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Boundedness of Commutators of 8-Type
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Abstract Let (X,d, ) be a metric measure space satisfying both the upper doubling and
the geometrically doubling conditions in the sense of Hyténen. In this paper, the authors
obtain the boundedness of the commutators of 0-type Calderén-Zygmund operators with
RBMO functions from L* (i) into RBMO(u) and from HY* (u) into L*(p), respectively.
As a consequence of these results, they establish the L” (1) boundedness of the commutators
on the non-homogeneous metric spaces.
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1 Introduction and Preliminaries

The theory of Calderén-Zygmund operators and commutators plays an important role in
harmonic analysis and partial differential equations. The theory of commutators were intro-
duced in a general form by Calderén [2-3], in which Calderén showed that these kinds of
operators are bounded on L2. In [4], the authors proved that given a singular integral T with
standard Calderén-Zygmund kernel, the operator [b, T] = bT —T'b is bounded in LP,1 < p < 0o
if b is a BMO function, the converse implication is due to [12]. We refer also to [14], in which
Pérez proved endpoint estimates for commutators of singular integrals with BMO functions.

Recently, many mathematicians pay attention to the study of non-doubling measure spaces.
One of the most general settings to which Calderén-Zygmund theory extends naturally is the
spaces of homogeneous type in the sense of Coifman and Weiss [5], Many results from real
and harmonic analysis on Euclidean spaces have their natural extensions on these space(see,
for example, [5-6, 8]). A metric space (X,d) equipped with a nonnegative Borel measure
w is called a space of homogeneous type if (X,d, ) satisfies the following measure doubling

condition that there exists a positive constant C,,, depending on u, such that for any ball
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B(z,r) ={y € X : d(z,y) <r} with x € X and r € (0, c0),
u(B(w,2r)) < Cppt( Bz, 7). (11)

This definition was introduced by Coifman and Weiss in [5]. We point out that d may also
be assumed to be a quasi-metric. However, for the simplicity, in this paper, we always assume
that d is a metric; see also [9]. The measure doubling condition (1.1) plays a key role in
the classical theory of Calderén-Zygmund operators. However, many results on the classical
Calderon-Zygmund theory have been proved still valid if the measure doubling condition is
replaced by a weaker condition such as the polynomial growth condition; see, for example,
[7, 15, 18]. To be precise, let k € (0,00), X be a metric space endowed with a metric d and a
nonnegative “k-dimensional” Borel measure y in the sense that there exists a positive constant
Cy such that for all z € X and r € (0, 00),

w(B(x,r)) < Cork. (1.2)

Such a measure need not satisfy the doubling condition (1.1). In [15], Tolsa established
Calder6n-Zygmund theory for non doubling measures. Because the measures satisfying (1.2)
are only different form, not more general than,the measures satisfying (1.1), the theory with
this kinds of non-doubling measures is not in all respects a generalization of the corresponding
theory of spaces of homogeneous type. Hyténen in [9] introduced a new class of metric measure
spaces satisfying the so-called upper doubling and the geometrically doubling conditions (see
Definitions 1.1-1.2 below). This new class of metric measure spaces includes both spaces of ho-
mogeneous type and metric spaces with the measures satisfying (1.2) as special cases. Recently,
many results on the Calderén-Zygmund theory have been built on the non-homogeneous metric
measure spaces (see [1, 10-11, 13, 18]). Let us mention that Bui and Duong [1] showed that
if the Calderén-Zygmund operator is bounded on L?(u), the commutator of this operator with
a function RBMO(u) is bounded on LP(u),1 < p < oo on non-homogeneous metric measure
space.

f-type Calderén-Zygmund operator was introduced by Yabuta in [17], In [16], the authors
studied the properties of 6-type Calderén-Zygmund operator and commutator. In this paper,
we study the commutators of -type Calderén-Zygmund operator with RBMO function on non-
homogeneous metric measure space. We show that this commutators is bounded from L (1)
into RBMO(y) and from HY™ (1) into L' (), respectively. To state our main result, we recall
some necessary notations which will be used in the proof of our main results. We start with the
notion of the upper doubling and geometrically doubling metric measure space which introduced
in [1, 9].

