is a positive constant which only depend on the constants C, T, α and λ. Further,

suppose that X(·) is the solution to MF-SPDE (3.5) with the initial value x and the coefficients

(A, b, g) satisfying Assumption 3.1. Then we have

E

[
sup

0≤t≤T

‖X(t)−X(t)‖2H

]
+ E

[ ∫ T

0

‖X(t)−X(t)‖2V dt
]

≤ K
{
‖x− x‖2H + E

[ ∫ T

0

‖b(t,X
′
(t), X(t)) − b(t,X

′
(t), X(t))‖2Hdt

]

+ E

[ ∫ T

0

‖g(t,X
′
(t), X(t)) − g(t,X

′
(t), X(t))‖2Hdt

]}
. (3.11)

Proof It suffices to prove (3.11) since the estimate (3.10) can be obtained as a direct

consequence of (3.11) by taking the coefficient (A, b, g) = (A, 0, 0) with which the solution to

MF-SPDE (3.5) is x(·) = 0. In order to simplify our notation, we denote by

X̂(t) , X(t)−X(t),

b̂(t) , b(t,X
′
(t), X(t))− b(t,X

′
(t), X(t)),

ĝ(t) , g(t,X
′
(t), X(t))− g(t,X

′
(t), X(t)).

Using Itô’s formula to ‖X̂(t)‖2H , we get that

‖X̂(t)‖2H = ‖x̂‖2H − 2

∫ t

0

〈
A(s)X̂(s), X̂(s)

〉
ds+ 2

∫ t

0

(E′[b(s,X ′(s), X(s))

− b(s,X
′
(s), X(s))], X̂(s))Hds+ 2

∫ t

0

(E′[g(s,X ′(s), X(s))

− g(s,X
′
(s), X(s))], X̂(s)))HdW (s)

+

∫ t

0

‖E′[g(s,X ′(s), X(s)− g(s,X
′
(s), X(s))]‖2Hds. (3.12)

In view of Assumption 3.1 and the elementary inequality 2ab ≤ a2 + b2, ∀a, b > 0, we obtain

‖X̂(t)‖2H + 2α

∫ t

0

‖X̂(s)‖2V ds

≤ ‖x̂‖2H +K(C, λ)

∫ t

0

‖X̂(s)‖2Hds+K(C)

∫ t

0

E‖X̂(s)‖2Hds+

∫ t

0

E
′‖b̂(s)‖2Hds

+ 2

∫ T

0

E
′‖ĝ(s)‖2Hds+ 2

∫ t

0

(E′[g(s,X ′(s), X(s))
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− g(s,X
′
(s), X(s))], X̂(s)))HdW (s). (3.13)

Taking expectations on both sides of (3.13) leads to

E[‖X̂(t)‖2H ] + 2αE
[ ∫ t

0

‖X̂(s)‖2V ds
]

≤ ‖x‖2H +K(λ,C)E
[ ∫ t

0

‖X̂(s)‖2Hds
]
+ E

[ ∫ T

0

‖b̂(s)‖2Hds
]
+ 2E

[ ∫ T

0

‖ĝ(s)‖2Hds
]
. (3.14)

Then applying Grönwall’s inequality to (3.14) yields

sup
0≤t≤T

E[‖X̂(t)‖2H ] + E

[ ∫ T

0

‖X̂(t)‖2V dt
]

≤ K
{
‖x̂‖2H + E

[ ∫ T

0

‖b̂(t)‖2Hdt
]
+ E

[ ∫ T

0

‖ĝ(t)‖2Hdt
]}

, (3.15)

where K is a positive constant depending only on T , C, α and λ.

Furthermore, in view of (3.13) and (3.15), the Lipschitz continuity condition (see(3.24)) and

the Burkholder-Davis-Gundy, we get that

E

[
sup

0≤t≤T

‖x̂(t)‖2H

]

≤ K
{
‖x̂‖2H + E

[ ∫ T

0

‖b̂(t)‖2Hdt
]
+ E

[ ∫ T

0

‖ĝ(t)‖2Hdt
]}

+ 2E
[

sup
0≤t≤T

∣∣∣
∫ t

0

(E′[g(s,X ′(s), X(s))− g(s,X
′
(s), X(s))], X̂(s)))HdW (s)

∣∣∣
]

≤ K
{
‖x‖2H + E

[ ∫ T

0

‖b̂(t)‖2Hdt
]
+ E

[ ∫ T

0

‖ĝ(t)‖2Hdt
]}

+
1

2
E

[
sup

0≤t≤T

‖X̂(t)‖2H

]
. (3.16)

Therefore, (3.11) can be obtained by combining (3.15)–(3.16). The proof is complete.

Theorem 3.2 (Existence and Uniqueness Theorem of MF-SPDE) Let Assumption 3.1

be satisfied. Then for any given initial value x, the MF-SPDE (3.5) admits a unique solution

X(·) ∈ S2
F
(0, T ;H).

Proof The uniqueness of the solution of MF-SPDE (3.5) is implied by the a priori estimate

(3.11). Consider a family of MF-SPDE parameterized by ρ ∈ [0, 1] as follows:

X(t) = x−

∫ t

0

A(s)X(s)ds+

∫ t

0

[ρE′[b(s,X ′(s), X(s))] + b0(s)]ds

+

∫ t

0

[ρE′[g(s,X ′(s), X(s))] + g0(s)]dW (s), (3.17)

where b0(·) ∈ M2
F
(0, T ;H) and g0(·) ∈ M2

F
(0, T ;H) are two any given stochastic process. It

is easily seen that the original MF-SPDE (3.5) is “embedded” in the MF-SPDE (3.17) when

we take the parameter ρ = 1 and b0(·) ≡ 0, g0(·) ≡ 0. Obviously, the MF-SPDE (3.17) have

coefficients (A, ρb + b0, ρg + g0) satisfying Assumption 3.1 with the same Lipschitz constant
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C. Suppose for any b0(·), g0(·) ∈ M2
F
(0, T ;H) and some parameter ρ = ρ0, the MF-SPDE

(3.17) admits a unique solution X(·) ∈ M2
F
(0, T ;V ) . For any parameter ρ, we can rewrite the

MF-SPDE (3.17) as

X(t) = x−

∫ t

0

A(s)X(s)ds+

∫ t

0

[ρ0E
′[b(s,X ′(s), X(s))] + b0(s)

+ (ρ− ρ0)E
′[b(s,X ′(s), X(s))]]ds+

∫ t

0

[ρ0E
′[g(s,X ′(s), X(s))] + g0(s)

+ (ρ− ρ0)E
′[g(s,X ′(s), X(s))]]dW (s). (3.18)

Therefore, by our above supposition, for any x(·) ∈ M2
F
(0, T ;V ), the following MF-SPDE

X(t) = x−

∫ t

0

A(s)X(s)ds+

∫ t

0

[ρ0E
′[b(s,X ′(s), X(s))] + b0(s)

+ (ρ− ρ0)E
′[b(s, x′(s), x(s))]]ds +

∫ t

0

[ρ0E
′[g(s,X ′(s), X(s))] + g0(s)

+ (ρ− ρ0)E
′[g(s, x′(s), x(s))]]dW (s) (3.19)

admits a unique solution X(·) ∈ M2
F
(0, T ;V ). Consequently, now we can define a mapping

from M2
F
(0, T ;V ) onto itself and denote by X(·) = Γ(x(·)).

In view of the Lipschitz continuity of b and g and a priori estimate (3.11), for any xi(·) ∈

M2
F
(0, T ;V ), i = 1, 2, we obtain

‖Γ(x1(·))− Γ(x2(·))‖
2
M2

F
(0,T ;V ) = ‖X1(·)−X2(·)‖

2
M2

F
(0,T ;V )

≤ K|ρ− ρ0|
2 · ‖x1(·)− x2(·)‖

2
M2

F
(0,T ;V ).

