The Automorphism Group of a Finite *p*-Group with a Cyclic Frattini Subgroup*

Heguo LIU¹ Yulei WANG²

Abstract Let G be a finite p-group with a cyclic Frattini subgroup. In this paper, the automorphism group of G is determined.

Keywords Finite *p*-groups, Frattini subgroups, Automorphisms 2000 MR Subject Classification 20F18

1 Introduction

In this paper, p always is a prime number, only finite groups will be considered. The terminologies and notations used are standard (cf. [1]).

Let G_1 and G_2 be any two groups, Z_1 and Z_2 be the centers of G_1 and G_2 , respectively. Assume that Z_1 is isomorphic to Z_2 , and $\theta : Z_1 \to Z_2$ is the isomorphic mapping, $G_1 * G_2$ is called the central product of G_1 and G_2 relative to Z_1 , Z_2 and θ , that is, $G_1 * G_2$ is the quotient group of $G_1 \times G_2$ on the normal subgroup

$$\{(z_1, \theta(z_1)^{-1} \mid z_1 \in Z_1\}.$$

In particular, let G be any group, $Z \leq \zeta G$, the central product G * G is constructed by virtue of the identity mapping on Z. For any l > 1, G^{*l} is denoted by $G^{*(l-1)}*G$, and $G^{*1} := G$, $G^{*0} := 1$.

A finite p-group G is called extraspecial, if $G' = \operatorname{Frat} G = \zeta G$ and have order p. Winter [2] has given the automorphism group of an extraspecial p-group. When p is odd, Dietz [3] generalized the results of Winter, and determined the automorphism group of a finite p-group which is a central extension of a group with order p by an elementary abelian group.

In [1], a finite p-group G is called generalized extraspecial, if the center ζG of G is cyclic and the derived subgroup G' of G has order p. In [4], we determined the automorphism group of the generalized extraspecial p-group. Further, let G be the below central extension

$$1 \to \mathbb{Z}_{p^m} \to G \to \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p \to 1,$$

and $|G'| \leq p$. In [5], we determined the automorphism group of the finite *p*-group, which generalized the results of Winter and Dietz.

 $^2 \rm Department$ of Mathematics, Henan University of Technology, Zhengzhou 450001, China. E-mail: yulwang@163.com

Manuscript received March 21, 2015. Revised April 24, 2017.

¹Department of Mathematics, Hubei University, Wuhan 430062, China. E-mail: ghliu@hubu.edu.cn

^{*}This work was supported by the National Natural Science Foundation of China (Nos. 11771129, 11301150, 11601121) and the Natural Science Foundation of Henan Province of China (No. 162300410066).

Proposition 1.1 (cf. [5]) Let p be an odd number, G be a finite p-group given by a central extension of the form

$$1 \to \mathbb{Z}_{p^m} \to G \to \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p \to 1,$$

and |G'| = p, where $m \ge 2$. Then G = EA, where E is a generalized extraspecial p-group, $A = \zeta G, E \cap A = \zeta E$. Suppose that $|E| = p^{2n+m}, |\zeta E| = p^m$ and $|A| = p^{m+l}$. Let $\operatorname{Aut}_f G = \{ \alpha \in \operatorname{Aut} G \mid \alpha \text{ acts trivially on Frat } G \}$. Then

(i) If both E and A are of exponent p^m , then $\operatorname{Aut}_f G \cong \mathbb{Z}_{(p-1)p^{m-2}}$, and $\operatorname{Aut}_f G/K \cong \operatorname{Sp}(2n,p) \times (\operatorname{GL}(l,p) \ltimes (\mathbb{Z}_p)^l)$, where K is of order $p^{2n(l+1)+l+1}$.

(ii) If E and A are of exponent p^m and p^{m+1} , respectively, then $\operatorname{Aut}_f G \cong \mathbb{Z}_{(p-1)p^{m-1}}$, and $\operatorname{Aut}_f G/K \cong \operatorname{Sp}(2n, p) \times (\operatorname{GL}(l-1, p) \ltimes (\mathbb{Z}_p)^{l-1})$, where K is of order p^{2nl+l} .

(iii) If E and A are of exponent p^{m+1} and p^m , respectively, then $\operatorname{Aut}_f G \cong \mathbb{Z}_{(p-1)p^{m-1}}$, and $\operatorname{Aut}_f G/K \cong (I \rtimes \operatorname{Sp}(2n-2,p)) \times \operatorname{GL}(l,p)$, where I is an extraspecial p-group with order p^{2n-1} and K is of order $p^{2n(l+1)+l}$.

Proposition 1.2 (cf. [5]) Let G be a finite 2-group given by a central extension of the form

$$1 \to \mathbb{Z}_{2^m} \to G \to \mathbb{Z}_2 \times \cdots \times \mathbb{Z}_2 \to 1,$$

and |G'| = 2, where $m \ge 2$. Then G = EA, where E is a generalized extraspecial 2-group, $A = \zeta G, E \cap A = \zeta E$. Suppose that $|E| = 2^{2n+m}, |\zeta E| = 2^m$ and $|A| = 2^{m+l}$. Let $\operatorname{Aut}_f G = \{ \alpha \in \operatorname{Aut} G \mid \alpha \text{ acts trivially on } \operatorname{Frat} G \}$. Then

(i) If both E and A are of exponent 2^m , then $\operatorname{Aut}_f G \cong 1 \ (m=2) \ or \mathbb{Z}_2 \times \mathbb{Z}_{2^{m-3}} (m \ge 3)$, and $\operatorname{Aut}_f G/K \cong \operatorname{Sp}(2n,2) \times (\operatorname{GL}(l,2) \ltimes (\mathbb{Z}_2)^l)$, where K is of order $2^{2n(l+1)+l+1}$.

(ii) If E and A are of exponent 2^m and 2^{m+1} , respectively, then $\operatorname{Aut}_f G \cong \mathbb{Z}_2 \times \mathbb{Z}_{2^{m-2}}$, and $\operatorname{Aut}_f G/K \cong \operatorname{Sp}(2n, 2) \times (\operatorname{GL}(l-1, 2) \ltimes (\mathbb{Z}_2)^{l-1})$, where K is of order 2^{2nl+l} .

(iii) If E and A are of exponent 2^{m+1} and 2^m , respectively, then $\operatorname{Aut}_f G \cong \mathbb{Z}_2 \times \mathbb{Z}_{2^{m-2}}$, and $\operatorname{Aut}_f G/K \cong (I \rtimes \operatorname{Sp}(2n-2,2)) \times \operatorname{GL}(l,2)$, where I is an elementary abelian 2-group with order 2^{2n-1} and K is of order $2^{2n(l+1)+l}$.

In [6], the structure and the automorphism group of a finite *p*-group with a cyclic Frattini subgroup were studied. In this paper, by means of the results in [5], the automorphism group of a finite *p*-group with a cyclic Frattini subgroup is further determined. On the hand, if *p* is odd, or p = 2 and Frat $G \leq \zeta G$, then G is a finite *p*-group which is a central extension of a cyclic group Frat G by an elementary abelian group and G' has order *p* by Lemma 1.2 and Lemma 1.3. According to Proposition 1.1 and Proposition 1.2, the automorphism group of G can be determined, on the other hand, if p = 2 and Frat $G \nleq \zeta G$, we can obtain the below results.

In what follows, we are going to suppose that $|\operatorname{Frat} G| = p^m$ and R is an elementary abelian 2-group with rank r.

Theorem 1.1 Let $G = R \times (D_8^{*n} * H)$, where $H = H_1$, H_2 or H_3 , which are defined in Lemma 1.6. Let $C := C_G(\operatorname{Frat} G)$ and $\operatorname{Aut}_f G := \{\alpha \in \operatorname{Aut} G \mid \alpha \text{ acts trivially on Frat} C\}$. Then

(1) Aut $G/\operatorname{Aut}_f G \cong \mathbb{Z}_2(if \ m=2), \ or \ \mathbb{Z}_{2^{m-2}} \times \mathbb{Z}_2(if \ m\geq 3).$

(2) $\operatorname{Aut}_f G/K \cong \operatorname{Sp}(2n,2) \times \operatorname{GL}(r,2) \ltimes (\mathbb{Z}_2)^r$, where K is of order $2^{(2n+2)(r+1)+m}$ (if $H = H_1$ or H_3), or $2^{(2n+2)(r+1)+m-1}$ (if $H = H_2$).

Theorem 1.2 Let $G = R \times (D_8^{*n} * H)$, where $H = H_4$ or H_5 , which are defined in Lemma 1.6. Let $C := C_G(\operatorname{Frat} G)$ and $\operatorname{Aut}_f G := \{\alpha \in \operatorname{Aut} G \mid \alpha \text{ acts trivially on Frat} C\}$. Then

(1) Aut $G/\operatorname{Aut}_f G \cong \mathbb{Z}_2$ (if m = 2), or $\mathbb{Z}_{2^{m-2}} \times \mathbb{Z}_2$ (if $m \ge 3$).

(2) $\operatorname{Aut}_{f} G/K \cong (I \rtimes \operatorname{Sp}(2n, 2)) \times \operatorname{GL}(r, 2)$, where I is an elementary abelian 2-group with order 2^{2n+1} , K is of order $2^{(2n+2)(r+1)+m+2r}$.

Theorem 1.3 Let $G = R \times (D_8^{*n} * H)$, where $H = H_6$ or H_7 , which are defined in Lemma 1.6. Let $C := C_G(\text{Frat } G)$ and $\text{Aut}_f G := \{\alpha \in \text{Aut} G \mid \alpha \text{ acts trivially on Frat } C\}$. Then

(1) Aut $G/\operatorname{Aut}_f G \cong \mathbb{Z}_2$ (if m = 2), or $\mathbb{Z}_{2^{m-2}} \times \mathbb{Z}_2$ (if $m \ge 3$).

(2) $\operatorname{Aut}_f G/K \cong \operatorname{Sp}(2n,2) \times (\operatorname{GL}(r,2) \ltimes (\mathbb{Z}_2)^{2r}), K \text{ is of order } 2^{(2n+2)(r+2)+m-1}.$

Theorem 1.4 Let $G = R \times (D_8^{*n} * H)$, where $H = H_8$, which is defined in Lemma 1.6. Let $C := C_G(\operatorname{Frat} G)$ and $\operatorname{Aut}_f G := \{\alpha \in \operatorname{Aut} G \mid \alpha \text{ acts trivially on Frat} C\}$. Then

(1) Aut $G/\operatorname{Aut}_f G \cong \mathbb{Z}_2$ (if m = 2), or $\mathbb{Z}_{2^{m-2}} \times \mathbb{Z}_2$ (if $m \ge 3$).

(2) $\operatorname{Aut}_f G/K \cong (I \rtimes \operatorname{Sp}(2n, 2)) \times (\operatorname{GL}(r, 2) \ltimes (\mathbb{Z}_2)^r)$, where I is an elementary abelian 2-group with order 2^{2n+1} , and K is of order $2^{(2n+2)(r+2)+2r+m+1}$.

According to the above theorems, let r = 0, then we can obtain the below conclusion in [6].

Corollary 1.1 (cf. [6]) Let
$$P = D_8^{*n} * H$$
.
(1) If $H = D_{2^{m+2}}$ or $H = Q_{2^{m+2}}$, then $|\operatorname{Aut} P| = 2^{(n+1)^2 + 2m} \prod_{i=1}^n (2^{2i} - 1)$.
(2) If $H = SD_{2^{m+2}}$, then $|\operatorname{Aut} P| = 2^{(n+1)^2 + 2m - 1} \prod_{i=1}^n (2^{2i} - 1)$.
(3) If $H = D_{2^{m+3}}^+$ or $H = Q_{2^{m+3}}^+$, then $|\operatorname{Aut} P| = 2^{(n+2)^2 + 2m - 2} \prod_{i=1}^n (2^{2i} - 1)$.
(4) If $H = D_{2^{m+2}} * C_4$ or $H = SD_{2^{m+2}} * C_4$, then $|\operatorname{Aut} P| = 2^{(n+2)^2 + 2m - 2} \prod_{i=1}^n (2^{2i} - 1)$.

(5) If $H = D_{2^{m+3}}^+ * C_4$, then $|\operatorname{Aut} P| = 2^{(n+3)^2 + 2m-4} \prod_{i=1}^n (2^{2i} - 1)$.

We need the following several lemmas in order to obtain the above theorems.

Lemma 1.1 (cf. [4]) Let G be a generalized extraspecial p-group, then

(i) $G/\zeta G$ is an elementary abelian p-group.

(ii) Let $G' = \langle c \rangle$. For any two elements $\overline{x} = x\zeta G$ and $\overline{y} = y\zeta G$ of $G/\zeta G$, write $[x, y] = c^r$ $(0 \leq r < p)$ and $f(\overline{x}, \overline{y}) = r$, then $G/\zeta G$ becomes a nondegenerate symplectic space over GF(p).

(iii) G is a central product of some nonabelian subgroups G_i which satisfy both $\zeta G_i = \zeta G$ and $|G_i/\zeta G_i| = p^2$. Furthermore, let $|G_i| = p^{m+2}$, where $m \ge 2$, then G_i only has two types:

$$M_m(p) = \langle x, y \mid x^{p^{m+1}} = y^p = 1, x^y = x^{1+p^m} \rangle$$

or

$$N_m(p) = \langle x, y, z \mid x^p = y^p = z^{p^m} = 1, [x, z] = [y, z] = 1, [x, y] = z^{p^{m-1}} \rangle.$$

Lemma 1.2 (cf. [6]) Let p be odd and G be a nonabelian p-group. If Frat G is cyclic, then Frat G is a central subgroup.

Lemma 1.3 Let G be a nonabelian p-group. If Frat G is a cyclic and central subgroup, then G' is of order p.

Proof Since G is a nonabelian p-group, G' is nontrivial, and is included in the cyclic Frattini subgroup Frat G. Now we only need to prove that G' is of order p.

Since $G' \leq \operatorname{Frat} G \leq \zeta G$, for any $x, y \in G$, we have that

$$[x, y]^p = [x^p, y].$$

Moreover, since $x^p \in \text{Frat} G \leq \zeta G$, $[x^p, y] = 1$. Consequently, for any $x, y \in G$, we have that $[x, y]^p = 1$. The lemma is proved.

Lemma 1.4 (cf. [6]) Let G be a nonabelian 2-group, $\Phi(G)$ be cyclic, Frat $G \nleq \zeta G$ and $|\text{Frat } G| = 2^m$, then m > 1, and G is isomorphic to the direct product $R \times (D_8^{*n} * H)$, where R is an elementary abelian 2-group, $n \ge 0$, H is a nontrivial 2-group which is one of the following isomorphic types:

$$D_{2^{m+2}}, Q_{2^{m+2}}, SD_{2^{m+2}}, D_{2^{m+2}} * C_4, SD_{2^{m+2}} * C_4, D_{2^{m+3}}^+, Q_{2^{m+3}}^+, D_{2^{m+3}}^+ * C_4,$$

where

$$D_{2^{m+3}}^+ := \langle x, y, z \mid x^2 = y^2 = z^{2^{m+1}} = 1, y^x = y, z^x = z^{2^m+1}, z^y = z^{-1} \rangle$$

and

$$Q_{2^{m+3}}^+ := \langle x, y, z \mid x^2 = z^{2^{m+1}} = 1, y^2 = z^{2^m}, y^x = y, z^x = z^{2^m+1}, z^y = z^{-1} \rangle.$$

Lemma 1.5 (cf. [4]) If $m \ge 3$, then

$$a^{2^{m-2}} \equiv 1 \pmod{2^m}$$
, where a is an odd number,
 $3^{2^{m-3}} \not\equiv 1 \pmod{2^m}$.

Lemma 1.6 Let G be a nonabelian 2-group, $\Phi(G)$ be a cyclic group, and $\operatorname{Frat} G \nleq \zeta G$, $|\operatorname{Frat} G| = 2^m$, then G is isomorphic to the direct product $R \times (D_8^{*n} * H)$, where R is an elementary abelian 2-group, $n \ge 0$, H is defined in Lemma 1.4. Further,

(1) If *H* is isomorphic to $D_{2^{m+2}}$, $SD_{2^{m+2}}$ or $Q_{2^{m+2}}$, then $C_G(\text{Frat } G) \cong N_{m+1}(2)^{*n} \times R$.

(2) If H is isomorphic to $D_{2^{m+3}}^+$ or $Q_{2^{m+3}}^+$, then $C_G(\operatorname{Frat} G) \cong N_m(2)^{*n} * M_m(2) \times R$.

(3) If H is isomorphic to $D_{2^{m+2}} * C_4$ or $SD_{2^{m+2}} * C_4$, then $C_G(\operatorname{Frat} G) \cong N_{m+1}(2)^{*n} \times R \times \mathbb{Z}_2$.

(4) If H is isomorphic to $D^+_{2m+3} * C_4$, then $C_G(\operatorname{Frat} G) \cong N_m(2)^{*n} * M_m(2) \times R \times \mathbb{Z}_2$.

Proof Assume that $D_8^{*n} \cong \langle x_1, x_2 \rangle * \langle x_3, x_4 \rangle * \cdots * \langle x_{2n-1}, x_{2n} \rangle$.

(1) Let $H_1 := H \cong D_{2^{m+2}}$, and $H_1 = \langle x, y \mid x^2 = y^{2^{m+1}} = 1, y^x = y^{-1} \rangle$, then $\zeta H_1 = \langle y^{2^m} \rangle$, Frat $G = \langle y^2 \rangle$, and

$$C_G(\operatorname{Frat} G) = \langle x_1, x_2, y \rangle * \langle x_3, x_4, y \rangle * \cdots * \langle x_{2n-1}, x_{2n}, y \rangle \times R.$$

Note that $\langle x_{2i-1}, x_{2i}, y \rangle \cong N_{m+1}(2)$, where $i = 1, 2, \dots, n$. It follows that $C_G(\operatorname{Frat} G) \cong N_{m+1}(2)^{*n} \times R$.