Definition 1.1 A measure p in the metric space (X, p) is said to be an upper doubling
measure if there exists a dominating function X\ with the following properties:

(i) A : X x (0,00) + (0,00).

(i) For any fized x € X,r — Xz, 7) is increasing.

(iii) There exists a constant Cx > 0 such that A\(x,2r) < Cyx\(z,r) for allx € X,r > 0.
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(iv) The inequality p(x,r) == u(B(z,r)) < Xx,r) holds for all x € X,r > 0.
(v) And Nz, r) = A(y,r) for allr > 0,z,y € X and d(z,y) <.

Obviously, a space of homogeneous type is a special case of upper doubling spaces, if we
take the dominating function A(x,r) = u(B(z,r)). On the other hand, a metric space (X, d, )
satisfying the polynomial growth condition (1.2) is also an upper doubling measure space by
taking A(x,7) = Cor¥. We now recall the notion of the geometrically doubling space introduced
in [9].

Definition 1.2 A metric space (X,d) is called geometrically doubling if there exists some
No € N = {1,2,---} such that for any ball B(x,r) C X , there exists a finite ball covering
{B(xi, %)}Z of B(xz,r) such that the cardinality of this covering is at most Ny.

Let (X,d) be a metric space. In [9], Hytonen showed that the following statements are
mutually equivalent:

(i) (X,d) is geometrically doubling.

(ii) For any € € (0,1) and any ball B(z, r) C X, there exists a finite ball covering { B(z;,er) }4

n

of B(x,r) such that the cardinality of this covering is at most Noe ", where and in what follows,

Ny is as in Definition 1.2 and n = log, Np.

—n

(iii) For every € € (0,1), any ball B(z,r) C X contains at most Noe~" centers {z;}; of
disjoint balls {B(z;,er)};.

(iv) There exists M € N such that any ball B(x,r) C X contains at most M centers {x;};
of disjoint balls {B(xi, ﬁ) }j\il
We now recall the coefficients K ¢ and Kj  for any two balls B C @ which were intro-

duced in [1]. For any two balls B C @, let

1
Kna=1+ BN
© rp<d(z,xB)<rq )‘(xB7d(xaxB))

NB,q k
(6" B)
Ko =1 0 7
ha =1t 2 S Gy

dp(z),

where Np g is the smallest integer satisfying 6V2.Qrg > rg. If M(z,ar) = a™\(z,r) for all
z € X and a,r > 0, it is not difficult to show that Kp g ~ K . However, in general, we only
have Kp g < CKp . This definition is a variant of the definition in [15]. Similar to Lemma
2.1 in [15], the authors in [1] showed the following property.

Lemma 1.1 (i) If Q C R C S are balls in X, then
max{Kq r, Kr,s} < Kq,s <C(Kq,r + Kg,s)-

(i) If @ C R are of compatible size, then Kg r < C.
(iii) If a@Q,--- ,a¥~1Q are non (o, B)-doubling balls (B > C;\Ogﬂ‘) then Kg ovg < C.

Throughout this paper, C' always means a positive constant independent of the main pa-
rameters involved, but it may be different in different contents.
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2 Main Results and Proofs

At first, based on the definition of #-type Calderén-Zygmund operator in [17] , we define

the O-type Calderén-Zygmund operator on non-homogeneous metric measure spaces as follows.

Definition 2.1 Let 0 be a non-negative, non-decreasing function on Rt = (0, 00) satisfying

/1 @dt < 00. (2.1)
o ¢

A kernel K(+,-) € L (X x X\{(z,y) : = y}) is called a 0-type Calderén-Zygmund kernel if
the following conditions hold

. 1 1
K (o)l < Omin{ 5 s ) 2.2)

and

K(g) = K@)l + K ()~ K| < 0(525) s (29)
when d(x,y) > 2d(x,z").