Here K , K(T,C, λ, α) is a positive constant independent of ρ. Set θ = 1
2K . Then we conclude

that as long as |ρ−ρ0|
2 ≤ θ, the mapping Γ is a contraction in M2

F
(0, T ;V ) which implies that

MF-SPDE (3.17) is solvable. It is well-known that the MF-SPDE (3.17) with ρ0 = 0 admits

a unique solution by the classic existence and uniqueness theory of SPDE (see [18]). Starting

from ρ = 0, one can reach ρ = 1 in finite steps and this finishes the proof of solvability of

the MF-SPDE (3.5). Moreover, from Lemma 3.1 and the a priori estimate (3.10), we obtain

X(·) ∈ S2
F
(0, T ;V ). This completes the proof.

We conclude this section by studying another type of MF-SPDE in the following abstract

stochastic evolution form:
{
dX(t) = {−A(t)X(t) + b(t,E[X(t)], X(t))}dt+ g(t,E[X(t)], X(t))dW (t), t ∈ [0, T ],

X(0) = x ∈ H,
(3.20)

where the coefficients

A = A(t, ω) : [0, T ]× Ω → L (V, V ∗),

b = b(t, ω, x′, x) : [0, T ]× Ω×H ×H → H,

g = g(t, ω, x′, x) : [0, T ]× Ω×H ×H → H

(3.21)
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are given random mappings.

We make the following standard assumptions on the coefficients (A, f, ξ).

Assumption 3.2 Suppose that there exist constant α > 0, λ and C such that the following

conditions holds for all x, x′, x, x′ ∈ H and a.e. (t, ω) ∈ [0, T ]× Ω.

(i) (Measurability) The operator A is P/B(L (V, V ∗)) measurable; b and g are P⊗B(H)⊗

B(H)/B(H) measurable;

(ii) (Integrality) b(·, 0, 0), g(·, 0, 0) ∈ M2
F
(0, T ;H);

(iii) (Coercivity)

〈A(t)x, x〉 + λ‖x‖2H ≥ α‖x‖2V ; (3.22)

(iv) (Boundedness)

sup
(t,ω)∈[0,T ]×Ω

‖A(t, ω)‖L (V,V ∗) ≤ C; (3.23)

(v) (Lipschitz Continuity)

‖b(t, x′, x)− b(t, x′, x)‖H + ‖g(t, x′, x)− g(t, x′, x)‖H

≤ C[‖x− x‖H + ‖x′ − x′‖H ]. (3.24)

Similar to Theorems 3.1–3.2, we have the following two important results on the solution to

MF-SPDE (3.20).

Theorem 3.3 Let Assumption 3.2 be satisfied. Then for any given initial value x, the

MF-SPDE (3.20) has a unique solution X(·) ∈ S2
F
(0, T ;H).

Theorem 3.4 Let Assumption 3.2 be satisfied. Suppose that X(·) be the solution to MF-

SPDE (3.20) with initial value x ∈ H. Then the following estimate holds:

E

[
sup

0≤t≤T

‖X(t)‖2H

]
+ E

[ ∫ T

0

‖X(t)‖2V dt
]

≤ K
{
E[‖x‖2H ] + E

[ ∫ T

0

‖b(t, 0, 0)‖2Hdt
]

+ E

[ ∫ T

0

‖g(t, 0, 0)‖2Hdt
]}

, (3.25)

where K is a positive constant depending only on T,C, α and λ. Further, suppose that X(·) is

the solution to MF-SPDE (3.20) with the coefficients (A, b, g) satisfying Assumption 3.2 and

the initial value x ∈ H. Then we have

E

[
sup

0≤t≤T

‖X(t)−X(t)‖2H

]
+ E

[ ∫ T

0

‖X(t)−X(t)‖2V dt
]

≤ K
{
‖x− x‖2H + E

[ ∫ T

0

‖b(t,EX(t), X(t)) − b(t,EX(t), X(t))‖2Hdt
]

+ E

[ ∫ T

0

‖g(t,EX(t), X(t)) − g(t,EX(t), X(t))‖2Hdt
]}

. (3.26)



Forward and Backward Mean-Field Stochastic Partial Differential Equation and Optimal Control 523

4 Mean-Field Backward Stochastic Partial Differential Equation

In this section, in Gelfand triple (V,H, V ∗), we begin to investigate the MF-BSPDE in the

following abstract stochastic evolution form:
{
dY (t) = [A(t)Y (t) + E

′[f(t, Y ′(t), Z ′(t), Y (t), Z(t))]dt + Z(t)dW (t), t ∈ [0, T ],

Y (T ) = ξ,
(4.1)

where the coefficients (A, f, ξ) are the following mappings

A = A(t, ω) : [0, T ]× Ω → L (V, V ∗),

f = f(t, ω′, ω, y′, z′, y, z) : [0, T ]× Ω× V ×H × V ×H → H,

ξ = ξ(ω) : Ω → H. (4.2)

In the above, we have used the following notation defined by

E
′[f(t, Y ′(t), Z ′(t), Y (t), Z(t)]

=

∫

Ω

f(t, ω′, ω, Y ′(t, ω′), Z ′(t, ω′), Y (t, ω), Z(t, ω′))P(dω′). (4.3)

Furthermore, we make the following standard assumption on the coefficients (A, f, ξ).

Assumption 4.1 Suppose that there exist constant α > 0, λ and C such that the following

conditions holds for all (y′, z′, y, z), (y′, z′, y, z) ∈ V ×H×V ×H and a.e. (t, ω′, ω) ∈ [0, T ]×Ω.

(i) (Measurability) The operatorA is P/B(L (V, V ∗))-measurable; f is P⊗B(V )⊗B(H)⊗

B(V )⊗ B(H)/B(H)-measurable; ξ is FT -measurable;

(ii) (Integrality) f(·, 0, 0, 0, 0) ∈ M2
F
(0, T ;H) and ξ ∈ L2(FT ;H);

(iii) (Coercivity)

〈A(t)x, x〉 + λ‖x‖2H ≥ α‖x‖2V ; (4.4)

(iv) (Boundedness)

sup
(t,ω)∈[0,T ]×Ω

‖A(t, ω)‖L (V,V ∗) ≤ C; (4.5)

(v) (Lipschitz Continuity)

‖f(t, y′, z′, y, z)− f(t, y′, z′, y, z)‖H

≤ C(‖y′ − y′‖V + ‖z′ − z′‖H + ‖y − y‖V + ‖z − z‖H). (4.6)

Now we give the definition of the solutions to MF-BSPDE (4.1).

Definition 4.1 A (V ×H)-valued, F-adapted process pair (Y (·), Z(·)) is said to be a solution

to the MF-BSPDE (4.1), if Y (·) ∈ M2
F
(0, T ;V ) and Z(·) ∈ M2

F
(0, T ;H) such that

(Y (t), φ)H = (ξ, φ)H −

∫ T

t

E
′[f(s, Y ′(s), Z ′(s), Y (s), Z(s)), φ)H ]ds

−

∫ T

t

〈A(s)Y (s), φ〉 ds−

∫ T

t

(Z(s), φ)HdW (s), t ∈ [0, T ] (4.7)
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holds for every φ ∈ V and a.e. (t, ω) ∈ [0, T ]×Ω, or alternatively, in the sense of V ∗, (Y (·), Z(·))

satisfies the following Itô form:

Y (t) = ξ −

∫ T

t

E
′[f(s, Y ′(s), Z ′(s), Y (s), Z(s))]ds

−

∫ T

t

A(s)Y (s)ds−

∫ T

t

Z(s)dW (s), t ∈ [0, T ]. (4.8)

The following result gives the continuous dependence theorem for the solution to the MF-

BSPDE (4.1) with respect to the coefficients (A, f, ξ), which also is referred to as a priori

estimate for the solution.

