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1 Introduction

In this paper, p always is a prime number, only finite groups will be considered. The

terminologies and notations used are standard (cf. [1]).

Let G1 and G2 be any two groups, Z1 and Z2 be the centers of G1 and G2, respectively.

Assume that Z1 is isomorphic to Z2, and θ : Z1 → Z2 is the isomorphic mapping, G1 ∗ G2 is

called the central product of G1 and G2 relative to Z1, Z2 and θ, that is, G1 ∗G2 is the quotient

group of G1 ×G2 on the normal subgroup

{(z1, θ(z1)
−1 | z1 ∈ Z1}.

In particular, let G be any group, Z ≤ ζG, the central product G∗G is constructed by virtue of

the identity mapping on Z. For any l > 1, G∗l is denoted byG∗(l−1)∗G, andG∗1 := G, G∗0 := 1.

A finite p-group G is called extraspecial, if G′ = FratG = ζG and have order p. Winter

[2] has given the automorphism group of an extraspecial p-group. When p is odd, Dietz [3]

generalized the results of Winter, and determined the automorphism group of a finite p-group

which is a central extension of a group with order p by an elementary abelian group.

In [1], a finite p-group G is called generalized extraspecial, if the center ζG of G is cyclic

and the derived subgroup G′ of G has order p. In [4], we determined the automorphism group

of the generalized extraspecial p-group. Further, let G be the below central extension

1 → Zpm → G → Zp × · · · × Zp → 1,

and |G′| ≤ p. In [5], we determined the automorphism group of the finite p-group, which

generalized the results of Winter and Dietz.
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Proposition 1.1 (cf. [5]) Let p be an odd number, G be a finite p-group given by a central

extension of the form

1 → Zpm → G → Zp × · · · × Zp → 1,

and |G′| = p, where m ≥ 2. Then G = EA, where E is a generalized extraspecial p-group,

A = ζG, E ∩ A = ζE. Suppose that |E| = p2n+m, |ζE| = pm and |A| = pm+l. Let Autf G =

{ α ∈ AutG | α acts trivially on FratG}. Then

(i) If both E and A are of exponent pm, then AutG/Autf G ∼= Z(p−1)pm−2 , and Autf G/K ∼=

Sp(2n, p)× (GL(l, p)⋉ (Zp)
l), where K is of order p2n(l+1)+l+1.

(ii) If E and A are of exponent pm and pm+1, respectively, then AutG/Autf G ∼= Z(p−1)pm−1 ,

and Autf G/K ∼= Sp(2n, p)× (GL(l − 1, p)⋉ (Zp)
l−1), where K is of order p2nl+l.

(iii) If E and A are of exponent pm+1 and pm, respectively, then AutG/Autf G ∼= Z(p−1)pm−1 ,

and Autf G/K ∼= (I ⋊ Sp(2n − 2, p))×GL(l, p), where I is an extraspecial p-group with order

p2n−1 and K is of order p2n(l+1)+l.

Proposition 1.2 (cf. [5]) Let G be a finite 2-group given by a central extension of the

form

1 → Z2m → G → Z2 × · · · × Z2 → 1,

and |G′| = 2, where m ≥ 2. Then G = EA, where E is a generalized extraspecial 2-group,

A = ζG, E ∩ A = ζE. Suppose that |E| = 22n+m, |ζE| = 2m and |A| = 2m+l. Let Autf G =

{ α ∈ AutG | α acts trivially on FratG}. Then

(i) If both E and A are of exponent 2m, then AutG/Autf G ∼= 1 (m = 2) or Z2×Z2m−3(m ≥

3), and Autf G/K ∼= Sp(2n, 2)× (GL(l, 2)⋉ (Z2)
l), where K is of order 22n(l+1)+l+1.

(ii) If E and A are of exponent 2m and 2m+1, respectively, then AutG/Autf G ∼= Z2×Z2m−2 ,

and Autf G/K ∼= Sp(2n, 2)× (GL(l − 1, 2)⋉ (Z2)
l−1), where K is of order 22nl+l.

(iii) If E and A are of exponent 2m+1 and 2m, respectively, then AutG/Autf G ∼= Z2×Z2m−2 ,

and Autf G/K ∼= (I ⋊ Sp(2n− 2, 2))×GL(l, 2), where I is an elementary abelian 2-group with

order 22n−1 and K is of order 22n(l+1)+l.

In [6], the structure and the automorphism group of a finite p-group with a cyclic Frattini

subgroup were studied. In this paper, by means of the results in [5], the automorphism group of

a finite p-group with a cyclic Frattini subgroup is further determined. On the hand, if p is odd,

or p = 2 and FratG ≤ ζG, then G is a finite p-group which is a central extension of a cyclic

group FratG by an elementary abelian group and G′ has order p by Lemma 1.2 and Lemma

1.3. According to Proposition 1.1 and Proposition 1.2, the automorphism group of G can be

determined, on the other hand, if p = 2 and FratG � ζG, we can obtain the below results.

In what follows, we are going to suppose that |FratG| = pm and R is an elementary abelian

2-group with rank r.

Theorem 1.1 Let G = R × (D∗n
8 ∗ H), where H = H1, H2 or H3, which are defined in

Lemma 1.6. Let C := CG(FratG) and Autf G := {α ∈ AutG | α acts trivially on FratC}.

Then

(1) AutG/Autf G ∼= Z2(if m = 2), or Z2m−2 × Z2(if m ≥ 3).

(2) Autf G/K ∼= Sp(2n, 2)×GL(r, 2)⋉ (Z2)
r, where K is of order 2(2n+2)(r+1)+m(ifH = H1

or H3), or 2(2n+2)(r+1)+m−1(if H = H2).

Theorem 1.2 Let G = R× (D∗n
8 ∗H), where H = H4 or H5, which are defined in Lemma

1.6. Let C := CG(FratG) and Autf G := {α ∈ AutG | α acts trivially on FratC}. Then
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(1) AutG/Autf G ∼= Z2 (if m = 2), or Z2m−2 × Z2 (if m ≥ 3).

(2) Autf G/K ∼= (I ⋊ Sp(2n, 2))×GL(r, 2), where I is an elementary abelian 2-group with

order 22n+1, K is of order 2(2n+2)(r+1)+m+2r.

Theorem 1.3 Let G = R× (D∗n
8 ∗H), where H = H6 or H7, which are defined in Lemma

1.6. Let C := CG(FratG) and Autf G := {α ∈ AutG | α acts trivially on FratC}. Then

(1) AutG/Autf G ∼= Z2 (if m = 2), or Z2m−2 × Z2 (if m ≥ 3).

(2) Autf G/K ∼= Sp(2n, 2)× (GL(r, 2)⋉ (Z2)
2r), K is of order 2(2n+2)(r+2)+m−1.

Theorem 1.4 Let G = R× (D∗n
8 ∗H), where H = H8, which is defined in Lemma 1.6. Let

C := CG(FratG) and Autf G := {α ∈ AutG | α acts trivially on FratC}. Then

(1) AutG/Autf G ∼= Z2 (if m = 2), or Z2m−2 × Z2 (if m ≥ 3).

(2) Autf G/K ∼= (I ⋊ Sp(2n, 2)) × (GL(r, 2) ⋉ (Z2)
r), where I is an elementary abelian

2-group with order 22n+1, and K is of order 2(2n+2)(r+2)+2r+m+1.

According to the above theorems, let r = 0, then we can obtain the below conclusion in [6].

Corollary 1.1 (cf. [6]) Let P = D∗n
8 ∗H.

(1) If H = D2m+2 or H = Q2m+2 , then |AutP | = 2(n+1)2+2m
n
∏

i=1

(22i − 1).

(2) If H = SD2m+2, then |AutP | = 2(n+1)2+2m−1
n
∏

i=1

(22i − 1).

(3) If H = D+
2m+3 or H = Q+

2m+3 , then |AutP | = 2(n+2)2+2m−2
n
∏

i=1

(22i − 1).

(4) If H = D2m+2 ∗ C4 or H = SD2m+2 ∗ C4, then |AutP | = 2(n+2)2+2m−2
n
∏

i=1

(22i − 1).

(5) If H = D+
2m+3 ∗ C4, then |AutP | = 2(n+3)2+2m−4

n
∏

i=1

(22i − 1).

We need the following several lemmas in order to obtain the above theorems.

Lemma 1.1 (cf. [4]) Let G be a generalized extraspecial p-group, then

(i) G/ζG is an elementary abelian p-group.

(ii) Let G′ = 〈c〉. For any two elements x = xζG and y = yζG of G/ζG, write [x, y] =

cr (0 ≤ r < p) and f(x, y) = r, then G/ζG becomes a nondegenerate symplectic space over

GF(p).

(iii) G is a central product of some nonabelian subgroups Gi which satisfy both ζGi = ζG

and |Gi/ζGi| = p2. Furthermore, let |Gi| = pm+2, where m ≥ 2, then Gi only has two types:

Mm(p) = 〈x, y | xpm+1

= yp = 1, xy = x1+pm

〉

or

Nm(p) = 〈x, y, z | xp = yp = zp
m

= 1, [x, z] = [y, z] = 1, [x, y] = zp
m−1

〉.

Lemma 1.2 (cf. [6]) Let p be odd and G be a nonabelian p-group. If FratG is cyclic, then

FratG is a central subgroup.

Lemma 1.3 Let G be a nonabelian p-group. If FratG is a cyclic and central subgroup, then

G′ is of order p.

Proof Since G is a nonabelian p-group, G′ is nontrivial, and is included in the cyclic

Frattini subgroup FratG. Now we only need to prove that G′ is of order p.
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Since G′ ≤ FratG ≤ ζG, for any x, y ∈ G, we have that

[x, y]p = [xp, y].

Moreover, since xp ∈ FratG ≤ ζG, [xp, y] = 1. Consequently, for any x, y ∈ G, we have that

[x, y]p = 1. The lemma is proved.

Lemma 1.4 (cf. [6]) Let G be a nonabelian 2-group, Φ(G) be cyclic, FratG � ζG and

|FratG| = 2m, then m > 1, and G is isomorphic to the direct product R× (D∗n
8 ∗H), where R

is an elementary abelian 2-group, n ≥ 0, H is a nontrivial 2-group which is one of the following

isomorphic types:

D2m+2 , Q2m+2 , SD2m+2 , D2m+2 ∗ C4, SD2m+2 ∗ C4, D
+
2m+3 , Q

+
2m+3 , D

+
2m+3 ∗ C4,

where

D+
2m+3 := 〈x, y, z | x2 = y2 = z2

m+1

= 1, yx = y, zx = z2
m+1, zy = z−1〉

and

Q+
2m+3 := 〈x, y, z | x2 = z2

m+1

= 1, y2 = z2
m

, yx = y, zx = z2
m+1, zy = z−1〉.

Lemma 1.5 (cf. [4]) If m ≥ 3, then

a2
m−2

≡ 1 (mod 2m), where a is an odd number,

32
m−3

6≡ 1 (mod 2m).

Lemma 1.6 Let G be a nonabelian 2-group, Φ(G) be a cyclic group, and FratG � ζG,

|FratG| = 2m, then G is isomorphic to the direct product R × (D∗n
8 ∗ H), where R is an

elementary abelian 2-group, n ≥ 0, H is defined in Lemma 1.4. Further,

(1) If H is isomorphic to D2m+2 , SD2m+2 or Q2m+2, then CG(FratG) ∼= Nm+1(2)
∗n ×R.

(2) If H is isomorphic to D+
2m+3 or Q+

2m+3 , then CG(FratG) ∼= Nm(2)∗n ∗Mm(2)×R.

(3) If H is isomorphic to D2m+2∗C4 or SD2m+2∗C4, then CG(FratG) ∼= Nm+1(2)
∗n×R×Z2.

(4) If H is isomorphic to D+
2m+3 ∗ C4, then CG(FratG) ∼= Nm(2)∗n ∗Mm(2)×R× Z2.

Proof Assume that D∗n
8

∼= 〈x1, x2〉 ∗ 〈x3, x4〉 ∗ · · · ∗ 〈x2n−1, x2n〉.

(1) Let H1 := H ∼= D2m+2 , and H1 = 〈x, y | x2 = y2
m+1

= 1, yx = y−1〉, then ζH1 = 〈y2
m

〉,

FratG = 〈y2〉, and

CG(FratG) = 〈x1, x2, y〉 ∗ 〈x3, x4, y〉 ∗ · · · ∗ 〈x2n−1, x2n, y〉 ×R.

