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Abstract In this paper, the authors first consider the global well-posedness of 3-D Boussi-
nesq system, which has variable kinematic viscosity yet without thermal conductivity and
buoyancy force, provided that the viscosity coefficient is sufficiently close to some positive
constant in L°° and the initial velocity is small enough in Bg}l(]l@). With some thermal
conductivity in the temperature equation and with linear buoyancy force fes on the velo-
city equation in the Boussinesq system, the authors also prove the global well-posedness of
such system with initial temperature and initial velocity being sufficiently small in L' (R3)
and Bgyl(RS) respectively.
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1 Introduction

The purpose of this paper is to investigate the global well-posedness to the following three-
dimensional Boussinesq system with variable kinematic viscosity

o0 +u-VO+v|DI*0=0, (t,z)eR" xR?,
Ou+ u - Vu — div(2u(0)d) + VII = efes,
divu =0,

(9,u)|t:0 = (6‘0, UQ).

(1.1)

Here 0,u = (u1,u2,us) stand for the temperature and velocity of the fluid respectively, and
d = (3(9su; +05ui)) 5,5
kinematic viscous coefficient () is a smooth, positive and non-decreasing function on [0, c0).

denotes the deformation tensor, II is a scalar pressure function, and the

The thermal conductivity coefficient v > 0, and e3 = (0,0,1), € > 0, efes denotes buoyancy
force. Furthermore, in all that follows, we shall always denote |D|® to be the Fourier multiplier
with symbol [£]® for s > 0.
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The Boussinesq system arises from a zeroth order approximation to the coupling between
Navier-Stokes equations and the thermodynamic equations. It can be used as a model to
describe many geophysical phenomena (see [28]). In the Boussinesq approximation of a large
class of flow problems, thermodynamic coefficients such as kinematic viscosity, specific heat and
thermal conductivity may be assumed to be constants, leading to a coupled system of parabolic
equations with linear second order operators.

However, there are some fluids such as lubricants or some plasma flow for which this is
not an accurate assumption (see [30]), and a quasilinear parabolic system as follows has to be
considered:

010 +u-VO—Ap(0) =0, (t,z) e RT xR,
dru + u - Vu — div(2u(0)d) + VII = F(6), (1.2)
divu = 0.

One may check [17] and the references therein for more details about (1.2). Furthermore, under
some technical assumptions, the global existence of weak solutions to (1.2) and in the case of
constant viscosity, the uniqueness of such weak solutions in two space dimension was proved in
[17].

Recently the System (1.2) has attracted a lot of attentions in the field of mathematical fluid
dynamics. In particular, in two space dimension, with F(0) = fey for e3 = (0,1) in (1.2),
Wang and Zhang [32] proved the global existence of smooth solutions to (1.2). In this case,
even with ¢(0) =0 and p(d) = ¢ > 0 in (1.2), Chae [11] and Hou, Li[23] independently proved
the global existence of smooth solutions to (1.2), Hmidi and Keraani [20] proved the global
existence of weak solutions to (1.2) with 6, ug belonging to L?(R?) and the uniqueness of such
solutions was proved for g, ug belonging to H*(R?) for any s > 0, the first author of this paper
and Hmidi [3] established the global well-posedness of this system with initial data satisfying
(6o, u0) € BY; x (L*N By )(R?). When N >3, exy = (0,-+-,1), and F(0) = fen, (f) = 0
and p(0) = p > 01in (1.2), which corresponds to v =¢ =0 and p(0) = p > 0 in (1.1), Danchin
and Paicu [14] proved the global well-posedness of this system with 6y € B?V,l N L5 (RY) and

LN
ug € Bpfr » N LN2°(RN) for p € [N, 00) provided that
Juollve + " ol ¢ < e

for some sufficiently small constant c.
We should also mention that there are many studies on the so-called Boussinesq system
with critical dissipation in two space dimension, which reads

o0 +u-VO+v|Df=0, (t,xr)eR" xR?
Ou+ u - Vu+ p|D|u + VII = fey,

divu =0,

(9,u)|t:0 = (90,”0).

(1.3)

When v = 0 and g > 0, the above system is called Boussinesq-Navier-Stokes system with
critical dissipation, Hmidi, Keraani and Rousset [21] proved the global well-posedness of such
system. When v > 0 and p = 0, the System (1.3) is called Boussinesq-Euler system with critical
dissipation, Hmidi, Keraani and Rousset [22] proved the global well-posedness of this system.
Very recently even the logarithmically critical Boussinesq system was investigated by Hmidi in
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[19]. There are also studies to the global well-posedness of the anisotropic Boussinesq system
(with partial thermal conductivity and partial kinematic viscosity) in two space dimension (see
[10, 15] for instance).