Theorem 4.1 (Continuous Dependence Theorem of MF-BSPDE) Suppose that (Y (·),

Z(·)) is a solution to the MF-BSPDE (4.1) with the coefficients (A, f, ξ) satisfying Assumption

4.1. Then we have the following a priori estimate

E

[
sup

0≤t≤T

‖Y (t)‖2H

]
+ E

[ ∫ T

0

‖Y (t)‖2V dt
]
+ E

[ ∫ T

0

‖Z(t)‖2Hdt
]

≤ K
{
E[‖ξ‖2H ] + E

[ ∫ T

0

‖f(t, 0, 0, 0, 0)‖2Hdt
]}

. (4.9)

Here K , K(T,C, α, λ) is a positive constant depending only on T , C, α and λ. Assume

that (Y (·), Z(·)) is a solution to the MF-BSPDE (4.1) with the coefficients (A, f, ξ) satisfying

Assumption 4.1. Then it holds that

E

[
sup

0≤t≤T

‖Y (t)− Y (t)‖2H

]
+ E

[ ∫ T

0

‖Y (t)− Y (t)‖2V dt
]
+ E

[ ∫ T

0

‖Z(t)− Z(t)‖2Hdt
]

≤ K
{
+ E

[ ∫ T

0

‖f(t, Y
′
(t), Z

′
(t), Y (t), Z(t))− f(t, Y

′
(t), Z

′
(t), Y (t), Z(t))‖2Hdt

]

+ E[‖ξ − ξ‖2H ]
}
. (4.10)

Proof If we take the coefficients (A, f, ξ) = (A, 0, 0), then the corresponding solution to

the MF-BSPDE (4.1) is (Y (·), Z(·)) = (0, 0) and the estimate (4.9) follows from the estimate

(4.10) immediately. Therefore, it suffices to prove that (4.10) holds. To simplify our notation,

we define

Ŷ (t) , Y (t)− Y (t), Ẑ(t) , Z(t)− Z(t), ξ̂ , ξ − ξ,

f̂(t) , f(t, Y
′
(t), Z

′
(t), Y (t), Z(t))− f(t, Y

′
(t), Z

′
(t), Y (t), Z(t)).

Using Itô’s formula to ‖Ŷ (t)‖2H and Assumption 4.1 and the classic inequality 2ab ≤ 1
ε
a2 + εb2,

∀a, b > 0, ε > 0, we have

‖Ŷ (t)‖2H + 2α

∫ T

t

‖Ŷ (s)‖2V ds+

∫ T

t

‖Ẑ(s)‖2Hds

≤ ‖ξ̂‖2H +K(C, λ, ε)

∫ T

t

‖Ŷ (s)‖2Hds+ ε

∫ T

t

‖Ŷ (s)‖2V ds+ ε

∫ T

t

‖Ẑ(s)‖2Hds
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+K(C, ε)E
[ ∫ T

t

‖Ŷ (s)‖2Hds
]
+ εE

[ ∫ T

t

‖Ŷ (s)‖2V ds
]
+ εE

[ ∫ T

t

‖Ẑ(s)‖2Hds
]

+ E
′

∫ T

t

‖f̂(s)‖2Hds− 2

∫ T

t

(Ŷ (s), Ẑ(s))HdW (s). (4.11)

Taking expectations on both sides of (4.11) and taking ε small enough such that 2α − 2ε > 0

and 1− 2ε > 0, we get

E[‖Ŷ (t)‖2H ] + E

[ ∫ T

t

‖Ŷ (s)‖2V ds
]
+ E

[ ∫ T

t

‖Ẑ(s)‖2Hds
]

≤ K(T,C, α, λ)
{
E‖ξ̂‖2H + E

∫ T

t

‖f̂(s)‖2Hds+ E

∫ T

t

‖Ŷ (s)‖2Hds
}
. (4.12)

Here K(T,C, α, λ) is a general positive constant depending on α, T , C, and λ.

Then applying Grönwall’s inequality to (4.12), we obtain

sup
0≤t≤T

E[‖Ŷ (t)‖2H ] + E

[ ∫ T

0

‖Ŷ (t)‖2V dt
]
+ E

[ ∫ T

0

‖Ẑ(t)‖2Hdt
]

≤ K(T,C, α, λ)
{
E[‖ξ̂‖2H ] + E

[ ∫ T

0

‖f̂(t)‖2Hdt
]}

. (4.13)

In view of (4.11), (4.13) and the Burkholder-Davis-Gundy inequality, we have

E

[
sup

0≤t≤T

‖Ŷ (t)‖2H

]
≤ K(T,C, α, λ)

{
E[‖ξ̂‖2H ] + E

[ ∫ T

0

‖f̂(t)‖2Hdt
]}

+ 2E
[

sup
0≤t≤T

∣∣∣
∫ T

t

(Ŷ (s), Ẑ(s))HdW (s)
∣∣∣
]

≤ K(T,C, α, λ)
{
E[‖ξ̂‖2H ] + E

[ ∫ T

0

‖f̂(t)‖2Hdt
]}

+
1

2
E

[
sup

0≤t≤T

‖Ŷ (t)‖2H

]
, (4.14)

which implies that

E

[
sup

0≤t≤T

‖Ŷ (t)‖2H

]
≤ K(T,C, α, λ)

{
E[‖ξ̂‖2H ] + E

[ ∫ T

0

‖f̂(t)‖2Hdt
]}

. (4.15)

There we conclude that (4.10) holds by (4.15) with (4.13). The proof is complete.

Theorem 4.2 (Existence and Uniqueness Theorem of MF-BSPDE) Let the coefficients

(A, f, ξ) satisfy Assumption 4.1. Then MF-BSPDE (4.1) admits a unique solution (Y (·), Z(·)) ∈

S2
F
(0, T ;V )×M2

F
(0, T ;H).

Proof The uniqueness of the solution of MF-BSPDE (4.1) is implied by the a priori

estimate (4.10). Consider a family of MF-BSPDE parameterized by ρ ∈ [0, 1] as follows:

Y (t) = ξ −

∫ T

t

{A(s)Y (s) + ρE′[f(s, Y ′(s), Z ′(s), Y (s), Z(s))]

+ f0(s)}ds−

∫ T

t

Z(s)dW (s), (4.16)
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where f0(·) ∈ M2
F
(0, T ;H) is an arbitrary stochastic process.

It is easily seen that the original MF-BSPDE (4.1) is “embedded” in the MF-SPDE (4.16)

when we take the parameter ρ = 1 and f0(·) ≡ 0. Obviously, the MF-BSPDE (4.16) has

coefficients (A, ρf + b0, ξ) satisfying Assumption 3.1. Suppose for some ρ = ρ0 and any f0 ∈

M2
F
(0, T ;H), the MF-BSPDE (4.16) admits a unique solution (Y (·), Z(·)) ∈ M2

F
(0, T ;V ) ×

M2
F
(0, T ;H). Then for any ρ, we can rewrite the MF-BSPDE(4.16) as follows:

Y (t) = ξ −

∫ T

t

{A(s)Y (s) + ρ0E
′[f(s, Y ′(s), Z ′(s), Y (s), Z(s))]

+ f0(s) + (ρ− ρ0)E
′[f(s, Y ′(s), Z ′(s), Y (s), Z(s))]}ds

−

∫ T

t

Z(s)dW (s). (4.17)

Thus by our above assumption, for any stochastic process pair (y(·), z(·)) ∈ M2
F
(0, T ;V ) ×

M2
F
(0, T ;H), the following MF-BSPDE

Y (t) = ξ −

∫ T

t

{A(s)Y (s) + ρ0E
′[f(s, Y ′(s), Z ′(s), Y (s), Z(s))]

+ f0(s) + (ρ− ρ0)E
′[f(s, y′(s), z′(s), y(s), z(s))]ds

−

∫ T

t

Z(s)dW (s) (4.18)

admits a unique solution (Y (·), Z(·)) ∈ M2
F
(0, T ;V ) × M2

F
(0, T ;H), which implies that we

can define a mapping from M2
F
(0, T ;V ) ×M2

F
(0, T ;H) onto itself denoted by I(y(·), z(·)) =

(Y (·), Z(·)).