Note that 〈x2i−1, x2i, y〉 ∼= Nm+1(2), where i = 1, 2, · · · , n. It follows that CG(FratG) ∼=

Nm+1(2)
∗n ×R.

Let H2 := H ∼= SD2m+2 , and H2 = 〈x, y | x2 = y2
m+1

= 1, yx = y−1+2m〉. If (yk)x = yk,

where 0 ≤ k < 2m+1, then y−k+2mk = yk. It follows that 2k − 2mk ≡ 0 (mod 2m+1), which

implies that (1 − 2m−1)k ≡ 0 (mod 2m). Also 0 ≤ k < 2m+1, thus k = 2m and ζH2 =

〈y2
m

〉. Consequently, FratG = 〈y2〉. According to the results of H1, we similarly have that

CG(FratG) ∼= Nm+1(2)
∗n ×R.

Let H3 := H ∼= Q2m+2 , and H3 = 〈x, y | x4 = 1, y2
m

= x2, yx = y−1〉. Obviously, ζH3 =

〈y2
m

〉, FratG = 〈y2〉. According to the results of H1, we similarly have that CG(FratG) ∼=

Nm+1(2)
∗n ×R.
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(2) Let H4 := H ∼= D+
2m+3 , and

H4 = 〈x, y, z | x2 = y2 = z2
m+1

= 1, yx = y, zx = z2
m+1, zy = z−1〉.

Let xiyjzk ∈ ζH4, where 0 ≤ i < 2, 0 ≤ j < 2, 0 ≤ k < 2m+1, then (xiyjzk)x =

xiyjzk. It follows that z2
mk+k = zk, thus 2mk ≡ 0 (mod 2m+1), that is k ≡ 0 (mod 2). That

(xiyjzk)y = xiyjzk implies that z−k = zk, thus 2k ≡ 0 (mod 2m+1), that is k ≡ 0 (mod 2m).

Since (xiyjzk)z = xiyjzk, (xi)z = xiz−2mi and (yj)z = yjz(−1)j+1+1, −2mi + (−1)j+1 + 1 ≡ 0

(mod 2m+1), which implies that −2mi+(−1)j+1+1 ≡ 0 (mod 2m). It follows that (−1)j+1+1 ≡

0 (mod 2m), thus j = 0. Consequently, i = 0. From the above, we have that ζH4 = 〈z2
m

〉, and

FratH4 = 〈z2〉 = FratG. It follows that

CG(FratG) = 〈x, z〉 ∗ 〈x1, x2, z
2〉 ∗ 〈x3, x4, z

2〉 ∗ · · · ∗ 〈x2n−1, x2n, z
2〉 ×R.

Note that 〈x, z〉 ∼= Mm(2), where Mm(2) is defined in Lemma 1.1, thus CG(FratG) ∼= Mm(2) ∗

Nm(2)∗n ×R.

Let H5 := H ∼= Q+
2m+3 , and

H5 = 〈x, y, z | x2 = z2
m+1

= 1, y2 = z2
m

, yx = y, zx = z2
m+1, zy = z−1〉.

Let xiyjzk ∈ ζH5, where 0 ≤ i < 2, 0 ≤ j < 4 and 0 ≤ k < 2m+1, then (xiyjzk)x =

xiyjzk. It follows that z2
mk+k = zk, thus 2mk ≡ 0 (mod 2m+1), that is k ≡ 0 (mod 2).

That (xiyjzk)y = xiyjzk implies that z−k = zk, thus 2k ≡ 0 (mod 2m+1), therefore k ≡ 0

(mod 2m). Since (xiyjzk)z = xiyjzk, (xi)z = xiz−2mi and (yj)z = yjz(−1)j+1+1, −2mi +

(−1)j+1+1 ≡ 0 (mod 2m+1), which implies that −2mi+(−1)j+1+1 ≡ 0 (mod 2m). It follows

that (−1)j+1 + 1 ≡ 0 (mod 2m), thus j = 0 or 2. Consequently, i = 0. From the above, we

have that ζH5 = 〈z2
m

〉, and FratH5 = 〈z2〉 = FratG. According to the results of H4, similarly,

CG(FratG) ∼= Nm(2)∗n ∗Mm(2)×R.

(3) Let H6 := H ∼= D2m+2 ∗ C4, and

H6 = 〈x, y, z | x2 = y2
m+1

= 1, yx = y−1, z2 = y2
m

, [x, z] = 1, [y, z] = 1〉.

It is easy to verify that ζH6 = 〈z〉, D∗n
8 ∩H6 = 〈z2〉 and FratH6 = 〈y2〉. It follows that

CG(FratG) = 〈x1, x2, x3, x4, · · · , x2n−1, x2n, y, z〉 ×R

= 〈x1, x2, y〉 ∗ 〈x3, x4, y〉 ∗ · · · ∗ 〈x2n−1, x2n, y〉 × 〈zy2
m−1

〉 ×R.

Since

〈x2i−1, x2i, y | x2
2i−1 = x2

2i = y2
m+1

= 1, [x2i−1, y] = 1 = [x2i, y], [x2i−1, x2i] = y2
m

〉 ∼= Nm+1(2),

where i = 1, 2, · · · , n, 〈zy2
m−1

〉 ∼= Z2. It follows that CG(FratG) ∼= Nm+1(2)
∗n ×R× Z2.

Let H7 := H ∼= SD2m+2 ∗C4, and

H7 = 〈x, y, z | x2 = y2
m+1

= 1, yx = y−1+2m , z2 = y2
m

, [x, z] = 1, [y, z] = 1〉.

Obviously, ζH7 = 〈z〉 and FratH7 = 〈y2〉. According to the results of H6, we similarly have

that CG(FratG) ∼= Nm+1(2)
∗n ×R× Z2.



618 H. G. Liu and Y. L. Wang

(4) Let H8 := H ∼= D+
2m+3 ∗ C4, and

H8 =〈x, y, z, u | x2 = y2 = z2
m+1

= 1, yx = y, zx = z2
m+1,

zy = z−1, u2 = z2
m

, [x, u] = [y, u] = [z, u] = 1〉.

Obviously, ζH8 = 〈u〉 and FratH8 = 〈z2〉. It follows that

CG(FratG) = 〈x1, x2, x3, x4, · · · , x2n−1, x2n, x, z, u〉 ×R

= 〈x1, x2, z
2〉 ∗ 〈x3, x4, z

2〉 ∗ · · · ∗ 〈x2n−1, x2n, z
2〉 ∗ 〈x, z〉 × 〈uz2

m−1

〉 ×R.

Since

〈x2i−1, x2i, z
2 | x2

2i−1 = x2
2i = (z2)2

m

= 1, [x2i−1, z
2] = 1 = [x2i, z

2], [x2i−1, x2i] = (z2)2
m−1

〉

∼=Nm(2),

where i = 1, 2, · · · , n, 〈x, z | x2 = z2
m+1

= 1, zx = z1+2m〉 ∼= Mm(2), 〈uz2
m−1

〉 ∼= Z2 and

CG(FratG) ∼= Nm(2)∗n ∗Mm(2)×R × Z2.

2 Proof of Theorem 1.1

Since D∗n
8 is an extraspecial 2-group, we may suppose that x1, x2, · · · , x2n−1, x2n, y

2m are

the generators of D∗n
8 , which satisfy the following relations:

ζD∗n
8 = 〈y2

m

〉,

[x2i−1, x2i] = y2
m

, i = 1, 2, · · · , n,

[x2i−1, xj ] = 1, j 6= 2i,

[x2i, xk] = 1, k 6= 2i− 1,

x2
i = 1, i = 1, 2, · · · , n.

According to (1) in Lemma 1.6, we have that

C = 〈x1, x2, y〉 ∗ 〈x3, x4, y〉 ∗ · · · ∗ 〈x2n−1, x2n, y〉 ×R.

Let Φ : AutG → Aut(FratC) be a restriction homomorphism. Obviously, KerΦ = Autf GE

AutG. According to (1) in Lemma 1.6, FratC = 〈y2〉.

Theorem 2.1

ImΦ ∼=

{

Z2, if m = 2,

Z2m−2 × Z2, if m ≥ 3.

Proof If m = 2, then FratC ∼= Z4, thus Aut(FratC) ∼= Z2. Define a mapping:

σ1 : G → G,

x2i−1 7→ x2i−1, i = 1, 2, · · · , n,

x2i 7→ x2i, i = 1, 2, · · · , n,

zj 7→ zj , j = 1, 2, · · · , r,

x 7→ x,

y 7→ y3.
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It is easy to verify that σ1 is an automorphism of G, which is of order 2. Since Φ(σ1)(y
2) = (y2)3

and Φ(σ1)
2(y2) = y2, Aut(FratC) = 〈Φ(σ1)〉. It follows that AutG = Autf G⋊ 〈σ1〉.

If m ≥ 3, then Z∗

2m = 〈υ1〉 × 〈υ2〉, where υ1 = 3 and υ2 = 2m − 1. By Lemma 1.5, we have

that the orders of v1 and v2 are 2m−2 and 2, respectively. Define a mapping:

σ2 : G → G,

x2i−1 7→ x2m−1
2i−1 , i = 1, 2, · · · , n,

x2i 7→ x2i, i = 1, 2, · · · , n,

zj 7→ zj, j = 1, 2, · · · , r,

x 7→ x,

y 7→ y2
m
−1.

It is easy to verify that σ1 and σ2 are commutative automorphisms each other and their orders

are 2m−1 and 2, respectively.

Take any α ∈ AutG, then α(y2) = y2s1 , where s1 ∈ Z∗

2m . Hence there exist 0 ≤ t1 < 2m−2

and 0 ≤ t2 < 2 such that υt1
1 υt2

2 ≡ s−1
1 (mod 2m). Since

σt1
1 σt2

2 α(y2) = σt1
1 σt2

2 (y2s1) = σt1
1 (σt2

2 (y))2s1 = σt1
1 (yυ

t2
2 )2s1

= (σt1
1 (y))2υ

t2
2

s1 = (y2υ
t1
1

υ
t2
2 )s1 = y2s

−1

1
s1 = y2,

σt1
1 σt2

2 α ∈ Autf G. Consequently, AutG = 〈σ1, σ2〉Autf G.

We claim that 〈σ1〉 ∩ 〈σ2〉 = 1. In fact, let σw1

1 = σw2

2 ∈ 〈σ1〉 ∩ 〈σ2〉, where w1, w2 ∈ Z, then

y2v
w1
1 = σw1

1 (y2) = σw2

2 (y2) = y2v
w2
2 ,

which implies that vw1

1 ≡ vw2

2 (mod 2m), thus w1 ≡ 0 (mod 2m−2) and w2 ≡ 0 (mod 2). It

follows that σw1

1 = σw2

2 = 1.

If σu1

1 σu2

2 ∈ 〈σ1, σ2〉 ∩ Autf G, where 0 ≤ u1 < 2m−1 and 0 ≤ u2 < 2, then y2 =

σu1

1 σu2

2 (y2) = y2υ
u1
1

υ
u2
2 , which implies that υu1

1 υu2

2 ≡ 1 (mod 2m), thus u1 ≡ 0 (mod 2m−2) and

u2 ≡ 0 (mod 2). It is easy to verify that σ2m−2

1 ∈ Autf G, thus 〈σ1, σ2〉 ∩ Autf G = 〈σ2m−2

1 〉.

It follows that AutG/Autf G ∼= Z2m−2 × Z2.

The theorem is proved.

Let Ψ1 : Autf G → Aut(G/C), Ψ2 : Autf G → Aut(C/ζC) and

Ψ3 : Autf G → Aut(ζC/FratC)

be the natural induced homomorphisms. From this, we may obtain the below homomorphic

mapping

Ψ : Autf G → Aut(G/C)×Aut(C/ζC)×Aut(ζC/FratC),

α 7→ (Ψ1(α),Ψ2(α),Ψ3(α)).

Since G/C = 〈xC〉 ∼= Z2, ImΨ1 = Aut(G/C) = 1.

Since ζC = 〈y〉 ×R, we may define the inner product as follows:

f(a, b) = t, where a = aζC, b = bζC, a, b ∈ C and [a, b] = (y2
m

)t, 0 ≤ t < 2.
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From this, C/ζC can become a nondegenerate symplectic space over GF(2).