On the other hand, Abidi [2] proved the global well-posedness of (1.2) in two space dimension
under the assumptions that: ¢(0) = 0, F(0) = 0, and the initial data satisfies 0y € B%)l(ﬂ@),
up € (L2 N Bo_ol)l)(Rz), moreover for some sufficiently small e, there holds

160ll 3, + l1(00) = [z < e.

Furthermore, the authors of [6] established the global well-posedness of a 2-D Boussinesq system,
which has variable kinematic viscosity and with thermal conductivity of | D|, with general initial
data provided that the viscosity coefficient is sufficiently close to some positive constant in L

norm.

Motivated by [2, 6] and the recent results of the authors of [4-5] concerning the global
well-posedness of inhomogeneous Navier-Stokes system with variable density (see also [16, 24]),
we are going to investigate the global well-posedness to the following Boussinesq system with
variable viscosity, which corresponds v =& =0 in (1.1):

00 +u-VO=0, (tx)cRT xR
Oyu + u - Vu — div(2u(0)d) + VII = 0,
divu = 0,

(9,u)|t:0 = (90,%0).

(1.4)

In all that follows, we always make the convention that, for any a > 0, a4 means any
constant greater than «, and
0<p<u®), ul)eW? R") and u(0)=1. (1.5)
1 . .
Theorem 1.1 Let 6y € (Bz; N B(()S,);)(Rg) and uy € (H=% N BY,)(R®) be a solenoidal
vector filed for some § €]0, %[ Then there exists a sufficiently small constant ¢, and some

small enough constant €, which depends on [|6o]| . such that if
3

g3+

,1MBes c0
1(00) = Ul <20 and Juollgy, <<, (1.6)
(1.4) has a unique global solution (0,u, VII) with

0 € C([0,00[; Bi;(R%)), weC([0,00[; BS;)NLL(RY;B3,) and

. 1.7
VII € Llloc(R—i_;Bg,l)' ( )

Remark 1.1 Let us give the following remarks concerning this theorem:
will be given by (5.1) and

C

1 00,00

(1) We point out that the exact dependence of € on HGOHBI
3

(5.49). Furthermore, compared with the 2-D result in [2], here we do not require any smallness
condition on the initial temperature in Theorem 1.1.

(2) The assumption that ug € H~2*(R?) is to make sure that the solution decay to 0 as time
t goes to oo, which will be essential to obtain the a priori estimate of the velocity v in the space
L'(R™, Lip(R?)). In fact, the exact decay rate of u(t) will be given by (5.31) and (5.37). The
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assumption that 6y € B((é)(fo (R?) is due to the variable viscosity, one may check (3) of Remark
1.2 for details.

(3) Compared with the results in [4-5] and [24] for the inhomogeneous Navier-Stokes system
with variable viscosity, here €q is a uniform small positive constant, which does not depend on
0p. While in [4-5] and [24], the smallness condition for u(pg) — 1 is in some sense formulated as

l[(po) = L[z (L + [lpoll s, ) < €0

for some § > 0. In general, under the assumption that

[u(po) — 1|z~ < €0 (1.8)

for some ¢¢ sufficiently small, Desjardins [16] only proved the global existence of strong solutions
for 2-D inhomogeneous Navier-Stokes system. Yet the uniqueness and regularities of such strong
solutions are still open. Moreover, here we do not require the initial velocity ug € H' as was
assumed in [4-5, 16, 24].

However, with linear buoyancy force fes on the right-hand side of the velocity equation in
(1.4), we still do not know how to prove such global well-posedness result as Theorem 1.1 for the
corresponding system. Yet with some dissipation on the temperature equation, more precisely,
for the system below,

00 +u-VO+|D*0=0, (t,z)eRT xR
Ou +u - Vu — div(2u(0)d) + VII = fes,
divu =0,

(6‘,u)|t:0 = (90,U0),

we have the following global well-posedness result.

(1.9)

Theorem 1.2 Let s € |3 —V/6,1] and o €]0,1]. Let 6y € (L' N B:)l,1 N Bg‘o_’m)(ﬂ@) and
ug € Bgﬂl(RB) be a solenoidal vector field. Then there exist sufficiently small constants n and
19, which depend on HGOHB?{ npa_» such that if

Wolls <mo and fuolgg, <. (1.10)

(1.9) has a unique global solution (0,u) with

0 € C([0,00[; B3 1 (R*)) N Lige(Ry; B51*(R?))  and

. . . 1.11
w e (0, 00f B, (%) N IL (Res B2, (), VIIe b @5 B0,®Y). Y

Remark 1.2 Let us mention the following facts about Theorem 1.2.