Let $H_2 := H \cong SD_{2^{m+2}}$, and $H_2 = \langle x, y \mid x^2 = y^{2^{m+1}} = 1, y^x = y^{-1+2^m} \rangle$. If $(y^k)^x = y^k$, where $0 \leq k < 2^{m+1}$, then $y^{-k+2^m k} = y^k$. It follows that $2k - 2^m k \equiv 0 \pmod{2^{m+1}}$, which implies that $(1 - 2^{m-1})k \equiv 0 \pmod{2^m}$. Also $0 \leq k < 2^{m+1}$, thus $k = 2^m$ and $\zeta H_2 = \langle y^{2^m} \rangle$. Consequently, Frat $G = \langle y^2 \rangle$. According to the results of H_1 , we similarly have that $C_G(\operatorname{Frat} G) \cong N_{m+1}(2)^{*n} \times R$.

Let $H_3 := H \cong Q_{2^{m+2}}$, and $H_3 = \langle x, y \mid x^4 = 1, y^{2^m} = x^2, y^x = y^{-1} \rangle$. Obviously, $\zeta H_3 = \langle y^{2^m} \rangle$, Frat $G = \langle y^2 \rangle$. According to the results of H_1 , we similarly have that $C_G(\operatorname{Frat} G) \cong N_{m+1}(2)^{*n} \times R$.

(2) Let $H_4 := H \cong D_{2m+3}^+$, and

$$H_4 = \langle x, y, z \mid x^2 = y^2 = z^{2^{m+1}} = 1, y^x = y, z^x = z^{2^m+1}, z^y = z^{-1} \rangle.$$

Let $x^i y^j z^k \in \zeta H_4$, where $0 \leq i < 2, 0 \leq j < 2, 0 \leq k < 2^{m+1}$, then $(x^i y^j z^k)^x = x^i y^j z^k$. It follows that $z^{2^m k+k} = z^k$, thus $2^m k \equiv 0 \pmod{2^{m+1}}$, that is $k \equiv 0 \pmod{2}$. That $(x^i y^j z^k)^y = x^i y^j z^k$ implies that $z^{-k} = z^k$, thus $2k \equiv 0 \pmod{2^{m+1}}$, that is $k \equiv 0 \pmod{2^m}$. Since $(x^i y^j z^k)^z = x^i y^j z^k$, $(x^i)^z = x^i z^{-2^{m_i}}$ and $(y^j)^z = y^j z^{(-1)^{j+1}+1}$, $-2^m i + (-1)^{j+1} + 1 \equiv 0 \pmod{2^{m+1}}$, which implies that $-2^m i + (-1)^{j+1} + 1 \equiv 0 \pmod{2^m}$. It follows that $(-1)^{j+1} + 1 \equiv 0 \pmod{2^m}$, thus j = 0. Consequently, i = 0. From the above, we have that $\zeta H_4 = \langle z^{2^m} \rangle$, and Frat $H_4 = \langle z^2 \rangle =$ Frat G. It follows that

$$C_G(\operatorname{Frat} G) = \langle x, z \rangle * \langle x_1, x_2, z^2 \rangle * \langle x_3, x_4, z^2 \rangle * \dots * \langle x_{2n-1}, x_{2n}, z^2 \rangle \times R.$$

Note that $\langle x, z \rangle \cong M_m(2)$, where $M_m(2)$ is defined in Lemma 1.1, thus $C_G(\operatorname{Frat} G) \cong M_m(2) * N_m(2)^{*n} \times R$.

Let $H_5 := H \cong Q_{2m+3}^+$, and

$$H_5 = \langle x, y, z \mid x^2 = z^{2^{m+1}} = 1, y^2 = z^{2^m}, y^x = y, z^x = z^{2^m+1}, z^y = z^{-1} \rangle.$$

Let $x^i y^j z^k \in \zeta H_5$, where $0 \leq i < 2, 0 \leq j < 4$ and $0 \leq k < 2^{m+1}$, then $(x^i y^j z^k)^x = x^i y^j z^k$. It follows that $z^{2^m k+k} = z^k$, thus $2^m k \equiv 0 \pmod{2^{m+1}}$, that is $k \equiv 0 \pmod{2}$. That $(x^i y^j z^k)^y = x^i y^j z^k$ implies that $z^{-k} = z^k$, thus $2k \equiv 0 \pmod{2^{m+1}}$, therefore $k \equiv 0 \pmod{2^m}$. Since $(x^i y^j z^k)^z = x^i y^j z^k$, $(x^i)^z = x^i z^{-2^m i}$ and $(y^j)^z = y^j z^{(-1)^{j+1}+1}$, $-2^m i + (-1)^{j+1} + 1 \equiv 0 \pmod{2^m}$, which implies that $-2^m i + (-1)^{j+1} + 1 \equiv 0 \pmod{2^m}$. It follows that $(-1)^{j+1} + 1 \equiv 0 \pmod{2^m}$, thus j = 0 or 2. Consequently, i = 0. From the above, we have that $\zeta H_5 = \langle z^{2^m} \rangle$, and Frat $H_5 = \langle z^2 \rangle =$ Frat G. According to the results of H_4 , similarly, $C_G(\operatorname{Frat} G) \cong N_m(2)^{*n} * M_m(2) \times R$.

(3) Let $H_6 := H \cong D_{2^{m+2}} * C_4$, and

$$H_6 = \langle x, y, z \mid x^2 = y^{2^{m+1}} = 1, y^x = y^{-1}, z^2 = y^{2^m}, [x, z] = 1, [y, z] = 1 \rangle.$$

It is easy to verify that $\zeta H_6 = \langle z \rangle$, $D_8^{*n} \cap H_6 = \langle z^2 \rangle$ and $\operatorname{Frat} H_6 = \langle y^2 \rangle$. It follows that

$$C_G(\operatorname{Frat} G) = \langle x_1, x_2, x_3, x_4, \cdots, x_{2n-1}, x_{2n}, y, z \rangle \times R$$
$$= \langle x_1, x_2, y \rangle * \langle x_3, x_4, y \rangle * \cdots * \langle x_{2n-1}, x_{2n}, y \rangle \times \langle z y^{2^{m-1}} \rangle \times R.$$

Since

$$\langle x_{2i-1}, x_{2i}, y \mid x_{2i-1}^2 = x_{2i}^2 = y^{2^{m+1}} = 1, [x_{2i-1}, y] = 1 = [x_{2i}, y], [x_{2i-1}, x_{2i}] = y^{2^m} \rangle \cong N_{m+1}(2),$$

where $i = 1, 2, \dots, n, \langle zy^{2^{m-1}} \rangle \cong \mathbb{Z}_2$. It follows that $C_G(\operatorname{Frat} G) \cong N_{m+1}(2)^{*n} \times R \times \mathbb{Z}_2$. Let $H_7 := H \cong SD_{2^{m+2}} * C_4$, and

$$H_7 = \langle x, y, z \mid x^2 = y^{2^{m+1}} = 1, y^x = y^{-1+2^m}, z^2 = y^{2^m}, [x, z] = 1, [y, z] = 1 \rangle.$$

Obviously, $\zeta H_7 = \langle z \rangle$ and Frat $H_7 = \langle y^2 \rangle$. According to the results of H_6 , we similarly have that $C_G(\operatorname{Frat} G) \cong N_{m+1}(2)^{*n} \times R \times \mathbb{Z}_2$.

H. G. Liu and Y. L. Wang

(4) Let $H_8 := H \cong D_{2^{m+3}}^+ * C_4$, and

$$H_8 = \langle x, y, z, u \mid x^2 = y^2 = z^{2^{m+1}} = 1, y^x = y, z^x = z^{2^m+1},$$

$$z^y = z^{-1}, u^2 = z^{2^m}, [x, u] = [y, u] = [z, u] = 1 \rangle.$$

Obviously, $\zeta H_8 = \langle u \rangle$ and Frat $H_8 = \langle z^2 \rangle$. It follows that

$$C_G(\operatorname{Frat} G) = \langle x_1, x_2, x_3, x_4, \cdots, x_{2n-1}, x_{2n}, x, z, u \rangle \times R$$
$$= \langle x_1, x_2, z^2 \rangle * \langle x_3, x_4, z^2 \rangle * \cdots * \langle x_{2n-1}, x_{2n}, z^2 \rangle * \langle x, z \rangle \times \langle u z^{2^{m-1}} \rangle \times R$$

Since

$$\langle x_{2i-1}, x_{2i}, z^2 | x_{2i-1}^2 = x_{2i}^2 = (z^2)^{2^m} = 1, [x_{2i-1}, z^2] = 1 = [x_{2i}, z^2], [x_{2i-1}, x_{2i}] = (z^2)^{2^{m-1}} \rangle$$

 $\cong N_m(2),$

where $i = 1, 2, \cdots, n$, $\langle x, z \mid x^2 = z^{2^{m+1}} = 1, z^x = z^{1+2^m} \rangle \cong M_m(2), \langle u z^{2^{m-1}} \rangle \cong \mathbb{Z}_2$ and $C_G(\operatorname{Frat} G) \cong N_m(2)^{*n} * M_m(2) \times R \times \mathbb{Z}_2.$

2 Proof of Theorem 1.1

Since D_8^{*n} is an extraspecial 2-group, we may suppose that $x_1, x_2, \dots, x_{2n-1}, x_{2n}, y^{2^m}$ are the generators of D_8^{*n} , which satisfy the following relations:

$$\begin{aligned} \zeta D_8^{*n} &= \langle y^{2^m} \rangle, \\ [x_{2i-1}, x_{2i}] &= y^{2^m}, \quad i = 1, 2, \cdots, n, \\ [x_{2i-1}, x_j] &= 1, \quad j \neq 2i, \\ [x_{2i}, x_k] &= 1, \quad k \neq 2i - 1, \\ x_i^2 &= 1, \quad i = 1, 2, \cdots, n. \end{aligned}$$

According to (1) in Lemma 1.6, we have that

$$C = \langle x_1, x_2, y \rangle * \langle x_3, x_4, y \rangle * \cdots * \langle x_{2n-1}, x_{2n}, y \rangle \times R.$$

Let Φ : Aut $G \to \operatorname{Aut}(\operatorname{Frat} C)$ be a restriction homomorphism. Obviously, $\operatorname{Ker} \Phi = \operatorname{Aut}_f G \trianglelefteq$ Aut G. According to (1) in Lemma 1.6, $\operatorname{Frat} C = \langle y^2 \rangle$.

Theorem 2.1

$$\operatorname{Im} \Phi \cong \begin{cases} \mathbb{Z}_2, & \text{if } m = 2, \\ \mathbb{Z}_{2^{m-2}} \times \mathbb{Z}_2, & \text{if } m \ge 3. \end{cases}$$

Proof If m = 2, then Frat $C \cong \mathbb{Z}_4$, thus Aut(Frat $C) \cong \mathbb{Z}_2$. Define a mapping:

$$\sigma_{1}: G \to G,$$

$$x_{2i-1} \mapsto x_{2i-1}, \quad i = 1, 2, \cdots, n,$$

$$x_{2i} \mapsto x_{2i}, \quad i = 1, 2, \cdots, n,$$

$$z_{j} \mapsto z_{j}, \quad j = 1, 2, \cdots, r,$$

$$x \mapsto x,$$

$$y \mapsto y^{3}.$$

It is easy to verify that σ_1 is an automorphism of G, which is of order 2. Since $\Phi(\sigma_1)(y^2) = (y^2)^3$ and $\Phi(\sigma_1)^2(y^2) = y^2$, Aut(Frat $C) = \langle \Phi(\sigma_1) \rangle$. It follows that Aut $G = \operatorname{Aut}_f G \rtimes \langle \sigma_1 \rangle$.

If $m \geq 3$, then $\mathbb{Z}_{2^m}^* = \langle v_1 \rangle \times \langle v_2 \rangle$, where $v_1 = 3$ and $v_2 = 2^m - 1$. By Lemma 1.5, we have that the orders of v_1 and v_2 are 2^{m-2} and 2, respectively. Define a mapping:

$$\sigma_2: \ G \to G,$$

$$x_{2i-1} \mapsto x_{2i-1}^{2^m-1}, \quad i = 1, 2, \cdots, n,$$

$$x_{2i} \mapsto x_{2i}, \quad i = 1, 2, \cdots, n,$$

$$z_j \mapsto z_j, \quad j = 1, 2, \cdots, r,$$

$$x \mapsto x,$$

$$y \mapsto y^{2^m-1}.$$

It is easy to verify that σ_1 and σ_2 are commutative automorphisms each other and their orders are 2^{m-1} and 2, respectively.

Take any $\alpha \in \operatorname{Aut} G$, then $\alpha(y^2) = y^{2s_1}$, where $s_1 \in \mathbb{Z}_{2^m}^*$. Hence there exist $0 \le t_1 < 2^{m-2}$ and $0 \le t_2 < 2$ such that $v_1^{t_1} v_2^{t_2} \equiv s_1^{-1} \pmod{2^m}$. Since

$$\begin{split} \sigma_1^{t_1} \sigma_2^{t_2} \alpha(y^2) &= \sigma_1^{t_1} \sigma_2^{t_2}(y^{2s_1}) = \sigma_1^{t_1} (\sigma_2^{t_2}(y))^{2s_1} = \sigma_1^{t_1} (y^{v_2^{t_2}})^{2s_1} \\ &= (\sigma_1^{t_1}(y))^{2v_2^{t_2}s_1} = (y^{2v_1^{t_1}v_2^{t_2}})^{s_1} = y^{2s_1^{-1}s_1} = y^2, \end{split}$$

 $\sigma_1^{t_1}\sigma_2^{t_2}\alpha \in \operatorname{Aut}_f G$. Consequently, $\operatorname{Aut} G = \langle \sigma_1, \sigma_2 \rangle \operatorname{Aut}_f G$.

We claim that $\langle \sigma_1 \rangle \cap \langle \sigma_2 \rangle = 1$. In fact, let $\sigma_1^{w_1} = \sigma_2^{w_2} \in \langle \sigma_1 \rangle \cap \langle \sigma_2 \rangle$, where $w_1, w_2 \in \mathbb{Z}$, then

$$y^{2v_1^{w_1}} = \sigma_1^{w_1}(y^2) = \sigma_2^{w_2}(y^2) = y^{2v_2^{w_2}}$$

which implies that $v_1^{w_1} \equiv v_2^{w_2} \pmod{2^m}$, thus $w_1 \equiv 0 \pmod{2^{m-2}}$ and $w_2 \equiv 0 \pmod{2}$. It follows that $\sigma_1^{w_1} = \sigma_2^{w_2} = 1$.

If $\sigma_1^{u_1} \sigma_2^{u_2} \in \langle \sigma_1, \sigma_2 \rangle \cap \operatorname{Aut}_f G$, where $0 \leq u_1 < 2^{m-1}$ and $0 \leq u_2 < 2$, then $y^2 = \sigma_1^{u_1} \sigma_2^{u_2}(y^2) = y^{2v_1^{u_1}v_2^{u_2}}$, which implies that $v_1^{u_1} v_2^{u_2} \equiv 1 \pmod{2^m}$, thus $u_1 \equiv 0 \pmod{2^{m-2}}$ and $u_2 \equiv 0 \pmod{2}$. It is easy to verify that $\sigma_1^{2^{m-2}} \in \operatorname{Aut}_f G$, thus $\langle \sigma_1, \sigma_2 \rangle \cap \operatorname{Aut}_f G = \langle \sigma_1^{2^{m-2}} \rangle$. It follows that $\operatorname{Aut} G/\operatorname{Aut}_f G \cong \mathbb{Z}_{2^{m-2}} \times \mathbb{Z}_2$.

The theorem is proved.

Let
$$\Psi_1$$
: Aut_f $G \to \operatorname{Aut}(G/C), \Psi_2$: Aut_f $G \to \operatorname{Aut}(C/\zeta C)$ and

$$\Psi_3$$
: Aut_f $G \to$ Aut(ζC /Frat C)

be the natural induced homomorphisms. From this, we may obtain the below homomorphic mapping

$$\Psi: \operatorname{Aut}_{f} G \to \operatorname{Aut}(G/C) \times \operatorname{Aut}(C/\zeta C) \times \operatorname{Aut}(\zeta C/\operatorname{Frat} C),$$
$$\alpha \mapsto (\Psi_{1}(\alpha), \Psi_{2}(\alpha), \Psi_{3}(\alpha)).$$

Since $G/C = \langle xC \rangle \cong \mathbb{Z}_2$, Im $\Psi_1 = \operatorname{Aut}(G/C) = 1$. Since $\zeta C = \langle y \rangle \times R$, we may define the inner product as follows:

$$f(\overline{a}, \overline{b}) = t$$
, where $\overline{a} = a\zeta C$, $\overline{b} = b\zeta C$, $a, b \in C$ and $[a, b] = (y^{2^m})^t$, $0 \le t < 2$.

From this, $C/\zeta C$ can become a nondegenerate symplectic space over GF(2).