Take any α ∈ Autf G, then [α(a), α(b)] = α[a, b] = [a, b], thus, for any a = aζC, b = bζC ∈

C/ζC, we have that

f(Ψ2(α)(a),Ψ2(α)(b)) = f(α(a), α(b)) = f(a, b),

therefore Ψ2(α) ∈ Sp(2n, 2). Consequently, Ψ2(Autf G) ≤ Sp(2n, 2). From the above, Ψ is the

homomorphic mapping as follows:

Ψ : Autf G → Aut(G/C)× Sp(2n, 2)×Aut(ζC/FratC),

α 7→ (Ψ1(α),Ψ2(α),Ψ3(α)).

Theorem 2.2 ImΨ2 = Sp(2n, 2).

Proof Take any T ∈ Sp(2n, 2), let (aik) be the matrix of T relative to a basis {xiζC, i =

1, 2, · · · , 2n} of C/ζC. Define a mapping

φ : G → G,

xc
(

2n
∏

i=1

xai

i

)(

r
∏

j=1

z
bj
j

)

yd 7→ xc
(

2n
∏

i=1

(

2n
∏

k=1

xaik

k

)ai
)(

r
∏

j=1

z
bj
j

)

yd
′

,

where 0 ≤ ai < 2, i = 1, 2, · · · , 2n, 0 ≤ bj < 2, j = 1, 2, · · · , r, 0 ≤ c < 2, 0 ≤ d < 2m+1,

d′ ≡ d+
2n
∑

i=1

2m−1ai
(

n
∑

j=1

(ai,2j−1 · ai,2j)
)

(mod 2m+1).

Note that (aik) is a nonsingular matrix. It is easy to verify φ is a bijection. Therefore, φ

is an automorphism of G if and only if φ preserves multiplications. By the definition of φ, we

have

(1) φ(xai

i ) =
(

2n
∏

k=1

xaik

k

)ai

y

n∑

j=1

(ai,2j−1·ai,2j)2
m−1ai

=
[(

2n
∏

k=1

xaik

k

)

y

n∑

j=1

(ai,2j−1·ai,2j)2
m−1

]ai

= φ(xi)
ai .

(2) φ
[

xc
(

2n
∏

i=1

xai

i

)(

r
∏

j=1

z
bj
j

)

yd
]

= xc
[

2n
∏

i=1

(

2n
∏

k=1

xaik

k

)ai
](

r
∏

j=1

z
bj
j

)

yd
′

= xc
[

2n
∏

i=1

(

2n
∏

k=1

xaik

k

)ai
](

r
∏

j=1

z
bj
j

)

y
d+

2n∑

i=1

2m−1ai(
n∑

j=1

ai,2j−1·ai,2j)

= xc
[

2n
∏

i=1

((

2n
∏

k=1

xaik

k

)ai

y
(

n∑

j=1

ai,2j−1·ai,2j)2
m−1ai

)](

r
∏

j=1

z
bj
j

)

yd

= xc
[

2n
∏

i=1

φ(xi)
ai

](

r
∏

j=1

z
bj
j

)

yd.

(3) φ(x) = x.

(4) φ(zj) = zj , j = 1, 2, · · · , r.

(5) For any a = aζC, b = bζC ∈ C/ζC, f(φ(a), φ(b)) = f(T (a), T (b)) = f(a, b), thus

[φ(a), φ(b)] = [a, b].

We call the above φ the induced mapping of G by T .
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Claim 2.1 If φ(xi)
2 = 1, i = 1, 2, · · · , 2n, then φ ∈ Autf G.

In fact, let φ(xi)
2 = 1, where i = 1, 2, · · · , 2n. For any g1, g2 ∈ G, we have

g1 = xc1

(

2n
∏

i=1

xai

i

)(

r
∏

j=1

z
bj
j

)

yd1 , g2 = xc2

(

2n
∏

i=1

x
a′

i

i

)(

r
∏

j=1

z
b′j
j

)

yd2

and

g1g2 = xc1

(

2n
∏

i=1

xai

i

)(

r
∏

j=1

z
bj
j

)

yd1xc2

(

2n
∏

i=1

x
a′

i

i

)(

r
∏

j=1

z
b′j
j

)

yd2

= xc1+c2

(

2n
∏

i=1

x
ai+a′

i

i

)(

2n−1
∏

k=1

2n
∏

t=k+1

[xat

t , x
a′

k

k ]
)(

r
∏

j=1

z
bj+b′j
j

)

yd2+(−1)c2d1

= xc1+c2

(

2n
∏

i=1

x
ai+a′

i

i

)(

r
∏

j=1

z
bj+b′j
j

)

ye,

where ye =
(

2n−1
∏

k=1

2n
∏

t=k+1

[xat

t , x
a′

k

k ]
)

yd2+(−1)c2d1 and 0 ≤ e < 2m+1.

Let c1+c2 = c+2c′, ai+a′i = ti+2si, bj+b′j = t′j+2s′j, where 0 ≤ c, ti, t
′

j < 2, c′, si, s
′

j ∈ Z,
i = 1, 2, · · · , 2n, j = 1, 2, · · · , r, then

φ(g1g2) = φ
[

xc1+c2

(

2n
∏

i=1

x
ai+a′

i

i

)(

r
∏

j=1

z
bj+b′j
j

)

ye
]

= φ
[

xc+2c′
(

2n
∏

i=1

xti+2si
i

)(

r
∏

j=1

z
t′j+2s′j
j

)

ye
]

= φ
[

xc
(

2n
∏

i=1

xti
i

)(

r
∏

j=1

z
t′j
j

)

ye
]

= xc
(

2n
∏

i=1

φ(xi)
ti

)(

r
∏

j=1

z
t′j
j

)

ye,

φ(g1)φ(g2) = xc1
(

2n
∏

i=1

φ(xi)
ai

)

yd1xc2
(

2n
∏

i=1

φ(xi)
a′

i

)(

r
∏

j=1

z
bj+b′j
j

)

yd2

= xc1+c2

(

2n
∏

i=1

φ(xi)
ai+a′

i

)(

2n−1
∏

k=1

2n
∏

t=k+1

[φ(xt)
at , φ(xk)

a′

k ]
)(

r
∏

j=1

z
bj+b′j
j

)

yd2+(−1)c2d1

= xc1+c2

(

2n
∏

i=1

φ(xi)
ai+a′

i

)(

2n−1
∏

k=1

2n
∏

t=k+1

[φ(xat

t ), φ(x
a′

k

k )]
)(

r
∏

j=1

z
bj+b′j
j

)

yd2+(−1)c2d1

= xc1+c2

(

2n
∏

i=1

φ(xi)
ai+a′

i

)(

2n−1
∏

k=1

2n
∏

t=k+1

[xat

t , x
a′

k

k ]
)(

r
∏

j=1

z
t′j
j

)

yd2+(−1)c2d1

= xc
(

2n
∏

i=1

φ(xi)
ai+a′

i

)(

r
∏

j=1

z
t′j
j

)

ye = xc
(

2n
∏

i=1

φ(xi)
ti

)(

r
∏

j=1

z
t′j
j

)

ye = φ(g1g2).

Hence φ ∈ AutG. Also since φ(y) = y, φ ∈ Autf G.

The claim is proved.

For i = 1, 2, · · · , 2n, we have

φ(xi)
2 =

[(

2n
∏

j=1

x
aij

j

)

y

n∑

j=1

(ai,2j−1ai,2j)2
m−1

]2

=
[

n
∏

j=1

(x
ai,2j−1

2j−1 x
ai,2j

2j )2
]

y

n∑

j=1

(ai,2j−1ai,2j)2
m
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=
[

n
∏

j=1

(x
2ai,2j−1

2j−1 x
2ai,2j

2j y2
mai,2j−1ai,2j )

]

y

n∑

j=1

(ai,2j−1ai,2j)2
m

= y

n∑

j=1

(ai,2j−1ai,2j)2
m

y

n∑

j=1

(ai,2j−1ai,2j)2
m

= 1.

By Claim 2.1, the induced mapping φ by T is an automorphism of G, and Ψ1(φ) = T . Conse-

quently, ImΨ1 = Sp(2n, 2).

The theorem is proved.

Theorem 2.3 ImΨ3
∼= GL(r, 2)⋉ (Z2)

r.

Proof Let

A :=

{(

A11 0
A21 1

)

∈ GL(r + 1, 2)

}

,

where A11 is a r × r matrix, A21 is a 1× r matrix. It is easy to verify that A ≤ GL(r + 1, 2).

For convenience, we may let zr+1 := y.

Take any α ∈ Autf G. Let (ajk) be the matrix of Ψ3(α) relative to a basis {zjFratC, j =

1, 2, · · · , r + 1} of ζC/FratC.

Let (ajk) be the partitioned matrix as follows:

(ajk) =

(

A11 A12

A21 A22

)

∈ GL(r + 1, 2),

where A11, A12, A21 and A22 are r × r, r × 1, 1× r and 1× 1 matrices, respectively.

Since Ψ3(α)(zj) =
r+1
∏

k=1

z
ajk

k , where j = 1, 2, · · · , r, there exists 0 ≤ aj < 2m such that

α(zj) =
(

r+1
∏

k=1

z
ajk

k

)

y2aj .

Since z2j = 1 for j = 1, 2, · · · , r,

1 = α(z2j ) = α(zj)
2 =

(

r+1
∏

k=1

z
2ajk

k

)

y2
2aj = y2aj,r+1+22aj ,

thus aj,r+1 + 2aj ≡ 0 (mod 2m). But m > 1 and 0 ≤ aj,r+1 < 2, consequently, for j =

1, 2, · · · , r, we have aj,r+1 = 0, that is A12 = 0.

Since

y2 = z2r+1 = α(z2r+1) = α(zr+1)
2 =

(

r+1
∏

k=1

z
2ar+1,k

k

)

y2
2ar+1

= z
2ar+1,r+1+22ar+1

r+1 = (y2)ar+1,r+1+2ar+1 ,

ar+1,r+1 + 2ar+1 ≡ 1 (mod 2m). But m > 1 and 0 ≤ ar+1,r+1 < 2, thus ar+1,r+1 = 1, that is

A22 = 1.
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Conversely, for

(

B11 0
B21 1

)

= (bjk) ∈A , define a mapping:

δ : G → G,

x 7→ x,

xi 7→ xi, i = 1, 2, · · · , 2n,

zj 7→

r+1
∏

k=1

z
bjk
k , j = 1, 2, · · · , r + 1.

It is easy to verify that δ ∈ AutG. Since

δ(y2) = δ(y)2 =
(

r
∏

k=1

z
br+1,k

k y
)2

= y2,

δ ∈ Autf G and the matrix of Ψ2(δ) is (bjk) relative to a basis {zjFratC, j = 1, 2, · · · , r+1} of

ζC/FratC. Hence ImΨ2
∼=A . Also since A ∼= GL(r, 2) ⋉ (Z2)

r, we have that Ψ2(Autf G) ∼=

GL(r, 2)⋉ (Z2)
r.

The theorem is proved.

Theorem 2.4 (1) If H = H1 or H3, then KerΨ is a 2-group with order 2(2n+2)(r+1)+m.

(2) If H = H2, then KerΨ is a 2-group with order 2(2n+2)(r+1)+m−1.

Proof Since KerΨ acts trivially on all factors of the series G ≥ C ≥ ζC ≥ FratC ≥ 1,

KerΨ is a 2-group.

Take any α ∈ KerΨ, let α be an automorphism as follows:

α : G → G,

x 7→ x
(

2n
∏

i=1

xai

i

)(

r+1
∏

j=1

z
bj
j

)

,

xi 7→ xi

(

r+1
∏

j=1

z
aij

j

)

, i = 1, 2, · · · , 2n,

zk 7→ zky
2ck , k = 1, 2, · · · , r + 1,

y2 7→ y2,

where zr+1 = y, 0 ≤ ai < 2, 0 ≤ bj < 2, 0 ≤ br+1 < 2m+1, 0 ≤ aij < 2, 0 ≤ ai,r+1 < 2m+1,

0 ≤ ck < 2m, i = 1, 2, · · · , 2n, j = 1, 2, · · · , r, k = 1, 2, · · · , r + 1.