(1) We remark that the exact smallness conditions for n and 7y will be given by (7.1), (7.2),
(7.12) and (7.20). This result in some sense extends the global well-posedness result in [14] with
constant viscosity to the case of variable kinematic viscosity. As a matter of fact, the method
of the proof to Theorem 1.2 is also motivated a lot from that in [14, 27], namely, we need first
to control the L>°(R™T; L3°°(R?)) norm for the velocity field u before we deal with the evolution
of the Besov norm for u.

(2) We also remark that the global well-posedness of the System (1.9) is easier for larger s.
However, we just choose s < 1 for simplicity. And the reason why we choose s > 3 — /6 is due
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to the facts that when we manipulate the global L!(t;, oo; B;ol) for the velocity in Subsection
7.2, we need 6(t1) belongs to Bil(Rg), which is obtained by using the smooth effect of |D|® in
the 0 equation of (1.9), and p, given by (5.39) satisfies s > pg—s, which is crucial for us to work
the paraproduct estimate in (7.28). We do not claim the assumption that s € ]3 —/6,1] in
Theorem 1.2 is optimal in any sense.

(3) We emphasize that the main difficulty in the proof of Theorems 1.1 and 1.2 is due to
the variable viscosity. In this case, when we apply Littlewood-Paley theory and smoothing
effect of heat semigroup to prove the global L' in time of the space Lipschize estimate for the
velocity, we need some positive space derivative estimate of 6. Yet to propagate the positive
space derivative estimate for #, we require the the global L' in time of the space Lipschize
estimate for the convection velocity u. Especially for the transport equation of (1.4), one has

10 s, . < [I6olls, _ exp(Cl|Vul|Ly (L)) for § €]0,1],
which makes impossible to close the a priori estimates.

Let us complete this section with the notations we are going to use in this context.

Notations Let A, B be two operators, we denote [A; B] = AB — BA, the commutator
between A and B. For a < b, we mean that there is a uniform constant C, which may be
different on different lines, such that a < Cb. We shall denote by (a | b) (or (a | b)z2) the
L?(R?) inner product of a and b, and denote by (d;);jez (resp. (cj)jez) a generic element of
(1(Z) (resp. £*(Z)) so that ||(d;)jezlln@z) =1 (vesp. [[(¢j)jezllez(z) = 1)

For X a Banach space and I an interval of R, we denote by C(I; X) the set of continuous
functions on I with values in X, and by Cy(I; X) the subset of bounded functions of C(I; X). For
q € [1,+0], the notation L?(I; X) stands for the set of measurable functions on I with values
in X, such that ¢t — || f(¢)||x belongs to LI(I). Finally for any vector field v = (v1, va,v3), we

denote d(v) = $(d;v; +0;v;);,j=1,2,3, and the Leray projection operator P def Id+V(—A)~div.

2 Strategies to the Proof of Theorems 1.1 and 1.2

As the existence part of both Theorems 1.1 and 1.2 basically follows from the a priori
estimates for smooth enough solutions of (1.4) and (1.9). We shall only outline the main steps
in the derivation of the estimates.

2.1 Strategy to the proof of Theorem 1.1

By applying maximal regularity estimates for heat semi-group, we prove that under the
assumption of (1.6), for smooth enough solution (6, u) of (1.4) on [0, T*[, there holds

oo _p_ <C : 2.1
el + il oy 4190l g < Clulag, 1)

for any p € [6,8]. If one assumes moreover the smallness condition (5.1), we get, by using
Littlewood-Paley analysis that 7* > 1 and

lull Ly, ) < Clluollzg, (1 +16oll 3 )- (2.2)

1
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With (2.2), we can prove the propagation of regularities of (6, ug) for (6,u) on [0, 1], namely
the estimate (5.14). This in particular ensures some ¢ €]0, 1[ so that there holds

16to)l5y, < Clldollpy, and 6, < Clooll .

o
Ju(to)l -5 < (ol g-as + [Boll g, loll 5y, ) -~ am (23)
Jutto)las < CCluoll - + 101l ol sg,)

