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1 Introduction

In this paper, p always is a prime number, only finite groups will be considered. The
terminologies and notations used are standard (cf. [1]).

Let G1 and G5 be any two groups, Z; and Z5 be the centers of G; and G, respectively.
Assume that Z; is isomorphic to Zs, and 6 : Z; — Z3 is the isomorphic mapping, G * G is
called the central product of G; and G5 relative to Z1, Z and 6, that is, G1 * G5 is the quotient
group of G7 X G2 on the normal subgroup

{(2’1,9(2’1)_1 | 21 € Zl}

In particular, let G be any group, Z < (G, the central product G« G is constructed by virtue of
the identity mapping on Z. For any [ > 1, G* is denoted by G*(= 1@, and G*! := G, G*0 := 1.

A finite p-group G is called extraspecial, if G’ = FratG = (G and have order p. Winter
[2] has given the automorphism group of an extraspecial p-group. When p is odd, Dietz [3]
generalized the results of Winter, and determined the automorphism group of a finite p-group
which is a central extension of a group with order p by an elementary abelian group.

In [1], a finite p-group G is called generalized extraspecial, if the center (G of G is cyclic
and the derived subgroup G’ of G has order p. In [4], we determined the automorphism group
of the generalized extraspecial p-group. Further, let G be the below central extension

1—=Zpm =G —=Zp X X Lp—1,

and |G’| < p. In [5], we determined the automorphism group of the finite p-group, which
generalized the results of Winter and Dietz.
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Proposition 1.1 (cf. [5]) Let p be an odd number, G be a finite p-group given by a central
extension of the form
1—=Zpm =G —=Zp X - X Lp— 1,

and |G'| = p, where m > 2. Then G = FEA, where E is a generalized extraspecial p-group,
A= (G, ENA=(E. Suppose that |E| = p*"*t™, |CE| = p™ and |A| = p™*!. Let Aut; G =
{ o€ AwtG | a acts trivially on Frat G}. Then
(i) If both E and A are of exponent p™, then Aut G/Auty G = 7
Sp(2n, p) x (GL(1,p) x (Z,)"), where K is of order p?"(I+D+I+1,
(ii) If E and A are of exponent p™ and p™*!, respectively, then Aut G/Auty G = Lip—1ypm—1,

and Auty G/K = Sp(2n,p) x (GL(l — 1,p) x (Zp)l_l), where K is of order p*>™+!.
m+1

m—2, and Autf G/K =

p—1)p

(iii) If E and A are of exponent p and p™, respectively, then Aut G/Auty G = Ze, _qypm—1,
and Auty G/K = (I x Sp(2n — 2,p)) x GL(l,p), where I is an extraspecial p-group with order

p?" 1 and K is of order p*"(+1+L,

Proposition 1.2 (cf. [5]) Let G be a finite 2-group given by a central extension of the
form
1= Zom — G — 7o X -+ X Tig — 1,

and |G'| = 2, where m > 2. Then G = FEA, where E is a generalized extraspecial 2-group,
A= (G, ENA=(E. Suppose that |E| = 22"*t™ |(E| = 2™ and |A| = 2™+ Let Aut; G =
{a€AutG | a acts trivially on FratG}. Then

(i) If both E and A are of exponent 2™, then Aut G/Auty G = 1 (m = 2) or Zg X Zom-3(m >
3), and Aut; G/K = Sp(2n,2) x (GL(1,2) x (Za)'), where K is of order 22n(+1++1,

(ii) If E and A are of exponent 2™ and 2™+, respectively, then Aut G/Auts G =2 Zo X Zigm—2,
and Aut; G/K = Sp(2n,2) x (GL(I — 1,2) x (Z2)'~'), where K is of order 22"+,

(iii) If E and A are of exponent 2™+ and 2™, respectively, then Aut G/Aut s G =2 Zo X Zigm—2,
and Auty G/K = (I x Sp(2n —2,2)) x GL(l,2), where I is an elementary abelian 2-group with
order 22"~ and K is of order 22"+,

In [6], the structure and the automorphism group of a finite p-group with a cyclic Frattini
subgroup were studied. In this paper, by means of the results in [5], the automorphism group of
a finite p-group with a cyclic Frattini subgroup is further determined. On the hand, if p is odd,
or p =2 and Frat G < (G, then G is a finite p-group which is a central extension of a cyclic
group Frat G by an elementary abelian group and G’ has order p by Lemma 1.2 and Lemma
1.3. According to Proposition 1.1 and Proposition 1.2, the automorphism group of G can be
determined, on the other hand, if p = 2 and Frat G £ (G, we can obtain the below results.

In what follows, we are going to suppose that [Frat G| = p™ and R is an elementary abelian
2-group with rank r.

Theorem 1.1 Let G = R x (D§" = H), where H = Hy, Hy or Hs, which are defined in
Lemma 1.6. Let C := Cg(FratG) and Auty G := {a € AutG | « acts trivially on Frat C}.
Then

(1) Aut G/Auty G = Zo(if m = 2), or Zgm-= X Za(if m > 3).

(2) Aut; G/K = Sp(2n,2) x GL(r,2) x (Z2)", where K is of order 22" +2(r+D+m(if [f — [,
or Hz), or 2@n+2)(r+D)+m=1(;r i1 — [T,).

Theorem 1.2 Let G = R x (D" = H), where H = Hy or Hs, which are defined in Lemma
1.6. Let C := Cq(Frat G) and Auty G := {a € Aut G | a acts trivially on Frat C'}. Then
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(1) Aut G/Auty G = Zy (if m = 2), or Zom—2 X Zg (if m > 3).
(2) Auty G/K = (I x Sp(2n,2)) x GL(r,2), where I is an elementary abelian 2-group with
order 22" K is of order 2@2n+2)(r+1)+m+2r

Theorem 1.3 Let G = R x (D§" * H), where H = Hg or Hy, which are defined in Lemma
1.6. Let C := Cg(Frat G) and Auty G := {a € Aut G | « acts trivially on Frat C'}. Then

(1) Aut G/Auty G = Zy (if m = 2), or Zom—2 X Za (if m > 3).

(2) Aut; G/K = Sp(2n,2) x (GL(r,2) x (Z)?"), K is of order 22n+2)(r+2)+m—1,

Theorem 1.4 Let G = R x (D"« H), where H = Hg, which is defined in Lemma 1.6. Let
C = Cg(Frat G) and Auty G := {a € Aut G | « acts trivially on Frat C}. Then

(1) Aut G/Auty G = Zy (if m = 2), or Zom—2 X Za (if m > 3).

(2) Auty G/K = (I x Sp(2n,2)) x (GL(r,2) x (Z2)"), where I is an elementary abelian
2-group with order 22"*1, and K is of order 22n+2)(r+2)+2r+m+1

According to the above theorems, let 7 = 0, then we can obtain the below conclusion in [6].

Corollary 1.1 (cf. [6]) Let P = D"« H.

(1) If H = Dami> or H = Qqmy>, then |Aut P| = 2(n+1)*+2m ﬁl(in —1).

(2) If H = SDgm+2, then |Aut P| = 2(n+1D)*+2m—1 ﬁl(in _).

(3) If H=D3,..s or H=Q3,..s, then |Aut P| = 9(n+2)*+2m—2 ﬁl(22i —1).

(4) If H = Dgm+2 % Cy or H = SDym+2 * Cy, then |Aut P| = 9(n+2)*+2m—2 .ﬁ1(22i —1).

5) If H = D, .,  Cy, then |Aut P| = 2(n+3)*+2m—4 1T (22 _ 1),
2 L

n
1=

We need the following several lemmas in order to obtain the above theorems.

Lemma 1.1 (cf. [4]) Let G be a generalized extraspecial p-group, then

(i) G/CG is an elementary abelian p-group.

(ii) Let G’ = (¢). For any two elements T = x(G and § = y(G of G/CG, write [x,y] =
¢ (0 <r < p)and f(T,7y) = r, then G/CG becomes a nondegenerate symplectic space over
GF(p).

(iii) G is a central product of some nonabelian subgroups G; which satisfy both (G; = (G
and |G; /CG;| = p*. Furthermore, let |G;| = p™*2, where m > 2, then G; only has two types:

Mm(p) — <x,y | xpmﬂ _ yp _ ny _ x1+pm>

or
Nawp) = @,y 2 | 2P =y = 27" = 1 [o,2] = [y.2] = 1L [wy) = 27 ).
Lemma 1.2 (cf. [6]) Let p be odd and G be a nonabelian p-group. If Frat G is cyclic, then
Frat G is a central subgroup.

Lemma 1.3 Let G be a nonabelian p-group. If Frat G is a cyclic and central subgroup, then
G’ is of order p.

Proof Since G is a nonabelian p-group, G’ is nontrivial, and is included in the cyclic
Frattini subgroup Frat G. Now we only need to prove that G’ is of order p.
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Since G’ < Frat G < (G, for any x,y € G, we have that

[z, y]" = [27, y].

Moreover, since a? € Frat G < (G, [2P,y] = 1. Consequently, for any z,y € G, we have that
[,y = 1. The lemma is proved.