Since α(xi)
2 = 1, where i = 1, 2, · · · , 2n, 1 =

(

xi

(

r+1
∏

j=1

z
aij

j

))2
= y2ai,r+1 . Hence ai,r+1 ≡ 0

(mod 2m). Consequently, ai,r+1 = 0 or 2m.

Since α(x) and α(xi) are commutative each other,

1 =
[

x
(

2n
∏

i=1

xai

i

)(

r+1
∏

j=1

z
bj
j

)

, xi

(

r+1
∏

j=1

z
aij

j

)]

=
[

x
(

2n
∏

i=1

xai

i

)

ybr+1 , xiy
ai,r+1

]

=
[

x
(

2n
∏

i=1

xai

i

)

ybr+1 , yai,r+1

][

x
(

2n
∏

i=1

xai

i

)

ybr+1 , xi

]y
ai,r+1

= [x, yai,r+1 ]
[

2n
∏

i=1

xai

i , xi

]

.
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If H = H1 or H3, then [x, yai,r+1 ] = y2ai,r+1 = 1. If H = H2, then [x, yai,r+1 ] = y2ai,r+1−2mai,r+1

= 1. In a word,
[

2n
∏

i=1

xai

i , xi

]

= 1. If i is odd, we can let i = 2l − 1, where l = 1, 2, · · · , n, then

y2
ma2l = 1, which implies that a2l = 0. If i is even, we can let i = 2l, where l = 1, 2, · · · , n,

then y2
ma2l−1 = 1, which implies that a2l−1 = 0. Consequently, for i = 1, 2, · · · , 2n, we have

that ai = 0.

Since α(x) and α(zk) are commutative each other, where k = 1, 2, · · · , r,

1 =
[

x
(

r+1
∏

j=1

z
bj
j

)

, zky
2ck

]

= [xybr+1 , y2ck ] = [x, y2ck ].

If H = H1 or H3, then y4ck = 1. If H = H2, then 1 = [x, y2ck ] = y4ck−2m+1ck = y4ck . In

a word, ck ≡ 0 (mod 2m−1), which implies that ck = 0 or 2m−1. Also since α(y2) = y2,

y2 = (y1+2cr+1)2 = y2+4cr+1 , which implies that cr+1 ≡ 0 (mod 2m−1), thus cr+1 = 0 or 2m−1.

Consequently, for k = 1, 2, · · · , r + 1, we have that ck = 0 or 2m−1.

Since α(zk)
2 = 1, where k = 1, 2, · · · , r, 1 = (zky

2ck)2 = y4ck , which implies that ck ≡ 0

(mod 2m−1), thus ck = 0 or 2m−1.

If H = H1 or H3, then α(x)2 =
(

x
(

r+1
∏

j=1

z
bj
j

))2
= (xybr+1)2 = 1, which has no effect on the

parameters of α. If H = H2, then α(x)2 =
(

x
(

r+1
∏

j=1

z
bj
j

))2
= (xybr+1)2 = y2

mbr+1 , thus br+1 ≡ 0

(mod 2).

It is easy to verify other generated relations have no effect on the parameters of α.

In conclusion, α is an automorphism as follows:

α : G → G,

x 7→ x
(

r+1
∏

j=1

z
bj
j

)

,

xi 7→ xi

(

r+1
∏

j=1

z
aij

j

)

, i = 1, 2, · · · , 2n,

zk 7→ zky
2ck , k = 1, 2, · · · , r + 1,

where zr+1 = y, 0 ≤ bj < 2, 0 ≤ aij < 2, ai,r+1 = 0 or 2m, ck = 0 or 2m−1, i = 1, 2, · · · , 2n,

j = 1, 2, · · · , r, k = 1, 2, · · · , r + 1, 0 ≤ br+1 < 2m+1(if H = H1 or H3 ); br+1 ≡ 0 (mod 2)(if

H = H2 ).

Conversely, if α is an automorphism of G, which satisfies the above conditions, then α ∈

KerΨ. Hence, if H = H1 or H3, then |KerΨ| = 2(2n+2)(r+1)+m; if H = H2, then |KerΨ| =

2(2n+2)(r+1)+m−1.

The theorem is proved.

3 Proof of Theorem 1.2

For convenience, we may let x3, x4, · · · , x2n+1, x2n+2, z
2m be the generators of D∗n

8 , which

satisfy the following conditions:

ζD∗n
8 = 〈z2

m

〉,
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[x2i−1, x2i] = z2
m

, i = 2, 3, · · · , n,

[x2i−1, xj ] = 1, j 6= 2i,

[x2i, xk] = 1, k 6= 2i− 1,

x2
i = 1, i = 2, 3, · · · , n

According to (2) in Lemma 1.6, we have that

C = 〈x1, x2〉 ∗ 〈x3, x4, z
2〉 ∗ 〈x5, x6, z

2〉 ∗ · · · ∗ 〈x2n+1, x2n+2, z
2〉 ×R ∼= Mm(2) ∗Nm(2)∗n ×R,

where x1 := z, x2 := x.

For convenience, we sometimes adopt the notations in Theorem 1.1.

Let Φ : AutG → Aut(FratC) be the restriction homomorphism. Clearly, KerΦ = Autf GE

AutG. According to (2) in Lemma 1.6, we have that FratC = 〈z2〉 = FratG ∼= Z2m .

Theorem 3.1

ImΦ ∼=

{

Z2, if m = 2,

Z2m−2 × Z2, if m ≥ 3.

Proof If m = 2, then FratC ∼= Z4, thus Aut(FratC) ∼= Z2. Define a mapping:

σ3 : G → G,

x2i−1 7→ x3
2i−1, i = 1, 2, · · · , n+ 1,

x2i 7→ x2i, i = 1, 2, · · · , n+ 1,

zj 7→ zj , j = 1, 2, · · · , r,

y 7→ y.

It is easy to verify that σ3 is an automorphism of G, which is of order 2. Since Φ(σ3)(z
2) = (z2)3

and Φ(σ3)
2(z2) = z2, Aut(FratC) = 〈Φ(σ3)〉. Consequently, AutG = Autf G⋊ 〈σ3〉.

If m ≥ 3, then Z∗

2m = 〈υ1〉 × 〈υ2〉, where υ1 = 3 and υ2 = 2m − 1 and their orders are 2m−2

and 2 by Lemma 1.5, respectively. Define a mapping:

σ4 : G → G,

x2i−1 7→ x2m−1
2i−1 , i = 1, 2, · · · , n+ 1,

x2i 7→ x2i, i = 1, 2, · · · , n+ 1,

zj 7→ zj , j = 1, 2, · · · , r,

y 7→ y.

It is easy to verify that σ3 and σ4 are commutative automorphisms each other and their orders

are 2m−1 and 2, respectively.

According to the argument in Theorem 2.1, we similarly have that AutG = 〈σ3, σ4〉Autf G,

and 〈σ3, σ4〉 ∩ Autf G = 〈σ2m−2

3 〉. Consequently, AutG/Autf G ∼= Z2m−2 × Z2.

The theorem is proved.

Let

Ψ1 : Autf G → Aut(G/C),

Ψ2 : Autf G → Aut(C/ζC),
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Ψ3 : Autf G → Aut(ζC/FratC)

be the natural induced homomorphisms. Hence we may define the below homomorphic map-

ping:

Ψ : Autf G → Aut(G/C)×Aut(C/ζC)×Aut(ζC/FratC),

α 7→ (Ψ1(α),Ψ2(α),Ψ3(α)).

Since G/C = 〈yC〉 ∼= Z2, ImΨ1 = Aut(G/C) = 1.

Since ζC = 〈z2〉 ×R, we may define the inner product as follows:

f(a, b) = t, where a = aζC, b = bζC, a, b ∈ C and [a, b] = (z2
m

)t, 0 ≤ t < 2.

From this, C/ζC can become a nondegenerate symplectic space over GF(2).

For any α ∈ Autf G, [α(a), α(b)] = α[a, b] = [a, b], thus, for any a = aζC, b = bζC ∈ C/ζC,

we have

f(Ψ2(α)(a),Ψ2(α)(b)) = f(α(a), α(b)) = f(a, b),

therefore Ψ2(α) ∈ Sp(2n, 2). Consequently, Ψ2(Autf G) ≤ Sp(2n, 2). In a word, Ψ is a homo-

morphic mapping as follows:

Ψ : Autf G → Aut(G/C)× Sp(2n, 2)×Aut(ζC/FratC),

α 7→ (Ψ1(α),Ψ2(α),Ψ3(α)).

Theorem 3.2 ImΨ2 = I ⋊ Sp(2n, 2), where I is an elementary abelian 2-group with order

22n+1.

Proof Let B:= {T ∈ Sp(2n + 2, 2) | the first column and second row of the matrix of T

are (1, 0, · · · , 0)Tand (0, 1, 0, · · · , 0) relative to a basis x1ζC, x2ζC, · · · , x2n+2ζC of C/ζC,

respectively}.

Take any T ∈ B, let (aik) be the matrix of T relative to a basis {xiζC, i = 1, 2, · · · , 2n+2}

of C/ζC. Define a mapping:

φ : G → G,

yc
(

2n+2
∏

i=1

xai

i

)(

r
∏

j=1

z
bj
j

)

z2d 7→ (yxt)c
(

2n+2
∏

i=1

(

2n+2
∏

k=1

xaik

k

)ai
)(

r
∏

j=1

z
bj
j

)

z2d
′

,

where 0 ≤ ai < 2, i = 1, 2, · · · , 2n + 2, 0 ≤ bj < 2, j = 1, 2, · · · , r, 0 ≤ c < 2, 0 ≤ d < 2m,

d′ ≡ d+
2n+2
∑

i=1

2m−2ai
(

n+1
∑

k=1

(ai,2k−1 ·ai,2k)
)

(mod 2m), t = 0
(

if
n+1
∑

k=1

(a1,2k−1 ·a1,2k) ≡ 0 (mod 2)
)

or t = 1
(

if
n+1
∑

k=1

(a1,2k−1 · a1,2k) ≡ 1 (mod 2)
)

.

Note that (aik) is a nonsingular matrix. It is easy to verify φ is a bijection. Therefore, φ

is an automorphism of G if and only if φ preserves multiplications. By the definition of φ, we

have

(1)

φ(xai

i ) =
(

2n+2
∏

k=1

xaik

k

)ai

z

n+1∑

k=1

(ai,2k−1ai,2k)2
m−1ai
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=
[(

2n+2
∏

k=1

xaik

k

)

z

n+1∑

k=1

(ai,2k−1ai,2k)2
m−1

]ai

= φ(xi)
ai .

(2)

φ
[

yc
(

2n+2
∏

i=1

xai

i

)(

r
∏

j=1

z
bj
j

)

z2d
]

= (yxt)c
[

2n+2
∏

i=1

(

2n+2
∏

k=1

xaik

k

)ai
](

r
∏

j=1

z
bj
j

)

z2d
′

= (yxt)c
[

2n+2
∏

i=1

(

2n+2
∏

k=1

xaik

k

)ai
](

r
∏

j=1

z
bj
j

)

z
2d+

2n+2∑

i=1

2m−1ai(
n+1∑

k=1

ai,2k−1ai,2k)

= (yxt)c
[

2n+2
∏

i=1

((

2n+2
∏

k=1

xaik

k

)ai

z

n+1∑

k=1

(ai,2k−1ai,2k)2
m−1ai

)](

r
∏

j=1

z
bj
j

)

z2d

= (yxt)c
[

2n+2
∏

i=1

φ(xi)
ai

](

r
∏

j=1

z
bj
j

)

z2d.

(3) φ(zj) = zj , j = 1, 2, · · · , r.

(4) φ(y) = yxt.

(5) φ(z2) = z2.

(6) For a = aζC, b = bζC ∈ C/ζC, f(φ(a), φ(b)) = f(T (a), T (b)) = f(a, b), thus [φ(a), φ(b)] =

[a, b].

(7)

[φ(x1), φ(y)] = [φ(z), φ(y)] =
[

z
(

2n+2
∏

k=2

xa1k

k

)

z

n+1∑

k=1

(a1,2k−1a1,2k)2
m−1

, yxt
]

=
[

z
(

2n+2
∏

k=2

xa1k

k

)

z

n+1∑

k=1

(a1,2k−1a1,2k)2
m−1

, xt
][

z
(

2n+2
∏

k=2

xa1k

k

)

z

n+1∑

k=1

(a1,2k−1a1,2k)2
m−1

, y
]xt

= [z, xt][z, y][z

n+1∑

k=1

(a1,2k−1a1,2k)2
m−1

, y]

= z2
mtz

−

n+1∑

k=1

(a1,2k−1a1,2k)2
m

[z, y] = [z, y] = [x1, y].