Take any $\alpha \in \operatorname{Aut}_f G$, then $[\alpha(a), \alpha(b)] = \alpha[a, b] = [a, b]$, thus, for any $\overline{a} = a\zeta C, \overline{b} = b\zeta C \in C/\zeta C$, we have that

$$f(\Psi_2(\alpha)(\overline{a}), \Psi_2(\alpha)(\overline{b})) = f(\overline{\alpha(a)}, \overline{\alpha(b)}) = f(\overline{a}, \overline{b}),$$

therefore $\Psi_2(\alpha) \in \text{Sp}(2n, 2)$. Consequently, $\Psi_2(\text{Aut}_f G) \leq \text{Sp}(2n, 2)$. From the above, Ψ is the homomorphic mapping as follows:

$$\Psi: \operatorname{Aut}_{f} G \to \operatorname{Aut}(G/C) \times \operatorname{Sp}(2n, 2) \times \operatorname{Aut}(\zeta C/\operatorname{Frat} C),$$
$$\alpha \mapsto (\Psi_{1}(\alpha), \Psi_{2}(\alpha), \Psi_{3}(\alpha)).$$

Theorem 2.2 Im $\Psi_2 = \text{Sp}(2n, 2)$.

Proof Take any $T \in \text{Sp}(2n, 2)$, let (a_{ik}) be the matrix of T relative to a basis $\{x_i \zeta C, i = 1, 2, \dots, 2n\}$ of $C/\zeta C$. Define a mapping

$$\phi: \ G \to G,$$
$$x^{c} \Big(\prod_{i=1}^{2n} x_{i}^{a_{i}}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}}\Big) y^{d} \mapsto x^{c} \Big(\prod_{i=1}^{2n} \Big(\prod_{k=1}^{2n} x_{k}^{a_{ik}}\Big)^{a_{i}}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}}\Big) y^{d'},$$

where $0 \le a_i < 2, \ i = 1, 2, \cdots, 2n, \ 0 \le b_j < 2, \ j = 1, 2, \cdots, r, \ 0 \le c < 2, \ 0 \le d < 2^{m+1},$ $d' \equiv d + \sum_{i=1}^{2n} 2^{m-1} a_i \left(\sum_{j=1}^n (a_{i,2j-1} \cdot a_{i,2j}) \right) \pmod{2^{m+1}}.$

Note that (a_{ik}) is a nonsingular matrix. It is easy to verify ϕ is a bijection. Therefore, ϕ is an automorphism of G if and only if ϕ preserves multiplications. By the definition of ϕ , we have

$$\begin{aligned} (1) \ \phi(x_i^{a_i}) &= \Big(\prod_{k=1}^{2n} x_k^{a_{ik}}\Big)^{a_i} y^{\sum_{j=1}^n (a_{i,2j-1} \cdot a_{i,2j}) 2^{m-1} a_i} = \Big[\Big(\prod_{k=1}^{2n} x_k^{a_{ik}}\Big) y^{\sum_{j=1}^n (a_{i,2j-1} \cdot a_{i,2j}) 2^{m-1}}\Big]^{a_i} \\ &= \phi(x_i)^{a_i}. \end{aligned}$$

$$(2) \quad \phi\Big[x^c \Big(\prod_{i=1}^n x_i^{a_i}\Big) \Big(\prod_{j=1}^r z_j^{b_j}\Big) y^d\Big] = x^c \Big[\prod_{i=1}^{2n} \Big(\prod_{k=1}^{2n} x_k^{a_{ik}}\Big)^{a_i}\Big] \Big(\prod_{j=1}^r z_j^{b_j}\Big) y^{d'} \\ &= x^c \Big[\prod_{i=1}^n \Big(\prod_{k=1}^{2n} x_k^{a_{ik}}\Big)^{a_i}\Big] \Big(\prod_{j=1}^r z_j^{b_j}\Big) y^{d+\sum_{i=1}^{2n} 2^{m-1} a_i (\sum_{j=1}^n a_{i,2j-1} \cdot a_{i,2j})} \\ &= x^c \Big[\prod_{i=1}^{2n} \Big(\Big(\prod_{k=1}^n x_k^{a_{ik}}\Big)^{a_i}\Big) \Big(\sum_{j=1}^r a_{i,2j-1} \cdot a_{i,2j}) 2^{m-1} a_i}\Big)\Big] \Big(\prod_{j=1}^r z_j^{b_j}\Big) y^d \\ &= x^c \Big[\prod_{i=1}^{2n} \phi(x_i)^{a_i}\Big] \Big(\prod_{j=1}^r z_j^{b_j}\Big) y^d. \end{aligned}$$

(3) $\phi(x) = x$.

(4) $\phi(z_j) = z_j, \ j = 1, 2, \cdots, r.$

(5) For any $\overline{a} = a\zeta C, \overline{b} = b\zeta C \in C/\zeta C, \ f(\overline{\phi(a)}, \overline{\phi(b)}) = f(\overline{a}, \overline{b}), \ \text{thus} \ [\phi(a), \phi(b)] = [a, b].$

We call the above ϕ the induced mapping of G by T.

Claim 2.1 If $\phi(x_i)^2 = 1$, $i = 1, 2, \dots, 2n$, then $\phi \in \text{Aut}_f G$.

In fact, let $\phi(x_i)^2 = 1$, where $i = 1, 2, \dots, 2n$. For any $g_1, g_2 \in G$, we have

$$g_1 = x^{c_1} \Big(\prod_{i=1}^{2n} x_i^{a_i}\Big) \Big(\prod_{j=1}^r z_j^{b_j}\Big) y^{d_1}, \quad g_2 = x^{c_2} \Big(\prod_{i=1}^{2n} x_i^{a_i'}\Big) \Big(\prod_{j=1}^r z_j^{b_j'}\Big) y^{d_2}$$

and

$$g_{1}g_{2} = x^{c_{1}} \Big(\prod_{i=1}^{2n} x_{i}^{a_{i}}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}}\Big) y^{d_{1}} x^{c_{2}} \Big(\prod_{i=1}^{2n} x_{i}^{a_{i}'}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}'}\Big) y^{d_{2}}$$

$$= x^{c_{1}+c_{2}} \Big(\prod_{i=1}^{2n} x_{i}^{a_{i}+a_{i}'}\Big) \Big(\prod_{k=1}^{2n-1} \prod_{t=k+1}^{2n} [x_{t}^{a_{t}}, x_{k}^{a_{k}'}]\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}+b_{j}'}\Big) y^{d_{2}+(-1)^{c_{2}}d_{1}}$$

$$= x^{c_{1}+c_{2}} \Big(\prod_{i=1}^{2n} x_{i}^{a_{i}+a_{i}'}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}+b_{j}'}\Big) y^{e},$$

where $y^e = \left(\prod_{k=1}^{2n-1}\prod_{t=k+1}^{2n} [x_t^{a_t}, x_k^{a'_k}]\right) y^{d_2 + (-1)^{c_2} d_1}$ and $0 \le e < 2^{m+1}$. Let $c_1 + c_2 = c + 2c'$, $a_i + a'_i = t_i + 2s_i$, $b_j + b'_j = t'_j + 2s'_j$, where $0 \le c, t_i, t'_j < 2, c', s_i, s'_j \in \mathbb{Z}$, $i = 1, 2, \cdots, 2n, j = 1, 2, \cdots, r$, then

$$\begin{split} \phi(g_1g_2) &= \phi \Big[x^{c_1+c_2} \Big(\prod_{i=1}^n x_i^{a_i+a_i'} \Big) \Big(\prod_{j=1}^r z_j^{b_j+b_j'} \Big) y^e \Big] = \phi \Big[x^{c_+2c'} \Big(\prod_{i=1}^n x_i^{t_i+2s_i} \Big) \Big(\prod_{j=1}^r z_j^{t_j'+2s_j'} \Big) y^e \Big] \\ &= \phi \Big[x^c \Big(\prod_{i=1}^n x_i^{t_i} \Big) \Big(\prod_{j=1}^r z_j^{t_j'} \Big) y^e \Big] = x^c \Big(\prod_{i=1}^n \phi(x_i)^{t_i} \Big) \Big(\prod_{j=1}^r z_j^{t_j'} \Big) y^e, \\ \phi(g_1)\phi(g_2) &= x^{c_1} \Big(\prod_{i=1}^n \phi(x_i)^{a_i} \Big) y^{d_1} x^{c_2} \Big(\prod_{i=1}^n \phi(x_i)^{a_i'} \Big) \Big(\prod_{j=1}^r z_j^{b_j+b_j'} \Big) y^{d_2} \\ &= x^{c_1+c_2} \Big(\prod_{i=1}^n \phi(x_i)^{a_i+a_i'} \Big) \Big(\prod_{k=1}^{2n-1} \prod_{t=k+1}^{2n} [\phi(x_t)^{a_t}, \phi(x_k)^{a_k'}] \Big) \Big(\prod_{j=1}^r z_j^{b_j+b_j'} \Big) y^{d_2+(-1)^{c_2}d_1} \\ &= x^{c_1+c_2} \Big(\prod_{i=1}^n \phi(x_i)^{a_i+a_i'} \Big) \Big(\prod_{k=1}^{2n-1} \prod_{t=k+1}^{2n} [x^a_t, x^{a_k'}_k] \Big) \Big(\prod_{j=1}^r z_j^{b_j+b_j'} \Big) y^{d_2+(-1)^{c_2}d_1} \\ &= x^{c_1+c_2} \Big(\prod_{i=1}^n \phi(x_i)^{a_i+a_i'} \Big) \Big(\prod_{k=1}^{2n-1} \prod_{t=k+1}^{2n} [x^a_t, x^{a_k'}_k] \Big) \Big(\prod_{j=1}^r z_j^{b_j+b_j'} \Big) y^{d_2+(-1)^{c_2}d_1} \\ &= x^c (\prod_{i=1}^n \phi(x_i)^{a_i+a_i'} \Big) \Big(\prod_{k=1}^{2n-1} \prod_{t=k+1}^{2n} [x^a_t, x^{a_k'}_k] \Big) \Big(\prod_{j=1}^r z_j^{b_j'} \Big) y^{d_2+(-1)^{c_2}d_1} \\ &= x^c \Big(\prod_{i=1}^n \phi(x_i)^{a_i+a_i'} \Big) \Big(\prod_{j=1}^r z_j^{b_j'} \Big) y^e = x^c \Big(\prod_{i=1}^n \phi(x_i)^{t_i} \Big) \Big(\prod_{j=1}^r z_j^{t_j'} \Big) y^e = \phi(g_1g_2). \end{split}$$

Hence $\phi \in \operatorname{Aut} G$. Also since $\phi(y) = y, \phi \in \operatorname{Aut}_f G$.

The claim is proved.

For $i = 1, 2, \cdots, 2n$, we have

$$\phi(x_i)^2 = \left[\left(\prod_{j=1}^{2n} x_j^{a_{ij}}\right) y^{\sum\limits_{j=1}^{n} (a_{i,2j-1}a_{i,2j})2^{m-1}} \right]^2 = \left[\prod_{j=1}^{n} (x_{2j-1}^{a_{i,2j-1}} x_{2j}^{a_{i,2j}})^2 \right] y^{\sum\limits_{j=1}^{n} (a_{i,2j-1}a_{i,2j})2^m}$$

H. G. Liu and Y. L. Wang

$$= \left[\prod_{j=1}^{n} \left(x_{2j-1}^{2a_{i,2j-1}} x_{2j}^{2a_{i,2j}} y^{2^{m}a_{i,2j-1}a_{i,2j}}\right)\right] y^{\sum_{j=1}^{n} (a_{i,2j-1}a_{i,2j})2^{m}}$$
$$= y^{\sum_{j=1}^{n} (a_{i,2j-1}a_{i,2j})2^{m}} y^{\sum_{j=1}^{n} (a_{i,2j-1}a_{i,2j})2^{m}} = 1.$$

By Claim 2.1, the induced mapping ϕ by T is an automorphism of G, and $\Psi_1(\phi) = T$. Consequently, $\operatorname{Im} \Psi_1 = \operatorname{Sp}(2n, 2)$.

The theorem is proved.

Theorem 2.3 Im $\Psi_3 \cong \operatorname{GL}(r,2) \ltimes (\mathbb{Z}_2)^r$.

 $\mathbf{Proof} \ \mathrm{Let}$

$$\mathscr{A} := \left\{ \begin{pmatrix} A_{11} & 0\\ A_{21} & 1 \end{pmatrix} \in \operatorname{GL}(r+1,2) \right\},\,$$

where A_{11} is a $r \times r$ matrix, A_{21} is a $1 \times r$ matrix. It is easy to verify that $\mathscr{A} \leq \operatorname{GL}(r+1,2)$. For convenience, we may let $z_{r+1} := y$.

Take any $\alpha \in \operatorname{Aut}_f G$. Let (a_{jk}) be the matrix of $\Psi_3(\alpha)$ relative to a basis $\{z_j \operatorname{Frat} C, j = 1, 2, \cdots, r+1\}$ of $\zeta C/\operatorname{Frat} C$.

Let (a_{jk}) be the partitioned matrix as follows:

$$(a_{jk}) = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in \mathrm{GL}(r+1,2),$$

where A_{11} , A_{12} , A_{21} and A_{22} are $r \times r$, $r \times 1$, $1 \times r$ and 1×1 matrices, respectively.

Since $\Psi_3(\alpha)(\overline{z}_j) = \prod_{k=1}^{r+1} \overline{z}_k^{a_{jk}}$, where $j = 1, 2, \cdots, r$, there exists $0 \le a_j < 2^m$ such that $\alpha(z_j) = \left(\prod_{k=1}^{r+1} z_k^{a_{jk}}\right) y^{2a_j}$.

Since $z_j^2 = 1$ for $j = 1, 2, \dots, r$,

$$1 = \alpha(z_j^2) = \alpha(z_j)^2 = \left(\prod_{k=1}^{r+1} z_k^{2a_{jk}}\right) y^{2^2 a_j} = y^{2a_{j,r+1}+2^2a_j},$$

thus $a_{j,r+1} + 2a_j \equiv 0 \pmod{2^m}$. But m > 1 and $0 \le a_{j,r+1} < 2$, consequently, for $j = 1, 2, \dots, r$, we have $a_{j,r+1} = 0$, that is $A_{12} = 0$.

Since

$$y^{2} = z_{r+1}^{2} = \alpha(z_{r+1}^{2}) = \alpha(z_{r+1})^{2} = \left(\prod_{k=1}^{r+1} z_{k}^{2a_{r+1,k}}\right) y^{2^{2}a_{r+1}}$$
$$= z_{r+1}^{2a_{r+1,r+1}+2^{2}a_{r+1}} = (y^{2})^{a_{r+1,r+1}+2a_{r+1}},$$

 $a_{r+1,r+1} + 2a_{r+1} \equiv 1 \pmod{2^m}$. But m > 1 and $0 \le a_{r+1,r+1} < 2$, thus $a_{r+1,r+1} = 1$, that is $A_{22} = 1$.

Conversely, for
$$\begin{pmatrix} B_{11} & 0 \\ B_{21} & 1 \end{pmatrix} = (b_{jk}) \in \mathscr{A}$$
, define a mapping:
 $\delta: G \to G,$
 $x \mapsto x,$
 $x_i \mapsto x_i, \quad i = 1, 2, \cdots, 2n,$
 $z_j \mapsto \prod_{k=1}^{r+1} z_k^{b_{jk}}, \quad j = 1, 2, \cdots, r+1.$

It is easy to verify that $\delta \in \operatorname{Aut} G$. Since

$$\delta(y^2) = \delta(y)^2 = \left(\prod_{k=1}^r z_k^{b_{r+1,k}} y\right)^2 = y^2,$$

 $\delta \in \operatorname{Aut}_f G$ and the matrix of $\Psi_2(\delta)$ is (b_{jk}) relative to a basis $\{z_j \operatorname{Frat} C, j = 1, 2, \cdots, r+1\}$ of $\zeta C/\operatorname{Frat} C$. Hence $\operatorname{Im} \Psi_2 \cong \mathscr{A}$. Also since $\mathscr{A} \cong \operatorname{GL}(r, 2) \ltimes (\mathbb{Z}_2)^r$, we have that $\Psi_2(\operatorname{Aut}_f G) \cong \operatorname{GL}(r, 2) \ltimes (\mathbb{Z}_2)^r$.

The theorem is proved.

Theorem 2.4 (1) If $H = H_1$ or H_3 , then Ker Ψ is a 2-group with order $2^{(2n+2)(r+1)+m}$. (2) If $H = H_2$, then Ker Ψ is a 2-group with order $2^{(2n+2)(r+1)+m-1}$.

Proof Since Ker Ψ acts trivially on all factors of the series $G \ge C \ge \zeta C \ge$ Frat $C \ge 1$, Ker Ψ is a 2-group.

Take any $\alpha \in \operatorname{Ker} \Psi$, let α be an automorphism as follows:

$$\alpha: G \to G,$$

$$x \mapsto x \Big(\prod_{i=1}^{2n} x_i^{a_i}\Big) \Big(\prod_{j=1}^{r+1} z_j^{b_j}\Big),$$

$$x_i \mapsto x_i \Big(\prod_{j=1}^{r+1} z_j^{a_{ij}}\Big), \quad i = 1, 2, \cdots, 2n,$$

$$z_k \mapsto z_k y^{2c_k}, \quad k = 1, 2, \cdots, r+1,$$

$$y^2 \mapsto y^2,$$

where $z_{r+1} = y$, $0 \le a_i < 2$, $0 \le b_j < 2$, $0 \le b_{r+1} < 2^{m+1}$, $0 \le a_{ij} < 2$, $0 \le a_{i,r+1} < 2^{m+1}$, $0 \le c_k < 2^m$, $i = 1, 2, \dots, 2n$, $j = 1, 2, \dots, r$, $k = 1, 2, \dots, r + 1$.

Since $\alpha(x_i)^2 = 1$, where $i = 1, 2, \dots, 2n$, $1 = \left(x_i \left(\prod_{j=1}^{r+1} z_j^{a_{ij}}\right)\right)^2 = y^{2a_{i,r+1}}$. Hence $a_{i,r+1} \equiv 0 \pmod{2^m}$.