In view of the a priori estimate (4.10) and the Lipschitz continuity of f, for any (yi(·), zi(·)) ∈

M2
F
(0, T ;V )×M2

F
(0, T ;H) (i = 1, 2), it holds that

‖I(y1(·), z1(·))− I(y2(·), z2(·))‖
2
M2

F
(0,T ;V )×M2

F
(0,T ;H)

= ‖(Y1(·), Z1(·))− (Y2(·), Z2(·))‖
2
M2

F
(0,T ;V )×M2

F
(0,T ;H)

≤ KE

[ ∫ T

0

‖ρ0f(s, Y
′
2(s), Z

′
2(s), Y2(s), Z2(s)) + (ρ− ρ0)f(s, y

′
1(s), z

′
1(s), y1(s), z1(s))

− ρ0f(s, Y
′
2(s), Z

′
2(s), Y2(s), Z2(s)) − (ρ− ρ0)f(s, y

′
2(s), z

′
2(s), y2(s), z2(s))‖

2
Hds

]

≤ K|ρ− ρ0|
2 × ‖(y1(·), z1(·)) − (y2(·), z2(·))‖

2
M2

F
(0,T ;V )×M2

F
(0,T ;H). (4.19)

Here we note that K , K(T,C, λ, α) is a constant independent of ρ and

‖(Y1(·), Z1(·))− (Y2(·), Z2(·))‖
2
M2

F
(0,T ;V )×M2

F
(0,T ;H) , ‖Y1(·)− Y2(·)‖

2
M2

F
(0,T ;V )

+ ‖Z1(·)− Z2(·)‖
2
M2

F
(0,T ;H).

Set θ = 1
2K . Then we conclude that as long as |ρ− ρ0|

2 ≤ θ, the mapping I is a contraction in

M2
F(0, T ;V ) × M2

F(0, T ;H) which implies that MF-BSPDE (4.16) is solvable. In view of [7,

Proposition 3.2], we know that the MF-BSPDE (4.16) with ρ0 = 0 admits a unique solution.

Now we can start from ρ = 0 and then reach ρ = 1 in finite steps which finishes the proof

of solvability of the MF-BSPDE (4.16). Moreover, from the a priori estimate (4.9), we obtain

Y (·) ∈ S2
F (0, T ;H). This completes the proof.
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5 Optimal Control of Mean-Field Stochastic Partial Differential

Equation

5.1 Formulation of the optimal control problem

In this subsection, we present our optimal control problem studied in this paper. Firstly, in

the Gelfand triple (V,H, V ∗), consider the following controlled system:





dX(t) = [−A(t)X(t) + h(t,X(t),E[X(t)], u(t))]dt

+ g(t,X(t),E[X(t)], u(t))dW (t), t ∈ [0, T ],

X(0) = x ∈ H

(5.1)

with the cost functional

J(u(·)) = E

[ ∫ T

0

l(s,X(s),E[X(s)], u(s))dt+Φ(X(T ),E[X(T )])
]
. (5.2)

In the above, A : [0, T ]× Ω → L (V, V ∗), h, g : [0, T ]× Ω×H ×H × U → H, l : [0, T ]× Ω×

H ×H × U → R, Φ : Ω×H ×H → R.

Let us make the following assumption.

Assumption 5.1 (i) U is a nonempty convex closed subset of a real separable Hilbert

space U .

(ii) The operator A is P/B(L (V, V ∗))-measurable and satisfies the conditions (iii) and (iv)

in Assumption 3.2.

(iii) The mappings h and g are P ⊗ B(H) ⊗ B(H) ⊗ B(U )/B(H)-measurable such that

h(·, 0, 0, 0), g(·, 0, 0, 0) ∈ M2
F
(0, T ;H). Moreover, for almost all (t, ω) ∈ [0, T ]×Ω, h and g have

continuous and uniformly bounded Gâteaux derivatives hx, hx′ , gx, gx′ , hu and gu.

(iv) The mappings l is P ⊗ B(H) ⊗ B(H) ⊗ B(U )/B(R)-measurable and Φ is FT ⊗

B(H)⊗ B(H)/B(R)-measurable. For almost all (t, ω) ∈ [0, T ]× Ω, l has continuous Gâteaux

derivatives lx, lx′ and lu, Φ(ω, x) has continuous Gâteaux derivative Φx. Moreover, for all

(x, x′, u) ∈ H ×H × U and almost all (t, ω) ∈ [0, T ]× Ω, there is a constant C > 0 such that

|l(t, x, x′, u)| ≤ C(1 + ‖x‖2H + ‖x′‖2H + ‖u‖2U),

‖lx(t, x, x
′, u)‖H + ‖lx′(t, x, x′, u)‖H + ‖lu(t, x, x

′, u)‖U

≤ C(1 + ‖x‖H + ‖x′‖H + ‖u‖U)

and

|Φ(x, x′)| ≤ C(1 + ‖x‖2H + ‖x′‖2H),

‖Φx(x, x
′)‖H ≤ C(1 + ‖x‖H + ‖x′‖H).

Now we define as follows.

Definition 5.1 A predictable control process u(·) is said to be admissible if u(·) ∈ M2(0, T ;

U) and u(t) ∈ U , a.e. t ∈ [0, T ], P-a.s. Denote by A the set of all admissible control processes.
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Given u(·) ∈ A, (5.1) is a MF-SPDE with random coefficients. From Theorem 3.3, it is easily

seen that under Assumption 5.1, (5.1) admits a unique solutionX(·) ≡ Xu(·) ∈ S2
F
(0, T ;H) and

the cost functional is well-defined. In the case that X(·) is the solution of (5.1) corresponding

to u(·) ∈ A, we call (u(·);X(·)) an admissible pair, and X(·) an admissible state process.

Our optimal control problem can be stated as follows.

Problem 5.1 Minimizes (5.2) over A.

Any u(·) ∈ A satisfying

J(u(·)) = inf
u(·)∈A

J(u(·)) (5.3)

is called an optimal control process of Problem 5.1. The corresponding state process X(·) and

the admissible pair (u(·);X(·)) is called an optimal state process and an optimal pair of Problem

5.1, respectively.

For any admissible pair (u(·);X(·)), the adjoint equation of the state equation (5.1) is defined

as the following BSDE whose unknown variables is a pair of F-adapted processes (p(·), q(·)),





dp(t) = −{−A∗(t)p(t) + h∗
x(t,X(t),E[X(t)], u(t))p(t)

+ E[h∗
x(t,X(t),E[X(t)], u(t))p(t)]

+ g∗x(t,X(t),E[X(t)], u(t))q(t) + E[g∗(t,X(t),E[X(t)], u(t))q(t)]

+ lx(t,X(t),E[X(t)], u(t)) + E[lx(t,X(t),E[X(t)], u(t))]}dt

+ q(t)dW (t), t ∈ [0, T ],

p(T ) = Φx(X(T ),E[X(T )]) + E[Φx′(X(T ),E[X(T )])].

(5.4)

Indeed, the above equation is a linear MF-BSPDE, where A∗ is the adjoint operator of A.

Further, we can easily see that A∗ also satisfies the boundedness and coercivity condition-

s. In view of Theorem 4.2, the linear MF-BSPDE (5.4) has a unique solution (p(·), q(·)) ∈

S2
F
(0, T ;V )×M2

F
(0, T ;H).

Define the Hamiltonian H : [0, T ]× Ω×H ×H × U × V ×H → R by

H(t, x, x′, u, p, q) := (h(t, x, x′, u), p)H + (g(t, x, x′, u), q)H + l(t, x, x′, u). (5.5)

Under Assumption 5.1, we can see that the HamiltonianH is also continuously Gâteaux differen-

tiable in (x, x′, u). Denote by Hx, Hx′ and Hu the corresponding Gâteaux derivatives.