Due to (2.3), we can prove the following Desjardins type (see [16]) energy estimates for
t E]to, T*[,

||u||2L°°(to,t;L2) + HVUH%Z(tO,t;L?) < C||u(t0)||%2,

(2.4)
IVl 1)+ 190220 2y < CUV o) 22 exp(Cluoll ).
Furthermore, since u(tg) € H~20(R?), we can use Schonbek’s approach in [31] to get
llu(t)||z2 < CCE)=° for any t € [to, T (2.5)
for C given by (5.31). Based on (2.5), we deduce that for p € [6,8] and satisfying (5.39),
3 p=6
IVullgs ey < CO7 ol 55F for any ¢ € 0,77 (26)
3,1

By virtue of (2.4) and (2.6), we can prove the following key estimate by applying the
smoothing effect of heat semi-group and Littlewood-Paley theory

lull s ) < Clluoll g, + Nutto)ll (1 + o) 15 luol %y ) +Tlloll_yo)  (27)

for any ¢ €]0, T*[, where ||u(to)||z1 is determined by (2.3) and C by (5.31).

This is basically the contents of Section 5. With (2.7), we shall complete the proof to
the existence part of Theorems 1.1 in Subsection 6.1 by constructing appropriate approximate
solutions and passing to the limit. And finally the uniqueness part of Theorems 1.1 will be
proved in Subsection 6.2 by applying Osgood lemma.

2.2 Strategy to the proof of Theorem 1.2

As in the proof of Theorem 1.1, under the smallness conditions (7.1) and (7.2), we shall
prove that the corresponding local smooth solution (6,u) of (1.9) on [0,T*[ satisfies T* > 1,
and

1 2
lull g,y < Clluoll sy, + N6ol3: 16011, )- (2.8)

t|D]*

Thanks to (2.8), we get, by applying the smoothing effect of e!® and e , that there exists

some ?1 €]3,1[ so that

[l 3o sy, < Clr+m3) (14 [160ll 51, + 160l 5o )

(2.9)
10Nz < 1ol and  [[6(t1)l 53 Aprse < Clllfoll gy, + 0ol pa -
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Starting from ¢;, we write the velocity equation of (1.9) as
t
u(t) = ety () + / e=IAP(—div(u @ u) + div(2(u(0) — 1)d) + fes)(t)dt’,  (2.10)
ty
from which, Lemma 4.2 and under the additional smallness assumption (7.20), we infer the

following.

Lemma 2.1 Under the assumptions of Proposition 7.3 and for ns given by (7.20), we have
llull ooty 45080y < Cma - for any t €]ty, T™. (2.11)
Lemma 2.2 Under the assumptions of Proposition 7.3, for 0 < s < 1, one has for any
t E]tl, T*[,
2(ps— 2(6—ps) —12

T 3ps 3?’5
IVl ey e S Oy, 25 ol 57 ool ) and

(2.12)

2(ps—3) Ps+6
‘90HL13ps H90| _Pe )7

[Vul

< O(Hu(tl)”BglmBél —|—t Ps N4 + t2pb

L (0,651 7:59)
where ps is given by (7.21).

In view of (2.10) and the above lemmas, we obtain the a priori estimate for ||u||L%(B;C’1) for
any t < T. The detail will be presented in Proposition 7.3.

Finally the existence part of Theorem 1.2 will be proved by constructing appropriate
approximate solutions and passing to the limit in Subsection 8.1. Whereas the uniqueness
part of Theorems 1.2 will be proved in Subsection 8.2 through Osgood lemma type argument.

3 Littlewood-Paley Analysis and Lorentz Spaces

The proofs of Theorems 1.1 and 1.2 require Littlewood-Paley decomposition. Let us briefly
explain how it may be built in the case z € RY (see e.g. [7]). Let ¢ be a smooth function

supported in the annulus ¢ {5 eRY,3 2 < |¢] < &} and x(&) be a smooth function supported

in the ball B {¢ e RY, | ¢] < 4} such that

Z(p ) =1 for £#0 and (¢ +ng ) =1 forall £ eRY.

JEZ q>0
Then for u € S (RY) (see [7, Definition 1.26]), which means u € S'(R™) and

Jim [[x (27 Djull = =0,
j——o00

we set
VieZ, A, ud—efgo( 279D)u and S; ud—efx( 277 D)u,
Vg>0, A, u f »(279D)u, A_lu = X(D)u and Squ def Z Agu, (3.1)
—1<q'<g—1
we have the formal decomposition
u:ZAju, Vue S, (RY) and u= Z Ayu, YuecSRY). (3.2)

JEL q=—1
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Moreover, the Littlewood-Paley decomposition satisfies the property of almost orthogonality:
AjAju=0 if|j—k>2 and Aj(Sp_1ulyu) =0 if|j — k[ > 5. (3.3)

We recall now the definition of homogeneous Besov spaces and Bernstein type inequalities
from [7]. Similar definitions in the inhomogeneous context can be found in [7].