Lemma 1.4 (cf. [6]) Let G be a nonabelian 2-group, ®(G) be cyclic, FratG £ (G and
|Frat G| = 2™, then m > 1, and G is isomorphic to the direct product R x (D§" « H), where R
s an elementary abelian 2-group, n > 0, H is a nontrivial 2-group which is one of the following
isomorphic types:

+ + +
D2m+27 Q2m+27 SD2m+2 ) D2m+2 * 047 SD27“+2 * 047 D2m+3 ) QQm+3 ) D2m+3 * 047

where

gmtt z z _ 241
=z y

:Ly =Y,z Zy:Z_l>

Dinys = (z,y,z|2° =y’ =2

and

+ - 2 _omtt 2 2m ax r _ 2M4+1 Ly _ _—1
QQm+3 L <$7yaz|$ =z _17y =z 7y _yaz =z 72 =z >

Lemma 1.5 (cf. [4]) Ifm >3, then

2" =1 (mod 2™), where a is an odd number,

32" # 1 (mod 2™).

Lemma 1.6 Let G be a nonabelian 2-group, ®(G) be a cyclic group, and FratG £ (G,
|[Frat G| = 2™, then G is isomorphic to the direct product R x (D§™ = H), where R is an
elementary abelian 2-group, n > 0, H is defined in Lemma 1.4. Further,

(1) If H is isomorphic to Dom+2, SDom+2 or Qom+2, then Cq(Frat G) =2 N,,11(2)*" X R.

(2) If H is isomorphic to D},..s or QF...s, then Cg(Frat G) = Ny (2)*™ % M, (2) x R.

(3) If H is isomorphic to Dom+2%xCy or S Dom+2%Cy, then Ca(Frat G) = Nyyi1(2)*" X RX Zs.

(4) If H is isomorphic to D, s * Cy, then Cc(Frat G) = Np,(2)*™ % M, (2) X R X Zs.

Proof Assume that D" & (x1,x2) * (X3, 24) * -+ % (Top_1, Tap).
m—+41 m
(1) Let Hy := H 2 Dymse, and Hy = (z,y | 22 =32 =1,y® = y~1), then CH; = (y2"),
Frat G = (y?), and

Ca(Frat G) = (w1, 22,y) * (T3, 24,y) * - - - * (T2n_1, Ton, y) X R.

2

Note that (z2;-1,%2;,y) = Npmt1(2), where ¢ = 1,2,--- 'n. It follows that Cg(FratG) =
No1(2) x R.

Let Hy := H = SDomi2, and Hy = (z,y | 22 =y = 1,9% =y 12O (yF)F = ok,
where 0 < k < 27+ then y—*+2"% = % It follows that 2k — 2™k = 0 (mod 2"+1), which
implies that (1 — 2™~ 1)k = 0 (mod 2™). Also 0 < k < 2™ thus k = 2™ and (Hy =
("), Consequently, Frat G = (3?). According to the results of H;, we similarly have that
Ca(Frat G) 2 Npta1(2)*" x R.

Let Hs := H = Qqom42, and Hsz = (z,y | 2* = 1,92" = 22,y* = y~1). Obviously, (Hs
(y2"), Frat G = (y?). According to the results of H;, we similarly have that C¢(FratG)
Nyns1(2)*" x R.

27n+1

e
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(2) Let Hy := H = D;n+3, and

m—+1 m _
2 r:ZQ +1’Zy:2, 1>.

H4:<$ayvz|$2:y2zz =lLy*=y,2

Let 2'y/z* € (Hy, where 0 < i < 2,0 < j < 2,0 < k < 2™ then (2'y/2F)* =
xiyd 2%, Tt follows that 22" #+F = ¥ thus 2™k = 0 (mod 2™*11), that is k = 0 (mod 2). That
(xiy? 2F)Y = 2iyl 2% implies that =% = 2¥, thus 2k = 0 (mod 2™*1), that is k = 0 (mod 2™).
Since (z'ydzF)? = aiydzk, (21)7 = 22727 and (y)? = y7 2"V THL _omi 4 (1)}t 41 =0
(mod 2™*1), which implies that —2"i+(—1)7T'+1 =0 (mod 2™). It follows that (—1)/T!1+1 =
0 (mod 2™), thus j = 0. Consequently, i = 0. From the above, we have that (Hy = (22"), and
Frat Hy = (2%) = Frat G. Tt follows that

Ca(Frat G) = (x,2) * (21, T2, 22) * (23,24, 22) * - - - % (Top_1, Tan, 2°) X R.

Note that (z,z) = M,,(2), where M,,(2) is defined in Lemma 1.1, thus Cq(Frat G) = M,,(2)
Ny (2)* x R.
Let Hs := H = Q},.,,, and
Hs = (z,y,2 | 2° = L2 = Ly?=22" y* =y, 2" =221 v = 271,

Let 2'y/zF € (Hs, where 0 < i < 2,0 < j < 4and 0 < k < 2™FL then (2'y2%)* =
ziyiZk. Tt follows that 22" #+F = 2F thus 27k = 0 (mod 27t1), that is £ = 0 (mod 2).
That (2'y72F)¥ = 2y 2% implies that 2% = z¥, thus 2k = 0 (mod 2™*1), therefore k = 0
(mod 2™). Since (z'yiz¥)? = iyizk, (29)F = 212727 and (yi)* = yi(CVTHL _gmy 4
(=11 +1 =0 (mod 2™*1), which implies that —2™i+ (1)1 +1 =0 (mod 2™). It follows
that (—1)*! +1 = 0 (mod 2™), thus j = 0 or 2. Consequently, i = 0. From the above, we
have that (Hs = (22"), and Frat Hs = (2?) = Frat G. According to the results of Hy, similarly,
Cc(Frat G) & Ny, (2)*" + My (2) x R.

(3) Let Hg := H = Dgm+2 * Cy, and

m+1 _ m
Ho=(z,y,z | 2> =y* =Ly =y L, 22=¢" [2,2]=1,[y,z] = 1).

It is easy to verify that (Hg = (z), D" N Hg = (2%) and Frat Hg = (y?). It follows that

Ca(FratG) = (x1, @0, 3,24, , Ton—1,Tan, Y, z) X R
m—1
= <£U1,£U27y> * <x37x47y> Kook <x2’ﬂ—17x2nuy> X <Zy2 > X R.
Since
m+1 m
(T2i-1, %24,y | x%i—l = fﬂ%z = y2 =1,[z2i-1,y] = 1 = [w2:,y], [T2i-1, T2i] = y2 ) = Nint1(2),

where i = 1,2, ,n, (24" ) = Zy. It follows that C(Frat G) = Nyyy1(2)* X R x Zo.
Let H7 := H & SDgym+2 % Cy, and

m+1 _ m m
Hy=(z,y,2 | 2*=y*  =1y" =y " 22 =¢*" [2,2] = 1,[y,2] = 1).

Obviously, (H; = (z) and Frat H; = (y?). According to the results of Hg, we similarly have
that Cg(Frat G) = Nppy1(2)*™ X R X Zs.
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(4) Let Hg := H = D;n+3 x Oy, and

2 2 gm+1 2m 41
H8:<x7yuzuu|x =Yy =z ’

¥ = Z_lau2 = Z2m7 [ZZ?,U] = [yvu] = [Z,’(L] = 1>

=1,y" =y,5" =2

Obviously, (Hg = (u) and Frat Hg = (22). It follows that
CG(FI'a.t G) = <1’1,1’2,1’3, Ty 3 X2n—1,T2n, T, 2, ’LL> x R
= (1,20, 22) * (T3, T4, 2%) % - - - % (Top_1, Ton, 22) * (T, 2) X (uz
Since

(21,005, 2% | 23, = 23, = (22)%" =1, [22i-1, 2% = 1 = [w24, 2°], [w2i-1, T2 = (22)

where i = 1,2,---,n, (z,2z | 2® = 22" = 1,20 = 21427y = M,.(2), (wz?" ') = Zy and

Cc(Frat G) = Ny (2)* % Myn(2) x R x Zo.

2 Proof of Theorem 1.1

m

Since D™ is an extraspecial 2-group, we may suppose that z1,z2, - ,Z2,_1,T2n,y> are
the generators of D™, which satisfy the following relations:

According to (1) in Lemma 1.6, we have that

C= <$17$2ay> * <x3,x4,y> koo ok <x2n_1,x2n,y> X R.

Let ® : Aut G — Aut(Frat C) be a restriction homomorphism. Obviously, Ker ® = Auty G<
Aut G. According to (1) in Lemma 1.6, Frat C' = (y?).

7 = 2
Im®§{2’ ifm =2,

Theorem 2.1

ngfz X 2o, me > 3.

Proof If m = 2, then Frat C' = Z,, thus Aut(Frat C') & Zs. Define a mapping;:

o1: G— G,

Toj—1 > Toj—1, 1= 1,2,~-~ , M,
To; > Lo, t=1,2,--- . n,
Zj—rzi, J=1,2,--- 1,

T,

y - yP.
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It is easy to verify that o is an automorphism of G, which is of order 2. Since ®(o7)(y?) = (y?)3
and ®(01)%(y?) = y?, Aut(Frat C) = (®(0y)). It follows that Aut G = Auty G x (o7).

If m > 3, then Z5.. = (v1) X (va), where v1 = 3 and vy = 2" — 1. By Lemma 1.5, we have
that the orders of v; and vy are 2™~2 and 2, respectively. Define a mapping:

os: G — G,

; 2 i=1,2
$21—1'_>$2i_1a =12, ,N,
T2 = T2y, i:1727"'7n7
Zjl—>2’j, j=1,2,~~-,’l”,

T —x,
2M—1
Y=y .

It is easy to verify that o1 and oy are commutative automorphisms each other and their orders
are 2™~ and 2, respectively.