Therefore, using the notation of Hamiltonian H, the adjoint equation (5.4) can be written

as

{
dp(t) = −{−A∗(t)p(t) +Hx(t) + E[Hx′(t)]dt+ q(t)dW (t), t ∈ [0, T ],

p(T ) = Φx(X(T ),E[X(T )]) + EΦx′(X(T ),E[X(T )]).
(5.6)

Here we have used the following shorthand notation:

H(t) , H(t,X(t),EX(t), u(t), p(t), q(t)). (5.7)
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5.2 A variation formula for the cost functional

Suppose that (u(·);X(·)) and (u(·);X(·)) are any two given admissible control pairs. And

let (p(·), q(·)) be the solution to the corresponding adjoint equation (5.4) associated with the

admissible control pair (u(·);X(·)). In order to simplify our notation, in the rest of the paper

we shall use the following shorthand notation

ρ(t) , ρ(t,X(t),E[X(t)], u(t)), ρ , h, g,

ρ(t) , ρ(t,X(t),E[X(t)], u(t)), ρ , h, g,

H(t) , H(t,X(t),E[X(t)], u(t), p(t), q(t)),

H(t) , H(t,X(t),E[X(t)], u(t), p(t), q(t)).

(5.8)

To obtain the variation formula for the cost functional, we need the following basic result.

Lemma 5.1 Let Assumption 5.1 be satisfied. Then difference J(u(·)) − J(u(·)) of the cost

functionals associated with the two admissible pairs (u(·);X(·)) and (u(·);X(·)) has the following

representation:

J(u(·))− J(u(·))

= E

[ ∫ T

0

{
H(t)−H(t)− (Hx(t) + E[Hx′(t)], X(t)−X(t))H

}
dt
]

+ E

[
Φ(X(T ),E[X(T )])− Φ(x(T ),E[X(T )])

− (Φx(X(T ),E[X(T )]) + E[Φx′(x(T ),E[X(T )])], X(T )−X(T ))H

]
. (5.9)

Proof Suppose that (u(·);X(·)) and (u(·);X(·)) are any two given admissible control pairs.

By the state equation (5.1), it is easy to check that the difference X(t) − X(t) satisfies the

following MF-SPDE:





d(X(t)−X(t)) = [−A(t)(X(t)−X(t)) + h(t)− h(t)]dt

+ [g(t)− g(t)]dW (t), t ∈ [0, T ],

X(0)−X(0) = 0.

(5.10)

And by the definition of the adjoint equation (see (5.6)), we can get that (p(·), q(·)) satisfies

the following MF-BSPDE

{
dp(t) = −{−A∗(t)p(t) +Hx(t) + E[Hx′ ]dt+ q(t)dW (t), t ∈ [0, T ],

p(T ) = Φx(X(T ),E[X(T )]) + E[Φx′(X(T ),E[X(T )])].
(5.11)

Then using Itô’s formula to (p(t), X(t)−X(t))H , we get that

E

[ ∫ T

0

{(p(t), h(t) − h(t))H + (q(t), g(t)− g(t))H}dt
]

= E

[ ∫ T

0

(Hx(t) + E[Hx′(t)], X(t)−X(t))Hdt
]

+ E

[
(Φx(X(T ),E[X(T )]) + EΦx′(X(T ),E[X(T )]), X(T )−X(T ))H

]
. (5.12)



530 M. N. Tang, Q. X. Meng and M. J. Wang

In view of the definitions of the cost functional and the Hamiltonian H (see (5.5) and (5.2)),

we can see that

J(u(·))− J(u(·)) = E

[ ∫ T

0

{H(t)−H(t)− (p(t), h(t)− h(t))H − (q(t), g(t)− g(t))H}dt
]

+ E[Φ(X(T ),E[X(T )])− Φ(X(T ),E[X(T )])]. (5.13)

Then (5.9) can be immediately obtained by substituting (5.12) into (5.13). The proof is com-

plete.

Next we derive a variational formula for the cost functional (5.2).

Lemma 5.2 Let Assumption 5.1 be satisfied. Then we have the following variational for-

mula

d

dε
J(u(·) + ε(v(·)− u(·)))|ε=0 = lim

ε→0+

J(u(·) + ε(v(·) − u(·))) − J(u(·))

ε

= E

[ ∫ T

0

(Hu(t), v(t) − u(t))Udt
]
, (5.14)

where u(·) and v(·) are any two given admissible controls, and 0 ≤ ε ≤ 1 .

Proof Suppose that (u(·);X(·)) is a given admissible pair and (p(·), q(·)) is the correspon-

ding adjoint process. Define a perturbed control process of u(·) as follows:

uε(·) , u(·) + ε(v(·)− u(·)), 0 ≤ ε ≤ 1, (5.15)

where v(·) is any given admissible control. Due to the convexity of the control domain U , uε(·)

belongs to A. Let Xε(·) be the state process corresponding to the control uε(·). We will use

the following shorthand notation:

Hε(t) , H(t,Xε(t),EXε(t), uε(t), p(t), q(t)). (5.16)

Using the shorthand notations (5.8) and (5.16), from Lemma 5.1, we get that

J(uε(·)) − J(u(·))

= E

[ ∫ T

0

{Hε(t)−H(t)− (Hx(t) + E[Hx′(t)], Xε(t)−X(t))H − (Hu(t), u
ε(t)− u(t))U}dt

]

+ E[Φ(Xε(T ),E[Xε(T ))]− Φ(X(T ),E[X(T )])

− (Φx(X(T ),E[X(T )]) + E[Φx′(X(T ),E[X(T )])], Xε(T )−X(T ))H ]

+ E

[ ∫ T

0

(Hu(t), u
ε(t)− u(t))Udt

]
. (5.17)

In view of Taylor series expansion, it follows that

E

[ ∫ T

0

{Hε(t)−H(t)}dt
]
= E

[ ∫ T

0

∫ 1

0

{(Hε,λ
x (t), Xε(t)−X(t))H

+ (Hε,λ
x′ (t),E[Xε(t)]− E[X(t)])H + (Hε,λ

u (t), uε(t)− u(t))U}dλdt
]

= E

[ ∫ T

0

∫ 1

0

{(Hε,λ
x (t) + E[Hε,λ

x′ (t)], Xε(t)−X(t))H
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+ (Hε,λ
u (t), uε(t)− u(t))U}dλdt

]
, (5.18)

where

Hε,λ(t) , H(t,Xε,λ(t),E[Xε,λ(t)], uε,λ(t), p(t), q(t))

and

Xε,λ(t) , X(t) + λ(Xε(t)−X(t)),

uε,λ(t) , u(t) + λ(uε(t)− u(t)).