Definition 3.1 (sce [7, Definition 2.15]) Let (p,r) € [1, +o0]?, s € R and u € S; (RY), we
set

def 551 A
el . % @A ul o)

def

e Fors < % (or s = % if r =1), we define B;)T(RN) {ue Sy (R | full g < 00}
o I[fkeN and %—i—kg s < %—l—k—i—l (ors= %—i—k—i—l if r=1), then B;T(RN) is defined
as the subset of distributions u € Sy (RY) such that d%u € Bg;k(]RN) whenever || = k.

Lemma 3.1 Let B be a ball and C an annulus of RY . A constant C exists so that for
any positive real number §, any non-negative integer k, any smooth homogeneous function o of
degree m, and any couple of real numbers (a, b) with b > a > 1, there hold

Supp @ C 6B = sup [|0%ul|g> < CFTSFNGE=D) ||y e,
la|=k

Supp u C 6C = C_l_k5k||u||La < sup ||0%l|pe < Cl+k5k||u||La, (3.4)

la|=k

Supp @ C 6C = ||o(D)ul| s < Comd™ NG 0| po.

Lemma 3.2 (see [7, Lemma 2.4]) Let C be an annulus. A positive constant C exists so
that for any p €]1,00[ and any couple (t,\) of positive real numbers, we have

Supp @ C AC = [le"®al|L» < Ce™|a]|L».

We also recall Bony’s decomposition from [9]:

wo = Tyv + Thu = Tyv + Tyu + R(u,v), (3.5)
where
Tu’l} d:efzsfj_luAj’U, TT/J’U, d:efzsqu_g’UAj’u,,
J€Z jez
def AN 1« def A
R(u,v) = ZAjuAjv with Aju = Z Ajiv.
JEL 3" —jl<1

In order to obtain a better description of the regularizing effect of the transport-diffusion
equation, we need to use Chemin-Lerner type spaces L%(B;T(RN )) from [7].

Definition 3.2 Let (r,\,p) € [1, +c]® and T €]0, +oc]. We define E%(B;T(RN)) as the
completion of C([0,T]; S(RN)) by the norm

zsess. = (27 ([ 14, o) ¥) < .

JEZ

<

with the usual change if 1 = co. For short, we just denote this space by E%(B;T)
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To prove Theorem 1.2, we also need to use Lorentz space LP4(R?). For the convenience of
the readers, we recall some basic facts on Lp7q(RN) from [18, 25].

Definition 3.3 (see [18, Definition 1.4.6]) For a measurable function f on RY, we define
its mon-increasing rearrangement by
def

f*(t) = inf{s >0, M({CL‘, |f($)| > S}) < t},

where p denotes the usual Lebesgue measure. For (p,q) € [1,+00]%, the Lorentz space LP9(R™Y)
is the set of functions f such that || f]|Lr.« < 00, with

Ay g
| fllLra def (/0 l(tpf (t))q?) for1l < q < oo,
suptr f*(t)

for g = oc.
t>0

We remark that Lorentz spaces can also be defined by real interpolation from Lebesgue
spaces (see for instance [25, Definition 2.3]):

(LPO’Lpl)(ﬁ.’q) — LP-,q7
where 1 < pg < p < p1 < 00, 3 satisfies %

1

p_oﬂ—i—pﬁlandlgqgoo.
Lemma 3.3 (see [25, pages 18-20]) Let 1 <p < oo and 1 < g < 0o, we have
[ ]

[fgllzea S NS llzrallglloe.
o If 1 zpi—l—p% and%qu—l—l—q%,then
I fgllzea S I1fllrarllglraie .
o If 1 <p< o0, 1—1)4—1:

1 1 11 , 1
p1+p2 andq_q1+qz’th6n

If*gllzea S fllLrallglzrae
_ 1 1 _
for p= o0, and T = 1, then

I1f = gllzoe SN fllLrvar [lgl Loz

e For1<p<ooandl < q <qo <00, we have

LP0 <y [P gpd  [PP = P,
Lemma 3.4 (see [14, Lemma 3.9))

For1 <p < q< o0, one has
00 (T3 53(3=35) 3
LP°(R”) < Byt " (R?).
As an application of the above basic facts on Littlewood-Paley theory and Lorentz spaces,
we prove the following estimates.