Take any o € Aut G, then a(y?) = y***, where s; € Z3... Hence there exist 0 <t < 2m~2
and 0 <ty < 2 such that v!*vf2 = 57! (mod 2™). Since

ol oa(y?) = ottolR (1) = ol (ol (y) > = ol (o)
= (o} ()27 = (P o) = g e =

oi'ok?a € Auty G. Consequently, Aut G = (07, g2)Aut; G.

We claim that (1) N (02) = 1. In fact, let 0] = 052 € (01) N {02), where wy, ws € Z, then
y = ol (y?) = 0yt (1P) =y

which implies that v}"* = vy (mod 2™), thus w; = 0 (mod 2™~ 2) and wy = 0 (mod 2). It
follows that 0}’ = 05 = 1.

If 01052 € (01, 02) N Auty G, where 0 < uy < 2™7! and 0 < uy < 2, then y? =
oW o2 (y2) = y21' V2" which implies that v 0% =1 (mod 2™), thus u; = 0 (mod 2™~2) and
uy =0 (mod 2). It is easy to verify that 02"~ € Auty @, thus (o1, o2) N Aut; G = (62" ).
It follows that Aut G/Auty G = Zom—2 X Zs.

The theorem is proved.

Let Uy : Aut; G — Aut(G/C), ¥ : Auty G — Aut(C/¢C) and
U3 Auty G — Aut((C/Frat C)

be the natural induced homomorphisms. From this, we may obtain the below homomorphic
mapping
U: Auty G — Aut(G/C) x Aut(C/¢C) x Aut(¢C/Frat C),
a— (U (a), Ua(a), Ts(a)).
Since G/C = (xC) = Zy, In¥; = Aut(G/C) = 1.

Since (C' = (y) x R, we may define the inner product as follows:

f@b) =t, where@=aCC,b=0bC,a,bec C and [a,b] = (y*" ), 0<t <2.
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From this, C'/¢(C can become a nondegenerate symplectic space over GF(2).
Take any a € Auty G, then [a(a),a(b)] = ala,b] = [a,b], thus, for any @ = a(C,b = b(C €
C/¢C, we have that

F(T2(a)(@), T2(a) (b)) = f(ala), (b)) = [f(@,D),

therefore ¥o(ar) € Sp(2n,2). Consequently, ¥o(Aut; G) < Sp(2n,2). From the above, ¥ is the
homomorphic mapping as follows:

U Auty G — Aut(G/C) x Sp(2n,2) x Aut(¢C/Frat C),
a = (U1(a), Ua(a), Us(a)).
Theorem 2.2 Im ¥y = Sp(2n,2).

Proof Take any T € Sp(2n,2), let (a;;) be the matrix of T relative to a basis {x;¢C, i =
1,2,---,2n} of C/CC. Define a mapping

) 3

¢o: G—=G,
2n T 2n 2n @ T
c a; bj c a; ‘ bj !
o (M) (L= o = (TL (1Li) ) (1<)
i=1 j=1 i=1 k=1 j=1
where 0 < a; <2,1=1,2,---2n,0<b; <2,5=12,---,r,0<¢c<20<d< omtl
dI:d+Z2m 1a1(2(ai2j 1-ai2j)) (InOd 2m+1)

Jj=1
Note that (a;r) is a nonsingular matrix. It is easy to verify ¢ is a bijection. Therefore, ¢
is an automorphism of G if and only if ¢ preserves multiplications. By the definition of ¢, we

have
¢<3
2n T 2n 2n a; T . ,
@ ol (=) (11 j)yd}ﬂc{H(HﬂcZ“) }(Hz?”)yd
i=1 j=1 i=1 k=1 j=1
(e[S e
i=1 k=1 j=1
_ e 1((Hxam)‘“ e 1“)](ﬁlzgj)yd
= i
o[ oter ] (1T
= e

(3) o(x) =
() 6(ey) = 55 = 1.2, - ) )
(5) For any @ = a(C,b = bCC e C/CC, f(o(a),d(d)) = f(T(a), T(®)) = f(a,b), thus
[¢(a), 6(b)] = la, b].
We call the above ¢ the induced mapping of G by T'
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Claim 2.1 If ¢(z;)>=1,i=1,2,---,2n, then ¢ € Aut; G.
In fact, let ¢(z;)? =1, where i = 1,2,--- ,2n. For any g1, g2 € G, we have

2n r 2n r
. A ’ v,
g = (TLa ) (TL27 )u™ 02 ==(T1=2) (1127 )v®
i=1 j=1 i1 i=1

and
2n T 2n T
a; b; dy,.c a; b;‘ d
was= ([T ) (T ([T (1T 40
i=1 Jj=1 i=1 =1
2n 2n—1 2n s bl
40 _1)c2
:xc1+cz(H a+a)( H H 2, 2% )( 2y J)yd2+( 1)°2d,
i=1 k=1 t=k+1 Jj=1
2n , T bt b
_ _c1+tc a;+ta; 105 e
= e ([t ) (IT 2" )
i=1 j=1
2n—1 2n o s
where y¢ = ( [ [I [z, 2*])ydt("D™d and 0 < e < 27FL
k=1 t=k+1

Let ¢; +co = c+2¢, a;+al, = t;+2s;, bj—l—b;- :t;-+2s;-,wher60§ ¢ tit 5 <2, c sz,s- €7,
1=1,2,---,2n,5=1,2,--- ,r, then

So1gs) = ¢[xcl+62(ﬁx?+a;) ( H1 )] = ¢[xc+zcl(ﬁx?+zsi) ( H1 5425) ]
i ph P s
2n ’
- o (1) (T (Tt (T )
i= j= i= j=
#(91)6(g2) 1(ﬁq&(xz)%)ydlx@(ﬁqs(xi)“%)( Tat) e
i=1 i=1 j=1
_ xcl+cQ(H¢ ab+a )(2ﬁ1 - [B(,) ¢(xk)a;])(ﬁ bj+b ) da+(—1)2d;
k=1 t=k+1 j=1
_ x01+02(1_n[¢(xi) a )(2ﬁ1 o [(b(x?t)’ ¢(CCZ;€ )])( : Z§j+b§)yd2+(—l)c2d1
=1 k=1 t=k+1 j=1
—aeveo( [+ (T1TT btretf)) (I )
i=1 k=1 t=k+1 j=1
2n r , 2n r ,
= (TL o) (T2 ) =*(TLo@)™) (T1 =)y = olor92)-
i=1 j=1 i=1 j=1

Hence ¢ € Aut G. Also since ¢(y) =y, ¢ € Auty G.
The claim is proved.
Fori=1,2,---,2n, we have

n

2n = m
> (ai2j—1ai,25)2

@ E (ai’zjilaivzj)QM7l 2 . a a h
Qs(xZ)Q = |:( H N)yj :| — |: H $2; 2;1 11:2; 2]) :|y]:1
Jj=1

j=1
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-

n = m
2ai,2j—1 2ai,2j 2mai o1 2 P (aq,,2j 1(1L,2J)
| | (o 2y Ty Tyt M)y

n n
> (aizj—1a:,25)2™ 37 (ai2j—10a4,25)2™
=y~ Y= =1

By Claim 2.1, the induced mapping ¢ by T is an automorphism of G, and ¥y (¢) = T. Conse-
quently, Im ¥; = Sp(2n, 2).

The theorem is proved.
Theorem 2.3 Im V3 = GL(r,2) X (Z2)".
Proof Let

o = {(ﬁ; (1)) eGL(r+1,2)},

where A1; is a 7 X r matrix, As; is a 1 X r matrix. It is easy to verify that o/ < GL(r + 1,2).
For convenience, we may let z,41 :=y.

Take any a € Auty G. Let (a;i) be the matrix of W3(«) relative to a basis {z;Frat C, j =
1,2,---,r+ 1} of (C/Frat C.

Let (aji) be the partitioned matrix as follows:

A A
(ajr) = (Ai AZ) € GL(r + 1,2),

where A1, A12, Ao; and Agg are r X 7, 7 X 1, 1 x r and 1 x 1 matrices, respectively.

r+1 )
Since \Ifg(oz)(Ej) = H E:Jk7 Wherej = 1’27... ,7, there exists 0 < a; < 9™ guch that
k=1
) — = Ak, 2a;
a(zj) = (kﬂlzk )y?%.
Since ZJQ-: 1forj=1,2,---,7,

r+1

2a; 240 . 20

1= 04(232) = O[(Zj)2 = (H Zka]k)y2 aj — yZaJvT+1+2 U’J’
k=1

thus aj,41 + 2a; = 0 (mod 2™). But m > 1 and 0 < aj,+1 < 2, consequently, for j =

1,2,---,7, we have a; 41 = 0, that is 412 = 0.
Since
r+1
2 _ .2 _ 2 _ 2 _ 2ar41,% ), 2%ar41
vt =22 = alza) = alza)? = ([T )y

k=1

20111422401 2va, +2a,

=% = (e,

Gri1041 + 20,101 =1 (mod 2™). But m > 1 and 0 < ayy1 41 < 2, thus ay41,.4+1 = 1, that is
A22 =1.
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Conversely, for (gll (1)) = (bj) €97, define a mapping:
21
0: G— G,
T T,
T x;, t1=1,2,---,2n,
r+1

ZJHHZZ”C7 j:1,2,"',7’+1.
k=1

It is easy to verify that § € Aut GG. Since

d € Auty G and the matrix of U5(4) is (b;x) relative to a basis {z;FratC,j =1,2,--- ,r+1} of
¢C/Frat C. Hence Im Wy =207, Also since .27/'= GL(r,2) x (Zz)", we have that Wa(Aut; G) =
GL(r,2) x (Za)".

The theorem is proved.