Note that

φ(x1)
2 =

(

2n+2
∏

j=1

x
a1j

j

)2

z
(
n+1∑

j=1

a1,2j−1a1,2j)2
m

=
[

n+1
∏

j=1

(x
a1,2j−1

2j−1 x
a1,2j

2j )2
]

z
(
n+1∑

j=1

a1,2j−1a1,2j)2
m

=
[

n+1
∏

j=1

(x
2a1,2j−1

2j−1 x
2a1,2j

2j z2
ma1,2j−1a1,2j )

]

z
(
n+1∑

j=1

a1,2j−1a1,2j)2
m

= [x2a11

1 z
(
n+1∑

j=1

a1,2j−1a1,2j)2
m

]z
(
n+1∑

j=1

a1,2j−1a1,2j)2
m

= x2
1,

and for any i = 2, 3, · · · , 2n+ 2, we have that

φ(xi)
2 =

(

2n+2
∏

j=1

x
aij

j

)2

z
(
n+1∑

j=1

ai,2j−1ai,2j)2
m

=
[

n+1
∏

j=1

(x
ai,2j−1

2j−1 x
ai,2j

2j )2
]

z
(
n+1∑

j=1

a1,2j−1a1,2j)2
m
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=
[

n+1
∏

j=1

(x
2ai,2j−1

2j−1 x
2ai,2j

2j z2
mai,2j−1ai,2j )

]

z
(
n+1∑

j=1

ai,2j−1a1,2j)2
m

= z
(
n+1∑

j=1

a1,2j−1a1,2j)2
m

z
(
n+1∑

j=1

a1,2j−1a1,2j)2
m

= 1.

For g1, g2 ∈ G,

g1 = yc1
(

2n+2
∏

i=1

xai

i

)(

r
∏

j=1

z
bj
j

)

z2d1 , g2 = yc2
(

2n+2
∏

i=1

x
a′

i

i

)(

r
∏

j=1

z
b′j
j

)

z2d2 ,

we have that

g1g2 = yc1
(

2n+2
∏

i=1

xai

i

)(

r
∏

j=1

z
bj
j

)

z2d1yc2
(

2n+2
∏

i=1

x
a′

i

i

)(

r
∏

j=1

z
b′j
j

)

z2d2

= yc1+c2

(

2n+2
∏

i=1

xai

i

)(

r
∏

j=1

z
bj
j

)

z2d1 [xa1

1 , yc2 ][xa1

1 , yc2 , xa2

2 ][z2d1 , yc2 ]
(

2n+2
∏

i=1

x
a′

i

i

)(

r
∏

j=1

z
b′j
j

)

z2d2

= yc1+c2

(

2n+2
∏

i=1

xai

i

)(

r
∏

j=1

z
bj
j

)

z2d1

(

2n+2
∏

i=1

x
a′

i

i

)(

r
∏

j=1

z
b′j
j

)

[xa1

1 , yc2 ][z2d1 , yc2]

· [xa1

1 , yc2 , x
a′

2

2 ][z2d1 , yc2 , x
a′

2

2 ]z2d2

= yc1+c2

(

2n+2
∏

i=1

x
ai+a′

i

i

)(

2n+1
∏

k=1

2n+2
∏

t=k+1

[xat

t , x
a′

k

k ]
)(

r
∏

j=1

z
bj+b′j
j

)

[xa1

1 , yc2 ][z2d1, yc2 ]

· [z−a1+(−1)c2a1 , x
a′

2

2 ][z2d1+(−1)c22d1 , x
a′

2

2 ]z2(d1+d2)

= yc1+c2

(

2n+2
∏

i=1

x
ai+a′

i

i

)(

2n+1
∏

k=1

2n+2
∏

t=k+1

[xat

t , x
a′

k

k ]
)(

r
∏

j=1

z
bj+b′j
j

)

[xa1

1 , yc2 ][z2d1, yc2 ]z2(d1+d2)

= yc1+c2

(

2n+2
∏

i=1

x
ai+a′

i

i

)(

r
∏

j=1

z
bj+b′j
j

)

ze,

where ze =
(

2n+1
∏

k=1

2n+2
∏

t=k+1

[xat

t , x
a′

k

k ]
)

[xa1

1 , yc2 ][z2d1 , yc2]z2(d1+d2), 0 ≤ e < 2m+1.

Let c1 + c2 = c+ 2c′, ai + a′i = ti + 2si, bj + b′j = t′j + 2s′j, 2s1 + e ≡ e1 (mod 2m+1), where

0 ≤ c, ti, t
′

j < 2, c′, si, s
′

j ∈ Z, 0 ≤ e1 < 2m+1, i = 1, 2, · · · , 2n, j = 1, 2, · · · , r, then

φ(g1g2) = φ
[

yc1+c2

(

2n+2
∏

i=1

x
ai+a′

i

i

)(

r
∏

j=1

z
bj+b′j
j

)

ze
]

= φ
[

yc+2c′
(

2n+2
∏

i=1

xti+2si
i

)(

r
∏

j=1

z
t′j+2s′j
j

)

ze
]

= φ
[

yc
(

2n+2
∏

i=1

xti
i

)(

r
∏

j=1

z
t′j
j

)

ze+2s1
]

= (yxt)c
(

2n+2
∏

i=1

φ(xi)
ti

)(

r
∏

j=1

z
t′j
j

)

ze1 ,

φ(g1)φ(g2) = (yxt)c1
(

2n+2
∏

i=1

φ(xi)
ai

)

z2d1(yxt)c2
(

2n+2
∏

i=1

φ(xi)
a′

i

)(

r
∏

j=1

z
bj+b′j
j

)

z2d2
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= (yxt)c1+c2

(

2n+2
∏

i=1

φ(xi)
ai

)

z2d1[φ(x1)
a1 , (yxt)c2 ]

· [φ(x1)
a1 , (yxt)c2 , φ(x2)

a2 ][z2d1, (yxt)c2 ]
(

2n+2
∏

i=1

φ(xi)
a′

i

)(

r
∏

j=1

z
bj+b′j
j

)

z2d2

= (yxt)c1+c2

(

2n+2
∏

i=1

φ(xi)
ai

)

z2d1

(

2n+2
∏

i=1

φ(xi)
a′

i

)(

r
∏

j=1

z
bj+b′j
j

)

· [φ(x1)
a1 , φ(y)c2 ][z2d1 , (yxt)c2 ][φ(xa1

1 ), (yxt)c2 , φ(x2)
a′

2 ][z2d1, (yxt)c2 , φ(x2)
a′

2 ]z2d2

= (yxt)c1+c2

(

2n+2
∏

i=1

φ(xi)
ai

)

z2d1

(

2n+2
∏

i=1

φ(xi)
a′

i

)(

r
∏

j=1

z
bj+b′j
j

)

[xa1

1 , yc2 ][z2d1 , yc2 ]z2d2

= (yxt)c1+c2

(

2n+2
∏

i=1

φ(xi)
ai+a′

i

)(

2n+1
∏

k=1

2n+2
∏

t=k+1

[φ(xt)
at , φ(xk)

a′

k ]
)

·
(

r
∏

j=1

z
bj+b′j
j

)

[xa1

1 , yc2 ][z2d1, yc2 ]z2(d1+d2)

= (yxt)c
(

2n+2
∏

i=1

φ(xi)
ti

)(

r
∏

j=1

z
t′j
j

)

ze+2s1

= (yxt)c
(

2n+2
∏

i=1

φ(xi)
ti

)(

r
∏

j=1

z
t′j
j

)

ze1 = φ(g1g2),

therefore φ ∈ AutG. Also since φ(z2) = z2, φ ∈ Autf G and Ψ2(φ) = T .

Conversely, take any ϕ ∈ Autf G. Let Ψ2(ϕ) = T ∈ Sp(2n + 2, 2), the matrix of T be

(aij) relative to a basis {xiζC, i = 1, 2, · · · , 2n+2} of C/ζC, ϕ(xi) =
(

2n+2
∏

k=1

xaik

k

)(

r
∏

j=1

z
bij
j

)

z2di ,

where 0 ≤ bik < 2, i = 1, 2, · · · , 2n+ 2, 0 ≤ di < 2m.

Since

z2 = ϕ(z2) = ϕ(x2
1) = ϕ(x1)

2 =
[(

2n+2
∏

k=1

xa1k

k

)(

r
∏

j=1

z
b1j
j

)

z2d1

]2

=
[

n+1
∏

k=1

(x
a1,2k−1

2k−1 x
a1,2k

2k )2
](

r
∏

j=1

z
2b1j
j

)

z4d1

=
[

n+1
∏

k=1

(x
2a1,2k−1

2k−1 x
2a1,2k

2k z2
m(a1,2k−1a1,2k))

](

r
∏

j=1

z
2b1j
j

)

z4d1

= x2a11

1 z
(
n+1∑

k=1

2m(a1,2k−1a1,2k))+4d1

= z2a11+4d′

1 ,

where d′1 =
(

n+1
∑

k=1

2m−2(a1,2k−1a1,2k)
)

+d1, a11+2d′1 ≡ 1 (mod 2m). From this, we have a11 ≡ 1

(mod 2), thus a11 = 1.

For i = 2, · · · , 2n+ 2,

1 = ϕ(x2
i ) = ϕ(xi)

2 =
[(

2n+2
∏

k=1

xaik

k

)(

r
∏

j=1

z
bij
j

)

z2di

]2

=
[

n+1
∏

k=1

(x
ai,2k−1

2k−1 x
ai,2k

2k )2
](

r
∏

j=1

z
2bij
j

)

z4di
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=
[

n+1
∏

k=1

(x
2ai,2k−1

2k−1 x
2ai,2k

2k z2
m(ai,2k−1ai,2k))

](

r
∏

j=1

z
2bij
j

)

z4di

= x2ai1

1 z
(
n+1∑

k=1

2m(ai,2k−1ai,2k))+4di

= z2ai1+4d′

i ,

where d′i =
(

n+1
∑

k=1

2m−2(ai,2k−1ai,2k)
)

+di, therefore ai1+2d′1 ≡ 0 (mod 2m). From this, ai1 ≡ 0

(mod 2), thus ai1 = 0.

According to the results in [2], Ψ2(ϕ) = T ∈ B ∼= I ⋊ Sp(2n, 2), where I is an elementary

abelian 2-group with order 22n+1.

The theorem is proved.

Theorem 3.3 ImΨ3
∼= GL(r, 2).

Proof Since FratC = 〈z2〉, {zjFratC, j = 1, 2, · · · , r} is a basis of ζC/FratC. It follows

that ζC/FratC is a linear space over GF(2) with dimension r, which implies that ImΨ3 can

be embedded in GL(r, 2).

Conversely, for any (djk)r×r ∈ GL(r, 2), we may define a mapping:

δ1 : G → G,

y 7→ y,

xi 7→ xi, i = 1, 2, · · · , 2n+ 2,

zj 7→

r
∏

k=1

z
bjk
k , j = 1, 2, · · · , r.

It is easy to verify that δ1 ∈ Autf G, and the matrix of Ψ2(δ1) is (bjk) relative to a basis

{zjFratC, j = 1, 2, · · · , r} of ζC/FratC. Consequently, Ψ2(Autf G) ∼= GL(r, 2).

The theorem is proved.

Theorem 3.4 KerΨ is a 2-group with order 2(2n+2)(r+1)+m+2r.

Proof Since KerΨ acts trivially on the factors of the series G ≥ C ≥ ζC ≥ FratC ≥ 1,

thus KerΨ is a 2-group.

Take any α ∈ KerΨ, let α be an automorphism as follows:

α : G → G,

y 7→ y
(

2n+2
∏

i=1

xai

i

)(

r
∏

j=1

z
bj
j

)

z2a,

xi 7→ xi

(

r
∏

j=1

z
aij

j

)

z2ci, i = 1, 2, · · · , 2n+ 2,

zj 7→ zjz
2dj , j = 1, 2, · · · , r,

z2 7→ z2,

where 0 ≤ ai < 2, 0 ≤ bj < 2, 0 ≤ a < 2m, 0 ≤ aij < 2, 0 ≤ ci < 2m, 0 ≤ dj < 2m,

i = 1, 2, · · · , 2n+ 2, j = 1, 2, · · · , r.