Since $\alpha(x)$ and $\alpha(x_i)$ are commutative each other,

$$1 = \left[x\left(\prod_{i=1}^{2n} x_i^{a_i}\right)\left(\prod_{j=1}^{r+1} z_j^{b_j}\right), x_i\left(\prod_{j=1}^{r+1} z_j^{a_{ij}}\right)\right] = \left[x\left(\prod_{i=1}^{2n} x_i^{a_i}\right)y^{b_{r+1}}, x_iy^{a_{i,r+1}}\right]$$
$$= \left[x\left(\prod_{i=1}^{2n} x_i^{a_i}\right)y^{b_{r+1}}, y^{a_{i,r+1}}\right]\left[x\left(\prod_{i=1}^{2n} x_i^{a_i}\right)y^{b_{r+1}}, x_i\right]^{y^{a_{i,r+1}}} = [x, y^{a_{i,r+1}}]\left[\prod_{i=1}^{2n} x_i^{a_i}, x_i\right].$$

If $H = H_1$ or H_3 , then $[x, y^{a_{i,r+1}}] = y^{2a_{i,r+1}} = 1$. If $H = H_2$, then $[x, y^{a_{i,r+1}}] = y^{2a_{i,r+1}-2^m a_{i,r+1}} = 1$. In a word, $[\prod_{i=1}^{2n} x_i^{a_i}, x_i] = 1$. If *i* is odd, we can let i = 2l - 1, where $l = 1, 2, \dots, n$, then $y^{2^m a_{2l}} = 1$, which implies that $a_{2l} = 0$. If *i* is even, we can let i = 2l, where $l = 1, 2, \dots, n$, then $y^{2^m a_{2l-1}} = 1$, which implies that $a_{2l-1} = 0$. Consequently, for $i = 1, 2, \dots, 2n$, we have that $a_i = 0$.

Since $\alpha(x)$ and $\alpha(z_k)$ are commutative each other, where $k = 1, 2, \cdots, r$,

$$1 = \left[x\left(\prod_{j=1}^{r+1} z_j^{b_j}\right), z_k y^{2c_k}\right] = [xy^{b_{r+1}}, y^{2c_k}] = [x, y^{2c_k}].$$

If $H = H_1$ or H_3 , then $y^{4c_k} = 1$. If $H = H_2$, then $1 = [x, y^{2c_k}] = y^{4c_k - 2^{m+1}c_k} = y^{4c_k}$. In a word, $c_k \equiv 0 \pmod{2^{m-1}}$, which implies that $c_k = 0$ or 2^{m-1} . Also since $\alpha(y^2) = y^2$, $y^2 = (y^{1+2c_{r+1}})^2 = y^{2+4c_{r+1}}$, which implies that $c_{r+1} \equiv 0 \pmod{2^{m-1}}$, thus $c_{r+1} = 0$ or 2^{m-1} . Consequently, for $k = 1, 2, \dots, r+1$, we have that $c_k = 0$ or 2^{m-1} .

Since $\alpha(z_k)^2 = 1$, where $k = 1, 2, \dots, r$, $1 = (z_k y^{2c_k})^2 = y^{4c_k}$, which implies that $c_k \equiv 0 \pmod{2^{m-1}}$, thus $c_k \equiv 0$ or 2^{m-1} .

If $H = H_1$ or H_3 , then $\alpha(x)^2 = \left(x \left(\prod_{j=1}^{r+1} z_j^{b_j}\right)\right)^2 = (xy^{b_{r+1}})^2 = 1$, which has no effect on the

parameters of α . If $H = H_2$, then $\alpha(x)^2 = \left(x \left(\prod_{j=1}^{r+1} z_j^{b_j}\right)\right)^2 = (xy^{b_{r+1}})^2 = y^{2^m b_{r+1}}$, thus $b_{r+1} \equiv 0 \pmod{2}$.

It is easy to verify other generated relations have no effect on the parameters of α .

In conclusion, α is an automorphism as follows:

$$\alpha: G \to G,$$

$$x \mapsto x \Big(\prod_{j=1}^{r+1} z_j^{b_j} \Big),$$

$$x_i \mapsto x_i \Big(\prod_{j=1}^{r+1} z_j^{a_{ij}} \Big), \quad i = 1, 2, \cdots, 2n,$$

$$z_k \mapsto z_k y^{2c_k}, \quad k = 1, 2, \cdots, r+1,$$

where $z_{r+1} = y$, $0 \le b_j < 2$, $0 \le a_{ij} < 2$, $a_{i,r+1} = 0$ or 2^m , $c_k = 0$ or 2^{m-1} , $i = 1, 2, \dots, 2n$, $j = 1, 2, \dots, r, k = 1, 2, \dots, r+1, 0 \le b_{r+1} < 2^{m+1}$ (if $H = H_1$ or H_3); $b_{r+1} \equiv 0 \pmod{2}$ (if $H = H_2$).

Conversely, if α is an automorphism of G, which satisfies the above conditions, then $\alpha \in \text{Ker } \Psi$. Hence, if $H = H_1$ or H_3 , then $|\text{Ker } \Psi| = 2^{(2n+2)(r+1)+m}$; if $H = H_2$, then $|\text{Ker } \Psi| = 2^{(2n+2)(r+1)+m-1}$.

The theorem is proved.

3 Proof of Theorem 1.2

For convenience, we may let $x_3, x_4, \dots, x_{2n+1}, x_{2n+2}, z^{2^m}$ be the generators of D_8^{*n} , which satisfy the following conditions:

$$\zeta D_8^{*n} = \langle z^{2^m} \rangle,$$

$$[x_{2i-1}, x_{2i}] = z^{2^m}, \quad i = 2, 3, \cdots, n,$$

$$[x_{2i-1}, x_j] = 1, \quad j \neq 2i,$$

$$[x_{2i}, x_k] = 1, \quad k \neq 2i - 1,$$

$$x_i^2 = 1, \quad i = 2, 3, \cdots, n$$

According to (2) in Lemma 1.6, we have that

$$C = \langle x_1, x_2 \rangle * \langle x_3, x_4, z^2 \rangle * \langle x_5, x_6, z^2 \rangle * \dots * \langle x_{2n+1}, x_{2n+2}, z^2 \rangle \times R \cong M_m(2) * N_m(2)^{*n} \times R,$$

where $x_1 := z, x_2 := x$.

For convenience, we sometimes adopt the notations in Theorem 1.1.

Let Φ : Aut $G \to \operatorname{Aut}(\operatorname{Frat} C)$ be the restriction homomorphism. Clearly, $\operatorname{Ker} \Phi = \operatorname{Aut}_f G \trianglelefteq$ Aut G. According to (2) in Lemma 1.6, we have that $\operatorname{Frat} C = \langle z^2 \rangle = \operatorname{Frat} G \cong \mathbb{Z}_{2^m}$.

Theorem 3.1

$$\operatorname{Im} \Phi \cong \begin{cases} \mathbb{Z}_2, & \text{if } m = 2\\ \mathbb{Z}_{2^{m-2}} \times \mathbb{Z}_2, & \text{if } m \ge 3 \end{cases}$$

Proof If m = 2, then $\operatorname{Frat} C \cong \mathbb{Z}_4$, thus $\operatorname{Aut}(\operatorname{Frat} C) \cong \mathbb{Z}_2$. Define a mapping:

$$\sigma_3: G \to G,$$

$$x_{2i-1} \mapsto x_{2i-1}^3, \quad i = 1, 2, \cdots, n+1,$$

$$x_{2i} \mapsto x_{2i}, \quad i = 1, 2, \cdots, n+1,$$

$$z_j \mapsto z_j, \quad j = 1, 2, \cdots, r,$$

$$y \mapsto y.$$

It is easy to verify that σ_3 is an automorphism of G, which is of order 2. Since $\Phi(\sigma_3)(z^2) = (z^2)^3$ and $\Phi(\sigma_3)^2(z^2) = z^2$, Aut(Frat $C) = \langle \Phi(\sigma_3) \rangle$. Consequently, Aut $G = \text{Aut}_f G \rtimes \langle \sigma_3 \rangle$.

If $m \ge 3$, then $\mathbb{Z}_{2m}^* = \langle v_1 \rangle \times \langle v_2 \rangle$, where $v_1 = 3$ and $v_2 = 2^m - 1$ and their orders are 2^{m-2} and 2 by Lemma 1.5, respectively. Define a mapping:

$$\sigma_4: G \to G,$$

$$x_{2i-1} \mapsto x_{2i-1}^{2^m-1}, \quad i = 1, 2, \cdots, n+1,$$

$$x_{2i} \mapsto x_{2i}, \quad i = 1, 2, \cdots, n+1,$$

$$z_j \mapsto z_j, \quad j = 1, 2, \cdots, r,$$

$$y \mapsto y.$$

It is easy to verify that σ_3 and σ_4 are commutative automorphisms each other and their orders are 2^{m-1} and 2, respectively.

According to the argument in Theorem 2.1, we similarly have that $\operatorname{Aut} G = \langle \sigma_3, \sigma_4 \rangle \operatorname{Aut}_f G$, and $\langle \sigma_3, \sigma_4 \rangle \cap \operatorname{Aut}_f G = \langle \sigma_3^{2^{m-2}} \rangle$. Consequently, $\operatorname{Aut} G / \operatorname{Aut}_f G \cong \mathbb{Z}_{2^{m-2}} \times \mathbb{Z}_2$.

The theorem is proved.

Let

$$\begin{split} \Psi_{1} &: \operatorname{Aut}_{f} G \to \operatorname{Aut}(G/C), \\ \Psi_{2} &: \operatorname{Aut}_{f} G \to \operatorname{Aut}(C/\zeta C), \end{split}$$

H. G. Liu and Y. L. Wang

$$\Psi_3$$
: Aut_f $G \to$ Aut(ζC /Frat C)

be the natural induced homomorphisms. Hence we may define the below homomorphic mapping:

$$\Psi: \operatorname{Aut}_{f} G \to \operatorname{Aut}(G/C) \times \operatorname{Aut}(C/\zeta C) \times \operatorname{Aut}(\zeta C/\operatorname{Frat} C),$$
$$\alpha \mapsto (\Psi_{1}(\alpha), \Psi_{2}(\alpha), \Psi_{3}(\alpha)).$$

Since $G/C = \langle yC \rangle \cong \mathbb{Z}_2$, Im $\Psi_1 = \operatorname{Aut}(G/C) = 1$. Since $\zeta C = \langle z^2 \rangle \times R$, we may define the inner product as follows:

$$f(\overline{a},\overline{b}) = t$$
, where $\overline{a} = a\zeta C$, $\overline{b} = b\zeta C$, $a, b \in C$ and $[a, b] = (z^{2^m})^t$, $0 \le t < 2$.

From this, $C/\zeta C$ can become a nondegenerate symplectic space over GF(2).

For any $\alpha \in \operatorname{Aut}_f G$, $[\alpha(a), \alpha(b)] = \alpha[a, b] = [a, b]$, thus, for any $\overline{a} = a\zeta C$, $\overline{b} = b\zeta C \in C/\zeta C$, we have

$$f(\Psi_2(\alpha)(\overline{a}), \Psi_2(\alpha)(\overline{b})) = f(\overline{\alpha(a)}, \overline{\alpha(b)}) = f(\overline{a}, \overline{b}),$$

therefore $\Psi_2(\alpha) \in \text{Sp}(2n, 2)$. Consequently, $\Psi_2(\text{Aut}_f G) \leq \text{Sp}(2n, 2)$. In a word, Ψ is a homomorphic mapping as follows:

$$\begin{split} \Psi: \ \operatorname{Aut}_{f} G &\to \operatorname{Aut}(G/C) \times \operatorname{Sp}(2n,2) \times \operatorname{Aut}(\zeta C/\operatorname{Frat} C), \\ \alpha &\mapsto (\Psi_{1}(\alpha), \Psi_{2}(\alpha), \Psi_{3}(\alpha)). \end{split}$$

Theorem 3.2 Im $\Psi_2 = I \rtimes \text{Sp}(2n, 2)$, where I is an elementary abelian 2-group with order 2^{2n+1} .

Proof Let $\mathscr{B}:= \{T \in \operatorname{Sp}(2n+2,2) \mid \text{the first column and second row of the matrix of } T$ are $(1,0,\cdots,0)^{\mathrm{T}}$ and $(0,1,0,\cdots,0)$ relative to a basis $x_1\zeta C, x_2\zeta C,\cdots, x_{2n+2}\zeta C$ of $C/\zeta C$, respectively $\}$.

Take any $T \in \mathscr{B}$, let (a_{ik}) be the matrix of T relative to a basis $\{x_i \zeta C, i = 1, 2, \dots, 2n+2\}$ of $C/\zeta C$. Define a mapping:

$$\phi: \ G \to G,$$

$$y^{c} \Big(\prod_{i=1}^{2n+2} x_{i}^{a_{i}}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}}\Big) z^{2d} \mapsto (yx^{t})^{c} \Big(\prod_{i=1}^{2n+2} \Big(\prod_{k=1}^{2n+2} x_{k}^{a_{ik}}\Big)^{a_{i}}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}}\Big) z^{2d'},$$

where $0 \le a_i < 2, i = 1, 2, \dots, 2n + 2, 0 \le b_j < 2, j = 1, 2, \dots, r, 0 \le c < 2, 0 \le d < 2^m,$ $d' \equiv d + \sum_{i=1}^{2n+2} 2^{m-2} a_i \left(\sum_{k=1}^{n+1} (a_{i,2k-1} \cdot a_{i,2k}) \right) \pmod{2^m}, t = 0 \text{ (if } \sum_{k=1}^{n+1} (a_{1,2k-1} \cdot a_{1,2k}) \equiv 0 \pmod{2}) \text{)}$ or t = 1 (if $\sum_{k=1}^{n+1} (a_{1,2k-1} \cdot a_{1,2k}) \equiv 1 \pmod{2}$).

Note that (a_{ik}) is a nonsingular matrix. It is easy to verify ϕ is a bijection. Therefore, ϕ is an automorphism of G if and only if ϕ preserves multiplications. By the definition of ϕ , we have

(1)

$$\phi(x_i^{a_i}) = \left(\prod_{k=1}^{2n+2} x_k^{a_{ik}}\right)^{a_i} z_{k=1}^{\sum_{k=1}^{n+1} (a_{i,2k-1}a_{i,2k})2^{m-1}a_i}$$

 $The \ Automorphism \ Group \ of \ a \ Finite \ p\text{-}Group$

$$= \left[\left(\prod_{k=1}^{2n+2} x_k^{a_{ik}} \right) z^{\sum_{k=1}^{n+1} (a_{i,2k-1}a_{i,2k})2^{m-1}} \right]^{a_i} = \phi(x_i)^{a_i}.$$

(2)

$$\begin{split} & \phi \Big[y^c \Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big) \Big(\prod_{j=1}^r z_j^{b_j} \Big) z^{2d} \Big] = (yx^t)^c \Big[\prod_{i=1}^{2n+2} \Big(\prod_{k=1}^{2n+2} x_k^{a_{ik}} \Big)^{a_i} \Big] \Big(\prod_{j=1}^r z_j^{b_j} \Big) z^{2d'} \\ &= (yx^t)^c \Big[\prod_{i=1}^{2n+2} \Big(\prod_{k=1}^{2n+2} x_k^{a_{ik}} \Big)^{a_i} \Big] \Big(\prod_{j=1}^r z_j^{b_j} \Big) z^{2d + \sum_{i=1}^{2n+2} 2^{m-1} a_i (\sum_{k=1}^{n+1} a_{i,2k-1} a_{i,2k})} \\ &= (yx^t)^c \Big[\prod_{i=1}^{2n+2} \Big(\Big(\prod_{k=1}^{2n+2} x_k^{a_{ik}} \Big)^{a_i} z_{k=1}^{\sum_{k=1}^{n+1} (a_{i,2k-1} a_{i,2k}) 2^{m-1} a_i} \Big) \Big] \Big(\prod_{j=1}^r z_j^{b_j} \Big) z^{2d} \\ &= (yx^t)^c \Big[\prod_{i=1}^{2n+2} \phi(x_i)^{a_i} \Big] \Big(\prod_{j=1}^r z_j^{b_j} \Big) z^{2d}. \end{split}$$

$$\begin{array}{l} (3) \ \phi(z_j) = z_j, j = 1, 2, \cdots, r. \\ (4) \ \phi(y) = yx^t. \\ (5) \ \phi(z^2) = z^2. \\ (6) \ \text{For } \overline{a} = a\zeta C, \overline{b} = b\zeta C \in C/\zeta C, \ f(\overline{\phi(a)}, \overline{\phi(b)}) = f(T(\overline{a}), T(\overline{b})) = f(\overline{a}, \overline{b}), \ \text{thus } [\phi(a), \phi(b)] = [a, b]. \\ (7) \end{array}$$

$$\begin{split} [\phi(x_1),\phi(y)] &= [\phi(z),\phi(y)] = \left[z \Big(\prod_{k=2}^{2n+2} x_k^{a_{1k}} \Big) z^{\sum_{k=1}^{n+1} (a_{1,2k-1}a_{1,2k})2^{m-1}}, yx^t \right] \\ &= \left[z \Big(\prod_{k=2}^{2n+2} x_k^{a_{1k}} \Big) z^{\sum_{k=1}^{n+1} (a_{1,2k-1}a_{1,2k})2^{m-1}}, x^t \right] \left[z \Big(\prod_{k=2}^{2n+2} x_k^{a_{1k}} \Big) z^{\sum_{k=1}^{n+1} (a_{1,2k-1}a_{1,2k})2^{m-1}}, y \right]^{x^t} \\ &= [z,x^t] [z,y] [z^{\sum_{k=1}^{n+1} (a_{1,2k-1}a_{1,2k})2^{m-1}}, y] \\ &= z^{2^m t} z^{-\sum_{k=1}^{n+1} (a_{1,2k-1}a_{1,2k})2^m} [z,y] = [z,y] = [x_1,y]. \end{split}$$