A linear operator T is called the 6-type Calderén-Zygmund operator with kernel K(-,-)
satisfying (2.2) and (2.3) if for all f € L°(u) with bounded support and z ¢ suppf,

Tf(z) = /X K (2, 9) (0)duly). (2.4)

The RBMO(p) space for the general non-homogeneous space (X, i) was introduced by Hyténen
in [9], and studied systematically in [1]. Both of the authors also gave some characterizations
of RBMO(u) space.

Definition 2.2 Given a ball B C X, let N be the smallest non-negative integer such that

B = 6" B is doubling (such a ball B exists due to Lemma 1.1). Let p > 1 be some fived constant.
We say that f € L} (1) is in the RBMO(u) if there exists some constant C > 0 such that for
any ball B,

7 [ @) = mpfldutz) < C (25)
and for any two doubling balls Q and R such that Q C R,
Imqf —mrf| < CKq,r, (2.6)
where mp [ is the mean value of f over the ball B. Then we set
1£]ls = inf{C : (2.5) and (2.6) hold}.

We need the following equivalent property of Definition 2.2 (see[1]).
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Lemma 2.1 For f € Li (1), the following three are equivalent:
(a) f € RBMO(u).
(b) There exists some constant Cp such that for any ball B,

ﬁB) /B (@) — mp fldp(z) < Cy 2.7)

and for any two balls Q and R such that Q C R,

n(6Q)  p(6R)
mqf —mpf| < CoKqr(—rs + ——2 ). 2.8
Imqf —merf] < Cy Q,R(M(Q) u(R)) (2.8)
(¢) There exists some constant C. such that for any doubling ball B,
1
—_— z) —mpfldu(z) < C, 2.9
5 [ 17@) = ms ldu(e) < (29)
and

Imqf —mrfl <CcKqr (2.10)

for any two doubling balls Q C R.

Definition 2.3 Let the kernel K satisfy Definition 2.1. The commutator of the 0-type
Calderon-Zygmund operator T with RBMO function is defined by

[0, T]f(x) = b(2)T f(x) = T(bf)(x) = /X K(z,y)(b(x) = b(y)) f(y)dy.

The main result of our paper is given as follows.

Theorem 2.1 Let T be 6-type Calderén-Zygmund operator defined by (2.4) as above and T
is bounded on L*(pn). If b € RBMO(u), then the commutator [b, T| is bounded from L>(u) into
RBMO(i) on non-homogeneous space.

Proof By characterization of RBMO() given by (2.9)—(2.10) in Lemma 2.1, We only need
to prove the following two estimations:

(i) There exists some constant C such that for any doubling ball B,

/B ([0, T]f = mp([b, T1/)ldp < C| fll oo ) [bl]«p2(B). (2.11)
(i) For any two doubling balls @ and R with @ C R, one has
im@([b; T1f) = mr([b, T1f)| < CKq.RI[f]lLoo (1]« (2.12)
We first check (2.11). Let {bp} be a family of numbers, satisfying
[ b= buldn < 2u(0B) b
for balls B, and

b — br| < 2Kq,r[b]|«
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for balls @ C R. Denote hp = mp(T((b —bs)fxx\68)), /1 = [XxeB and fo = fxx\6B-
For any doubling ball B, we can write

/B 110,717 — ms (b, T1F)|dp
- /B (b~ bs)Tf — T((b—bs)fr) — T((b—bg)fo) + ks — hs — m((b, T1F)|dp
< /B (b — )T f|dp + /B T((b— b))

+ /B IT((b - bs) fo) — hisldu + /B s + mus (b, T1F)|dp
=L +L+I+1.

By Hélder’s inequality, L?(u)-boundedness of T' and corollary 6.3 in [9], it follows

I < (/B ITfIQdu)é(/B b—bodn)”

< Ol fllzee uym(B) * [[bl«p(B) >
< Cllf o= 10l 1 (B).-

Using the doubling property of ball B and the coeflicient Kp ¢p < C, we have

< (/B |T((b—bB)f1)|201M)é(/Bdﬂ)é

< O = bm) il gon( / an)’
B
< O fll (B ( / b= bo[2ap)
6B

< oot} ([ o= oslam)*+ ([ oo bulan)”)

< Ol fll e uyre(B) 2 (|1b]l«1(36B) % + K 65]|b||.(6B)*)
< O£l oo oy 1Bl (B) % (36 B) %
< O fll oo (o) 1Bl 1(B).