Since α(z)2 = z2, z2 =
(

z
(

r
∏

j=1

z
a1j

j

)

z2c1
)2

= z2+4c1, which implies that c1 = 0 or 2m−1.
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Since α(xi)
2 = 1, where i = 2, · · · , 2n + 2, 1 =

(

xi

(

r
∏

j=1

z
aij

j

)

z2ci
)2

= z4ci, which implies

that ci ≡ 0 (mod 2m−1), consequently, ci = 0 or 2m−1.

Since α(y) is commutative with α(xi), where i = 3, 4, · · · , 2n+ 2,

1 =
[

y
(

2n+2
∏

i=1

xai

i

)(

r
∏

j=1

z
bj
j

)

z2a, xi

(

r
∏

j=1

z
aij

j

)

z2ci
]

=
[

y
(

2n+2
∏

i=1

xai

i

)

, xiz
2ci

]

=
[

y
(

2n+2
∏

i=1

xai

i

)

, z2ci
][

y
(

2n+2
∏

i=1

xai

i

)

, xi

]z2ci

= [y, z2ci]x
a1
1

x
a2
2 [xa1

1 xa2

2 , z2ci]
[(

2n+2
∏

i=1

xai

i

)

, xi

]

= z4ci
[(

2n+2
∏

i=1

xai

i

)

, xi

]

.

Note that 4ci ≡ 0 (mod 2m+1). If i is odd, we can suppose that i = 2l+1, where l = 1, 2, · · · , n,

then z2
ma2l+2 = z4c2l+1+2ma2l+2 = 1, which implies that a2l+2 = 0; if i is even, we can suppose

that i = 2l, where l = 2, · · · , n+1, then z2
ma2l−1 = 1, which implies that a2l−1 = 0. In a word,

for i = 3, 4, · · · , 2n+ 2, we have that ai = 0.

Since α(z)−2 = [α(z), α(y)],

z−2−4c1 =
(

z
(

r
∏

j=1

z
a1j

j

)

z2c1
)

−2

=
[

z
(

r
∏

j=1

z
a1j

j

)

z2c1, yza1xa2

(

r
∏

j=1

z
bj
j

)

z2a
]

= z2
ma2−2−4c1 ,

which implies that a2 = 0.

Since α(x) is commutative with α(y),

1 =
[

x2

(

r
∏

j=1

z
a2j

j

)

z2c2 , yza1xa2

(

r
∏

j=1

z
bj
j

)

z2a
]

= z2
ma1−4c2 .

Also since c2 = 2m−1 or 0, we have that a1 = 0.

Since α(y) is commutative with α(zj), where j = 1, 2, · · · , r,

1 =
[

y
(

r
∏

j=1

z
bj
j

)

z2a, zjz
2dj

]

= z4dj ,

which implies that dj = 0 or 2m−1.

Since α(zj)
2 = (zjz

2dj)2 = z4dj , where j = 1, 2, · · · , r, dj = 0 or 2m−1.

It is easy to verify generated relations of H4 and H5 have no effect on the parameters of α.

In conclusion, α is an automorphism as follows:

α : G → G,

y 7→ y
(

r
∏

j=1

z
bj
j

)

z2a,

xi 7→ xi

(

r
∏

j=1

z
aij

j

)

z2ci, i = 1, 2, · · · , 2n+ 2,

zj 7→ zjz
2dj , j = 1, 2, · · · , r,
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where 0 ≤ bj < 2, 0 ≤ a < 2m, 0 ≤ aij < 2, ci = 0 or 2m−1, dj = 0 or 2m−1, i = 1, 2, · · · , 2n+2,

j = 1, 2, · · · , r.

Conversely, if α is an automorphism of G, which satisfies the above conditions, then α ∈

KerΨ. It follows that |KerΨ| = 2(2n+2)(r+1)+m+2r.

The theorem is proved.

4 Proof of Theorem 1.3

Since D∗n
8 is an extraspecial 2-group, we can suppose that x1, x2, · · · , x2n−1, x2n, y

2m are

the generators of D∗n
8 , which satisfy the following conditions:

ζD∗n
8 = 〈y2

m

〉,

[x2i−1, x2i] = y2
m

, i = 1, 2, · · · , n,

[x2i−1, xj ] = 1, j = 6= 2i,

[x2i, xk] = 1, k 6= 2i− 1,

x2
i = 1, i = 1, 2, · · · , n.

According to (3) in Lemma 1.6,

C = 〈x1, x2, y〉 ∗ 〈x3, x4, y〉 ∗ · · · ∗ 〈x2n−1, x2n, y〉 × 〈zy2
m−1

〉 ×R.

For convenience, we may let zr+1 := zy2
m−1

, then [zr+1, x] = y2
m

. Let R1 := R× 〈zr+1〉.

Let Φ : AutG → Aut(FratC) be the restriction homomorphism. Obviously, KerΦ =

Autf GEAutG. According to (3) in Lemma 1.6, FratC = 〈y2〉.

Theorem 4.1

ImΦ ∼=

{

Z2, if m = 2,
Z2m−2 × Z2, if m ≥ 3.

Proof If m = 2, then FratC ∼= Z4, therefore Aut(FratC) ∼= Z2. Define a mapping:

σ5 : G → G,

x2i−1 7→ x3
2i−1, i = 1, 2, · · · , n,

x2i 7→ x2i, i = 1, 2, · · · , n,

zj 7→ zj, j = 1, 2, · · · , r + 1,

x 7→ x,

y 7→ y3.

It is easy to verify that σ5 is an automorphism of G with order 2. Since Φ(σ5)(y
2) = (y2)3 and

Φ(σ5)
2(y2) = y2, Aut(FratC) = 〈Φ(σ5)〉. It follows that AutG = Autf G⋊ 〈σ5〉.

If m ≥ 3, then Z∗

2m = 〈υ1〉× 〈υ2〉, where υ1 = 3 and υ2 = 2m− 1. By Lemma 1.5, the orders

of v1 and v2 are 2m−2 and 2, respectively. Define a mapping:

σ6 : G → G,

x2i−1 7→ x2m−1
2i−1 , i = 1, 2, · · · , n,

x2i 7→ x2i, i = 1, 2, · · · , n,

zj 7→ zj, j = 1, 2, · · · , r + 1,

x 7→ x2m−1,

y 7→ y2
m
−1.
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It is easy to verify σ5 and σ6 are the commutative automorphisms of G each other and their

orders are 2m−1 and 2, respectively.

According to the argument in Theorem 2.1, we similarly have that AutG = 〈σ5, σ6〉Autf G,

〈σ5, σ6〉 ∩Autf G = 〈σ2m−2

5 〉, thus AutG/Autf G ∼= Z2m−2 × Z2.

The theorem is proved.

Let Ψ1 : Autf G → Aut(G/C), Ψ2 : Autf G → Aut(C/ζC) and Ψ3 : Autf G → Aut(ζC/FratC)

be the natural induced homomorphisms. Define a homomorphic mapping:

Ψ : Autf G → Aut(G/C)×Aut(C/ζC)×Aut(ζC/FratC),

α 7→ (Ψ1(α),Ψ2(α),Ψ3(α)).

Since G/C = 〈xC〉 ∼= Z2, ImΨ1 = Aut(G/C) = 1.

Since ζC = 〈y〉 ×R1, we may define the inner product as follows:

f(a, b) = t, where a = aζC, b = bζC, a, b ∈ C and [a, b] = (y2
m

)t, 0 ≤ t < 2.

From this, C/ζC can become a nondegenerate symplectic space over GF(2). For α ∈ Autf G,

[α(a), α(b)] = α[a, b] = [a, b], thus, for any a = aζC, b = bζC ∈ C/ζC, we have that

f(Ψ2(α)(a),Ψ2(α)(b)) = f(α(a), α(b)) = f(a, b),

therefore Ψ2(α) ∈ Sp(2n, 2). Hence Ψ2(Autf G) ≤ Sp(2n, 2). It follows that Ψ is a homomor-

phism as follows:

Ψ : Autf G → Aut(G/C)× Sp(2n, 2)×Aut(ζC/FratC),

α 7→ (Ψ1(α),Ψ2(α),Ψ3(α)).

Theorem 4.2 ImΨ2 = Sp(2n, 2).

Proof Take any T ∈ Sp(2n, 2), let (aik) be the matrix of T relative to a basis {xiζC, i =

1, 2, · · · , 2n} of C/ζC. Define a mapping:

φ : G → G,

xc
(

2n
∏

i=1

xai

i

)(

r+1
∏

j=1

z
bj
j

)

yd 7→ xc
(

2n
∏

i=1

(

2n
∏

k=1

xaik

k

)ai
)(

r+1
∏

j=1

z
bj
j

)

yd
′

,

where 0 ≤ ai < 2, i = 1, 2, · · · , 2n, 0 ≤ bj < 2, j = 1, 2, · · · , r + 1, 0 ≤ c < 2, 0 ≤ d < 2m+1,

d′ ≡ d+
2n
∑

i=1

2m−1ai
(

n
∑

j=1

(ai,2j−1 · ai,2j)
)

(mod 2m+1).

Note that (aik) is a nonsingular matrix. It is easy to verify φ is a bijection. Therefore, φ is

an automorphism of G if and only if φ preserves multiplications.

According to the argument in Theorem 2.2, we similarly have that ImΨ1 = Sp(2n, 2).

The theorem is proved.

Theorem 4.3 ImΨ3
∼= GL(r, 2)⋉ (Z2)

2r.

Proof Let

C :=

{(

A11 0
A21 I2

)

∈ GL(r + 2, 2)

}

,
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where A11 is a r × r matrix, A21 is a 2 × r matrix, I2 is a 2 × 2 identity matrix. It is easy to

verify that A ≤ GL(r + 2, 2). For convenience, we may let zr+2 := y.

Take any α ∈ Autf G. Let (ajk) be the (r+ 2)× (r + 2) matrix of Ψ3(α) relative to a basis

{zjFratC, j = 1, 2, · · · , r + 2} of ζC/FratC.

Let (ajk) be the partitioned matrix as follows:

(ajk) =

(

A11 A12

A21 A22

)

∈ GL(r + 2, 2),

where A11, A12, A21 and A22 are r × r, r × 2, 2× r and 2× 2 matrices, respectively.

Since Ψ3(α)(zj) =
r+2
∏

k=1

z
ajk

k , where j = 1, 2, · · · , r + 2, there exists 0 ≤ aj < 2m such that

α(zj) =
(

r+2
∏

k=1

z
ajk

k

)

y2aj .

For j = 1, 2, · · · , r + 1, z2j = 1, thus

1 = α(z2j ) = α(zj)
2 =

(

r+2
∏

k=1

z
2ajk

k

)

y2
2aj = y2aj,r+2+22aj .

Hence aj,r+2 +2aj ≡ 0 (mod 2m). But m > 1 and 0 ≤ aj,r+2 < 2, then, for j = 1, 2, · · · , r+1,

aj,r+2 = 0, aj = 0 or 2m−1.

Since

y2 = z2r+2 = α(z2r+2) = α(zr+2)
2 =

(

r+2
∏

k=1

z
2ar+2,k

k

)

y2
2ar+2

= z
2ar+2,r+2+22ar+2

r+2 = (y2)ar+2,r+2+2ar+2 ,

ar+2,r+2+2ar+2 ≡ 1 (mod 2m). But m > 1 and 0 ≤ ar+2,r+2 < 2, thus ar+2,r+2 = 1, ar+2 = 0

or 2m−1.

Let α(x) = x
(

2n
∏

i=1

xai

i

)(

r+1
∏

j=1

z
bj
j

)

yd, where 0 ≤ ai < 2, 0 ≤ bj < 2, 0 ≤ c < 2, 0 ≤ d < 2m+1,

i = 1, 2, · · · , 2n, j = 1, 2, · · · , r + 1. Then, for any j = 1, 2, · · · , r,

1 = [α(x), α(zj)] =
[

x
(

2n
∏

i=1

xai

i

)(

r+1
∏

j=1

z
bj
j

)

yd,
(

r+2
∏

k=1

z
ajk

k

)

y2aj

]

= [x, z
aj,r+1

r+1 y2aj ] = [x, z
aj,r+1

r+1 ] = y2
maj,r+1 .