Lemma 3.5 Let p > 3

5, 8€]— 1,00, a€[0,1] and a,b € S(R?). We have
(1) labll g | < llallzs.<[[bll gy + Bl o< llal| g0 and
(2)

S Az a- Vibllzs S IVallz=llbll sy + lall s lbll 5,
JEZ
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Proof The proof of the first inequality of (3.6) basically follows from that of (26) in [14].
For completeness, we present its proof here. Using Bony’s decomposition (3.5), we write

ab=T,b+ Tya + R(a,b).

It follows from Lemma 3.1 that

1A Tablle S D 118y —1allze | Ajbl| o

13— <4
. »
S Y a2 all g Bl g S 27 llall g 1Bl o
13— <4

for some (c;)jez € €7(Z) so that ||(c;j,)jezller(z) = 1. Similar estimate holds for Tya.
Whereas applying Lemma 3.1 and Lemma 3.3 yields

> Apalpb| s Y Y IAjals|A b
Jj'2j-3 Jj'2j-3

$2 Y 6,279 a] oo Jb]
j'>j—3

1A, R(a,b)l|r < 27

pren S 027 lal e 0] g

Hence by virtue of Lemma 3.4, we obtain the first inequality of (3.6).
Along the same line, by using Bony decomposition (3.5), we write

[Ajsa- Vb= [A;; T Vb + A;Ta — TA, w0

It follows from the classical commutator’s estimate (see [7]) that

I[A; T Vbls S Y 279181 Val| L ||A; Vb 15

77 —j1<4
< dj2_‘]Hva||LOO||b||B§ ) for (d;)z € (*(Z).
While it is easy to observe that
1A Tgpalls S D 15542 Vbl o= | Ajrall s
J'2j—No

S D 42 blge llallgze S 427 bl g llall gz
J'2j—No
The same estimate holds for 7% _, a. Hence there holds (2) of (3.6). This completes the proof
J
of the lemma.

4 Some Technical Lemmas

In this section, we shall collect some technical lemmas which will be used throughout this
paper. The first one is concerning the definition of Besov spaces with negative indices through
heat semi-group.

Proposition 4.1 (see [7, Theorem 2.34]) Let s be a negative real number and (p,r) €
[1,00)%. A constant C erists such that

CIf

— 5 tA
B;m < HHt 2et f”LpHLr(R‘F;%) < OH.fHB;T
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The other key ingredient used in this paper is the maximal LP(L9) regularity for the heat
kernel.

Lemma 4.1 (see [25, Lemma 7.3]) The operator A defined by
t ’
F(t,z) — / A=A R z)dt!
0

is bounded from LP(]0,T[; LY(R3)) to LP(]0,T[; LY(R?)) for every T € (0,00] and 1 < p,q < .
Moreover, there holds

HAF”LQ}(LLI) < Cp7q||FHL‘;(L4)-

Lemma 4.2 Let 3 < p < co. The operator B defined by F(t,x) fot Velt="ARY 2)dt!
is bounded from L3 (]0,T[; L% (R3)) to L%(]O,T[; LP(R3)) for every T € (0,00], and there
holds

B(F < CLIF|| —e. . 4.1
” ( )|‘Lf%(LP) = ;D” HL;,s (Lg) ( )
If moreover, p €]3,6], one has
B(F oo < E p . .
I1B(F)Lsersy < Ol ”L;*-?’l(L%) (4.2)

Proof Note that

(t—t"A ! x) = ﬁ (x—y) - - |5E—y|2 /
Vel A ) = s /}Ra2 — p{ 4(t_t,)}F(t,y)dy

def VT ) R
_(47T(t—t’))2K(2 (t—t’)) F(t',x). (4.3)

Applying Young’s inequality in the space variables yields

Vet (10 1y () F)(H, )| o

<Ot — t’)—QHK(m)‘ oz Mo @) FE) 5

< C(t— 1) "7 % |1 () F(t')

HLgv (44)

where 1jg (%) denotes the characteristic function on [0, ], from which and Hardy-Littlewood-
Sobolev inequality, we conclude the proof of (4.1).

It remains to prove the limiting case, i.e., (4.2). Indeed it follows by a similar derivation of
(4.4) that

T 3
IBE)OIs <C [ (=) o

Note that for 3 < p < 6, we have
Lisot 7 € L,

as a result, it comes out (4.2). This completes the proof of Lemma 4.2.
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Lemma 4.3 Let s €]0,1] and u be a smooth solenoidal vector filed on [0,T]. Let 0 be a
smooth enough solution of

8t9+U'V9+|D|59=0, 9|t:0 =X (45)

Then one has for any t < T,
(1) for all p € [1,00], |0(t)[| > < (|60l Lr;
@) 100122 + 100z 5, < 1605
(3) for all p €]1,00[ and r € [1, 0],