Theorem 2.4 (1) If H = H; or Hs, then Ker VU is a 2-group with order 22n+2)(r+1)+m,

(2) If H = Ho, then Ker U is a 2-group with order 2(2n+2)(r+1)+m=1

Proof Since Ker ¥ acts trivially on all factors of the series G > C > (C > FratC > 1,

Ker ¥ is a 2-group.
Take any o € Ker U, let o be an automorphism as follows:

a: G— G,
2n r+1
T — x(fo)(szJ),
i=1 j=1

r+1
a;j .
l'ini(HZjJ)a Z:1727"'72717
j=1

Zkszy2Ck7 k:1,2,"',7"+1,
T

where Zr41 = Y, 0<a;, <2,0< bj <2,0< br+1 < 2m+1, 0< A5 < 2,0< Qi r41 < 2m+17
0<cr<2m i=1,2,-,2n,j=1,2,- 7 k=1,2,---,r+1.
r41 B
Since a(x;)? = 1, where i = 1,2,--- ,2n, 1 = (xl( 1_[1 2;1]))2 = y?@ir+1. Hence a; 11 = 0

(mod 2™). Consequently, a; .41 = 0 or 2.
Since a(x) and «a(z;) are commutative each other,

2n r+1 r+1 2n
t=[o(TLo2) (TT0 ) (TL2)] = [o( TLat )]
i=1 Jj=1 7j=1 i=1
2n y il |:

2n 2n
= {x( 11 il??’i)ybr“ : y‘“”“] {x( II x?i)ybr“ , x} ‘ = [a,ymr ]| [T, x} :
i=1 3 =1
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If H = H, or Hs, then [z, y%+1] = y?%r+1 = 1. If H = Hy, then [z, y®+1] = y>¢irt1=2" i

2n
=1.In a word, [ [T ", 2;] = 1. If i is odd, we can let i = 2] — 1, where [ = 1,2,--- ,n, then
i=1

y?" % = 1, which implies that as; = 0. If i is even, we can let i = 2I, where | = 1,2,--- ,n,
then y2" -1 = 1, which implies that as_, = 0. Consequently, for i = 1,2,---,2n, we have
that a; = 0.
Since a(z) and «(zy) are commutative each other, where k =1,2,--- ,r,
r+1

1= [a(TT20) 0] = fawsr,2] = o)
j=1

If H = Hy or Hs, then y** = 1. If H = Hy, then 1 = [z,9%%*] = yler=2""en = gder Ip
a word, ¢, = 0 (mod 2™~ 1), which implies that ¢ = 0 or 2™~1. Also since a(y?) = y?,
y? = (y'T2er+1)2 = g2H+4er1 which implies that ¢,.1 =0 (mod 2™~1), thus ¢, 41 = 0 or 2™~ 1,
Consequently, for k = 1,2,---,7 + 1, we have that ¢, = 0 or 2™~ L.
Since a(z;)? = 1, where k = 1,2,--- ,r, 1 = (2xy**)? = y2, which implies that ¢, = 0
(mod 2™~1), thus ¢, = 0 or 2™~ 1.
r+1 )
If H = Hy or Hs, then a(z)? = (z( [] zl?]))2 = (zy’+1)? = 1, which has no effect on the
1
r+1 b 2 m
parameters of a. If H = H,, then a(z)? = (z( [] ij)) = (wyP+1)2 = 42" br+1 thus by =0
j=1
(mod 2).
It is easy to verify other generated relations have no effect on the parameters of «.
In conclusion, « is an automorphism as follows:

a: G— G,
r+1

bj
T T sz ,
=1

r+1
a;q .
xini(sz J), 1=1,2,---,2n,
j=1

Zp b zpy?R . k=1,2,- 0+ 1,

where 2,11 =y, 0<b; <2,0<a;; <2, a,,41=0o0r2" ¢y =0o0r 2™ i=1,2-- 2n,
j=12- r k=12 ,7r+1,0< by <2m(if H= H; or H3 ); b,y1 = 0 (mod 2)(if
H=H,).

Conversely, if « is an automorphism of G, which satisfies the above conditions, then o €

Ker W. Hence, if H = Hy or Hs, then [Ker ¥| = 2@n+2+D)+m. if 7 — [, then |Ker ¥| =
2(2n+2)(r+1)+m—1'

The theorem is proved.

3 Proof of Theorem 1.2

. m .
For convenience, we may let x3, x4, -+, Ton+1, Tont2, 22" be the generators of Dg"™, which
satisfy the following conditions:

CDF" = (=*"),



The Automorphism Group of a Finite p-Group 625

[X2i_1, @] = 2%, =2, 3, , T,
[Toi—1,25] =1, j# 2i,
[Xos, 2k =1, k#2i—1,
xf =1, =2, 3, , n

According to (2) in Lemma 1.6, we have that
C = (1, 2) * (x3, 74, 2%) * (25,26, 2%) % - - % (Tant1, Tant2, 22) X R Mp,(2) % Ny (2)™ x R,

where z1 := 2, x5 := .

For convenience, we sometimes adopt the notations in Theorem 1.1.

Let ® : Aut G — Aut(Frat C') be the restriction homomorphism. Clearly, Ker ® = Aut; G <
Aut G. According to (2) in Lemma 1.6, we have that Frat C' = (2?) = Frat G & Zgm.

ZQa me = 27
Im®o = )
Zmez X ZQ, me Z 3.

Theorem 3.1

Proof If m = 2, then Frat C' & Z,, thus Aut(Frat C') & Zs. Define a mapping:

o3: G — G,

Toi—1 ngi—lv i=1,2,~-~ ,Tl+1,
Toj — Toiy, t=1,2,--- . n+1,
Zjvrzg, J=1,2,--,m,

yr=y.

It is easy to verify that o3 is an automorphism of G, which is of order 2. Since ®(03)(2?%) = (2?)3
and ®(03)%(2?) = 22, Aut(Frat C) = (®(03)). Consequently, Aut G = Aut; G x (03).
If m > 3, then Z3,, = (v1) x (v2), where v; = 3 and vg = 2™ — 1 and their orders are 22

and 2 by Lemma 1.5, respectively. Define a mapping;:

o4: G— G,

Toiq a2 7t i=1,2,-- n+1,
Toj — To;, t=1,2,--- . n+1,
zj—= 2z, j=12,---,1
Yyr=y.

It is easy to verify that o3 and o4 are commutative automorphisms each other and their orders

2m—1

are and 2, respectively.

According to the argument in Theorem 2.1, we similarly have that Aut G = (o3, o4)Auty G,
and (o3, 04) NAut; G = <a§m72>. Consequently, Aut G/Auty G = Zom—2 X Zs.
The theorem is proved.

Let

Uy s Auty G — Aut(G/C),
Uy s Auty G — Aut(C/¢C),
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U3 : Auty G — Aut(¢C/Frat C)

be the natural induced homomorphisms. Hence we may define the below homomorphic map-
ping:
U Auty G — Aut(G/C) x Aut(C/¢C) x Aut(¢C/Frat C),
a—= (U(a), Ua(a), Ts(a)).
Since G/C = (yC) = Zo, Im ¥y = Aut(G/C) = 1.
Since (C = (2?) x R, we may define the inner product as follows:

f(@,b) =t, where @ = alC, b = b(C, a,b € C and [a,b] = (22"),, 0 <t < 2.

From this, C'/¢C can become a nondegenerate symplectic space over GF(2).
For any o € Aut; G, [a(a),a(b)] = afa,b] = [a,b], thus, for any @ = a(C,b = b(C € C/(C,
we have

F(@2(a)(@), Ta2(a) (b)) = f(ala),alb)) = f(@,b),

therefore ¥s(a) € Sp(2n,2). Consequently, Us(Auty G) < Sp(2n,2). In a word, ¥ is a homo-
morphic mapping as follows:

U: Auty G — Aut(G/C) x Sp(2n,2) x Aut(¢C/Frat C),
o= (\I/l(Oé), \I/Q(Oé), \I/g(a)).

Theorem 3.2 Im Uy = I x Sp(2n,2), where I is an elementary abelian 2-group with order
22n+1 .

Proof Let #:= {T € Sp(2n + 2,2) | the first column and second row of the matrix of T'
are (1,0,---,0)Tand (0,1,0,---,0) relative to a basis x1(C, 22(C, - ,x9,12(C of C/(C,
respectively}.

Take any T' € A, let (a;;) be the matrix of T relative to a basis {,(C,i =1,2,--- ,2n+ 2}
of C/¢C'. Define a mapping;:

¢o: G— G,
2n+2 r 2n+2 2n+42

o (TLa) (1) o (IT (1)) (1)

WhereO<az<2 z'—l2,---,2n+2,0§bj<2,j:1,2,---,r,0§c<2,0§d<2m,
n+1

d=d+ Z 2m—2¢ (Z(U«i,2k—1'ai72k)) (mod 2™),t =0 (if > (a1,2k-1-a1,2k) =0 (mod 2))
h=1 k=1

=1
ort=1 (lf Z (a1 2k—1 A1 Qk) =1 (InOd 2))

Note that (azk) is a nonsingular matrix. It is easy to verify ¢ is a bijection. Therefore, ¢
is an automorphism of G if and only if ¢ preserves multiplications. By the definition of ¢, we
have

(1)

2n+42 "*1

i (ai2k—10ai2k)
( | | x Lk) Zk:l

m—1
2 a;
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n+1

+ . a; m—1 a;
( H a1k>2k§1(az,2k71 #:26)2 ] = (b(xi)’“,

2n+2 2n+2  2n+2

o (T ) (1) =« e )](JH;?)W
~wr[T1 (T ) }(r_[z )BT
S [T (T )= ) (119
o[ L o) (1)

(3) o(2) =25, =1,2,--- ,r

(4) o(y) = ya'.