On the other hand, it follows from the definition of uε (see (5.15)) that

E

[ ∫ T

0

‖uε(t)− u(t)‖2Udt
]
= ε2E

[ ∫ T

0

‖v(t)− u(t)‖2Udt
]
. (5.19)

Further, in view of the continuous dependence theorem of MF-SPDE (see Theorem 3.4), we

have

E

[
sup

0≤t≤T

‖Xε(t)−X(t)‖2H

]
+ E

[ ∫ T

0

‖Xε(t)−X(t)‖2V dt
]

≤ KE

[ ∫ T

0

‖uε(t)− u(t)‖2Udt
]

= Kε2E
[ ∫ T

0

‖v(t)− u(t)‖2Udt
]
. (5.20)

Therefore, combining (5.18)–(5.20) yields

E

[ ∫ T

0

{Hε(t)−H(t)− (Hx(t) + EHx′(t), xε(t) − x(t))H − (Hu(t), u
ε(t)− u(t))U}dt

]

= E

[ ∫ T

0

∫ 1

0

{(Hε,λ
x (t) + E[Hε,λ

x′ (t)]−Hx(t)− E[Hx′(t)], Xε(t)−X(t))H

+ (Hε,λ
u (t)−Hu(t), u

ε(t)− u(t))U}dλdt
]

≤
{
E

[ ∫ T

0

∫ 1

0

‖(Hε,λ
x (t) + E[Hε,λ

x′ (t)]−Hx(t)− E[Hx′(t)]‖2Hdtdλ
]} 1

2

·
{
E

[ ∫ T

0

‖Xε(t)−X(t)‖2H

]} 1
2

+
{
E

[ ∫ T

0

∫ 1

0

‖(Hε,λ
u (t)−Hu(t)‖

2
Hdtdλ

]} 1
2

·
{
E

[ ∫ T

0

‖uε(t)− u(t)‖2H

]} 1
2

≤ Kε
{
E

[ ∫ T

0

∫ 1

0

‖(Hε,λ
x (t) + E[Hε,λ

x′ (t)]−Hx(t)− E[Hx′(t)]‖2Hdtdλ
]} 1

2

+Kε
{
E

[ ∫ T

0

∫ 1

0

‖(Hε,λ
u (t)−Hu(t)‖

2
Udtdλ

]} 1
2

= o(ε), (5.21)

where the last equality can be obtained by the fact that

lim
ε→0

{
E

[ ∫ T

0

∫ 1

0

‖(Hε,λ
x (t) + E[Hε,λ

x′ (t)]−Hx(t)− E[Hx′(t)]‖2Hdtdλ
]} 1

2
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+ lim
ε→0

{
E

[ ∫ T

0

∫ 1

0

‖(Hε,λ
u (t)−Hu(t)‖

2
Udtdλ

]} 1
2

= 0, (5.22)

which can be got by combining Assumption 5.1, (5.19)–(5.20) and the dominated convergence

theorem.

We can similarly get that

E

[
Φ(Xε(T ),E[Xε(T )])− Φ(X(T ),E[X(T )])

−
(
Φx(X(T ),E[X(T )]) + E[Φx′(X(T ),E[X(T )])], Xε(T )−X(T )

)
H

]
= o(ε). (5.23)

Hence, by substituting (5.21) and (5.23) into (5.17), we get that

lim
ε→0

J(uε(·))− J(u(·))

ε
= E

[ ∫ T

0

(Hu(t), v(t)− u(t))Udt
]
.

The proof is complete.

5.3 Stochastic maximum principle

In this subsection, we will establish the necessary and sufficient maximum principle for the

optimal control of Problem 5.1.

Theorem 5.1 (Necessary Stochastic Maximum Principle) Let Assumption 5.1 be satisfied.

Let (u(·);x(·)) be an optimal pair of Problem 5.1 associated with the adjoint process (p(·), q(·)).

Then the following minimum condition holds:

(Hu(t), v − u(t))U ≥ 0, (5.24)

∀v ∈ U , for a.e. t ∈ [0, T ], P-a.s.

Proof For any admissible control v(·) ∈ A, it follows from Lemma 5.2 that

E

[ ∫ T

0

(Hu(t), v(t)− u(t))Udt
]

= lim
ε→0

J(uε(·)) − J(u(·))

ε
≥ 0, (5.25)

where the last inequality can be get directly since (u(·);X(·)) is an optimal pair of Problem 5.1.

Then minimum condition (5.24) can be obtained by the classic argument following [2]. For the

similar proof, we refer to [16]. The proof is complete.

Next we will give the verification theorem of optimality, namely, the sufficient maximum

principle for the optimal control of Problem 5.1. Besides Assumption 5.1, the verification

theorem relies on some convexity assumptions of the Hamiltonian and the terminal cost.

Theorem 5.2 (Sufficient Maximum Principle) Let Assumption 5.1 be satisfied. Let (u(·);

X(·)) be an admissible pair associated with the adjoint process (p(·), q(·)). Suppose that for

almost all (t, ω) ∈ [0, T ]× Ω,

(1) H(t, x, x′, u, p(t), q(t)) is convex in (x, x′, u);

(2) Φ(x, x′) is convex in (x, x′);

(3) H(t) = minu∈U H(t,X(t),E[X(t)], u, p(t), q(t)),

then (u(·);X(·)) is an optimal pair of Problem 5.1.
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Proof Given an arbitrary admissible pair (u(·);X(·)). By Lemma 5.1, we get

J(u(·))− J(u(·))

= E

[ ∫ T

0

{
H(t)−H(t)− (Hx(t) + E[Hx′(t)], X(t)−X(t))H

}
dt
]

+ E

[
Φ(X(T ),E[X(T )])− Φ(X(T ),E[X(T )])

−
(
Φx(X(T ),E[X(T )]) + E[Φx′(X(T ),E[X(T )])], X(T )−X(T )

)
H

]
. (5.26)

By the convexity of H(t, x, x′, u, , p(t), q(t)) and Φ(x′, x), in view of [10, Proposition 1.54], we

have

H(t)−H(t) ≥ (Hx(t), X(t)−X(t))H + (Hx′(t),E[X(t)]− E[X(t)])H

+ (Hu(t), u(t)− u(t))U (5.27)

and

Φ(X(T ),E[X(T )])− Φ(X(T ),E[X(T )])

≥ (Φx(X(T ),E[X(T )]), X(T )−X(T ))H

+ (Φx′(X(T ),E[X(T )]),E[X(T )]− E[X(T )])H . (5.28)

In addition, in view of the convex optimization principle (see [10, Proposition 2.21]), the opti-

mality condition 3 implies that for almost all (t, ω) ∈ [0, T ]× Ω,

(Hu(t), u(t)− u(t))U ≥ 0. (5.29)

Substituting (5.27)–(5.29) into (5.26) yields

J(u(·))− J(u(·)) ≥ 0.

Therefore, since u(·) is arbitrary, u(·) is an optimal control process and (u(·);X(·)) is an optimal

pair. The proof is complete.

5.4 Optimality system of mean-field stochastic partial differential equation

For any admissible pair (u(·), X(t)), consider the following stochastic system:





dX(t) = [−A(t)X(t) + h(s,X(t),E[X(t)], u(t))]dt+ g(t,X(t),E[X(t)], u(t))dW (t),

dp(t) = −[−A∗(t)p(t) + h∗
x(t,X(t),E[X(t)], u(t))p(t)

+ E[h∗
x(t,X(t),E[X(t)], u(t))p(t)]

+ g∗x(t,X(t),E[X(t)], u(t))q(t) + E[g∗x(t,X(t),E[X(t)], u(t))q(t)]]

+ lx(t,X(t),EX(t), u(t)) + E[lx(t,X(t),EX(t), u(t))]]dt

+ q(t)dW (t), t ∈ [0, T ],

X(0) = x,

p(T ) = Φx(X(T ),E[X(T )]) + EΦx′(X(T ),E[X(T )]),

(Hu(t), v − u(t))U ≥ 0, ∀v ∈ U .

(5.30)
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Note that this is a mean-field fully-coupled forward-backward stochastic partial differential

equation consisting of the state equation (5.1), the adjoint equation (5.4) and the minimum

condition of (5.24). The forward-backward equation (5.30) is referred to as the stochastic

Hamiltonian system or the optimality system of Problem 5.1. The 4-tuple stochastic process

(u(·), X(·), p(·), q(·)) ∈ M2
F
(0, T ;U)×M2

F
(0, T ;V )×M2

F
(0, T ;V )×M2

F
(0, T ;H) satisfying

the above is called the solution of (5.30). Under proper assumptions, we can claim that the

existence of the optimal control of Problem 5.1 is equivalent to the solvability of the stochastic

Hamiltonian system (5.30).

Corollary 5.1 Let Assumption 5.1 and Conditions 1-2 in Theorem 5.2 be satisfied. Then

the existence of the optimal control of Problem 5.1 is equivalent to the existence of a solution

to the stochastic Hamiltonian system. (5.30).