From this, 2maj,r+1 ≡ 0 (mod 2m+1), thus aj,r+1 = 0.

Since

y2
m

= α(y2
m

) = [α(x), α(zr+1)]

=
[

x
(

2n
∏

i=1

xai

i

)(

r+1
∏

j=1

z
bj
j

)

yd,
(

r+2
∏

k=1

z
ar+1,k

k

)

y2ar+1

]

= [x, z
ar+1,r+1

r+1 y2ar+1 ] = y2
mar+1,r+1 ,

2mar+1,r+1 ≡ 1 (mod 2m+1). Thus ar+1,r+1 = 1.

If H = H6, then

y2 = α(y2) = [α(x), α(zr+2)]
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=
[

x
(

2n
∏

i=1

xai

i

)(

r+1
∏

j=1

z
bj
j

)

yd,
(

r+2
∏

k=1

z
ar+2,k

k

)

y2ar+2

]

= [x, z
ar+2,r+1

r+1 y] = y2+2mar+2,r+1 ,

which implies that 2 + 2mar+2,r+1 ≡ 2 (mod 2m+1), therefore ar+2,r+1 = 0; if H = H7, then

y2−2m = α(y2−2m) = [α(x), α(zr+2)]

=
[

x
(

2n
∏

i=1

xai

i

)(

r+1
∏

j=1

z
bj
j

)

yd,
(

r+2
∏

k=1

z
ar+2,k

k

)

y2ar+2

]

= [x, z
ar+2,r+1

r+1 y] = y2−2m+2mar+2,r+1 ,

which implies that 2mar+2,r+1 ≡ 0 (mod 2m+1), therefore ar+2,r+1 = 0.

Conversely, for any

(

B11 0
B21 I2

)

= (bjk) ∈C . Define a mapping:

δ2 : G → G,

x 7→ x,

xi 7→ xi, i = 1, 2, · · · , 2n,

zj 7→

r+2
∏

k=1

z
bjk
k , j = 1, 2, · · · , r + 2.

It is easy to verify that δ2 ∈ AutG. Also since

δ2(y
2) = δ(y)2 =

(

r
∏

k=1

z
br+2,k

k y
)2

= y2,

δ2 ∈ Autf G, and the matrix of Ψ2(δ2) is (bjk) relative to a basis {zjFratC, j = 1, 2, · · · , r+2} of

ζC/FratC. Thus ImΨ2
∼=C . Also since C∼= GL(r, 2)⋉(Z2)

2r, Ψ2(Autf G) ∼= GL(r, 2)⋉(Z2)
2r.

The theorem is proved.

Theorem 4.4 KerΨ is a 2-group with order 2(2n+2)(r+2)+m−1.

Proof Since KerΨ acts trivially on the factors of the series G ≥ C ≥ ζC ≥ FratC ≥ 1,

KerΨ is a 2-group.

Take any α ∈ KerΨ. Let

α : G → G,

x 7→ x
(

2n
∏

i=1

xai

i

)(

r+2
∏

j=1

z
bj
j

)

,

xi 7→ xi

(

r+2
∏

j=1

z
aij

j

)

, i = 1, 2, · · · , 2n,

zk 7→ zky
2ck , k = 1, 2, · · · , r + 2,

y2 7→ y2,

where zr+2 = y, 0 ≤ ai < 2, 0 ≤ bj < 2, 0 ≤ br+2 < 2m+1, 0 ≤ aij < 2, 0 ≤ ai,r+2 < 2m+1,

0 ≤ ck < 2m, i = 1, 2, · · · , 2n, j = 1, 2, · · · , r + 1, k = 1, 2, · · · , r + 2.

Since α(xi)
2 = 1, where i = 1, 2, · · · , 2n, 1 =

(

xi

(

r+2
∏

j=1

z
aij

j

))2
= y2ai,r+2 , which implies that

ai,r+2 ≡ 0 (mod 2m), that is ai,r+2 = 0 or 2m.
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Since α(x) is commutative with α(xi),

1 =
[

x
(

2n
∏

i=1

xai

i

)(

r+2
∏

j=1

z
bj
j

)

, xi

(

r+2
∏

j=1

z
aij

j

)]

=
[

x
(

2n
∏

i=1

xai

i

)

, xiz
ai,r+1

r+1 yai,r+2

]

=
[

x
(

2n
∏

i=1

xai

i

)

, z
ai,r+1

r+1 yai,r+2

][

x
(

2n
∏

i=1

xai

i

)

, xi

]z
ai,r+1

r+1
y
ai,r+2

= [x, z
ai,r+1

r+1 yai,r+2 ]
[(

2n
∏

i=1

xai

i

)

, xi

]

= [x, z
ai,r+1

r+1 ]
[(

2n
∏

i=1

xai

i

)

, xi

]

.

If i is odd, let i = 2l − 1, where l = 1, 2, · · · , n, then y2
m(a2l−1,r+1+a2l) = 1, which im-

plies that a2l−1,r+1 + a2l ≡ 0 (mod 2). If i is even, let i = 2l, where l = 1, 2, · · · , n, then

y2
m(a2l,r+1+a2l−1) = 1, which implies that a2l,r+1 + a2l−1 ≡ 0 (mod 2).

Since α(x) is commutative with α(zk), where k = 1, 2, · · · , r,

1 =
[

x
(

2n
∏

i=1

xai

i

)(

r+2
∏

j=1

z
bj
j

)

, zky
2ck

]

= [x, y2ck ].

If H = H6 or H = H7, then y4ck = 1, thus ck = 0 or 2m−1. Also since

y2
m

= [α(x), α(zr+1)] = [x, zr+1y
2cr+1 ] = y2

m+4cr+1 ,

y2
m

= y2
m+4cr+1 , which implies that 4cr+1 ≡ 0 (mod 2m+1), that is cr+2 = 0 or 2m−1. If

H = H6,

y2 = [α(x), α(zr+2)] = [x, yy2cr+2 ] = y2+4cr+2 ,

thus 4cr+2 ≡ 0 (mod 2m+1), that is cr+2 = 0 or 2m−1. If H = H7,

y2−2m = [α(x), α(zr+2)] = [x, yy2cr+2 ] = y2−2m+4cr+2 ,

thus 4cr+2 ≡ 0 (mod 2m+1), that is cr+2 = 0 or 2m−1. In conclusion, for k = 1, 2, · · · , r + 2,

ck = 0 or 2m−1.

If H = H6,

1 = α(x)2 =
(

x
(

2n
∏

i=1

xai

i

)(

r+2
∏

j=1

z
bj
j

))2

= y
2m(br+1+

n∑

l=1

a2l−1a2l)
,

thus br+1 +
n
∑

l=1

a2l−1a2l ≡ 0 (mod 2); if H = H7,

1 = α(x)2 =
(

x
(

2n
∏

i=1

xai

i

)(

r+2
∏

j=1

z
bj
j

))2

= y
2m(br+1+br+2+

n∑

l=1

a2l−1a2l)
,

thus br+1 + br+2 +
n
∑

l=1

a2l−1a2l ≡ 0 (mod 2).
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For k = 1, 2, · · · , r+1, 1 = α(zk)
2 = z2ky

2ck = y4ck , thus 4ck ≡ 0 (mod 2m+1), which implies

that ck = 0 or 2m−1. Also since y2 = α(y2) = (y1+cr+2)2 = y2+4cr+2 , 4cr+2 ≡ 0 (mod 2m+1),

which implies that cr+2 = 0 or 2m−1.

It is easy to verify other generated relations of H6 and H7 which have no effect on the

parameters of α.

In conclusion, α is an automorphism as follows:

α : G → G,

x 7→ x
(

2n
∏

i=1

xai

i

)(

r+2
∏

j=1

z
bj
j

)

,

xi 7→ xi

(

r+2
∏

j=1

z
aij

j

)

, i = 1, 2, · · · , 2n,

zk 7→ zky
2ck , k = 1, 2, · · · , r + 2,

where zr+2 = y, 0 ≤ bj < 2, 0 ≤ aij < 2, br+1 +
n
∑

l=1

a2l−1a2l ≡ 0 (mod 2) (if H = H6) or

br+1 + br+2 +
n
∑

l=1

a2l−1a2l ≡ 0 (mod 2) (if H = H7), 0 ≤ br+2 < 2m+1, a2l−1,r+1 + a2l ≡ 0

(mod 2), a2l,r+1 + a2l−1 ≡ 0 (mod 2), ai,r+2 = 0 or 2m, ck = 0 or 2m−1, i = 1, 2, · · · , 2n,

j = 1, 2, · · · , r, k = 1, 2, · · · , r + 2, l = 1, 2, · · · , n.

Conversely, if α is an automorphism of G, which satisfies the above conditions, then α ∈

KerΨ. It follows that |KerΨ| = 2(2n+2)(r+2)+m−1.

The theorem is proved.

5 Proof of Theorem 1.4

For convenience, we may suppose that x3, x4, · · · , x2n+1, x2n+2, z
2m are the generators of

D∗n
8 , which satisfy the following conditions:

ζD∗n
8 = 〈z2

m

〉,

[x2i−1, x2i] = z2
m

, i = 2, 3, · · · , n,

[x2i−1, xj ] = 1, j 6= 2i,

[x2i, xk] = 1, k 6= 2i− 1,

x2
i = 1, i = 2, 3, · · · , n.

According to (4) in Lemma 1.6,

C = 〈x1, x2〉 ∗ 〈x3, x4, z
2〉 ∗ 〈x5, x6, z

2〉 ∗ · · · ∗ 〈x2n+1, x2n+2, z
2〉 ×R ∼= Mm(2) ∗Nm(2)∗n ×R,

where x1 := z, x2 := x.

Let Φ : AutG → Aut(FratC) be the restriction homomorphism. Obviously, KerΦ =

Autf GEAutG. According to (4) in Lemma 1.6, FratC = 〈z2〉 = FratG ∼= Z2m .

Theorem 5.1

ImΦ ∼=

{

Z2, if m = 2,

Z2m−2 × Z2, if m ≥ 3.



638 H. G. Liu and Y. L. Wang

Proof If m = 2, then FratC ∼= Z4, thus Aut(FratC) ∼= Z2. Define a mapping:

σ7 : G → G,

x2i−1 7→ x3
2i−1, i = 1, 2, · · · , n+ 1,

x2i 7→ x2i, i = 1, 2, · · · , n+ 1,

zj 7→ zj , j = 1, 2, · · · , r,

y 7→ y,

u 7→ u3.

It is easy to verify that σ7 is an automorphism of G, which is of order 2. Since Φ(σ7)(z
2) = (z2)7

and Φ(σ7)
2(z2) = z2, Aut(FratC) = 〈Φ(σ7)〉. It follows that AutG = Autf G⋊ 〈σ7〉.

If m ≥ 3, then Z∗

2m = 〈υ1〉 × 〈υ2〉, where υ1 = 3 and υ2 = 2m − 1 and their orders are 2m−2

and 2 by Lemma 1.5, respectively. Define a mapping:

σ8 : G → G,

x2i−1 7→ x2m−1
2i−1 , i = 1, 2, · · · , n+ 1,

x2i 7→ x2i, i = 1, 2, · · · , n+ 1,

zj 7→ zj , j = 1, 2, · · · , r,

y 7→ y,

u 7→ u2m−1.

It is easy to verify that σ7 and σ8 are the commutative automorphisms of G each other and

their orders are 2m−1 and 2, respectively.

By means of the argument in Theorem 2.1, we similarly have that AutG = 〈σ7, σ8〉Autf G,

and 〈σ7, σ8〉 ∩ Autf G = 〈σ2m−2

7 〉. It follows that AutG/Autf G ∼= Z2m−2 × Z2.

The theorem is proved.

Let

Ψ1 : Autf G → Aut(G/C),

Ψ2 : Autf G → Aut(C/ζC)

Ψ3 : Autf G → Aut(ζC/FratC)

be the natural induced homomorphisms. From this, we can obtain the below homomorphism:

Ψ : Autf G → Aut(G/C)×Aut(C/ζC)×Aut(ζC/FratC),

α 7→ (Ψ1(α),Ψ2(α),Ψ3(α)).