In order to get the estimation of I3, we need to estimate |T'((b — bg)f2) — hp|-
For z,y € B, by the definition (2.1), we get

(b= b)) = T((6~ b)) )
y / K(@,2)(0(:) - ba) ()~ [ K 2)(b(:) — bi)f(dn(z)
X\6B X\6B

<O fll e /X oy @) = K )b(E) — bl

d(z,
< Cllfllgo /X\GB a(dEx,Zi) Az, dl(x, 2)) 16(=) = brldp(z)

dx,y) 1
< Ol Z st 3} Ny M) — e sln)
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r,y) 1
+ Ol fllzoeu Z/WIBWB Z))A(xvd(m)) lbp — bgrr1g|du(z)

_ 1
SOl 3 [, 00675 M) bl

k+lB\6kB

_ 1
+chHLoo(men*ZKB,GMB / 66~ ) —————dp(2)

6++1B\6* B /\(x 6k_1’f'B)

k+2 k+1
< Ol fllz ool (Z@ i) ZKBGMBo S Cinas I

6k+27.B Mz, 6511 )

S YISz 101+ (2.13)

Here we have used the following inequality that

/O dt > Z/ 61 —— dt > 029 ), (68T B) < Az, 68 rp).
k=1

From the above estimate and the choice of hg, we obtain

I3y =[T((b—bg)f2)(z) — hp|
= |T((b—bg)f2)(x) —mp(T(b—bg)f2(y))]
< Ol fllpo (ol «p(B)

and
Ly < |hp +mp([b,T]f)|u(B) < C/B 1[0, T1f + hpldp < C|[ fll Lo (|6l (B).

Therefore we have (2.11).
Next we prove (2.12). For any x € Q,y € R, we write

b, T1f () = [b, T (y)]
[(b(x) = b@)T f(2) = T((b = bo) f)(x) — (b(y) = ba)T f(y) + T((b—bq))(y)|
[(b(x) = b@)T f(2)| +1(b(y) — bQ)Tf ()| + |T((b = b) f)(x) = T((b—ba)f)(y)|

Ji1+Jo+ J3.

IN I

With the argument similar to the estimate for I; it follows that

mQ([(b = bQ)Tf1) < Cllf Lo ullbll«

and

/ (by) — bo)T(4)|dpu(y)

< ([ wrwPanw)’ ([ 100 - o)’

< Al ont®3 ([ 106) = s0Pautw)” + ([ lon — bo)dutr))
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Nf=

< CKQrlbll [l ooy (R)? 1(R)
< CKQrIIbll| £l zos gy 1(R).

Therefore

me(|(b—0Q)T f]) < CKqQ rlIbll«[ £l (u)-

We now estimate J3, Let N be the first integer k such that R C 6°Q. We denote Qr = 6V 1Q.

Then we write

|T((b—bg)f)(x) —T((b—0q)f)(y)l
=|T((b —b@) fxx\@r)(x) = T((b—bqQ) fxx\@r) )

+T((0 = bQ) fxqn) (@) — [T((b—bg) fx@r)(y)]
= Ja1 + J32 + J33.

Similar to (2.13), we can show that

Js1 < Ol /X o VK 2) — K IE) — balda:)

d(z,y) 1
= CHfHL“’(#) / x\Q e(d(ili,z)) Nz, d(z, 2)) |b(z) - bQ|dM(2)

R
1
< - 0(6™F)——————1b(2) — ber+10,|d
Ol Z /WlQR\GkQR RgTr ) — b ()

1
+C oo bll« Ko grt1 / 06 Fy—— ¢
il Raanan Y [ 004 i)

(6k+2QR 16" Qr) )

_ —k
< CHfHLoo(#)HbH*(ZH(G k)m + Z K+ Kq,r)0(6 )m
1 b

< Cllfllzee o llbll« 29 ")(K + Kq.r)
k=1
< Cllf 1w 10l K, 5.
Here we have used the following inequality

KQ,G"+1QR < C(KQ)R + KR,QR + KQR>6k+1QR) < C(KQ)R + K)

and the fact rg, ~ 5.