(5) 6(2) = 2. - _ _

(6) Fora = aCC,b =0bCC € C/CC, f(¢(a), ¢(b)) = f(T(a), T(b)) = f(@,b), thus [¢(a), p(b)] =
[a, b]

n+1

2 2

s arp) 2 (a12e—1a1,21)2"™

(I =% )Z’“ ' yx}
k=2

o
—~
&
ol
~—
<
—~
<
=
Il
b=y
I8
—
<
—~
<
i
/_\

2 2 ntl 2 2 n+1 B
n+ i S (a19k—1a1,25)2™ ! n+ - 5™ (a1.2%—1a1,2) 2" ! ot
= [o( I ai)== (L =) o
k=2
n+1 L
t > (a1,26—101,21)2™
= [z,2"][z, y][zF=" ]
n+1
m, (a1,2k—1a1,2K)2™
_ 2"t — ’ > - .
=2ty k=1 [2,9] = [2,v] = [x1, 9]
Note that
nil ntl
2 2 m 1
T ar;\2 (& or2i-1012:)2 Tr o i1 _anagyg] (B M2
:(ij)ZF :[H(%Jl%J )7 |z
- - ol
s (nfa j—1a1,2;)2™
— 2a1,25—1, 2a1,2; 2ma1 2j-101,2 = 1,2j—-101,25
_{H(ng 1T Tg; TR 7 Nz
j=1
n+1 n+1
2a Z aizj—1a1,2;)2"™ (E a1,2j—1a1,25)2™ )
= 3o = 2
and for any ¢ = 2,3,---,2n + 2, we have that
n+1 i1
2n+2 2 (3 ainj_1aig;)2™ n+1

' ' (X2 a1,2j—1a1,25)2™
2 _ ij =1 ’ _ @i2j—1, @i,25\2 )
z)_(lej)Zj _|:||($2]1x2])zj
=1
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n+1 ntl om
_ [H(zgj:?71 g?i’% 22mai,2j—1ai,2j) Z(J; ai,2j—1a1,25)
j=1
(nfjlal 2j—10a1,25)2™ (Z a1,2j-101,2;)2"
=z =t z =1 =1
For ¢1, g2 € G,
2n+2 r , 2n+2 , r y
1_y ( H CE (szj)22d1’ 92:yc2( H x?i)(Hij)22d27
j=1 i=1 Jj=1
we have that
2n+2 2n+2 X
glgzzycl(Hx )(H b)le C2(H$ )(1_[])22012
Jj=1 7j=1
2n+2 2n+2 b
_ CI+C2(H$ )(H b) 2d1[$‘f1,yc][$1,y ] 2d1 c (Hz )(H ) 2ds
Jj=1
b
- W( H s )(H ) %( H 7 )(H 5 Yt ]2 )
[xl ay ][ levy ] 2z
2 +1 2n+-2
c1+c2 a;+a; T T - bj+b;’ air ,,c21[.2d1 ,,c2
=Y sz H H gt 79% sz [21, y= ][, y*]
i=1 k=1 t=k+1 j=1
) [Z—a1+(—1)cza17xg’2][22d1+(—1)622d1’x;’z]z2(d1+dz)
2n—+2 2n+1 2n+2
c1+ca T a’i+a'/i T T at ‘1;@ i bi"'b;' ar ,.ca1[,2d1 ,,c21,2(d1+ds2)
=Y H i H H [y, 2" sz [, y] ", y*)2
i=1 k=1 t=k+1 Jj=1
2n—+2
_ c1+co T GH‘GQ - bj+b3' e
=y H x; z 2,
i=1 j=1
2n+1 2n+2 o
where 2¢ = ( (o, apk]) [a]t, ye2] (224, yo2]22(ditd2) 0 < e < 2mFL
k=1 t=k+1

Let ¢1 +c2 = c+2¢, a; +a, = t; +2s;, b; +b’ = t’ +2s§-, 251 +e =e; (mod 2™ *1), where

0 <ty th <2,¢,8,85€2,0<e; <2m+1i—12 -,2n,5=1,2,---,r, then
_ 2n+2 r —
_ c1+c a;i+a} iTY5 e
$(9192) = |y 2( IT = )( z; J)z}
i=1 j=1
_ c+2¢’ ti+2s; 4 t 425", e
= o[y ( H o) (117~
; et
_ 2n+2 T o 2n—+2 "
=¢ yc( H xfi)(szj)ze“Sl} = ( H o(x )(szj)ZEI,
) i=1 j=1 j=1
2n+2 2n+2 r b +b
otanoten) = (a')” (TT ot )2ty (TT otw) (TL5")

J=1
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2n+2

ety (I oo™ )22 o)™ (')

2n+2

()™, (g, o)™ (y (H olx)" )(H 5T

2n+2

(yat cl+cQ(H¢ al) 2d1(H¢xZ )(T ;>+b)

b)), ()22 (yat) 2o, (yat)e, ¢laa)™2][221, (yah)°2, d(xo) 2] 222
2n+2 2n+2 ,

yx c1+C2( H s al) 2d1( H (1) )(H 40 ) @szdl’yw]zz@

(ya") 01+62(2ﬁ2¢ az“)(?ﬁl il (0™, o))

k=1 t=k+1

I
bj+b’;
. ( ZjJ'i‘ ]) [xtlzl ’ ycz][Zle ’ y02]22(d1+d2)

Jj=1
2n+2

o (11 o) (1T )

j=1
2n+2

e (T ot (IT )27 = ot

therefore ¢ € Aut G. Also since ¢(2%) = 22, ¢ € Auty G and Uy(¢) = T.
Conversely, take any ¢ € Auty G. Let ¥o(p) = T € Sp(2n + 2 2) the matrix of T be

(a;j) relative to a basis {z;(C,i =1,2,---,2n+2} of C/(C, p(x;) = ( H x“")( ﬁ z?ij)zzdi,
=1

j=
where 0 < b;, <2,1=1,2,---,2n+2,0<d; <2™.

Since
2042 )
2 _ 2\ __ 2 alk bl] 2d
2= () = p(a?) = [(Hw )(I1)]
Jj=1
n+1 r
_ a12k—1,.01,2k\2 2b1;5\ 4ds
= {H(x%_l Top ") }( z; )z
k=1 j=1
n+1
_ ( 201,261 201 2k 527 (a1,25-101,2k) 2b11 ZAd1
= Tog—1 Lok
k=1 Jj=1
ntl
2™ (a _1a +4d
_ x%allz(kgl (a1,2k—101,2k)) 1 _ Z2a11+4d'17

n+1

where d} = ( > 2m‘2(a1,2k_1a1,2k)) +di, a11+2dy =1 (mod 2™). From this, we have a1 = 1
k=1

(InOd 2), thus ayil = 1.

Fori=2,--- 2n+ 2,

2n+2 n+1 r

1= p(a?) = [(Hx )([[ o] = [T s )] (T2 )

k=1 j=1
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n+1 r
_ 2ai2k—1 2052k 2™ (a; ak—1ai 2k ) H 2bij \ 4d;
= [H(ka—l Lo 2 ) Z; z
k=1 j=1
nil
) 2™ (a; 26104 2k ) )+4d; ) ,
_ CL‘%GIIZ =1 — 2211114'4017;7

n+1

where d; = ( > 2m_2(ai,2k_1ai,2k)) +d;, therefore a;1 +2d) = 0 (mod 2™). From this, a;; =0
k=1

(mod 2), thus a;; = 0.

According to the results in [2], Ua(p) =T € B = I x Sp(2n,2), where I is an elementary
abelian 2-group with order 227+1,
The theorem is proved.

Theorem 3.3 Im V3 = GL(r, 2).

Proof Since FratC' = (z2), {z;FratC,j = 1,2,---,r} is a basis of (C/FratC. It follows
that (C/Frat C' is a linear space over GF(2) with dimension r, which implies that Im U5 can
be embedded in GL(r,2).

Conversely, for any (d;i)rxr € GL(r,2), we may define a mapping:

01: G— G,

Y=y,
i xi, t=1,2,--- 2n+2,

T
b; .
g [[a d=12r
k=1

It is easy to verify that 61 € Auty G, and the matrix of Wy(d1) is (bj) relative to a basis
{z;FratC,j5 =1,2,--- ,r} of (C/Frat C. Consequently, Us(Auty G) = GL(r,2).
The theorem is proved.

Theorem 3.4 Ker U is a 2-group with order 2(27+2)(r+1)+m+2r,

Proof Since Ker ¥ acts trivially on the factors of the series G > C' > (C > FratC' > 1,
thus Ker U is a 2-group.
Take any o € Ker U, let o be an automorphism as follows:

a: G— G,
2n+2 r
i bj\ 2
vy T =) (T1=) =
i=1 =1
kA
@ij ) ,2¢; S
xini(sz )z , 1=1,2,--- 2n4 2,
j=1
zj 227, g =1,2,-- 1,

22 22

where()gai<2,0§bj<2,0§a<2m,0§aij<2,0§ci<2m,0§dj<2m,
i=1,2, 2042, =1,2,-- 1.

T
Since a(2)? = 22, 2% = (2( [] z;”)z%l)2 = 22T which implies that ¢; = 0 or 271,
j=1
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Since a(x;)? = 1, where i = 2,--- ,2n 4+ 2, 1 = (z;( z}l”)z%i)2 = 2% which implies

.
=t

that ¢; = 0 (mod 2™~ 1), consequently, ¢; = 0 or 2™~ 1.