Proof For the sufficient part, suppose that the stochastic Hamiltonian system (5.30) admits

an adapted solution (u(·), X(·), p(·), q(·)) ∈ M2
F
(0, T ;U) × M2

F
(0, T ;V ) × M2

F
(0, T ;V ) ×

M2
F
(0, T ;H), then we begin to prove the existence of the optimal control of Problem 5.1. In

fact, from the minimum condition in the stochastic Hamiltonian system (5.30) and the convexity

of H(t,X(t),E[X(t)], u, p(t), q(t)) with u, we know that

H(t,X(t),EX(t), u(t), p(t), q(t)) = min
u∈U

H(t,X(t),EX(t), u, p(t), q(t)).

Therefore, in view of the sufficient stochastic maximum principle (see Theorem 5.2), we get

that (u(·);X(·)) is an optimal pair.

For the necessary part, suppose that (u(·);X(·)) is an optimal pair associated with the

corresponding adjoint process (p(·), q(·)), then in view of the necessary stochastic maximum

principle, we get that the stochastic Hamiltonian system (5.30) has an adapted solution

(u(·), X(·), p(·), q(·)) ∈ M2
F (0, T ;U)×M2

F (0, T ;V )×M2
F (0, T ;V )×M2

F (0, T ;H).

The proof is complete.

6 An Application: Linear-Quadratic Optimal Control Problems for

Mean-Field Stochastic Partial Differential Equation

The case where the system dynamics are described by a set of linear differential equations

and the cost functional is described by a quadratic function is called the LQ problem which is

one of the most important optimal control problems. The reader is referred to [23, Chapter

6] for a complete survey on this topic. In this section, an infinite-dimensional LQ problem of

mean-field type will be discussed. As an application, we will solve an LQ problem for a Cauchy

problem of a stochastic linear parabolic PDE of mean field type.

6.1 LQ optimal control of mean- field stochastic partial differential equation

This subsection is devoted to applying the stochastic maximum principles to study an

infinite-dimensional linear-quadratic optimal control problem of mean field type, and establish

the explicit dual characterization of the optimal control with stochastic Hamiltonian system of

mean field type.
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Consider the following linear quadratic optimal control problem. Minimize over A =

M2
F
(0, T ;U) the following quadratic cost functional

J(u(·)) = E[(Φ1X(T ), X(T ))H] + E[(Φ2E[X(T )],E[X(T )])H ]

+ E

[ ∫ T

0

(G1(s)X(s), X(s))Hds
]
+ E

[ ∫ T

0

(G2(s)E[X(s)],E[X(s)])Hds
]

+ E

[ ∫ T

0

(N(s)u(s), u(s))Uds
]
, (6.1)

where X(·) is the solution of the controlled linear MF-SPDE in the Gelfand triple (V,H, V ∗):





dX(t) = [−A(t)X(t) +B1(t)X(t) +B2(t)E[X(t)] + C(t)u(t)]dt

+ [D1(t)X(t) +D2(t)E[X(t)] + F (t)u(t)]dW (t),

X(0) = x, t ∈ [0, T ].

(6.2)

Here A,B1, B2, C,D1, D2, F,G1, G2, N,Φ1 and Φ2 are given random mappings such that A :

[0, T ] × Ω → L (V, V ∗), B1, B2, D1, D2, G1, G2 : [0, T ] × Ω → L (H,H), C,F : [0, T ] × Ω →

L (U,H), N : [0, T ] × Ω → L (U,U) and Φ1,Φ2 : Ω → L (H,H), satisfying the following

assumptions.

Assumption 6.1 The operator A satisfies the coercivity and boundedness conditions, i.e.,

(iii) and (iv) in Assumption 3.1. The mappings A,B1, B2, C,D1, D2, F,G1, G2, N, G1, G2 and

N are uniformly bounded F-predictable processes, Φ1 and Φ2 are uniformly bounded FT -

measurable random variables.

Assumption 6.2 The stochastic processes G1, G2, N and the random variables Φ1 and

Φ2 are nonnegative operators, a.e. t ∈ [0, T ], P-a.s. Moreover, N is uniformly positive a.e.

t ∈ [0, T ], P-a.s., i.e., for ∀u ∈ U , (Nu, u)U ≥ k(u, u)U , for some positive constant k, a.e.

t ∈ [0, T ], P-a.s.

In the general control Problem 5.1, we specify the coefficients h, g, l and Φ with

h(t, x, x′, u) = B1(t)x+B2(t)x
′ + C(t)u,

g(t, x, x′, u) = D1(t)x +D2(t)x
′ + F (t)u,

l(t, x, x′, u) = (G1(t)x, x)H + (G2(t)x
′, x′)H + (N(t)u, u)U ,

Φ(x, x′) = (Φ1x, x)H + (Φ2x
′, x′)H .

By Assumptions 6.1–6.2, it is easily to check that Assumption 5.1 on the coefficients (A, h, g, l,Φ)

holds. So our LQ problem can be embedded in Problem 5.1. In this case, the Hamiltonian H

has the following form:

H(t, x, x′, u, p, q) = (B1(t)x+B2(t)x
′ + C(t)u, p)H + (D1(t)x +D2(t)x+ F (t)u, q)H

+ (G1(t)x, x)H + (G2(t)x, x)H + (N(t)u, u)U . (6.3)

Here we denote the adjoint operators of B1, B2, C1, C2, D, and F by B∗
1 , B

∗
2 , C

∗
1 , C

∗
2 , D

∗ and

F ∗
1 , respectively. Associated with an admissible pair (u(·);X(·)), the adjoint equation (5.4) has
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the following form:




dp(t) = −{−A∗(t)p(t) +B∗
1(t)X(t) + +E[B∗

2(t)p(t)] +D∗
1(t)q(t) + E[D∗

2(t)q2(t)]

+ 2G1(t)X(t) + 2E[G2(t)X(t)]}dt+ q(t)dW (t), t ∈ [0, T ],

p(T ) = 2Φ1X(T ) + 2E[Φ2X(T )].

(6.4)

Because in this case, there is no constraint on the control, the minimum condition (5.24) of the

optimal control is

Hu(t,X(t),E[X(t)], p(t), q(t), u(t)) = 0. (6.5)

Therefore the stochastic Hamiltonian system is the following fully-coupled linear forward-

backward stochastic partial differential equation





dX(t) = [−A(t)x(t) +B1(t)X(t) +B2(t)E[X(t)] + C(t)u(t)]dt

+ [D1(t)X(t) +D2(t)E[X(t)] + F (t)u(t)]dW (t),

dp(t) = −{−A∗(t)p(t) +B∗
1(t)X(t) + E[B∗

2 (t)p(t)] +D∗
1(t)q(t) + E[D∗

2(t)q2(t)]

+ 2G1(t)X(t) + 2E[G2(t)X(t)]}dt+ q(t)dW (t), t ∈ [0, T ],

x(0) = x,

p(T ) = 2Φ1X(T ) + 2E[Φ2X(T )],

Hu(t,X(t),E[X(t)], p(t), q(t), u(t)) = 0.

(6.6)

Now we give the dual characterization of the optimal control.

Theorem 6.1 Let Assumptions 6.1–6.2 be satisfied. Then our LQ problem has a unique

optimal control, which implies that the stochastic Hamiltonian system (6.6) has a unique adapted

solution (u(·), X(·), p(·), q(·)) ∈ M2
F
(0, T ;U) × M2

F
(0, T ;V ) × M2

F
(0, T ;V ) × M2

F
(0, T ;H).