Note that

$$\begin{split} \phi(x_1)^2 &= \Big(\prod_{j=1}^{2n+2} x_j^{a_{1j}}\Big)^2 z^{(\sum\limits_{j=1}^{n+1} a_{1,2j-1}a_{1,2j})2^m} = \Big[\prod_{j=1}^{n+1} (x_{2j-1}^{a_{1,2j-1}} x_{2j}^{a_{1,2j}})^2 \Big] z^{(\sum\limits_{j=1}^{n+1} a_{1,2j-1}a_{1,2j})2^m} \\ &= \Big[\prod_{j=1}^{n+1} (x_{2j-1}^{2a_{1,2j-1}} x_{2j}^{2a_{1,2j}} z^{2^m a_{1,2j-1}a_{1,2j}}) \Big] z^{(\sum\limits_{j=1}^{n+1} a_{1,2j-1}a_{1,2j})2^m} \\ &= [x_1^{2a_{11}} z^{(\sum\limits_{j=1}^{n+1} a_{1,2j-1}a_{1,2j})2^m}] z^{(\sum\limits_{j=1}^{n+1} a_{1,2j-1}a_{1,2j})2^m} = x_1^2, \end{split}$$

and for any $i = 2, 3, \dots, 2n + 2$, we have that

$$\phi(x_i)^2 = \Big(\prod_{j=1}^{2n+2} x_j^{a_{ij}}\Big)^2 z^{(\sum_{j=1}^{n+1} a_{i,2j-1}a_{i,2j})2^m}_{j=1} = \Big[\prod_{j=1}^{n+1} (x_{2j-1}^{a_{i,2j-1}} x_{2j}^{a_{i,2j}})^2\Big] z^{(\sum_{j=1}^{n+1} a_{1,2j-1}a_{1,2j})2^m}_{j=1}$$

$$= \left[\prod_{j=1}^{n+1} \left(x_{2j-1}^{2a_{i,2j-1}} x_{2j}^{2a_{i,2j}} z^{2^m a_{i,2j-1} a_{i,2j}}\right)\right] z^{\left(\sum_{j=1}^{n+1} a_{i,2j-1} a_{1,2j}\right)2^m} \\ = z^{\left(\sum_{j=1}^{n+1} a_{1,2j-1} a_{1,2j}\right)2^m} z^{\left(\sum_{j=1}^{n+1} a_{1,2j-1} a_{1,2j}\right)2^m} = 1.$$

For $g_1, g_2 \in G$,

$$g_1 = y^{c_1} \Big(\prod_{i=1}^{2n+2} x_i^{a_i}\Big) \Big(\prod_{j=1}^r z_j^{b_j}\Big) z^{2d_1}, \quad g_2 = y^{c_2} \Big(\prod_{i=1}^{2n+2} x_i^{a_i'}\Big) \Big(\prod_{j=1}^r z_j^{b_j'}\Big) z^{2d_2},$$

we have that

$$\begin{split} g_{1}g_{2} &= y^{c_{1}} \Big(\prod_{i=1}^{2n+2} x_{i}^{a_{i}}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}}\Big) z^{2d_{1}} y^{c_{2}} \Big(\prod_{i=1}^{2n+2} x_{i}^{a_{i}'}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}'}\Big) z^{2d_{2}} \\ &= y^{c_{1}+c_{2}} \Big(\prod_{i=1}^{2n+2} x_{i}^{a_{i}}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}}\Big) z^{2d_{1}} [x_{1}^{a_{1}}, y^{c_{2}}] [x_{1}^{a_{1}}, y^{c_{2}}, x_{2}^{a_{2}}] [z^{2d_{1}}, y^{c_{2}}] \Big(\prod_{i=1}^{2n+2} x_{i}^{a_{i}'}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}'}\Big) z^{2d_{2}} \\ &= y^{c_{1}+c_{2}} \Big(\prod_{i=1}^{2n+2} x_{i}^{a_{i}}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}}\Big) z^{2d_{1}} \Big(\prod_{i=1}^{2n+2} x_{i}^{a_{i}'}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}'}\Big) z^{2d_{1}} \Big(\prod_{i=1}^{r} x_{i}^{a_{i}'}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}'}\Big) z^{2d_{1}} \Big(\prod_{j=1}^{2n+2} x_{i}^{a_{i}'}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}'}\Big) [x_{1}^{a_{1}}, y^{c_{2}}] [z^{2d_{1}}, y^{c_{2}}] \\ &\quad \cdot [x_{1}^{a_{1}}, y^{c_{2}}, x_{2}^{a_{2}'}] [z^{2d_{1}}, y^{c_{2}}, x_{2}^{a_{2}'}] z^{2d_{2}} \\ &= y^{c_{1}+c_{2}} \Big(\prod_{i=1}^{2n+2} x_{i}^{a_{i}+a_{i}'}\Big) \Big(\prod_{k=1}^{2n+2} \prod_{t=k+1}^{2n+2} [x_{t}^{a_{t}}, x_{k}^{a_{k}'}]\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}+b_{j}'}\Big) [x_{1}^{a_{1}}, y^{c_{2}}] [z^{2d_{1}}, y^{c_{2}}] \\ &\quad \cdot [z^{-a_{1}+(-1)^{c_{2}}a_{1}}, x_{2}^{a_{2}'}] [z^{2d_{1}+(-1)^{c_{2}}2d_{1}}, x_{2}^{a_{2}'}] z^{2(d_{1}+d_{2})} \\ &= y^{c_{1}+c_{2}} \Big(\prod_{i=1}^{2n+2} x_{i}^{a_{i}+a_{i}'}\Big) \Big(\prod_{k=1}^{2n+2} \prod_{t=k+1}^{2n+2} [x_{t}^{a_{t}}, x_{k}^{a_{k}'}]\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}+b_{j}'}\Big) [x_{1}^{a_{1}}, y^{c_{2}}] [z^{2d_{1}}, y^{c_{2}}] z^{2(d_{1}+d_{2})} \\ &= y^{c_{1}+c_{2}} \Big(\prod_{i=1}^{2n+2} x_{i}^{a_{i}+a_{i}'}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}+b_{j}'}\Big) z^{e}, \end{split}$$

where $z^e = \left(\prod_{k=1}^{2n+1} \prod_{t=k+1}^{2n+2} [x_t^{a_t}, x_k^{a'_k}]\right) [x_1^{a_1}, y^{c_2}] [z^{2d_1}, y^{c_2}] z^{2(d_1+d_2)}, 0 \le e < 2^{m+1}.$ Let $c_1 + c_2 = c + 2c', a_i + a'_i = t_i + 2s_i, b_j + b'_j = t'_j + 2s'_j, 2s_1 + e \equiv e_1 \pmod{2^{m+1}}$, where $0 \le c, t_i, t'_j < 2, c', s_i, s'_j \in \mathbb{Z}, 0 \le e_1 < 2^{m+1}, i = 1, 2, \cdots, 2n, j = 1, 2, \cdots, r$, then

$$\begin{split} \phi(g_1g_2) &= \phi \Big[y^{c_1+c_2} \Big(\prod_{i=1}^{2n+2} x_i^{a_i+a_i'} \Big) \Big(\prod_{j=1}^r z_j^{b_j+b_j'} \Big) z^e \Big] \\ &= \phi \Big[y^{c+2c'} \Big(\prod_{i=1}^{2n+2} x_i^{t_i+2s_i} \Big) \Big(\prod_{j=1}^r z_j^{t_j'+2s_j'} \Big) z^e \Big] \\ &= \phi \Big[y^c \Big(\prod_{i=1}^{2n+2} x_i^{t_i} \Big) \Big(\prod_{j=1}^r z_j^{t_j'} \Big) z^{e+2s_1} \Big] = (yx^t)^c \Big(\prod_{i=1}^{2n+2} \phi(x_i)^{t_i} \Big) \Big(\prod_{j=1}^r z_j^{t_j'} \Big) z^{e_1} , \\ \phi(g_1)\phi(g_2) &= (yx^t)^{c_1} \Big(\prod_{i=1}^{2n+2} \phi(x_i)^{a_i} \Big) z^{2d_1} (yx^t)^{c_2} \Big(\prod_{i=1}^{2n+2} \phi(x_i)^{a_i'} \Big) \Big(\prod_{j=1}^r z_j^{b_j+b_j'} \Big) z^{2d_2} \end{split}$$

$$\begin{split} &= (yx^{t})^{c_{1}+c_{2}} \Big(\prod_{i=1}^{2n+2} \phi(x_{i})^{a_{i}}\Big) z^{2d_{1}} [\phi(x_{1})^{a_{1}}, (yx^{t})^{c_{2}}] \\ &\cdot [\phi(x_{1})^{a_{1}}, (yx^{t})^{c_{2}}, \phi(x_{2})^{a_{2}}] [z^{2d_{1}}, (yx^{t})^{c_{2}}] \Big(\prod_{i=1}^{2n+2} \phi(x_{i})^{a_{i}'}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}+b_{j}'}\Big) z^{2d_{2}} \\ &= (yx^{t})^{c_{1}+c_{2}} \Big(\prod_{i=1}^{2n+2} \phi(x_{i})^{a_{i}}\Big) z^{2d_{1}} \Big(\prod_{i=1}^{2n+2} \phi(x_{i})^{a_{i}'}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}+b_{j}'}\Big) \\ &\cdot [\phi(x_{1})^{a_{1}}, \phi(y)^{c_{2}}] [z^{2d_{1}}, (yx^{t})^{c_{2}}] [\phi(x_{1}^{a_{1}}), (yx^{t})^{c_{2}}, \phi(x_{2})^{a_{2}'}] [z^{2d_{1}}, (yx^{t})^{c_{2}}, \phi(x_{2})^{a_{2}'}] z^{2d_{2}} \\ &= (yx^{t})^{c_{1}+c_{2}} \Big(\prod_{i=1}^{2n+2} \phi(x_{i})^{a_{i}}\Big) z^{2d_{1}} \Big(\prod_{i=1}^{2n+2} \phi(x_{i})^{a_{i}'}\Big) \Big(\prod_{j=1}^{r} z_{j}^{b_{j}+b_{j}'}\Big) [x_{1}^{a_{1}}, y^{c_{2}}] [z^{2d_{1}}, y^{c_{2}}] z^{2d_{2}} \\ &= (yx^{t})^{c_{1}+c_{2}} \Big(\prod_{i=1}^{2n+2} \phi(x_{i})^{a_{i}+a_{i}'}\Big) \Big(\prod_{k=1}^{2n+2} f(x_{k})^{a_{i}}, \phi(x_{k})^{a_{k}'}]\Big) \\ &\cdot \Big(\prod_{j=1}^{r} z_{j}^{b_{j}+b_{j}'}\Big) [x_{1}^{a_{1}}, y^{c_{2}}] [z^{2d_{1}}, y^{c_{2}}] z^{2(d_{1}+d_{2})} \\ &= (yx^{t})^{c} \Big(\prod_{i=1}^{2n+2} \phi(x_{i})^{t_{i}}\Big) \Big(\prod_{j=1}^{r} z_{j}^{t_{j}'}\Big) z^{e_{1}} = \phi(g_{1}g_{2}), \end{split}$$

therefore $\phi \in \operatorname{Aut} G$. Also since $\phi(z^2) = z^2$, $\phi \in \operatorname{Aut}_f G$ and $\Psi_2(\phi) = T$.

Conversely, take any $\varphi \in \operatorname{Aut}_f G$. Let $\Psi_2(\varphi) = T \in \operatorname{Sp}(2n+2,2)$, the matrix of T be (a_{ij}) relative to a basis $\{x_i \zeta C, i = 1, 2, \cdots, 2n+2\}$ of $C/\zeta C$, $\varphi(x_i) = \left(\prod_{k=1}^{2n+2} x_k^{a_{ik}}\right) \left(\prod_{j=1}^r z_j^{b_{ij}}\right) z^{2d_i}$, where $0 \leq b_{ik} < 2, i = 1, 2, \cdots, 2n+2, 0 \leq d_i < 2^m$.

Since

$$\begin{split} z^2 &= \varphi(z^2) = \varphi(x_1^2) = \varphi(x_1)^2 = \Big[\Big(\prod_{k=1}^{2n+2} x_k^{a_{1k}} \Big) \Big(\prod_{j=1}^r z_j^{b_{1j}} \Big) z^{2d_1} \Big]^2 \\ &= \Big[\prod_{k=1}^{n+1} (x_{2k-1}^{a_{1,2k-1}} x_{2k}^{a_{1,2k}})^2 \Big] \Big(\prod_{j=1}^r z_j^{2b_{1j}} \Big) z^{4d_1} \\ &= \Big[\prod_{k=1}^{n+1} (x_{2k-1}^{2a_{1,2k-1}} x_{2k}^{2a_{1,2k}} z^{2^m(a_{1,2k-1}a_{1,2k})}) \Big] \Big(\prod_{j=1}^r z_j^{2b_{1j}} \Big) z^{4d_1} \\ &= x_1^{2a_{11}} z^{(\sum_{k=1}^{n+1} 2^m(a_{1,2k-1}a_{1,2k})) + 4d_1} = z^{2a_{11} + 4d_1'}, \end{split}$$

where $d'_1 = \left(\sum_{k=1}^{n+1} 2^{m-2}(a_{1,2k-1}a_{1,2k})\right) + d_1$, $a_{11} + 2d'_1 \equiv 1 \pmod{2^m}$. From this, we have $a_{11} \equiv 1 \pmod{2}$, thus $a_{11} = 1$.

For $i = 2, \cdots, 2n + 2$,

$$1 = \varphi(x_i^2) = \varphi(x_i)^2 = \left[\left(\prod_{k=1}^{2n+2} x_k^{a_{ik}}\right) \left(\prod_{j=1}^r z_j^{b_{ij}}\right) z^{2d_i} \right]^2 = \left[\prod_{k=1}^{n+1} (x_{2k-1}^{a_{i,2k-1}} x_{2k}^{a_{i,2k}})^2 \right] \left(\prod_{j=1}^r z_j^{2b_{ij}}\right) z^{4d_i}$$

H. G. Liu and Y. L. Wang

$$= \left[\prod_{k=1}^{n+1} \left(x_{2k-1}^{2a_{i,2k-1}} x_{2k}^{2a_{i,2k}} z^{2^{m}(a_{i,2k-1}a_{i,2k})}\right)\right] \left(\prod_{j=1}^{r} z_{j}^{2b_{ij}}\right) z^{4d_{i}}$$
$$= x_{1}^{2a_{i1}} z^{\left(\sum_{k=1}^{n+1} 2^{m}(a_{i,2k-1}a_{i,2k})\right)+4d_{i}}_{k=1} = z^{2a_{i1}+4d_{i}'},$$

where $d'_i = \left(\sum_{k=1}^{n+1} 2^{m-2}(a_{i,2k-1}a_{i,2k})\right) + d_i$, therefore $a_{i1} + 2d'_1 \equiv 0 \pmod{2^m}$. From this, $a_{i1} \equiv 0 \pmod{2}$, thus $a_{i1} = 0$.

According to the results in [2], $\Psi_2(\varphi) = T \in \mathscr{B} \cong I \rtimes \operatorname{Sp}(2n, 2)$, where I is an elementary abelian 2-group with order 2^{2n+1} .

The theorem is proved.

Theorem 3.3 Im $\Psi_3 \cong \operatorname{GL}(r, 2)$.

Proof Since Frat $C = \langle z^2 \rangle$, $\{z_j \operatorname{Frat} C, j = 1, 2, \dots, r\}$ is a basis of $\zeta C/\operatorname{Frat} C$. It follows that $\zeta C/\operatorname{Frat} C$ is a linear space over GF(2) with dimension r, which implies that Im Ψ_3 can be embedded in GL(r, 2).

Conversely, for any $(d_{jk})_{r \times r} \in GL(r, 2)$, we may define a mapping:

$$\delta_1: G \to G,$$

$$y \mapsto y,$$

$$x_i \mapsto x_i, \quad i = 1, 2, \cdots, 2n + 2,$$

$$z_j \mapsto \prod_{k=1}^r z_k^{b_{jk}}, \quad j = 1, 2, \cdots, r.$$

It is easy to verify that $\delta_1 \in \operatorname{Aut}_f G$, and the matrix of $\Psi_2(\delta_1)$ is (b_{jk}) relative to a basis $\{z_j \operatorname{Frat} C, j = 1, 2, \cdots, r\}$ of $\zeta C/\operatorname{Frat} C$. Consequently, $\Psi_2(\operatorname{Aut}_f G) \cong \operatorname{GL}(r, 2)$.

The theorem is proved.

Theorem 3.4 Ker Ψ is a 2-group with order $2^{(2n+2)(r+1)+m+2r}$.

Proof Since Ker Ψ acts trivially on the factors of the series $G \ge C \ge \zeta C \ge \text{Frat } C \ge 1$, thus Ker Ψ is a 2-group.