Since a(y) is commutative with a(x;), where i = 3,4, -+ ,2n + 2,
2n+2 r . _—
1= |:y( H :E;ll) ( H Z?j)ZQ‘l,ZEi(H Z;'ij)ZQCi:| — |:y( H $?i),$i220i:|
i=1 j=1 j=1 P
2n+2 In42 .
- [y( H x?i)azm} [y( H xf),xz}
=1 i=1
nt2 42

2ci1zitad? a1, a 2¢; a; 4c; a;
= [y, 2% 7= ot as?, 22| ([ )ow| =2 ([ 28 ) @)
1=1 1=1

Note that 4¢; = 0 (mod 2™*1). If i is odd, we can suppose that i = 2/+1, where [ = 1,2, --- ,n,
then 22702142 = zde21+2™az12 — 1 which implies that asgr+2 = 0; if 7 is even, we can suppose
that i = 21, where l = 2,--- ,n+1, then 22" ®2-1 = 1, which implies that as;_; = 0. In a word,
for i =3,4,---,2n + 2, we have that a; = 0.

. 2 _
Since a(z)7? = [a(z), a(y)],
s —2 T r
o . . b; L
zTita = (Z(HZ;U)ZQCI) - [Z(IIZ;IJ)ZQCl’yzalxM(IIZJ'])ZQG} =2,
j=1 j=1 =t

which implies that as = 0.
Since a(x) is commutative with a(y),

T

r
ag; bi LCP—
1= [:z:Q(H zj2])2202,yza1xa2 ( H zjj)zQ"} = 2 a—dez
i=1

J=1

— 2m—1

Also since ¢ or 0, we have that a; = 0.

Since a(y) is commutative with a(z;), where j =1,2,--- .7,

T

b; . )

= BT )] - 2
Jj=1

which implies that d; = 0 or 2m~1.
Since a(zj)? = (2;22%)? = 24 where j =1,2,--- ,7, dj = 0 or 2™~ L,
It is easy to verify generated relations of Hy and Hs have no effect on the parameters of a.
In conclusion, « is an automorphism as follows:

a: G— G,

s
Y > y( H z;?j)zz“,
j=1
s

lexl(HZ;IJ>Z2C7’ i:1727.-.72n+27
j=1

Zj vy 22", j=1,2,--- 1,
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where 0 <b; <2,0<a<2™,0< a5 <2,¢ :Oor2m_1,dj =0or2m™ ', i=1,2,---,2n+2,
j=1,2,---r.

Conversely, if « is an automorphism of GG, which satisfies the above conditions, then a €
Ker U. Tt follows that [Ker ¥| = 2(2n+2)(r+1)+m+2r,

The theorem is proved.

4 Proof of Theorem 1.3

Since D™ is an extraspecial 2-group, we can suppose that xi,z2, -, Tap—1, Zon, y2m are
the generators of D§", which satisfy the following conditions:

D" = ("),
[Toi_1,20i] =9, i=1, 2, .,
[$2i—17$j] =1, j=#2i,
[xoi, 2] =1, k#2i—1,
2=1, i=1,2 ---,n

According to (3) in Lemma 1.6,
m—1
C = (w1, @2, y) * (3,24, y) % -+ * (T2n—1,T2n,y) X (247 ) X R.
For convenience, we may let 2,41 := 2y, then [zp41,2] = y2". Let Ry := R X (z,41).
Let & : AutG — Aut(FratC') be the restriction homomorphism. Obviously, Ker ® =
Auty G < Aut G. According to (3) in Lemma 1.6, Frat C = (y?).

Theorem 4.1 '
mes {7 Uy
Proof If m = 2, then Frat C = Z, therefore Aut(Frat C') & Z,. Define a mapping:
o5: G— G,
Toi—1 xgi_l, 1=1,2,---,n,
To; > Tog, t=1,2,--- mn,

zZjrr zj, J= 1,2, ,r+1,
T,
Yy
It is easy to verify that o5 is an automorphism of G with order 2. Since ®(o5)(y?) = (y?)? and
P(05)%(y?) = y?, Aut(Frat C) = (®(05)). It follows that Aut G = Auts G x (05).
If m > 3, then Z%.. = (v1) x (vg), where v; = 3 and vy = 2™ — 1. By Lemma 1.5, the orders
of v; and vy are 22 and 2, respectively. Define a mapping:
og: G — G,
$2i—l'_>x§;n__113 Z:1527 , 1,
T2 > T2y, i:1727"'7n7
Zjrr zj, J= 1,2, ,r+1,
T x2m_1,

Y y2m—1.
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It is easy to verify o5 and o are the commutative automorphisms of G each other and their
orders are 2™~ ! and 2, respectively.

According to the argument in Theorem 2.1, we similarly have that Aut G = (o5, 0¢)Auty G,
(05, 06) NAuty G = <a§7n72>, thus Aut G/Auty G = Zom—2 X Zs.

The theorem is proved.

Let Uy : Auty G — Aut(G/C), ¥s : Auty G — Aut(C/¢C) and U3 : Auty G — Aut((C/Frat C)
be the natural induced homomorphisms. Define a homomorphic mapping:

U: Auty G — Aut(G/C) x Aut(C/¢C) x Aut(¢C/Frat C),
a— (U (a), Ua(a), Ts(a)).

Since G/C = (xC) = Zy, In¥; = Aut(G/C) = 1.
Since (C' = (y) x Ry, we may define the inner product as follows:

f(@,b) =t, where @ = a(C, b= b(C, a,b € C and [a,b] = (y*")}, 0 <t < 2.

From this, C'/(C' can become a nondegenerate symplectic space over GF(2). For o € Aut; G,
[a(a), a(b)] = ala,b] = [a,b], thus, for any @ = a(C,b = b(C € C/(C, we have that

f(Wa(a)(@), U2()(b)) = f(a(a), (b)) = f(@,b),

therefore Wo(a) € Sp(2n,2). Hence Wo(Aut; G) < Sp(2n,2). It follows that ¥ is a homomor-
phism as follows:

U Auty G — Aut(G/C) x Sp(2n,2) x Aut(¢C/Frat C),
a = (U1(a), Ua(a), Us(a)).
Theorem 4.2 Im ¥y = Sp(2n,2).

Proof Take any T € Sp(2n,2), let (a;x) be the matrix of T relative to a basis {z;(C, i =
1,2,---,2n} of C/¢C. Define a mapping;:

o: G—G,
2n r+1 2n 2n @ r+1
c a; bj c a; ‘ bj !
o (ILor) (11 ot =« (TL(IL ) ) (T00 )"
i=1 Jj=1 =1 k=1 =1
where 0 < a; < 2,i=1,2,---,2n, 0 < b; <2,j=12,---,r+1,0<c<2,0<d<2mt,
2n n
d=d+ Z Zm_lai( Z (ai72j_1 . CM_]QJ’)) (InOd 2m+1)'
i=1 =1

Note that (a;) is a nonsingular matrix. It is easy to verify ¢ is a bijection. Therefore, ¢ is
an automorphism of G if and only if ¢ preserves multiplications.

According to the argument in Theorem 2.2, we similarly have that Im ¥y = Sp(2n, 2).

The theorem is proved.

Theorem 4.3 Tm V3 = GL(r, 2) x (Zg)*".

A 0
%;:{( A; L ) eGL(r+2,2)},

Proof Let
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where A1q is a r X r matrix, As; is a 2 X r matrix, I> is a 2 X 2 identity matrix. It is easy to
verify that &7 < GL(r + 2,2). For convenience, we may let z,,9 := y.

Take any a € Auty G. Let (a;i) be the (r+2) x (r 4+ 2) matrix of ¥3(a) relative to a basis
{z;FratC,j =1,2,--- ,r + 2} of (C/FratC.

Let (ajx) be the partitioned matrix as follows:

A A
(ajr) = (A; A;Z) € GL(r + 2,2),

where A1, A12, Ao and Aoy are r X 7, 7 X 2, 2 X r and 2 X 2 matrices, respectively.

r+2 )
Since W3(a)(z;) = ] z,°", where j = 1,2,--- ,r + 2, there exists 0 < a; < 2™ such that
k=1
) 2 ajk\, 2a;
a(z;) = (kl_llzk )?J :
For j=1,2,--- ,r+1, z?: 1, thus

r+2
_ 2y 2 _ 2a51\, 2%a; _  2a; ,42+2%a;
1—O<(Zj)—a(zj) _(szj )y i = g2 J.
k=1

Hence aj 42 +2a; =0 (mod 2™). But m > 1 and 0 < a; ,42 < 2, then, for j =1,2,--- ,r+1,
Aj r42 = 0, aj; = 0 or 2m~1.
Since
r+2
Y =200 = alz ) = alzre)’ = ( H z;zawz’k)yfa”z
k=1

_ 2ari2,42+2%ar4s _ ( 2)a7‘+2,7‘+2+2a7‘+2
= Zr42 = )

rt2 742+ 20,49 =1 (mod 2™). But m > 1 and 0 < ay49,42 < 2, thus ayyo,42 =1, aypypo =0
or 2™ 1L, ) .
n r+ )
Let a(z) = ([T =) ( I1 z;])yd, where 0 <a; <2,0<b;<2,0<¢<2,0<d<2m