Moreover the optimal control is given by

u(t) = −
1

2
N−1(t)[C∗(t)p(t) + F ∗(t)q(t)]. (6.7)

Proof Let (u(·), X(·)) and (u(·), X(·)) be any two admissible control pairs. In view of the

continuous dependence theorem of MF-SPDE (see Theorem 4.1), we have

|J(u(·))− J(u(·))|2

≤ K
{
E

[ ∫ T

0

|u(t)− u(t)|2dt
]}

×
{
E

[ ∫ T

0

|u(t)|2dt
]
+ E

[ ∫ T

0

|u(t)|2dt
]
+ x

}
. (6.8)

Thus, it follows that

J(u(·))− J(u(·)) → 0, as u(·) → u(·) in A, (6.9)

which implies that the cost functional J(u(·)) is continuous over M2
F
(0, T ;U).

From the uniformly strictly positivity of the process N, we conclude that the cost functional

J(u(·)) is strictly convex and

J(u(·)) ≥ kE
[ ∫ T

0

‖u(t)‖2Udt
]
= k‖u(·)‖2M2

F
(0,T ;U).
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Therefore, the cost functional J(u(·)) is coercive, i.e.,

lim
‖u(·)‖

M2
F

(0,T ;U)
→∞

J(u(·)) = ∞.

In the end, we get the uniqueness and existence of the optimal control u(·) ∈ M2
F
(0, T ;U) of

our LQ problem by [10, Proposition 2.12].

Now we begin to prove that the stochastic Hamiltonian system (6.6) has a unique adapted

solution. Indeed, in view of Corollary 5.1, the existence of the optimal control u(·) of our LQ

problem 5.1 implies that the stochastic Hamiltonian system (6.6) has a solution (u(·), x(·), p(·),

q(·)) ∈ M2
F
(0, T ;U) × M2

F
(0, T ;V ) × M2

F
(0, T ;V ) × M2

F
(0, T ;H). Here x(·) is the op-

timal state and (p(·), q(·)) is the adjoint process corresponding the optimal control u(·). If

the stochastic Hamiltonian system (6.6) has another adapted solution (u′(·), x′(·), p′(·), q′(·)),

then view of Corollary 5.1, (u′(·);X
′
(·)) have to be an optimal pair of our LQ problem. So

u(·) = u′(·) due to the uniqueness of the optimal control. Moreover, from the uniqueness

of solutions to MF-SPDE (see Theorem 3.2) and MF-BSPDE (see Theorem 4.2), we get

(x(·), p(·), q(·)) = (x′(·), p′(·), q′(·)). Therefore, the stochastic Hamiltonian system (6.6) ad-

mits a unique solution. In the end, the dual characterization (6.7) of the unique optimal can

be directly obtained by solving the minimum condition (6.5).

6.2 LQ control of the Cauchy problem for stochastic linear PDE of mean field type

In this subsection, in terms of the results in the previous subsection, we solve a LQ problem

of a Cauchy problem for a controlled stochastic linear PDE of mean-field type.

Now we give some preliminaries of Sobolev spaces. For m = 0, 1, introduce the space

Hm , {φ : ∂α
z φ ∈ L2(Rd), for any α := (α1, · · · , αd) with |α| := |α1| + · · · + |αd| ≤ m} with

the norm

‖φ‖m ,

{ ∑

|α|≤m

∫

Rd

|∂α
z φ(z)|

2dz
} 1

2

.

The dual space of H1 is denoted by H−1. Put V = H1, H = H0, V ∗ = H−1. Then we claim

that (V,H, V ∗) is a Gelfand triple.

Suppose that the control domain is U = U = H . For any admissible control u(·, ·) ∈

M2
F
(0, T ;U), we introduce the controlled Cauchy problem, where the state process is the

following stochastic partial differential equation of mean-field type in divergence form:





dy(t, z) = {∂zi [aij(t, z)∂zjy(t, z)] + bi(t, z)∂ziy(t, z) + c(t, z)y(t, z) + η(t, z)E[y(t, z)]

+ u(t, z)}dt+ [ρ(t, z)y(t, z) + σ(t, z)E[y(t, z)] + u(t, z)]dW (t),

(t, z) ∈ [0, T ]× R
d,

y(0, z) = x ∈ R
d

(6.10)

and the cost functional is

inf
u(·,·)∈M2

F
(0,T ;U)

{
E

[ ∫

Rd

y2(T, z)dz + E

[ ∫

Rd

|Ey(T, z)|2dz +

∫∫

[0,T ]×Rd

y2(s, z)dzds
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+

∫∫

[0,T ]×Rd

|Ey(s, z)|2dzds+

∫∫

[0,T ]×Rd

u2(s, z)dzds
]}

. (6.11)

Here the coefficients aij , bi, c, η, ρ, σ are given random functions satisfying the following

assumptions, for some fixed constants K ∈ (1,∞) and κ ∈ (0, 1).

Assumption 6.3 aij , bi, c, η, ρ and σ are P × B(Rd)-measurable taking values in the

space of real symmetric d × d matrices, Rd, R, R, R and R, respectively, and are bounded by

K.

Assumption 6.4 aij satisfies the following super-parabolic condition

κI ≤ 2aij(t, ω, z) ≤ KI, ∀(t, ω, z) ∈ [0, T ]× Ω× R
d,

where I is the (d× d)-identity matrix.

In this case, in the Gelfand triple (V,H, V ∗), the state equation (6.10) can be written as the

abstract MF-SPDE:




dy(t) = [−A(t)y(t) +B2(t)E[y(t)] + u(t)]dt

+ [D1(t)y(t) +D2(t)E[y(t)] + u(t)]dW (t), t ∈ [0, T ],

y(0) = x,

(6.12)

where the operators A, B2, D1, D2 are denoted by

A(t)φ(z) , −∂zi [aij(t, z)∂zjφ(z)]− bi(t, z)∂ziφ(z)− c(t, z)φ(z), ∀φ ∈ V,

B2(t)φ(z) , η(t, z), D1(t)φ(z) , ρ(t, z)φ(z), D2(t)φ(z) , σ(t, z)φ(z), ∀φ ∈ H.

Then we write the optimal control problem as

inf
u(·)∈M2

F
(0,T ;U)

{
E

[
(y(T ), y(T ))H +

∫ T

0

(y(s), y(s))Hds+ (E[y(T )],E[y(T )])H

+

∫ T

0

(E[y(s)],E[y(s)])Hds+

∫ T

0

(u(s), u(s))Hds
]}

. (6.13)

Thus this optimal control problem becomes a special case of our LQ problem in the previous

subsection, where C, F , N and G are identity operators and B1 = 0. From Assumptions 6.3–

6.4, it is easy to check that the optimal control problem (6.13) satisfies Assumptions 6.1–6.2.

So in view of Theorem 6.1, we claim that the optimal control u(·) has the following explicit

characterization:

u(t) = −
1

2
{p(t) + q(t)},

where (p(·), q(·)) is the unique solution of the adjoint equation





dp(t) = −{−A∗(t)p(t) + E[B∗
2 (t)p(t)] +D∗

1(t)q(t)

+ E[D∗
2(t)q(t)] + 2y(t)}dt+ q(t)dW (t), t ∈ [0, T ],

p(T ) = 2y(T ).

(6.14)
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Here A∗, B∗
2 , D

∗
1 , D

∗
2 denote the adjoint operators of A, B, D1, D2. More specifically,

A∗(t)φ(z) = −∂zi [aij(t, z)∂zjφ(z)] + bi(t, z)∂ziφ(z)− [c(t, z)− ∂zibi(t, z)]φ(z), ∀φ ∈ V

and

B∗
2 = B2, D∗

1 = D1, D∗
2 = D2.

7 Conclusion

In this paper, the MF-SPDE and MF-BSPDE and the corresponding optimal control prob-

lem for MF-SPDE have been investigated. We have established the existence, uniqueness and

continuous dependence theorems of solutions to MF-SPDE and MF-BSPDE, respectively. For

the optimal control problem of MF-SPDE, we have obtained necessary and sufficient conditions

for optimal controls in the form of maximum principles. An an application, the LQ problem

for MF-SPDE was investigated to illustrate our optimal control theory result established. As a

result, the existence, uniqueness and explicit duality presentation of the optimal control have

been obtained.
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