Take any $\alpha \in \operatorname{Ker} \Psi$, let α be an automorphism as follows:

$$\begin{aligned} \alpha: \ G \to G, \\ y \mapsto y \Big(\prod_{i=1}^{2n+2} x_i^{a_i}\Big) \Big(\prod_{j=1}^r z_j^{b_j}\Big) z^{2a}, \\ x_i \mapsto x_i \Big(\prod_{j=1}^r z_j^{a_{ij}}\Big) z^{2c_i}, \quad i = 1, 2, \cdots, 2n+2, \\ z_j \mapsto z_j z^{2d_j}, \quad j = 1, 2, \cdots, r, \\ z^2 \mapsto z^2, \end{aligned}$$

where $0 \le a_i < 2, \ 0 \le b_j < 2, \ 0 \le a < 2^m, \ 0 \le a_{ij} < 2, \ 0 \le c_i < 2^m, \ 0 \le d_j < 2^m,$ $i = 1, 2, \dots, 2n+2, \ j = 1, 2, \dots, r.$

Since $\alpha(z)^2 = z^2$, $z^2 = \left(z \left(\prod_{j=1}^r z_j^{a_{1j}}\right) z^{2c_1}\right)^2 = z^{2+4c_1}$, which implies that $c_1 = 0$ or 2^{m-1} .

Since $\alpha(x_i)^2 = 1$, where $i = 2, \dots, 2n+2$, $1 = (x_i (\prod_{j=1}^r z_j^{a_{ij}}) z^{2c_i})^2 = z^{4c_i}$, which implies that $c_i \equiv 0 \pmod{2^{m-1}}$, consequently, $c_i = 0$ or 2^{m-1} .

Since $\alpha(y)$ is commutative with $\alpha(x_i)$, where $i = 3, 4, \cdots, 2n + 2$,

$$\begin{split} 1 &= \Big[y \Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big) \Big(\prod_{j=1}^r z_j^{b_j} \Big) z^{2a}, x_i \Big(\prod_{j=1}^r z_j^{a_{ij}} \Big) z^{2c_i} \Big] = \Big[y \Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big), x_i z^{2c_i} \Big] \\ &= \Big[y \Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big), z^{2c_i} \Big] \Big[y \Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big), x_i \Big]^{z^{2c_i}} \\ &= [y, z^{2c_i}]^{x_1^{a_1} x_2^{a_2}} [x_1^{a_1} x_2^{a_2}, z^{2c_i}] \Big[\Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big), x_i \Big] = z^{4c_i} \Big[\Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big), x_i \Big]. \end{split}$$

Note that $4c_i \equiv 0 \pmod{2^{m+1}}$. If *i* is odd, we can suppose that i = 2l+1, where $l = 1, 2, \dots, n$, then $z^{2^m a_{2l+2}} = z^{4c_{2l+1}+2^m a_{2l+2}} = 1$, which implies that $a_{2l+2} = 0$; if *i* is even, we can suppose that i = 2l, where $l = 2, \dots, n+1$, then $z^{2^m a_{2l-1}} = 1$, which implies that $a_{2l-1} = 0$. In a word, for $i = 3, 4, \dots, 2n+2$, we have that $a_i = 0$.

Since $\alpha(z)^{-2} = [\alpha(z), \alpha(y)],$

$$z^{-2-4c_1} = \left(z\left(\prod_{j=1}^r z_j^{a_{1j}}\right)z^{2c_1}\right)^{-2} = \left[z\left(\prod_{j=1}^r z_j^{a_{1j}}\right)z^{2c_1}, yz^{a_1}x^{a_2}\left(\prod_{j=1}^r z_j^{b_j}\right)z^{2a}\right] = z^{2^m a_2 - 2 - 4c_1},$$

which implies that $a_2 = 0$.

Since $\alpha(x)$ is commutative with $\alpha(y)$,

$$1 = \left[x_2 \left(\prod_{j=1}^r z_j^{a_{2j}} \right) z^{2c_2}, y z^{a_1} x^{a_2} \left(\prod_{j=1}^r z_j^{b_j} \right) z^{2a} \right] = z^{2^m a_1 - 4c_2}$$

Also since $c_2 = 2^{m-1}$ or 0, we have that $a_1 = 0$.

Since $\alpha(y)$ is commutative with $\alpha(z_j)$, where $j = 1, 2, \cdots, r$,

$$1 = \left[y \left(\prod_{j=1}^{r} z_{j}^{b_{j}} \right) z^{2a}, z_{j} z^{2d_{j}} \right] = z^{4d_{j}},$$

which implies that $d_i = 0$ or 2^{m-1} .

Since $\alpha(z_j)^2 = (z_j z^{2d_j})^2 = z^{4d_j}$, where $j = 1, 2, \dots, r, d_j = 0$ or 2^{m-1} .

It is easy to verify generated relations of H_4 and H_5 have no effect on the parameters of α . In conclusion, α is an automorphism as follows:

$$\alpha: G \to G,$$

$$y \mapsto y \Big(\prod_{j=1}^r z_j^{b_j}\Big) z^{2a},$$

$$x_i \mapsto x_i \Big(\prod_{j=1}^r z_j^{a_{ij}}\Big) z^{2c_i}, \quad i = 1, 2, \cdots, 2n+2,$$

$$z_j \mapsto z_j z^{2d_j}, \quad j = 1, 2, \cdots, r,$$

where $0 \le b_j < 2, 0 \le a < 2^m, 0 \le a_{ij} < 2, c_i = 0$ or $2^{m-1}, d_j = 0$ or $2^{m-1}, i = 1, 2, \dots, 2n+2, j = 1, 2, \dots, r$.

Conversely, if α is an automorphism of G, which satisfies the above conditions, then $\alpha \in \text{Ker } \Psi$. It follows that $|\text{Ker } \Psi| = 2^{(2n+2)(r+1)+m+2r}$.

The theorem is proved.

4 Proof of Theorem 1.3

Since D_8^{*n} is an extraspecial 2-group, we can suppose that $x_1, x_2, \dots, x_{2n-1}, x_{2n}, y^{2^m}$ are the generators of D_8^{*n} , which satisfy the following conditions:

$$\zeta D_8^{*n} = \langle y^{2^m} \rangle,$$

$$[x_{2i-1}, x_{2i}] = y^{2^m}, \quad i = 1, 2, \cdots, n,$$

$$[x_{2i-1}, x_j] = 1, \quad j = \neq 2i,$$

$$[x_{2i}, x_k] = 1, \quad k \neq 2i - 1,$$

$$x_i^2 = 1, \quad i = 1, 2, \cdots, n.$$

According to (3) in Lemma 1.6,

$$C = \langle x_1, x_2, y \rangle * \langle x_3, x_4, y \rangle * \dots * \langle x_{2n-1}, x_{2n}, y \rangle \times \langle z y^{2^{m-1}} \rangle \times R$$

For convenience, we may let $z_{r+1} := zy^{2^{m-1}}$, then $[z_{r+1}, x] = y^{2^m}$. Let $R_1 := R \times \langle z_{r+1} \rangle$.

Let Φ : Aut $G \to \operatorname{Aut}(\operatorname{Frat} C)$ be the restriction homomorphism. Obviously, Ker $\Phi = \operatorname{Aut}_f G \trianglelefteq \operatorname{Aut} G$. According to (3) in Lemma 1.6, Frat $C = \langle y^2 \rangle$.

Theorem 4.1

$$\operatorname{Im} \Phi \cong \begin{cases} \mathbb{Z}_2, & \text{if } m = 2, \\ \mathbb{Z}_{2^{m-2}} \times \mathbb{Z}_2, & \text{if } m \ge 3. \end{cases}$$

Proof If m = 2, then Frat $C \cong \mathbb{Z}_4$, therefore Aut(Frat C) $\cong \mathbb{Z}_2$. Define a mapping:

$$\sigma_{5}: G \to G,$$

$$x_{2i-1} \mapsto x_{2i-1}^{3}, \quad i = 1, 2, \cdots, n,$$

$$x_{2i} \mapsto x_{2i}, \quad i = 1, 2, \cdots, n,$$

$$z_{j} \mapsto z_{j}, \quad j = 1, 2, \cdots, r+1,$$

$$x \mapsto x,$$

$$y \mapsto y^{3}.$$

It is easy to verify that σ_5 is an automorphism of G with order 2. Since $\Phi(\sigma_5)(y^2) = (y^2)^3$ and $\Phi(\sigma_5)^2(y^2) = y^2$, Aut(Frat $C) = \langle \Phi(\sigma_5) \rangle$. It follows that Aut $G = \operatorname{Aut}_f G \rtimes \langle \sigma_5 \rangle$.

If $m \ge 3$, then $\mathbb{Z}_{2^m}^* = \langle v_1 \rangle \times \langle v_2 \rangle$, where $v_1 = 3$ and $v_2 = 2^m - 1$. By Lemma 1.5, the orders of v_1 and v_2 are 2^{m-2} and 2, respectively. Define a mapping:

$$\sigma_{6}: G \to G,$$

$$x_{2i-1} \mapsto x_{2i-1}^{2^{m}-1}, \quad i = 1, 2, \cdots, n,$$

$$x_{2i} \mapsto x_{2i}, \quad i = 1, 2, \cdots, n,$$

$$z_{j} \mapsto z_{j}, \quad j = 1, 2, \cdots, r+1,$$

$$x \mapsto x^{2^{m}-1},$$

$$y \mapsto y^{2^{m}-1}.$$

It is easy to verify σ_5 and σ_6 are the commutative automorphisms of G each other and their orders are 2^{m-1} and 2, respectively.

According to the argument in Theorem 2.1, we similarly have that $\operatorname{Aut} G = \langle \sigma_5, \sigma_6 \rangle \operatorname{Aut}_f G$, $\langle \sigma_5, \sigma_6 \rangle \cap \operatorname{Aut}_f G = \langle \sigma_5^{2^{m-2}} \rangle$, thus $\operatorname{Aut} G / \operatorname{Aut}_f G \cong \mathbb{Z}_{2^{m-2}} \times \mathbb{Z}_2$.

The theorem is proved.

Let Ψ_1 : Aut_f $G \to \text{Aut}(G/C)$, Ψ_2 : Aut_f $G \to \text{Aut}(C/\zeta C)$ and Ψ_3 : Aut_f $G \to \text{Aut}(\zeta C/\text{Frat } C)$ be the natural induced homomorphisms. Define a homomorphic mapping:

$$\Psi: \operatorname{Aut}_{f} G \to \operatorname{Aut}(G/C) \times \operatorname{Aut}(C/\zeta C) \times \operatorname{Aut}(\zeta C/\operatorname{Frat} C),$$
$$\alpha \mapsto (\Psi_{1}(\alpha), \Psi_{2}(\alpha), \Psi_{3}(\alpha)).$$

Since $G/C = \langle xC \rangle \cong \mathbb{Z}_2$, Im $\Psi_1 = \operatorname{Aut}(G/C) = 1$. Since $\zeta C = \langle y \rangle \times R_1$, we may define the inner product as follows:

$$f(\overline{a},\overline{b}) = t$$
, where $\overline{a} = a\zeta C$, $\overline{b} = b\zeta C$, $a, b \in C$ and $[a,b] = (y^{2^m})^t$, $0 \le t < 2$.

From this, $C/\zeta C$ can become a nondegenerate symplectic space over GF(2). For $\alpha \in \operatorname{Aut}_f G$, $[\alpha(a), \alpha(b)] = \alpha[a, b] = [a, b]$, thus, for any $\overline{a} = a\zeta C$, $\overline{b} = b\zeta C \in C/\zeta C$, we have that

$$f(\Psi_2(\alpha)(\overline{a}), \Psi_2(\alpha)(\overline{b})) = f(\overline{\alpha(a)}, \overline{\alpha(b)}) = f(\overline{a}, \overline{b})$$

therefore $\Psi_2(\alpha) \in \text{Sp}(2n, 2)$. Hence $\Psi_2(\text{Aut}_f G) \leq \text{Sp}(2n, 2)$. It follows that Ψ is a homomorphism as follows:

$$\begin{split} \Psi: \ \operatorname{Aut}_f G &\to \operatorname{Aut}(G/C) \times \operatorname{Sp}(2n,2) \times \operatorname{Aut}(\zeta C/\operatorname{Frat} C), \\ \alpha &\mapsto (\Psi_1(\alpha), \Psi_2(\alpha), \Psi_3(\alpha)). \end{split}$$

Theorem 4.2 Im $\Psi_2 = \text{Sp}(2n, 2)$.

Proof Take any $T \in \text{Sp}(2n, 2)$, let (a_{ik}) be the matrix of T relative to a basis $\{x_i \zeta C, i = 1, 2, \dots, 2n\}$ of $C/\zeta C$. Define a mapping:

$$\phi: \ G \to G,$$
$$x^{c} \Big(\prod_{i=1}^{2n} x_{i}^{a_{i}}\Big) \Big(\prod_{j=1}^{r+1} z_{j}^{b_{j}}\Big) y^{d} \mapsto x^{c} \Big(\prod_{i=1}^{2n} \Big(\prod_{k=1}^{2n} x_{k}^{a_{ik}}\Big)^{a_{i}}\Big) \Big(\prod_{j=1}^{r+1} z_{j}^{b_{j}}\Big) y^{d'},$$

where $0 \le a_i < 2, i = 1, 2, \dots, 2n, 0 \le b_j < 2, j = 1, 2, \dots, r+1, 0 \le c < 2, 0 \le d < 2^{m+1}, d' \equiv d + \sum_{i=1}^{2n} 2^{m-1} a_i \left(\sum_{j=1}^n (a_{i,2j-1} \cdot a_{i,2j}) \right) \pmod{2^{m+1}}.$

Note that (a_{ik}) is a nonsingular matrix. It is easy to verify ϕ is a bijection. Therefore, ϕ is an automorphism of G if and only if ϕ preserves multiplications.

According to the argument in Theorem 2.2, we similarly have that $\text{Im } \Psi_1 = \text{Sp}(2n, 2)$. The theorem is proved.

Theorem 4.3 Im $\Psi_3 \cong \operatorname{GL}(r,2) \ltimes (\mathbb{Z}_2)^{2r}$.

 $\mathbf{Proof} \ \mathrm{Let}$

$$\mathscr{C} := \left\{ \left(\begin{array}{cc} A_{11} & 0 \\ A_{21} & I_2 \end{array} \right) \in \mathrm{GL}(r+2,2) \right\},$$

where A_{11} is a $r \times r$ matrix, A_{21} is a $2 \times r$ matrix, I_2 is a 2×2 identity matrix. It is easy to verify that $\mathscr{A} \leq \operatorname{GL}(r+2,2)$. For convenience, we may let $z_{r+2} := y$.

Take any $\alpha \in \operatorname{Aut}_f G$. Let (a_{jk}) be the $(r+2) \times (r+2)$ matrix of $\Psi_3(\alpha)$ relative to a basis $\{z_j \operatorname{Frat} C, j = 1, 2, \cdots, r+2\}$ of $\zeta C/\operatorname{Frat} C$.

Let (a_{jk}) be the partitioned matrix as follows:

$$(a_{jk}) = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \in \mathrm{GL}(r+2,2),$$

where A_{11} , A_{12} , A_{21} and A_{22} are $r \times r$, $r \times 2$, $2 \times r$ and 2×2 matrices, respectively.

Since $\Psi_3(\alpha)(\overline{z}_j) = \prod_{k=1}^{r+2} \overline{z}_k^{a_{jk}}$, where $j = 1, 2, \cdots, r+2$, there exists $0 \le a_j < 2^m$ such that

$$\alpha(z_j) = \left(\prod_{k=1}^{n} z_k^{a_{jk}}\right) y^{2a_j}.$$

For $j = 1, 2, \dots, r+1, z_j^2 = 1$, thus

$$1 = \alpha(z_j^2) = \alpha(z_j)^2 = \left(\prod_{k=1}^{2a_{jk}} y^{2^2a_j} = y^{2a_{j,r+2}+2^2a_j}\right).$$

Hence $a_{j,r+2} + 2a_j \equiv 0 \pmod{2^m}$. But m > 1 and $0 \le a_{j,r+2} < 2$, then, for $j = 1, 2, \dots, r+1$, $a_{j,r+2} = 0, a_j = 0$ or 2^{m-1} .

Since

$$y^{2} = z_{r+2}^{2} = \alpha(z_{r+2}^{2}) = \alpha(z_{r+2})^{2} = \left(\prod_{k=1}^{r+2} z_{k}^{2a_{r+2,k}}\right) y^{2^{2}a_{r+2}}$$
$$= z_{r+2}^{2a_{r+2,r+2}+2^{2}a_{r+2}} = (y^{2})^{a_{r+2,r+2}+2a_{r+2}},$$

 $a_{r+2,r+2} + 2a_{r+2} \equiv 1 \pmod{2^m}$. But m > 1 and $0 \le a_{r+2,r+2} < 2$, thus $a_{r+2,r+2} = 1$, $a_{r+2} = 0$ or 2^{m-1} .