(2
i=1 j=1

1=1,2,---,2n,j=1,2,--- ,r+ 1. Then, for any j =1,2,--- ,r,

2n r+1 r+2
1= la(a).a(z))] = [o [T ) (TT57)v" (TT =" )v*]
i=1 j=1 =
= [, 25257 P = [, 2] =

From this, 2™a;,4+1 = 0 (mod 2™*1), thus a;,+1 = 0.
Since
om _ogmy
y* =ay” ) = (), alz41)]

r+2

2n r+1
_ a; b;\ d ar41,k '\, 2a, _ Ar41,r4+1, 2a, 2™,
(oo ) (T Yo (Tt Yoow] = oo = v,
i=1 j=1

2™, 41 41 = 1 (mod 2™1). Thus ay41,41 = 1.
If H = Hg, then
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2n r+1 r42
— a; bj\, d Art2,k \ ) 2a, Qri2rb1 1 242™g )
= [;U(Hxl )(H237>y ’(szT y2ar+2 [x,zT_H y]_y 2t
i=1 j=1 k=1

which implies that 2 4+ 2™a, 42,41 = 2 (mod 2m+1) " therefore Gry2r+1 = 0;if H = H7, then

yz—zm — a(y2_2m) = [a(z), a(zr+2)]
2n r+1 r42
= |:$(H$;ll) ( H Z;j)yd, ( H Z27‘+2,k)y2a7~+2:| [% Zf_flz T+1y] _ y2—2 +2 GT+2,7~+1’
i=1 Jj=1 k=1

which implies that 2™a,19,,+1 =0 (mod 2™*1), therefore a, 42,11 = 0.

Conversely, for any (Bll 0 ) = (bj.) €€ . Define a mapping:

By I
02 : G — G,
T,
T x;, 1=1,2,--- 2n,

r+2
g [[at G=12r+2

It is easy to verify that do € Aut G. Also since

52(y?) = d(y)* = ( 11 zf:‘“"“y)2 =y’
k=1

d2 € Auty G, and the matrix of W (d2) is (b;x) relative to a basis {z;Frat C,j = 1,2,--- ,7+2} of
¢C/Frat C. Thus Im Wy 2% . Also since €= GL(r,2) x (Z2)*", Wa(Aut; G) = GL(r,2) x (Z2)?".
The theorem is proved.

Theorem 4.4 Ker ¥ is a 2-group with order 227+2)(r+2)+m—1

Proof Since Ker ¥ acts trivially on the factors of the series G > C' > (C > FratC' > 1,
Ker ¥ is a 2-group.
Take any o € Ker U. Let

a: G— G,
xHx(Hz“‘)(Hz )

r+2
a;j .
$1H$1(sz])7 Z:1727"'72na

Zk'—>zky20k k:172, ,T+2,

y Hyv
where Zr4o = 1Y, 0<a;, <2,0< bj <2,0< br+2 < 2m+1, 0< Q5 < 2,0< A r42 < 2m+17
0<c<2™ i=1,2,--.,2n,j=1,2,- 7 +1,k=1,2,---,r+2.

r42
Since a(x;)? = 1, where i = 1,2,--- ,2n, 1 = (xl( 11 z;-l”))z = y2%.r+2_which implies that
j=1

airy2 =0 (mod 2™), that is a; r42 = 0 or 2.
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Since a(z) is commutative with a(z;),

_ [x(ﬁx)(ffz ) (ff =1 (Hw ) s y]
0 SR 0 S

Ai,r+1, @i, a;
= [z 2.yt [(Hw ) }
- s (flor) o)

If i is odd, let i = 2 — 1, where | = 1,2,---,n, then 32" (@2-1rs1ta2) — 1 which im-
plies that ag—1,4+1 + az = 0 (mod 2). If i is even, let ¢ = 2, where [ = 1,2,--- ,n, then
me(“2l~T+1+a2l*1) =1, which implies that ag ;41 + agi—1 =0 (mod 2).

Since «a(x) is commutative with a(zx), where k =1,2,--- |7,

2n r+2
= [x( II x“) ( II Zf) ; ZkyQCk} = [z, y°*].
i=1 j=1

If H= Hg or H = H7, then y** = 1, thus ¢ = 0 or 2™~ 1. Also since

y2m = [a(x)7a(z7”+1)] = [$,2r+1y2cr+1] = y2m+4cr+1’
y2m = y2m+467‘+1, which implies that 4¢, 41 = 0 (mod 2m+1)7 that is ¢,40 = 0 or om—1 I
H= H67

y? = [a(x), a(zri2)] = [z, yy*r+2) = y? T2,

thus 4c, 12 =0 (mod 2™+1), that is ¢, 40 = 0 or 27~ L. If H = Hy,

v = (@), alzrg)] = [myyPorr] = 2 e,
thus 4¢, 40 = 0 (mod 2™+1) that is ¢,40 = 0 or 2~ 1. In conclusion, for k = 1,2,--- ,r + 2,
¢ =0 or 2m L,
If H = Hg,
2n r+2 N 2 2™ (b, +i as;—1a2;)
1:a(x)2:(x(foi>(Hz§J)> =y B =T
i=1 j=1

thus by11 + > ag—1a9 =0 (mod 2); if H = Hy,
=1

r+2

2n n
1=a(x)? = (a:( H:z:f’i) ( H 2z )) = 2 (raatbraat 2 a”’la”),
1=1

thus by41 + brio + D ag—1a2; =0 (mod 2).
=1
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Fork=1,2,--- ,r+1,1 = a(z)? = 22y** =y thus 4¢; = 0 (mod 2™*1), which implies
that ¢ = 0 or 2™~ 1. Also since y? = a(y?) = (y'ter+2)? = y2H4er+2 4e. 9 = 0 (mod 27F1),
which implies that ¢, 42 =0 or om—1,

It is easy to verify other generated relations of Hg and H; which have no effect on the
parameters of «.

In conclusion, « is an automorphism as follows:

a: G— G,
2n r+2
xHx(Hw?)(szJ),
i=1 j=1
r+42
xini(Hz;l”), i=1,2,--,2n,
j=1
26— 2y, k=1,2,- r+2,

where 2,10 =y, 0 < b; < 2,0 < a;; <2, b1+ > ag—1ay =0 (mod 2) (if H = Hg) or
=1

br+1 + brgo + ZZ agi—1a9; = 0 (mod 2) (if H = H7), 0 < byyo < 2m+1, a21—1,r+1 +ag =0
=1
(mod 2), agir+1 + az—1 = 0 (mod 2), a; 42 = 0 or 2™ ¢ = 0 or 2™~ i = 1,2,--- 2n,
=12 r k=12 r4+21=1,2--- n.
Conversely, if « is an automorphism of GG, which satisfies the above conditions, then o €
Ker . Tt follows that |[Ker ¥| = 2(2n+2)(r+2)+m—1,
The theorem is proved.

5 Proof of Theorem 1.4

. m
For convenience, we may suppose that a3, T4, -+ ,Toni1, Toni2, 2> are the generators of
Dg"™, which satisfy the following conditions:

[1721—1’1721] - Z2m7 1= 27 37 , 1,
[x2z—lax]] = 17 J 7é 227
[ZEQ'Lazk]:lv k‘.#27’_1a
xf =1, 1=2, 3, , n

According to (4) in Lemma 1.6,
C = (x1,22) * <x3,x4,z2> * <x5,x6,z2> Kok <x2n+1,x2n+2,22> X R M, (2) * Np(2)™ X R,

where z1 1= z, x5 := .
Let @ : AutG — Aut(FratC) be the restriction homomorphism. Obviously, Ker® =
Auty G < Aut G. According to (4) in Lemma 1.6, Frat C' = (22) = Frat G & Zom.

ZQa me:27
Imd = :
ngfz X 2o, me > 3.

Theorem 5.1
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Proof If m = 2, then Frat C = Zy, thus Aut(Frat C') & Z,. Define a mapping;:

or: G— G,

Toiq > as, g, i=1,2,- n+1,
Toj — To;, t=1,2,--- . n+1,
zj—= 2z, Jj=1,2,--,1
Y=y,

u—s ul,

It is easy to verify that o7 is an automorphism of G, which is of order 2. Since ®(o7)(2%) = (22)7
and ®(07)%(2?) = 22, Aut(Frat C) = (®(07)). It follows that Aut G = Auts G x (7).
If m > 3, then Z3,, = (v1) x (v2), where v; = 3 and vg = 2™ — 1 and their orders are 22

and 2 by Lemma 1.5, respectively. Define a mapping;:

og: G — G,
T2;—1 l—>$§;n__11, 1= 1,2,~-~ ,n—l—l,
Toj — Toi, t=1,2,--- . n+1,
zj =z, J=1,2,--- 71,
y=y,
w—s u? L

It is easy to verify that o7 and og are the commutative automorphisms of G each other and
their orders are 2™~ ! and 2, respectively.

By means of the argument in Theorem 2.1, we similarly have that Aut G = (o7, og)Aut; G,
and (o7, os) NAut; G = (02" ). Tt follows that Aut G/Aut; G = Zym—2 X Zg.

The theorem is proved.

Let
Uy s Auty G — Aut(G/C),

Uy s Auty G — Aut(C/CCO)
U3 Auty G — Aut((C/Frat C)

be the natural induced homomorphisms. From this, we can obtain the below homomorphism:

U Auty G — Aut(G/C) x Aut(C/¢C) x Aut(¢C/Frat C),
a— (U(a), Ta(a), Ts(a)).

Since G/C = (yC) = Zo, Im ¥y = Aut(G/C) = 1.
Since (C' = ((2?) x R) - (u), we can define the inner product as follows:

f@,b) =t, where @ = aCC, b = b(C, a,b € C and [a,b] = ("), 0 < t < 2.