For J32, we have

T3z = [T((b = ba) Fram)(@)] < /Q 1K (2,9) (b(y) — ba) F ()] duy)
1

<l f I~ /Q Sy M)~ beldn)

< O a3 (L 1600 = baldn) + | 1o ~bauldutr)
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1
< CHfHLoo(#)i/\(z o )llbll*KQ,QRM(GQR)
Y R

< Cllf = lbll-Ke,r-

The estimation of J33 is similar. Hence J3 < C||f| pou)llbll+Kq,r. We proved (2.12) and
complete the proof of Theorem 2.1.

Now we are going to show that if a f-type Calderén-Zygmund operator is bounded on L?(p),
then the commutators of #-type Calderén-Zygmund operator with RBMO function is bounded
from H.:*°(p) into L'(u). Before stating our results, we first recall some definitions.

Definition 2.4 Let p > 1. A function a € L (1) is called a atomic block if

loc

(1) there exists some balls B such that supp(a) C B;

(2) [y ad(p) = 0;
(3) there are functions a; supported on balls B C B and numbers \j € R such that

(o]
a = E /\jaj,
J=1

where the sum converges in L'(p), and ||az|| L) < (u(pB;)Kp, )~ " and the constant Kp, p

being given in the paragraph before Lemma 1.1.

We denote |a|H;t,oo(u) = S|\l We say that f € H.*°(u) if there are atomic blocks aj

Jj=1
such that

f= Zai
=1

with > [ai| e,y < oo. The H*° (1) norm of f is defined by
i—1 at

K2

171z oy = 0 3 Jail o s
i=1

where the infimum is taken over all the possible decompositions of f in atomic blocks. It was
proved in [1] that the atomic Hardy space H,;* () is independent of the choice of p. Here we

choose p = 6.

Theorem 2.2 Assume that 0-type Calderdn-Zygmund operator defined by (2.4) as above
and T is bounded on L*(p), then the commutators of T with RBMO function is bounded from

HL> (1) into L () on non-homogeneous space.

Proof It is enough to show that
[[b, T)a(z)|dp(z) < C|lall > ()
X ar

for any atomic block a with supp(a) C B, a = Y Ajaj, where the a; is function satisfying
J

property of the definition of atomic block.
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For a atomic block a(x), we can write
/ b Tha@)ldn(e) < [ (b Tha@)ldn(e) + [ (b Tla(a)ldu(z)
6B X\6B
=1 + L.

First we will estimate I;.
In fact

b= [ b Tlaf)ldue) < S 1Tl @)auta)
<3l

= I11 + Iio.

b, Ty () A +Z|A|/ b, Tay ()] dya(z)

6B\6B;

Since

[b, T]a;(z) = (b —mp,b)Ta;(x) — T((b—mp,b)a;)(x),

we write

e =2yl L, [Tl aute)
<3y [, o eI @)ldute) + S [, (@ = ms Dy @)au)
By using Hélder’s inequality and the boundedness of T on L?(u), we obtain

/ b — s, bl|Ta ()| dpu(z)

6B;

< (/63j |b— mij|2d,u($)) 2 (/t;Bj |Taj($)|2d,u(x))%

1 1
< [lall g (o 1(6 ;) * [(/GB |b—mﬁij|2du(x)) gt (/GB m, —mGij|2du(x))
J

J

=
[E—

1 1 1
< lall oo (6B5) % (Cu(36B;)* + CKp, 65,1(6B;)*)
< C.

Similarly
/ |T((b—mp,b)a;)(x)|du(z) < (/ |(b—mp,b)a;(x | dp(x )2 <C.
6B; 6B,
Thus

Ly <CY |y < Cllall g ()
J
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For 111, we write

NB;.B

1u<§]A|§j/waw b, Tl 2 ldn(a)
Ng;.B ] J
<3 §: /;HBAGH%|b—7n3wnT@xxndu@»
NB;.B
3 S [ 7O M) @0
21111 +T112.