Let $\alpha(x) = x \Big(\prod_{i=1}^{2n} x_i^{a_i}\Big) \Big(\prod_{j=1}^{r+1} z_j^{b_j}\Big) y^d$, where $0 \le a_i < 2, \ 0 \le b_j < 2, \ 0 \le c < 2, \ 0 \le d < 2^{m+1}$, $i = 1, 2, \cdots, 2n, \ j = 1, 2, \cdots, r+1$. Then, for any $j = 1, 2, \cdots, r$,

$$1 = [\alpha(x), \alpha(z_j)] = \left[x \Big(\prod_{i=1}^{2n} x_i^{a_i} \Big) \Big(\prod_{j=1}^{r+1} z_j^{b_j} \Big) y^d, \Big(\prod_{k=1}^{r+2} z_k^{a_{jk}} \Big) y^{2a_j} \right]$$
$$= [x, z_{r+1}^{a_{j,r+1}} y^{2a_j}] = [x, z_{r+1}^{a_{j,r+1}}] = y^{2^m a_{j,r+1}}.$$

From this, $2^m a_{j,r+1} \equiv 0 \pmod{2^{m+1}}$, thus $a_{j,r+1} = 0$. Since

$$y^{2^{m}} = \alpha(y^{2^{m}}) = [\alpha(x), \alpha(z_{r+1})]$$

= $\left[x\left(\prod_{i=1}^{2n} x_{i}^{a_{i}}\right)\left(\prod_{j=1}^{r+1} z_{j}^{b_{j}}\right)y^{d}, \left(\prod_{k=1}^{r+2} z_{k}^{a_{r+1,k}}\right)y^{2a_{r+1}}\right] = [x, z_{r+1}^{a_{r+1,r+1}}y^{2a_{r+1}}] = y^{2^{m}a_{r+1,r+1}},$

 $2^{m}a_{r+1,r+1} \equiv 1 \pmod{2^{m+1}}$. Thus $a_{r+1,r+1} = 1$. If $H = H_6$, then

$$y^2 = \alpha(y^2) = [\alpha(x), \alpha(z_{r+2})]$$

$$= \left[x\left(\prod_{i=1}^{2n} x_i^{a_i}\right)\left(\prod_{j=1}^{r+1} z_j^{b_j}\right)y^d, \left(\prod_{k=1}^{r+2} z_k^{a_{r+2,k}}\right)y^{2a_{r+2}}\right] = [x, z_{r+1}^{a_{r+2,r+1}}y] = y^{2+2^m a_{r+2,r+1}},$$

which implies that $2 + 2^{m}a_{r+2,r+1} \equiv 2 \pmod{2^{m+1}}$, therefore $a_{r+2,r+1} = 0$; if $H = H_7$, then

$$y^{2-2^{m}} = \alpha(y^{2-2^{m}}) = [\alpha(x), \alpha(z_{r+2})]$$
$$= \left[x\left(\prod_{i=1}^{2n} x_{i}^{a_{i}}\right)\left(\prod_{j=1}^{r+1} z_{j}^{b_{j}}\right)y^{d}, \left(\prod_{k=1}^{r+2} z_{k}^{a_{r+2,k}}\right)y^{2a_{r+2}}\right] = [x, z_{r+1}^{a_{r+2,r+1}}y] = y^{2-2^{m}+2^{m}a_{r+2,r+1}},$$

which implies that $2^m a_{r+2,r+1} \equiv 0 \pmod{2^{m+1}}$, therefore $a_{r+2,r+1} = 0$.

Conversely, for any $\begin{pmatrix} B_{11} & 0\\ B_{21} & I_2 \end{pmatrix} = (b_{jk}) \in \mathscr{C}$. Define a mapping:

$$\delta_2: \ G \to G,$$

$$x \mapsto x,$$

$$x_i \mapsto x_i, \quad i = 1, 2, \cdots, 2n,$$

$$z_j \mapsto \prod_{k=1}^{r+2} z_k^{b_{jk}}, \quad j = 1, 2, \cdots, r+2.$$

It is easy to verify that $\delta_2 \in \operatorname{Aut} G$. Also since

$$\delta_2(y^2) = \delta(y)^2 = \left(\prod_{k=1}^r z_k^{b_{r+2,k}} y\right)^2 = y^2,$$

 $\delta_2 \in \operatorname{Aut}_f G$, and the matrix of $\Psi_2(\delta_2)$ is (b_{jk}) relative to a basis $\{z_j \operatorname{Frat} C, j = 1, 2, \cdots, r+2\}$ of $\zeta C/\mathrm{Frat}\,C. \text{ Thus Im }\Psi_2\cong \mathscr{C}. \text{ Also since }\mathscr{C}\cong \mathrm{GL}(r,2)\ltimes (\mathbb{Z}_2)^{2r}, \ \Psi_2(\mathrm{Aut}_f\,G)\cong \mathrm{GL}(r,2)\ltimes (\mathbb{Z}_2)^{2r}.$

The theorem is proved.

Theorem 4.4 Ker Ψ is a 2-group with order $2^{(2n+2)(r+2)+m-1}$.

Proof Since Ker Ψ acts trivially on the factors of the series $G \ge C \ge \zeta C \ge$ Frat $C \ge 1$, Ker Ψ is a 2-group.

Take any $\alpha \in \operatorname{Ker} \Psi$. Let

$$\alpha: G \to G,$$

$$x \mapsto x \Big(\prod_{i=1}^{2n} x_i^{a_i}\Big) \Big(\prod_{j=1}^{r+2} z_j^{b_j}\Big),$$

$$x_i \mapsto x_i \Big(\prod_{j=1}^{r+2} z_j^{a_{ij}}\Big), \quad i = 1, 2, \cdots, 2n,$$

$$z_k \mapsto z_k y^{2c_k}, \quad k = 1, 2, \cdots, r+2,$$

$$y^2 \mapsto y^2,$$

where $z_{r+2} = y, 0 \le a_i < 2, 0 \le b_j < 2, 0 \le b_{r+2} < 2^{m+1}, 0 \le a_{ij} < 2, 0 \le a_{i,r+2} < 2^{m+1}, 0 \le c_k < 2^m, i = 1, 2, \dots, 2n, j = 1, 2, \dots, r+1, k = 1, 2, \dots, r+2.$ Since $\alpha(x_i)^2 = 1$, where $i = 1, 2, \dots, 2n, 1 = \left(x_i \left(\prod_{j=1}^{r+2} z_j^{a_{ij}}\right)\right)^2 = y^{2a_{i,r+2}}$, which implies that

 $a_{i,r+2} \equiv 0 \pmod{2^m}$, that is $a_{i,r+2} = 0$ or 2^m .

Since $\alpha(x)$ is commutative with $\alpha(x_i)$,

$$\begin{split} 1 &= \Big[x \Big(\prod_{i=1}^{2n} x_i^{a_i} \Big) \Big(\prod_{j=1}^{r+2} z_j^{b_j} \Big), x_i \Big(\prod_{j=1}^{r+2} z_j^{a_{ij}} \Big) \Big] = \Big[x \Big(\prod_{i=1}^{2n} x_i^{a_i} \Big), x_i z_{r+1}^{a_{i,r+1}} y^{a_{i,r+2}} \Big] \\ &= \Big[x \Big(\prod_{i=1}^{2n} x_i^{a_i} \Big), z_{r+1}^{a_{i,r+1}} y^{a_{i,r+2}} \Big] \Big[x \Big(\prod_{i=1}^{2n} x_i^{a_i} \Big), x_i \Big]^{z_{r+1}^{a_{i,r+1}} y^{a_{i,r+2}}} \\ &= [x, z_{r+1}^{a_{i,r+1}} y^{a_{i,r+2}}] \Big[\Big(\prod_{i=1}^{2n} x_i^{a_i} \Big), x_i \Big] \\ &= [x, z_{r+1}^{a_{i,r+1}}] \Big[\Big(\prod_{i=1}^{2n} x_i^{a_i} \Big), x_i \Big]. \end{split}$$

If *i* is odd, let i = 2l - 1, where $l = 1, 2, \dots, n$, then $y^{2^m(a_{2l-1,r+1}+a_{2l})} = 1$, which implies that $a_{2l-1,r+1} + a_{2l} \equiv 0 \pmod{2}$. If *i* is even, let i = 2l, where $l = 1, 2, \dots, n$, then $y^{2^m(a_{2l,r+1}+a_{2l-1})} = 1$, which implies that $a_{2l,r+1} + a_{2l-1} \equiv 0 \pmod{2}$.

Since $\alpha(x)$ is commutative with $\alpha(z_k)$, where $k = 1, 2, \cdots, r$,

$$1 = \left[x\left(\prod_{i=1}^{2n} x_i^{a_i}\right)\left(\prod_{j=1}^{r+2} z_j^{b_j}\right), z_k y^{2c_k}\right] = [x, y^{2c_k}].$$

If $H = H_6$ or $H = H_7$, then $y^{4c_k} = 1$, thus $c_k = 0$ or 2^{m-1} . Also since

$$y^{2^m} = [\alpha(x), \alpha(z_{r+1})] = [x, z_{r+1}y^{2c_{r+1}}] = y^{2^m + 4c_{r+1}}$$

 $y^{2^m} = y^{2^m + 4c_{r+1}}$, which implies that $4c_{r+1} \equiv 0 \pmod{2^{m+1}}$, that is $c_{r+2} = 0$ or 2^{m-1} . If $H = H_6$,

$$y^{2} = [\alpha(x), \alpha(z_{r+2})] = [x, yy^{2c_{r+2}}] = y^{2+4c_{r+2}}$$

,

thus $4c_{r+2} \equiv 0 \pmod{2^{m+1}}$, that is $c_{r+2} = 0$ or 2^{m-1} . If $H = H_7$,

$$y^{2-2^m} = [\alpha(x), \alpha(z_{r+2})] = [x, yy^{2c_{r+2}}] = y^{2-2^m+4c_{r+2}}$$

thus $4c_{r+2} \equiv 0 \pmod{2^{m+1}}$, that is $c_{r+2} = 0$ or 2^{m-1} . In conclusion, for $k = 1, 2, \dots, r+2$, $c_k = 0$ or 2^{m-1} .

If $H = H_6$,

$$1 = \alpha(x)^{2} = \left(x \left(\prod_{i=1}^{2n} x_{i}^{a_{i}}\right) \left(\prod_{j=1}^{r+2} z_{j}^{b_{j}}\right)\right)^{2} = y^{2^{m}(b_{r+1} + \sum_{l=1}^{n} a_{2l-1}a_{2l})},$$

thus $b_{r+1} + \sum_{l=1}^{n} a_{2l-1} a_{2l} \equiv 0 \pmod{2}$; if $H = H_7$,

$$1 = \alpha(x)^{2} = \left(x \left(\prod_{i=1}^{2n} x_{i}^{a_{i}}\right) \left(\prod_{j=1}^{r+2} z_{j}^{b_{j}}\right)\right)^{2} = y^{2^{m}(b_{r+1}+b_{r+2}+\sum_{l=1}^{n} a_{2l-1}a_{2l})},$$

thus $b_{r+1} + b_{r+2} + \sum_{l=1}^{n} a_{2l-1} a_{2l} \equiv 0 \pmod{2}.$

For $k = 1, 2, \dots, r+1, 1 = \alpha(z_k)^2 = z_k^2 y^{2c_k} = y^{4c_k}$, thus $4c_k \equiv 0 \pmod{2^{m+1}}$, which implies that $c_k = 0$ or 2^{m-1} . Also since $y^2 = \alpha(y^2) = (y^{1+c_{r+2}})^2 = y^{2+4c_{r+2}}, 4c_{r+2} \equiv 0 \pmod{2^{m+1}}$, which implies that $c_{r+2} = 0$ or 2^{m-1} .

It is easy to verify other generated relations of H_6 and H_7 which have no effect on the parameters of α .

In conclusion, α is an automorphism as follows:

$$\alpha: G \to G,$$

$$x \mapsto x \Big(\prod_{i=1}^{2n} x_i^{a_i}\Big) \Big(\prod_{j=1}^{r+2} z_j^{b_j}\Big),$$

$$x_i \mapsto x_i \Big(\prod_{j=1}^{r+2} z_j^{a_{ij}}\Big), \quad i = 1, 2, \cdots, 2n,$$

$$z_k \mapsto z_k y^{2c_k}, \quad k = 1, 2, \cdots, r+2,$$

where $z_{r+2} = y, 0 \le b_j < 2, 0 \le a_{ij} < 2, b_{r+1} + \sum_{l=1}^n a_{2l-1}a_{2l} \equiv 0 \pmod{2}$ (if $H = H_6$) or $b_{r+1} + b_{r+2} + \sum_{l=1}^n a_{2l-1}a_{2l} \equiv 0 \pmod{2}$ (if $H = H_7$), $0 \le b_{r+2} < 2^{m+1}, a_{2l-1,r+1} + a_{2l} \equiv 0 \pmod{2}$, $a_{2l,r+1} + a_{2l-1} \equiv 0 \pmod{2}, a_{i,r+2} = 0$ or $2^m, c_k = 0$ or $2^{m-1}, i = 1, 2, \cdots, 2n, j = 1, 2, \cdots, r, k = 1, 2, \cdots, r + 2, l = 1, 2, \cdots, n$.

Conversely, if α is an automorphism of G, which satisfies the above conditions, then $\alpha \in \operatorname{Ker} \Psi$. It follows that $|\operatorname{Ker} \Psi| = 2^{(2n+2)(r+2)+m-1}$.

The theorem is proved.

5 Proof of Theorem 1.4

For convenience, we may suppose that $x_3, x_4, \dots, x_{2n+1}, x_{2n+2}, z^{2^m}$ are the generators of D_8^{*n} , which satisfy the following conditions:

$$\zeta D_8^{*n} = \langle z^{2^m} \rangle,$$

$$[x_{2i-1}, x_{2i}] = z^{2^m}, \quad i = 2, 3, \cdots, n,$$

$$[x_{2i-1}, x_j] = 1, \quad j \neq 2i,$$

$$[x_{2i}, x_k] = 1, \quad k \neq 2i - 1,$$

$$x_i^2 = 1, \quad i = 2, 3, \cdots, n.$$

According to (4) in Lemma 1.6,

$$C = \langle x_1, x_2 \rangle * \langle x_3, x_4, z^2 \rangle * \langle x_5, x_6, z^2 \rangle * \dots * \langle x_{2n+1}, x_{2n+2}, z^2 \rangle \times R \cong M_m(2) * N_m(2)^{*n} \times R,$$

where $x_1 := z, x_2 := x$.

Let Φ : Aut $G \to \operatorname{Aut}(\operatorname{Frat} C)$ be the restriction homomorphism. Obviously, Ker $\Phi = \operatorname{Aut}_f G \leq \operatorname{Aut} G$. According to (4) in Lemma 1.6, Frat $C = \langle z^2 \rangle = \operatorname{Frat} G \cong \mathbb{Z}_{2^m}$.

Theorem 5.1

$$\operatorname{Im} \Phi \cong \begin{cases} \mathbb{Z}_2, & \text{if } m = 2, \\ \mathbb{Z}_{2^{m-2}} \times \mathbb{Z}_2, & \text{if } m \ge 3. \end{cases}$$

Proof If m = 2, then Frat $C \cong \mathbb{Z}_4$, thus Aut(Frat $C) \cong \mathbb{Z}_2$. Define a mapping:

$$\sigma_7: G \to G,$$

$$x_{2i-1} \mapsto x_{2i-1}^3, \quad i = 1, 2, \cdots, n+1,$$

$$x_{2i} \mapsto x_{2i}, \quad i = 1, 2, \cdots, n+1,$$

$$z_j \mapsto z_j, \quad j = 1, 2, \cdots, r,$$

$$y \mapsto y,$$

$$u \mapsto u^3.$$

It is easy to verify that σ_7 is an automorphism of G, which is of order 2. Since $\Phi(\sigma_7)(z^2) = (z^2)^7$ and $\Phi(\sigma_7)^2(z^2) = z^2$, Aut(Frat $C) = \langle \Phi(\sigma_7) \rangle$. It follows that Aut $G = \operatorname{Aut}_f G \rtimes \langle \sigma_7 \rangle$.

If $m \ge 3$, then $\mathbb{Z}_{2^m}^* = \langle v_1 \rangle \times \langle v_2 \rangle$, where $v_1 = 3$ and $v_2 = 2^m - 1$ and their orders are 2^{m-2} and 2 by Lemma 1.5, respectively. Define a mapping:

$$\sigma_8: G \to G,$$

$$x_{2i-1} \mapsto x_{2i-1}^{2^m-1}, \quad i = 1, 2, \cdots, n+1,$$

$$x_{2i} \mapsto x_{2i}, \quad i = 1, 2, \cdots, n+1,$$

$$z_j \mapsto z_j, \quad j = 1, 2, \cdots, r,$$

$$y \mapsto y,$$

$$u \mapsto u^{2^m-1}.$$

It is easy to verify that σ_7 and σ_8 are the commutative automorphisms of G each other and their orders are 2^{m-1} and 2, respectively.

By means of the argument in Theorem 2.1, we similarly have that $\operatorname{Aut} G = \langle \sigma_7, \sigma_8 \rangle \operatorname{Aut}_f G$, and $\langle \sigma_7, \sigma_8 \rangle \cap \operatorname{Aut}_f G = \langle \sigma_7^{2^{m-2}} \rangle$. It follows that $\operatorname{Aut} G / \operatorname{Aut}_f G \cong \mathbb{Z}_{2^{m-2}} \times \mathbb{Z}_2$.

The theorem is proved.

Let

$$\begin{split} \Psi_1 &: \operatorname{Aut}_f G \to \operatorname{Aut}(G/C), \\ \Psi_2 &: \operatorname{Aut}_f G \to \operatorname{Aut}(C/\zeta C) \\ \Psi_3 &: \operatorname{Aut}_f G \to \operatorname{Aut}(\zeta C/\operatorname{Frat} C) \end{split}$$

be the natural induced homomorphisms. From this, we can obtain the below homomorphism:

$$\Psi: \operatorname{Aut}_{f} G \to \operatorname{Aut}(G/C) \times \operatorname{Aut}(C/\zeta C) \times \operatorname{Aut}(\zeta C/\operatorname{Frat} C),$$
$$\alpha \mapsto (\Psi_{1}(\alpha), \Psi_{2}(\alpha), \Psi_{3}(\alpha)).$$

Since $G/C = \langle yC \rangle \cong \mathbb{Z}_2$, Im $\Psi_1 = \operatorname{Aut}(G/C) = 1$. Since $\zeta C = (\langle z^2 \rangle \times R) \cdot \langle u \rangle$, we can define the inner product as follows:

$$f(\overline{a},\overline{b}) = t$$
, where $\overline{a} = a\zeta C$, $\overline{b} = b\zeta C$, $a, b \in C$ and $[a,b] = (z^{2^m})^t$, $0 \le t < 2$.