1011z ) < C(HGOHB;;? + 100l [Vl g (Lr));
(4) for any « €]0,1],

10025 iy + 1603350y < CUBO gy, + 160l 5 _lllyisze)) exp(Cl Vil y )

Proof Part (1) follows directly from [12]. While by taking the L? inner product of (4.5)
with 0 and using divu = 0, we get

Ld

S I3 + 1DI6]3: =0,

integrating the above inequality over [0, ¢] yields part (2) of the lemma.
To deal with part (3), we first apply the dyadic operator A to (4.5) and then use a standard
commutator’s process to write

A0+ (u-V)A;0 + |DI°A;0 = —[Aj;u- V6. (4.6)
Taking L? inner product of (4.6) with |Aj9|p_2Aj6‘ and using Holder inequality, we have
S+ [ (DFA0IA 024,000 < | A,0152 A5 T10)n
Recalling from [19, 33] the following generalized Bernstein inequality that
@AM, < [ (DFADIA A 00

for some p independent constant c¢. We thus obtain

d js R js R
E(em] Ajblo) < e |[Agsu- V10| s,
from which, we infer
i . t INojs .
18;0() | < e[| ;00| +/ e U [A - VIO Lodt (4.7)
0

and hence

100z 55 ) < 60l

et + Csup[|[Aj,u- V10| Ly o). (4.8)
pod jEz
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However recalling from [22, Lemma 4.3] that
1Az3u- V10llLe < Ol ||Vl Lo

Resuming the above inequality into (4.8) and using part (1) of the lemma gives rise to part (3)
of the lemma.
Finally we deduce from Lemma 3.5 and (4.6) that for any « €]0, 1],

t
1001z g ) + 100y s34 < N0l sy, +C / 1Aj u- VIO | gy dF

t
< ollgs, +C | (FullmlOllsy, + lull gz 10155, )¢
3, 0 3, : ,

Applying Gronwall’s inequality gives rise to

101z 51 ) + 101l L2t

t
< (190ll53, +C [l gz 10l _0t') exp(CTulzzz0). (4.9)
Whereas it follows from (4.6) and the proof of part (1) in [12] that
t

14;6(8)[ Lo < 1A;00]| Lo~ +/0 1A u- VIO || L~ dt’,

which ensures

t
1011z 5,y < 601l + / sup (&, VIB(E) |t
! ’ J

t
<ol +C [ ITu) e 1005t (4.10)
Applying Gronwall’s lemma gives

101z (3o ) < 100ll e, exp(ClIVullLi(re))-

Substituting the above inequality into (4.9) leads to part (4) of the lemma, and we complete
the proof of Lemma 4.3.

Let us complete this section by recalling the following proposition from [1].

Proposition 4.2 (see [1, Proposition 3.3], see also [7, Theorem 3.37]) Let p €]2,00] and

s€]— %, %[ Let u,v be two solenoidal vector field which satisfy v € C([0,T]; B;)T) N E%(B;*f),
3

Vv € L%F(Bﬁl), and

du+v-Vu—Au+VI=g, (tz)ecl0,T]xR>
divu =0, (4.11)
u|t:0 = Up-.

Then there exists a constant C' such that

lellze ;) + Il 2y 532 + IV 55 )
) (4.12)

1

< (woll g, +Clglizy s, ) exelCIVl
T

3
p
BPv
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Moreover, there holds

P 7 P 1
L (Bp,&) L1(Bps )
< (Juo]|,

H. Abidi and P. Zhang

T )
s +Cgll. s )exp(C||Vu||
p,o0 L%-(B r L

).
p,OO)

3 4.13
FB) (4.13)
5 The a Priori Estimates Related to the System (1.4)

In this section, we shall establish the a priori estimates which will be used to prove the
global existence part of Theorem 1.1.

5.1 The short time estimates for smooth enough solutions of (1.4)
Proposition 5.1 Let (0,u) be a smooth enough solution of (1.4) on [0,T*[. Then under
assume that

the assumption of (1.6), for all t € [0,T*[, we have (2.1) for any p € [6,8]. If moreover we

HUOHBngH@oHBi <a (5.1)
for some e1 sufficiently small, one has (2.2).
def
Proof Let P = Id+ V(—A)

to get

~!div be the Leray projection operator to the divergence free
vector space. In order to prove (2.1), we first apply the operator P to the u equation of (1.4)
or equivalently,

Oru — Au = —Pdiv(u @ u + (1 — p(0))d),

t

u=ePug — / eAPdiv(u @ u + (1 — p(0))d) (' )dt’
0

Note that 3 < p < 0o, we infer from Proposition 4.1 that

(5.3)
e uoll s
LE™3(Lr)