Since G/C = 〈yC〉 ∼= Z2, ImΨ1 = Aut(G/C) = 1.

Since ζC = (〈z2〉 ×R) · 〈u〉, we can define the inner product as follows:

f(a, b) = t, where a = aζC, b = bζC, a, b ∈ C and [a, b] = (z2
m

)t, 0 ≤ t < 2.

Hence C/ζC can become a nondegenerated symplectic space over GF(2). For any α ∈ Autf G,

[α(a), α(b)] = α[a, b] = [a, b], then, for any a = aζC, b = bζC ∈ C/ζC,

f(Ψ2(α)(a),Ψ2(α)(b)) = f(α(a), α(b)) = f(a, b),



The Automorphism Group of a Finite p-Group 639

therefore Ψ2(α) ∈ Sp(2n, 2). Thus Ψ2(Autf G) ≤ Sp(2n, 2). In a word, Ψ is a homomorphism

as follows:

Ψ : Autf G → Aut(G/C)× Sp(2n, 2)×Aut(ζC/FratC),

α 7→ (Ψ1(α),Ψ2(α),Ψ3(α)).

Theorem 5.2 ImΨ2 = I ⋊ Sp(2n, 2), where I is an elementary abelian 2-group with order

22n+1.

Proof Let D := {T ∈ Sp(2n + 2, 2) | the first column and second row of the matrix of

T are (1, 0, · · · , 0)T and (0, 1, 0, · · · , 0) relative to a basis x1ζC, x2ζC, · · · , x2n+2ζC of C/ζC,

respectively}.

Take any T ∈ D . Let (aik) be the matrix of T relative to a basis {xiζC, i = 1, 2, · · · , 2n+2}

of C/ζC. Define a mapping:

φ : G → G,

yc
(

2n+2
∏

i=1

xai

i

)(

r+1
∏

j=1

z
bj
j

)

z2d 7→ (yxt)c
(

2n+2
∏

i=1

(

2n+2
∏

k=1

xaik

k

)ai
)(

r+1
∏

j=1

z
bj
j

)

z2d
′

,

where zr+1 := u, 0 ≤ ai < 2, i = 1, 2, · · · , 2n + 2, 0 ≤ bj < 2, j = 1, 2, · · · , r + 1, 0 ≤ c < 2,

0 ≤ d < 2m, d′ ≡ d+
2n+2
∑

i=1

2m−2ai
(

n+1
∑

k=1

(ai,2k−1 ·ai,2k)
)

(mod 2m), t = 0
(

if
n+1
∑

k=1

(a1,2k−1a1,2k) ≡ 0

(mod 2)
)

or t = 1
(

if
n+1
∑

k=1

(a1,2k−1a1,2k) ≡ 1 (mod 2)
)

.

Note that (aik) is a nonsingular matrix. It is easy to verify φ is a bijection. Therefore, φ is

an automorphism of G if and only if φ preserves multiplications.

According to the argument in Theorem 3.2, we similarly have that ImΨ2 = D = I ⋊
Sp(2n, 2), where I is an elementary abelian 2-group with order 22n+1.

The theorem is proved.

Theorem 5.3 ImΨ3
∼= GL(r, 2)⋉ (Z2)

r.

Proof For convenience, let zr+1 := uz2
m−1

, then ζC = R × 〈zr+1〉 × 〈z2〉, and H8 =

〈x, y, z, zr+1 | x2 = y2 = z2
m+1

= z2r+1 = 1, yx = y, zx = z2
m+1, zy = z−1, [x, zr+1] = 1 =

[z, zr+1], [y, zr+1] = z2
m

〉.

Since FratC = 〈z2〉, {zjFratC, j = 1, 2, · · · , r + 1} is a basis of ζC/FratC and ζC/FratC

is a linear space over GF(2) with the dimension r + 1. Hence ImΨ3 can be embedded in

GL(r + 1, 2).

Let

H :=

{(

H11 0
H21 1

)

∈ GL(r + 1, 2)

}

,

where H11 is a r × r matrix, H21 is a 1× r matrix. It is easy to verify that H ≤ GL(r + 1, 2).

For any α ∈ Autf G, let (hjk) be the matrix of Ψ3(α) relative to a basis {zjFratC, j =

1, 2, · · · , r + 1} of ζC/FratC.

Let (hjk) be the partitioned matrix as follows:

(hjk) =

(

H11 H12

H21 H22

)

∈ GL(r + 1, 2),
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where H11, H12, H21 and H22 are r × r, r × 1, 1× r and 1× 1 matrices, respectively.

Since Ψ3(α)(zj) =
r+1
∏

k=1

z
hjk

k , there exists 0 ≤ hj < 2m such that α(zj) =
(

r+1
∏

k=1

z
hjk

k

)

z2hj .

For j = 1, 2, · · · , r + 1, 1 = α(zj)
2 = z4hj , thus 4hj ≡ 0 (mod 2m+1).

Let α(y) = yy1, where y1 ∈ C. Since α(y) is commutative with α(zj) for j = 1, 2, · · · , r,

1 =
[

yy1,
(

r+1
∏

k=1

z
hjk

k

)

z2hj

]

= [y, z2hj ][y, z
hj,r+1

r+1 ]z
2hj

= z4hj+2mhj,r+1 .

Hence hj,r+1 = 0, that is H12 = 0. Since

z2
m

=
[

yy1,
(

r+1
∏

k=1

z
hr+1,k

k

)

z2hr+1

]

= [y, z
hr+1,r+1

r+1 z2hr+1] = z4hr+1+2mhr+1,r+1 ,

hr+1,r+1 = 1, that is H22 = 1.

Conversely, for any

(

H11 0
H21 1

)

= (hjk) ∈H , define a mapping:

δ3 : G → G,

y 7→ y,

xi 7→ xi, i = 1, 2, · · · , 2n+ 2,

zj 7→
r+1
∏

k=1

z
bjk
k , j == 1, 2, · · · , r + 1.

It is easy to verify that δ3 ∈ Autf G, and the matrix of Ψ2(δ3) is (bjk) relative to a basis

{zjFratC, j = 1, 2, · · · , r + 1} of ζC/FratC. Hence ImΨ2
∼=H . Also since H ∼= GL(r, 2) ⋉

(Z2)
r , Ψ2(Autf G) ∼= GL(r, 2)⋉ (Z2)

r.

The theorem is proved.

Theorem 5.4 KerΨ is a 2-group with order 2(2n+2)(r+2)+2r+m+1.

Proof For convenience, let zr+1 := uz2
m−1

.

Since KerΨ acts trivially on the factors of the series G ≥ C ≥ ζC ≥ FratC ≥ 1, KerΨ is a

2-group.

For any α ∈ KerΨ, let

α : G → G,

y 7→ y
(

2n+2
∏

i=1

xai

i

)(

r+1
∏

j=1

z
bj
j

)

z2a,

xi 7→ xi

(

r+1
∏

j=1

z
aij

j

)

z2ci , i = 1, 2, · · · , 2n+ 2,

zj 7→ zjz
2dj , j = 1, 2, · · · , r + 1,

z2 7→ z2,

where 0 ≤ ai < 2, 0 ≤ bj < 2, 0 ≤ a < 2m, 0 ≤ aij < 2, 0 ≤ ci < 2m, 0 ≤ dj < 2m,

i = 1, 2, · · · , 2n+ 2, j = 1, 2, · · · , r + 1.
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Since α(z)2 = z2, z2 =
(

z
(

r+1
∏

j=1

z
a1j

j

)

z2c1
)2

= z2+4c1, which implies that c1 = 0 or 2m−1.

Since α(xi)
2 = 1, where i = 2, · · · , 2n + 2, 1 =

(

xi

(

r+1
∏

j=1

z
aij

j

)

z2ci
)2

= z4ci, which implies

that ci ≡ 0 (mod 2m−1), that is ci = 0 or 2m−1.

Since α(y) is commutative with α(xi), where i = 3, 4, · · · , 2n+ 2,

1 =
[

y
(

2n+2
∏

i=1

xai

i

)(

r+1
∏

j=1

z
bj
j

)

z2a, xi

(

r+1
∏

j=1

z
aij

j

)

z2ci
]

=
[

y
(

2n+2
∏

i=1

xai

i

)

, xiz
ai,r+1

r+1 z2ci
]

=
[

y
(

2n+2
∏

i=1

xai

i

)

, z
ai,r+1

r+1 z2ci
][

y
(

2n+2
∏

i=1

xai

i

)

, xi

]z
ai,r+1

r+1
z2ci

= [y, z2ci][y, z
ai,r+1

r+1 ]
[(

2n+2
∏

i=1

xai

i

)

, xi

]

= z4ciz2
mai,r+1

[(

2n+2
∏

i=1

xai

i

)

, xi

]

.

Note that 4ci ≡ 0 (mod 2m+1). If i is odd, let i = 2j − 1, where j = 2, · · · , n + 1, then

z2
m(a2j−1,r+1+a2j) = 1, which implies that a2j−1,r+1 + a2j ≡ 0 (mod 2); if i is even, let i = 2j,

where j = 2, · · · , n + 1, then z2
m(a2j,r+1+a2j−1) = 1, which implies that a2j,r+1 + a2j−1 ≡ 0

(mod 2).

Since α(x) is commutative with α(y),

1 =
[

x2

(

r+1
∏

j=1

z
a2j

j

)

z2c2, yza1xa2

(

r+1
∏

j=1

z
bj
j

)

z2a
]

= z2
m(a1+a2,r+1)−4c2 .

Also since c2 = 0 or 2m−1, a1 + a2,r+1 ≡ 0 (mod 2).

Since α(z)−2 = [α(z), α(y)],

z−2−4c1 =
(

z
(

r+1
∏

j=1

z
a1j

j

)

z2c1
)

−2

=
[

z
(

r+1
∏

j=1

z
a1j

j

)

z2c1 , yza1xa2

(

r+1
∏

j=1

z
bj
j

)

z2a
]

= z2
ma2−2−4c1+2ma1,r+1 ,

which implies that a2 + a1,r+1 ≡ 0 (mod 2).

Since

1 = α(y)2 =
[

y
(

2n+2
∏

i=1

xai

i

)(

r+1
∏

j=1

z
bj
j

)

z2a
]2

= zcr+1,

where c := 2m
(

br+1 +
n+1
∑

j=1

a2j−1a2j
)

, br+1 +
n+1
∑

j=1

a2j−1a2j ≡ 0 (mod 2).

Since α(y) is commutative with α(zj), where j = 1, 2, · · · , r,

1 =
[

yza1xa2

(

r+1
∏

j=1

z
bj
j

)

z2a, zjz
2dj

]

= z4dj ,
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which implies that dj = 0 or 2m−1. Since

z2
m

= α(z2
m

) = α(z)2
m

= [α(y), α(zr+1)] =
[

yza1xa2

(

r+1
∏

j=1

z
bj
j

)

z2a, zr+1z
2dr+1

]

= z2
m+4dr+1 ,

dr+1 = 0 or 2m−1.

Since 1 = α(zj)
2 = (zjz

2dj)2 = z4dj , where j = 1, 2, · · · , r + 1, dj = 0 or 2m−1.

It is easy to verify other generated relations of H8 have effect on the parameters of α.

In conclusion, α is an automorphism as follows:

α : G → G,

y 7→ y
(

2n+2
∏

i=1

xai

i

)(

r+1
∏

j=1

z
bj
j

)

z2a,

xi 7→ xi

(

r+1
∏

j=1

z
aij

j

)

z2ci , i = 1, 2, · · · , 2n+ 2,

zj 7→ zjz
2dj , j = 1, 2, · · · , r + 1,

where a2j−1,r+1 + a2j ≡ 0 (mod 2), a2j,r+1 + a2j−1 ≡ 0 (mod 2), br+1 +
n+1
∑

j=1

a2j−1a2j ≡ 0

(mod 2), 0 ≤ bj < 2, 0 ≤ a < 2m, 0 ≤ aij < 2, ci = 0 or 2m−1, dj = 0 or 2m−1, i =

1, 2, · · · , 2n+ 2, j = 1, 2, · · · , r + 1.

Conversely, if α is an automorphism of G, which satisfies the above conditions, then α ∈

KerΨ. Hence |KerΨ| = 2(2n+2)(r+2)+2r+m+1.

The theorem is proved.
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