Hence $C/\zeta C$ can become a nondegenerated symplectic space over GF(2). For any $\alpha \in \operatorname{Aut}_f G$, $[\alpha(a), \alpha(b)] = \alpha[a, b] = [a, b]$, then, for any $\overline{a} = a\zeta C$, $\overline{b} = b\zeta C \in C/\zeta C$,

$$f(\Psi_2(\alpha)(\overline{a}), \Psi_2(\alpha)(\overline{b})) = f(\overline{\alpha(a)}, \overline{\alpha(b)}) = f(\overline{a}, \overline{b}),$$

therefore $\Psi_2(\alpha) \in \text{Sp}(2n, 2)$. Thus $\Psi_2(\text{Aut}_f G) \leq \text{Sp}(2n, 2)$. In a word, Ψ is a homomorphism as follows:

$$\Psi: \operatorname{Aut}_{f} G \to \operatorname{Aut}(G/C) \times \operatorname{Sp}(2n, 2) \times \operatorname{Aut}(\zeta C/\operatorname{Frat} C),$$
$$\alpha \mapsto (\Psi_{1}(\alpha), \Psi_{2}(\alpha), \Psi_{3}(\alpha)).$$

Theorem 5.2 Im $\Psi_2 = I \rtimes \text{Sp}(2n, 2)$, where I is an elementary abelian 2-group with order 2^{2n+1} .

Proof Let $\mathscr{D} := \{T \in \operatorname{Sp}(2n+2,2) \mid \text{the first column and second row of the matrix of } T \text{ are } (1,0,\cdots,0)^{\mathrm{T}} \text{ and } (0,1,0,\cdots,0) \text{ relative to a basis } x_1\zeta C, x_2\zeta C,\cdots, x_{2n+2}\zeta C \text{ of } C/\zeta C, \text{ respectively}\}.$

Take any $T \in \mathscr{D}$. Let (a_{ik}) be the matrix of T relative to a basis $\{x_i \zeta C, i = 1, 2, \cdots, 2n+2\}$ of $C/\zeta C$. Define a mapping:

$$\phi: \ G \to G,$$

$$y^{c} \Big(\prod_{i=1}^{2n+2} x_{i}^{a_{i}}\Big) \Big(\prod_{j=1}^{r+1} z_{j}^{b_{j}}\Big) z^{2d} \mapsto (yx^{t})^{c} \Big(\prod_{i=1}^{2n+2} \Big(\prod_{k=1}^{2n+2} x_{k}^{a_{ik}}\Big)^{a_{i}}\Big) \Big(\prod_{j=1}^{r+1} z_{j}^{b_{j}}\Big) z^{2d'},$$

where $z_{r+1} := u, 0 \le a_i < 2, i = 1, 2, \dots, 2n+2, 0 \le b_j < 2, j = 1, 2, \dots, r+1, 0 \le c < 2, 0 \le d < 2^m, d' \equiv d + \sum_{i=1}^{2n+2} 2^{m-2} a_i \left(\sum_{k=1}^{n+1} (a_{i,2k-1} \cdot a_{i,2k}) \right) \pmod{2^m}, t = 0$ (if $\sum_{k=1}^{n+1} (a_{1,2k-1} a_{1,2k}) \equiv 0 \pmod{2}$) or t = 1 (if $\sum_{k=1}^{n+1} (a_{1,2k-1} a_{1,2k}) \equiv 1 \pmod{2}$).

Note that (a_{ik}) is a nonsingular matrix. It is easy to verify ϕ is a bijection. Therefore, ϕ is an automorphism of G if and only if ϕ preserves multiplications.

According to the argument in Theorem 3.2, we similarly have that $\operatorname{Im} \Psi_2 = \mathscr{D} = I \rtimes \operatorname{Sp}(2n, 2)$, where I is an elementary abelian 2-group with order 2^{2n+1} .

The theorem is proved.

Theorem 5.3 Im $\Psi_3 \cong \operatorname{GL}(r,2) \ltimes (\mathbb{Z}_2)^r$.

Proof For convenience, let $z_{r+1} := uz^{2^{m-1}}$, then $\zeta C = R \times \langle z_{r+1} \rangle \times \langle z^2 \rangle$, and $H_8 = \langle x, y, z, z_{r+1} | x^2 = y^2 = z^{2^{m+1}} = z_{r+1}^2 = 1, y^x = y, z^x = z^{2^m+1}, z^y = z^{-1}, [x, z_{r+1}] = 1 = [z, z_{r+1}], [y, z_{r+1}] = z^{2^m} \rangle.$

Since Frat $C = \langle z^2 \rangle$, $\{z_j \operatorname{Frat} C, j = 1, 2, \dots, r+1\}$ is a basis of $\zeta C/\operatorname{Frat} C$ and $\zeta C/\operatorname{Frat} C$ is a linear space over GF(2) with the dimension r+1. Hence Im Ψ_3 can be embedded in $\operatorname{GL}(r+1,2)$.

Let

$$\mathscr{H} := \left\{ \begin{pmatrix} H_{11} & 0 \\ H_{21} & 1 \end{pmatrix} \in \operatorname{GL}(r+1,2) \right\},\$$

where H_{11} is a $r \times r$ matrix, H_{21} is a $1 \times r$ matrix. It is easy to verify that $\mathscr{H} \leq \operatorname{GL}(r+1,2)$.

For any $\alpha \in \operatorname{Aut}_f G$, let (h_{jk}) be the matrix of $\Psi_3(\alpha)$ relative to a basis $\{z_j \operatorname{Frat} C, j = 1, 2, \cdots, r+1\}$ of $\zeta C/\operatorname{Frat} C$.

Let (h_{jk}) be the partitioned matrix as follows:

$$(h_{jk}) = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \in \mathrm{GL}(r+1,2),$$

where H_{11} , H_{12} , H_{21} and H_{22} are $r \times r$, $r \times 1$, $1 \times r$ and 1×1 matrices, respectively. Since $\Psi_3(\alpha)(\overline{z}_j) = \prod_{k=1}^{r+1} \overline{z}_k^{h_{jk}}$, there exists $0 \le h_j < 2^m$ such that $\alpha(z_j) = (\prod_{k=1}^{r+1} z_k^{h_{jk}}) z^{2h_j}$. For $j = 1, 2, \cdots, r+1$, $1 = \alpha(z_j)^2 = z^{4h_j}$, thus $4h_j \equiv 0 \pmod{2^{m+1}}$. Let $\alpha(y) = yy_1$, where $y_1 \in C$. Since $\alpha(y)$ is commutative with $\alpha(z_j)$ for $j = 1, 2, \cdots, r$,

$$1 = \left[yy_1, \left(\prod_{k=1}^{r+1} z_k^{h_{jk}}\right) z^{2h_j}\right] = [y, z^{2h_j}][y, z_{r+1}^{h_{j,r+1}}]^{z^{2h_j}} = z^{4h_j + 2^m h_{j,r+1}}$$

Hence $h_{j,r+1} = 0$, that is $H_{12} = 0$. Since

$$z^{2^{m}} = \left[yy_{1}, \left(\prod_{k=1}^{r+1} z_{k}^{h_{r+1,k}}\right) z^{2h_{r+1}}\right] = \left[y, z_{r+1}^{h_{r+1,r+1}} z^{2h_{r+1}}\right] = z^{4h_{r+1}+2^{m}h_{r+1,r+1}},$$

 $h_{r+1,r+1} = 1$, that is $H_{22} = 1$. Conversely, for any $\begin{pmatrix} H_{11} & 0 \\ H_{21} & 1 \end{pmatrix} = (h_{jk}) \in \mathscr{H}$, define a mapping:

$$\delta_3: \ G \to G,$$

$$y \mapsto y,$$

$$x_i \mapsto x_i, \quad i = 1, 2, \cdots, 2n+2,$$

$$z_j \mapsto \prod_{k=1}^{r+1} z_k^{b_{jk}}, \quad j == 1, 2, \cdots, r+1.$$

It is easy to verify that $\delta_3 \in \operatorname{Aut}_f G$, and the matrix of $\Psi_2(\delta_3)$ is (b_{jk}) relative to a basis $\{z_j \operatorname{Frat} C, j = 1, 2, \cdots, r+1\}$ of $\zeta C/\operatorname{Frat} C$. Hence $\operatorname{Im} \Psi_2 \cong \mathscr{H}$. Also since $\mathscr{H} \cong \operatorname{GL}(r, 2) \ltimes (\mathbb{Z}_2)^r$, $\Psi_2(\operatorname{Aut}_f G) \cong \operatorname{GL}(r, 2) \ltimes (\mathbb{Z}_2)^r$.

The theorem is proved.

Theorem 5.4 Ker Ψ is a 2-group with order $2^{(2n+2)(r+2)+2r+m+1}$.

Proof For convenience, let $z_{r+1} := uz^{2^{m-1}}$.

α

Since Ker Ψ acts trivially on the factors of the series $G \ge C \ge \zeta C \ge \text{Frat } C \ge 1$, Ker Ψ is a 2-group.

For any $\alpha \in \operatorname{Ker} \Psi$, let

$$: G \to G,$$

$$y \mapsto y \Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big) \Big(\prod_{j=1}^{r+1} z_j^{b_j} \Big) z^{2a},$$

$$x_i \mapsto x_i \Big(\prod_{j=1}^{r+1} z_j^{a_{ij}} \Big) z^{2c_i}, \quad i = 1, 2, \cdots, 2n+2,$$

$$z_j \mapsto z_j z^{2d_j}, \quad j = 1, 2, \cdots, r+1,$$

$$z^2 \mapsto z^2,$$

where $0 \le a_i < 2, \ 0 \le b_j < 2, \ 0 \le a < 2^m, \ 0 \le a_{ij} < 2, \ 0 \le c_i < 2^m, \ 0 \le d_j < 2^m,$ $i = 1, 2, \dots, 2n+2, \ j = 1, 2, \dots, r+1.$

Since
$$\alpha(z)^2 = z^2$$
, $z^2 = \left(z \left(\prod_{j=1}^{r+1} z_j^{a_{1j}}\right) z^{2c_1}\right)^2 = z^{2+4c_1}$, which implies that $c_1 = 0$ or 2^{m-1} .

Since $\alpha(x_i)^2 = 1$, where $i = 2, \dots, 2n+2$, $1 = \left(x_i \left(\prod_{j=1}^{r+1} z_j^{a_{ij}}\right) z^{2c_i}\right)^2 = z^{4c_i}$, which implies that $c_i \equiv 0 \pmod{2^{m-1}}$, that is $c_i = 0$ or 2^{m-1} .

Since $\alpha(y)$ is commutative with $\alpha(x_i)$, where $i = 3, 4, \dots, 2n+2$,

$$\begin{split} 1 &= \Big[y \Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big) \Big(\prod_{j=1}^{r+1} z_j^{b_j} \Big) z^{2a}, x_i \Big(\prod_{j=1}^{r+1} z_j^{a_{ij}} \Big) z^{2c_i} \Big] = \Big[y \Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big), x_i z_{r+1}^{a_{i,r+1}} z^{2c_i} \Big] \\ &= \Big[y \Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big), z_{r+1}^{a_{i,r+1}} z^{2c_i} \Big] \Big[y \Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big), x_i \Big]^{z_{r+1}^{a_{i,r+1}} z^{2c_i}} \\ &= [y, z^{2c_i}] [y, z_{r+1}^{a_{i,r+1}}] \Big[\Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big), x_i \Big] \\ &= z^{4c_i} z^{2^m a_{i,r+1}} \Big[\Big(\prod_{i=1}^{2n+2} x_i^{a_i} \Big), x_i \Big]. \end{split}$$

Note that $4c_i \equiv 0 \pmod{2^{m+1}}$. If *i* is odd, let i = 2j - 1, where $j = 2, \dots, n+1$, then $z^{2^m(a_{2j-1,r+1}+a_{2j})} = 1$, which implies that $a_{2j-1,r+1} + a_{2j} \equiv 0 \pmod{2}$; if *i* is even, let i = 2j, where $j = 2, \dots, n+1$, then $z^{2^m(a_{2j,r+1}+a_{2j-1})} = 1$, which implies that $a_{2j,r+1} + a_{2j-1} \equiv 0 \pmod{2}$.

Since $\alpha(x)$ is commutative with $\alpha(y)$,

$$1 = \left[x_2 \left(\prod_{j=1}^{r+1} z_j^{a_{2j}} \right) z^{2c_2}, y z^{a_1} x^{a_2} \left(\prod_{j=1}^{r+1} z_j^{b_j} \right) z^{2a} \right] = z^{2^m (a_1 + a_{2,r+1}) - 4c_2}$$

Also since $c_2 = 0$ or 2^{m-1} , $a_1 + a_{2,r+1} \equiv 0 \pmod{2}$.

Since $\alpha(z)^{-2} = [\alpha(z), \alpha(y)],$

$$z^{-2-4c_1} = \left(z \left(\prod_{j=1}^{r+1} z_j^{a_{1j}}\right) z^{2c_1}\right)^{-2} = \left[z \left(\prod_{j=1}^{r+1} z_j^{a_{1j}}\right) z^{2c_1}, y z^{a_1} x^{a_2} \left(\prod_{j=1}^{r+1} z_j^{b_j}\right) z^{2a}\right]$$
$$= z^{2^m a_2 - 2 - 4c_1 + 2^m a_{1,r+1}},$$

which implies that $a_2 + a_{1,r+1} \equiv 0 \pmod{2}$.

Since

$$1 = \alpha(y)^{2} = \left[y\Big(\prod_{i=1}^{2n+2} x_{i}^{a_{i}}\Big)\Big(\prod_{j=1}^{r+1} z_{j}^{b_{j}}\Big)z^{2a}\Big]^{2} = z_{r+1}^{c},$$

where $c := 2^m (b_{r+1} + \sum_{j=1}^{n+1} a_{2j-1} a_{2j}), b_{r+1} + \sum_{j=1}^{n+1} a_{2j-1} a_{2j} \equiv 0 \pmod{2}.$ Since $\alpha(y)$ is commutative with $\alpha(z_j)$, where $j = 1, 2, \cdots, r$,

$$1 = \left[yz^{a_1}x^{a_2}\left(\prod_{j=1}^{r+1}z_j^{b_j}\right)z^{2a}, z_jz^{2d_j}\right] = z^{4d_j},$$

H. G. Liu and Y. L. Wang

which implies that $d_j = 0$ or 2^{m-1} . Since

$$z^{2^{m}} = \alpha(z^{2^{m}}) = \alpha(z)^{2^{m}} = [\alpha(y), \alpha(z_{r+1})] = \left[yz^{a_{1}}x^{a_{2}}\left(\prod_{j=1}^{r+1} z_{j}^{b_{j}}\right)z^{2a}, z_{r+1}z^{2d_{r+1}}\right]$$
$$= z^{2^{m}+4d_{r+1}},$$

 $d_{r+1} = 0$ or 2^{m-1} .

Since
$$1 = \alpha(z_j)^2 = (z_j z^{2d_j})^2 = z^{4d_j}$$
, where $j = 1, 2, \dots, r+1, d_j = 0$ or 2^{m-1} .

It is easy to verify other generated relations of H_8 have effect on the parameters of α . In conclusion, α is an automorphism as follows:

$$\alpha: G \to G,$$

$$y \mapsto y \Big(\prod_{i=1}^{2n+2} x_i^{a_i}\Big) \Big(\prod_{j=1}^{r+1} z_j^{b_j}\Big) z^{2a},$$

$$x_i \mapsto x_i \Big(\prod_{j=1}^{r+1} z_j^{a_{ij}}\Big) z^{2c_i}, \quad i = 1, 2, \cdots, 2n+2,$$

$$z_j \mapsto z_j z^{2d_j}, \quad j = 1, 2, \cdots, r+1,$$

where $a_{2j-1,r+1} + a_{2j} \equiv 0 \pmod{2}$, $a_{2j,r+1} + a_{2j-1} \equiv 0 \pmod{2}$, $b_{r+1} + \sum_{j=1}^{n+1} a_{2j-1}a_{2j} \equiv 0 \pmod{2}$, $0 \leq b_j < 2, 0 \leq a < 2^m$, $0 \leq a_{ij} < 2$, $c_i = 0 \text{ or } 2^{m-1}$, $d_j = 0 \text{ or } 2^{m-1}$, $i = 1, 2, \cdots, 2n+2, j = 1, 2, \cdots, r+1$.

Conversely, if α is an automorphism of G, which satisfies the above conditions, then $\alpha \in \text{Ker } \Psi$. Hence $|\text{Ker } \Psi| = 2^{(2n+2)(r+2)+2r+m+1}$.

The theorem is proved.

References

- [1] Robinson, D. J. S., A Course in the Theory of Groups, 2nd ed., Springer-Verlag, New York, 1996.
- [2] Winter, D., The automorphism group of an extraspecial p-group, Rocky Mountain J. Math., 2, 1972, 159–168.
- [3] Dietz, J., Automorphisms of p-group given as cyclic-by-elementary abelian central extensions, J. Algebra, 242, 2001, 417–432.
- [4] Liu, H. G. and Wang, Y. L., The automorphism group of a generalized extraspecial p-group, Sci. China Math., 53(2), 2010, 315–334.
- [5] Wang, Y. L. and Liu, H. G., Generalization of Winter's theorem and Dietz's theorem, Chin. J. Contemp. Math., 33(4), 2012, 375–394.
- [6] Bornand, D., Elementary abelian subgroups in p-groups of class 2, École Polytechnique Fédérale de lausanne, Lausanne, 2009.