Let z; be the center of ball B;. According to the definition of atomic block, we obtain

NB;,B
ns Y Y [ [ 1b@) — mi K ) - KGaay)
7 k=1

6k+1B;\6%B; J B;

“laz (y)|dp(y)dp(z)
NB. B
) ~ 2) —m d(yvxj)
SC;MJ' ; /6k+lBj\6kBj/B |b( ) ijla(d(a?,d?j))

J

1
: mlag( y)|dp(y)du(x)

NB; B

<CZ|A|Z/IaJ )Idp(y)0(6~ )m

- / 1b(z) — mp, bldu(z).
6k+1B,\6% B;

Since (2.6)—(2.7) and Lemma 1.1,

() — s, bldu(x)

6k+1BJ\6kBJ
</ () = mgnss, W) + | M, b — e, bldu(z)
6r+1;\ GkBJ 6k+1B;\6%B;
<Cu 6k+2B )+OKB 6F+1B; ,u(6k+1B )
< CKp, pu(6*B;).
Thus
NB;,B
Lip CYCINE D llaglipeeon(B)06)Kp, 5
7 =1
Np; B
< CZl/\ | Z M asll o uyn(6B;) K, 5

SOZ|/\J‘|
i

595
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< Cllallg=g

and

K (w,9)((b = m,b)a;)(y)du(y) ) du(x)

Lo <Z|,\ | Z /

NB;.B

OBV N e )
NBj,B

<CY NI DY Kplp
7 =1

< Cllallz= -

k+lBJ\6kBJ B;

llajll oo (uy(6B;)dp(z)

Hence
L= [ I Tla@)dn(@) < Clal =

Now, for I, we can write

I = [b,T)a(x) = (b — mpb)Ta(x) — T((b — mpb)a)(x).
Thus

L< [ o melTa@)ldut) + [ (76~ maba)@)dua)
X\6B X\6B
= Io1 + I2o.

Let xp be the center of ball B and r be the radius of ball B. Then

Iy < /X ) = /B K (2,y) — K(z,25)|la()ldu(y)du()

= d(y,zp) 1 B
<0 [ [, ) Ny ) ~ matldnte)in)

Similarly estimation of 1111, we can show that

ba= [ b= mal|Ta(@)due) < Clalys .
X\6B
For Is9, we get

o< [ | [ () - K@) 00) - maba()da()|dut)
x\68 /B

d(y7xB) 1 —m a x
<O [ | ) Sty )~ il )

—*) /B 1b(y) — mablla@)|du(y)
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<oyl /B 1b(y) — msblla; (4)[da(y)
j J

<O Wllasllin ([ 1) = ma,bidn(s) + [ mad — m, bt
j J J

<Cy (\jl(6B;) " K pu(6B;)Kp, 5

J
<CY N
i

Therefore Iy < C||a||H;t,ao(M). Then we obtain I < C’||a||H;t,ao(#). The theorem is proved.

Remark 2.1 In [1], Bui and Duong showed that the space RBMO(pu) is embedded in the
dual space of H};>, That is RBMO(u) C (HL™)*. So we can not obtain the above result by
duality.

In [1], Bui and Duong established the following interpolation theorem.

Theorem 2.3 Let T be a linear operator which is bounded from H;t’oo(u) into L*(p) and
from L>°(u) into RBMO(u). Then T extends boundedly to LP(u) for all 1 < p < oo.

By using Theorem 2.3, as a consequence of Theorem 2.1 and Theorem 2.2, we immediately

obtain the following theorem.

Theorem 2.4 Let T be 0-type Calderdn-Zygmund operator defined by (2.4) as above and
b € RBMO(u). Then the commutator [b, T| can be extended to a bounded operator on LP(u) for
all (1 <p < o0).

Remark 2.2 The classical theorem of the boundedness of the commutator on L (1) space
was obtained by using the pointwise estimate for commutator, see the papers [4,14]. However,
our method is different. We derive the LP(u) boundedness from the endpoint estimates on the

non-homogeneous metric spaces.
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