Hence C'/¢C can become a nondegenerated symplectic space over GF(2). For any o € Auty G,
[a(a), a(b)] = afa, b] = [a,b], then, for any @ = a(C,b = b(C € C/(C,

F(T2(a)(@), T2(a) (b)) = f(a(a), (b)) = f(@,D),
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therefore Wo(a) € Sp(2n,2). Thus Uy(Auty G) < Sp(2n,2). In a word, ¥ is a homomorphism
as follows:

U: Auty G — Aut(G/C) x Sp(2n,2) x Aut(¢C/Frat C),
ar (Uy(a), Ta(a), Ts(a)).

Theorem 5.2 Im Uy = I x Sp(2n,2), where I is an elementary abelian 2-group with order
22n+1 .

Proof Let 2 := {T € Sp(2n + 2,2) | the first column and second row of the matrix of
T are (1,0,---,0)T and (0,1,0,---,0) relative to a basis 21(C,22(C, - , T2,+2(C of C/(C,
respectively}.

Take any T € 9. Let (a;x) be the matrix of T relative to a basis {x;(C, i = 1,2, -+ ,2n+2}
of C/¢C. Define a mapping:

¢o: G— G,
2n+2 r+1 2n+2 2n+42

(T ) (1) o (T1 (T2 >><f1 ),

where 2,11 =4, 0<a; <2,1=1,2,--- . 2n+2,0<b; <2, 5=1,2,---,r+1,0< ¢c <2

2n+2 n+1
0<d<2m, d =d+ E 2m_2ai( E (ai72k_1 ~ai,2k)) (InOd 2m ,t=0 (lf Z a1 2k—101 Qk) =0
i=1 k=1

n+1
(mod 2)) ort=1 (if > (ar26—161,25) =1 (mod 2))
k=1
Note that (a;;) is a nonsingular matrix. It is easy to verify ¢ is a bijection. Therefore, ¢ is

an automorphism of G if and only if ¢ preserves multiplications.

According to the argument in Theorem 3.2, we similarly have that InV¥y, = 2 = [ x
Sp(2n,2), where I is an elementary abelian 2-group with order 227+1.

The theorem is proved.

Theorem 5.3 Im V3 = GL(r,2) X (Z2)".

Proof For convenience, let z,41 := usz*l, then (C = R x (z,41) X (2?), and Hg =
(Y, 2, 2041 | 2% = 32 2 2 22, =1Ly" =y, 2" = 22U = 2 [,z = 1 =
[27 ZT+1]7 [y7 ZT+1] = Z2m>'

Since Frat C = (z22), {z;FratC,j = 1,2, ,r + 1} is a basis of (C/FratC' and (C/Frat C
is a linear space over GF(2) with the dimension r + 1. Hence Im ¥3 can be embedded in
GL(r +1,2).

Let

H = {Gg ?) € GL(r+1,2)},

where Hy; is a r X r matrix, Hy; is a 1 X r matrix. It is easy to verify that HC< GL(r +1,2).
For any a € Auty G, let (h;,) be the matrix of W3(a) relative to a basis {z;FratC,j =
1,2,---,r+ 1} of (C/Frat C.
Let (hjx) be the partitioned matrix as follows:

v _ (Hi Hi
(hye) = <H21 H22> € GL(r+1,2),
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where Hi1, Hio, Ho1 and Hos are r x r, r X 1, 1 X 7 and 1 x 1 matrices, respectively.
r+1 ) r+1 )
Since W3(a)(z;) = [[ Z}7*, there exists 0 < h; < 2™ such that a(z;) = ( [] zp7*)22".
k=1 k=1

Forj=1,2,---,7+1,1=a(z)? = 2% thus 4h; =0 (mod 2™*+1).
Let a(y) = yy1, where y1 € C. Since a(y) is commutative with a(z;) for j =1,2,--- ,r,

r+1
i j 2h m
1= {yyl’ (H ZZ]k)Z2hj} = [y,thj][y,zf_’H“]z T = M2 Ry
k=1
Hence hj 41 = 0, that is Hip = 0. Since

r+1
m h . hy . . ™ Ry
Z2 - [yyl’ ( H Zkr+11k>Z2h7+1} = [ya eri-+11m+lz2h7+1] = Z4h7+1+2 h7+1,7‘+1’

k=1

hr+17r+1 = 1, that is H22 =1.

Conversely, for any (gll (1)> = (hji) €€, define a mapping:
21
03: G— G,
Y=y,
=z, =12 2n4 2,
r+1
zj szjk, j==1,2,--- v+ 1.
k=1

It is easy to verify that d3 € Auty G, and the matrix of Wy(d3) is (b;i) relative to a basis
{z;FratC,j = 1,2,--- ,r + 1} of (C/Frat C. Hence Im Wy 257, Also since .7~ GL(r,2) x
(Zo)", Wa(Auty G) =2 GL(1,2) x (Za)".

The theorem is proved.

Theorem 5.4 Ker ¥ is a 2-group with order 22n+2)(r+2)+2r+m+1

. m—1
Proof For convenience, let z,41 := uz?

Since Ker ¥ acts trivially on the factors of the series G > C' > (C > FratC > 1, Ker ¥ is a
2-group.
For any o € Ker U, let

a: G— G,

2n+2 r+1

y>—>y( H x;—li)(HZ;)j)Z2a,
i=1 j=1
r+1

T xi(Hz;l”)zzci, i=1,2,---,2n+2,
j=1

zj»—>zjz2df, =12, r4+1,

22— 22,

where()gai<2,0§bj<2,0§a<2m,0§aij<2,0§ci<2m,0§dj<2m,
i=1,2,-- 2042, =1,2,-- ,r+1.
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+
Since a(2)? = 22, 2% = (2( H 2)z 201)2 = z2+4e1 which implies that ¢; = 0 or 271,
S. 2 . _ r+l aqj 2¢; 2 _ ey . . .
ince a(z;)* =1, where i = 2,--- ,2n+2, 1 = (;vz( _Hl z; )z ) = 2% which implies
J:
that ¢; =0 (mod 2™~ 1), that is ¢; = 0 or 2™~ 1.
Since a(y) is commutative with a(x;), where i = 3,4,--- ,2n + 2,
2n+2 r+1 r+1 2n+2
) ) )2 = o)
i=1 j=1
2n+2 2n+2 LAl 2¢;
r4+1
[y( H xf )7 ;1;?1 2cb} [y( H e ) ] ¥
2n+2
= 2l [ (1T ) ]
i=1
2n+2

_ 2467122 @ el {( H x;h)’xl}
i=1

Note that 4¢; = 0 (mod 2™*1). If i is odd, let i = 2j — 1, where j = 2,--- ,n + 1, then
22" (a2j—1.rp14az;) — 1, which implies that agj_1 41 + az2; =0 (mod 2); if ¢ is even, let i = 27,

where j = 2,---,n + 1, then 22" (®25r+1+a25-1) — 1 which implies that a2jr41 +agj—1 =0
(mod 2).
Since «a(x) is commutative with a(y),
r+1 r+1
1= [xg ( H z;-lz ) 2262 yz% g@ (H z?j)zza} = 2" (artaz, 1) —dez
=1 j=1

Also since ¢ =0 or 271 ay +az 41 =0 (mod 2).

Since a(z)7? = [a(z), a(y)],

r+1 r+1 r+1
Z—2—4c1 _ ( ( H P ) 2c1) _ [Z( H Z;llj)22cl ’ yza1xa2 ( H Z?j)ZZa}
=1

2m a2—2—401+2 a1, r+1
z )

which implies that as + a1,4+1 =0 (mod 2).

Since
2n+2 r+1
1=Mw:p(Hxﬂ(Hz) 0 =2,
i=1
n+1 n+1
where ¢ := 2™ (br+1 + > agj_lagj), bry1+ Y agj_1a2; =0 (mod 2).
j=1 j=1
Since a(y) is commutative with a(z;), where j =1,2,--- .7,

r+1

bj . .
1= {yzmzaz ( H ij)22a, ij2d]} _ Z4dj7
j=1
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which implies that d; = 0 or 2™~ !. Since

r+1
Z =a(z"") = a(2)*" = [a(y), alzr41)] = {yzalxaz ( 11 z;-’j)zza,z”lzzd”l}
i=1

_ 22m+4d7‘+1 ,

dyi1=0or2m 1,
Since 1 = a(z;)? = (2j22%)% = 24 where j = 1,2,--- , 7 +1,d; = 0 or 2™~ 1,
It is easy to verify other generated relations of Hg have effect on the parameters of a.
In conclusion, « is an automorphism as follows:

a: G— G,
2n+2 r+1
a; b; 2a
Yy—=y €, Zj z7,
i=1 7j=1
r+1

xini(HZ;lij)Z2Ci7 t=1,2,--.2n+2,
j=1
zj»—>zjz2df, j=12,---,r4+1,

n+1
where agj_1,+1 + a2; = 0 (mod 2), agj,r+1 + azj—1 = 0 (mod 2), b1 + > agj_1a2; = 0
j=1
(InOdZ),OSbj <2,0§a<2m,0§aij <2, CiZOOI‘Zm_l, dj =Oor2m_1,i=
1,2,---.2n4+2,j=1,2,--- ;r+1.
Conversely, if « is an automorphism of G, which satisfies the above conditions, then « €
Ker ¥. Hence [Ker ¥| = 2(2n+2)(r42)+2r+m1

The theorem is proved.
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