2p
P53

< Cluol 1.3 < Cluollgy
from which and Lemma 4.2, we deduce from (5.3) that for any p € [6, 8],
a2

< C(luoll gy, + 1ull® 2o,
t

+ 11 = p(00)l L= IVl 2,
(L») Li
Along the same line, since p > 6, we deduce from Proposition 4.1 and Lemma 3.1 that

<L§>)'
IIemVuollL

(5.4)

p
-
T L2)

P

_P_

3 -3
from which, (5.3) and Lemma 4.1, we infer for any p € [6, 8] that
[Vull e
Ly (L7)

< CHVUOHsz(p%) < CHUOHBQJ,

<O > 2 1— 9 oo V
g < Clllwollsg, + 0l 2, 1= )l [Vl

s (5.5)
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By summing up (5.4) and (5.5), for g being sufficiently small in (1.6), we write

||UI| + [Vul e g < Cluollpg, +llull* 2, ) for any p € [6,8].

( Ly (L2 ' LP73(Lr)
Then for ¢ sufficiently small in (1.6), we infer
Il oy IV e < Cllillyg, for any p € [6,8]
While we deduce from (4.2) for p = 6 and (5.3) that
lull Lgeczay < Cllluollzs + oz o) + 111 = (00| [Vull 2.1 s))-
Note that a similar proof of (4.1) also yields
IBE) 2210y S Il L2(L3),
so that we deduce from (5.3) that
lull pa:2 oy < CUSEuoll a2 oy + lulFacroy + 11 = w(o)llz= [ Vull £zrs))-
On the other hand, it follows from Lemma 4.1 that
[AF|[ s L3y < CollFllLa L3y,
which together with the fact (see [13]) that

1 1-
L2H(L?) = (L7 (L%), L7 (L)1 with 1<po <2< piand 5 = TiX

Po P1 ’

implies
”‘AFHLi;l(L?’) < C||F||L2T,1(L3).

Then we deduce from (5.3) that
IVl 2t pay < CUIVS@uoll 21 (o) + ullf a2 oy + 11 = 1B0) | e Vel 21 129).
Thanks to the fact that
IVullpzs) S IVull 2013y and - lullpaey S llull a2,

and |1 — p(0o)||L= < 1, we get, by summing up (5.8) and (5.9) that

||U||L§2(L6) + ||VU||L31(L3) < C(||S(t)“0||Lf~2(L6) + ||VS(75)UO||L$1(L3) + ||u||2L4~2(LG))'

On the other hand, it follows from Proposition 4.1 that

”S(t)uOHLr(LS) S HUO”BV% and ||S(t)“0||L4+(LG) < uol| .—%7
6,4 6,4
||VS(75)UO||L2*(L3) N ||VUO||372% and ||VS(t)u0||L2+(L3) S luol| =52

3,2 3,2+

657

(5.6)

(5.10)



658 H. Abidi and P. Zhang

Yet by virtue of the real interpolation with the pairs (%, 2) and (%, 1) (see [8, Theorem 6.4.5,
p.160]), we get

LY =[L* L]y, and L*'=[L* L*]y,

1
L
L2 '_%# L1 L2 ._;i s_1
4— 4 I 2 2~ 2 — -
By i Boiilio=DBe3 and [By3 B2y, =Bil.

As a result, it comes out

IS@)uolls2(zey S lluoll .-y and [[VS(@)uollz2a(zs) S [Vuoll 51,

6,2

and

1S (E)uoll 2o ey + VSOl 2 gy S ol g +11Fuoll g3 S ol g,

6,1

Then for e sufficiently small in (1.6), we deduce from (5.10) that
||u||thx,2(L6) + ||Vu||Lf,1(L3) S ”uOHBg’l'
Inserting the above inequality into (5.7) yields
[ull Lge(zs) S lluollpg -

This together with (5.6) concludes the proof of (2.1).
On the other hand, by virtue of Lemma 3.2, we deduce from (5.3) that

1A ju(t) 2~ S ds2e™ > ug| -1
t -
427 / o2 (t—t )(||Aj(u® w)| e 4 [18;((u(0) = 1)d)|| ) (@)t  (5.11)
0

Yet applying Bony’s decomposition (3.5) and standard paraproduct estimates (see [7]) leads to

1Aj (@ W) ()= S D ISe-rul) o= Apu()llz= +27 D [ Agu()l|zs | Au(t)]| o

[6—j]<4 £>j—No
< dy () ul) st 5
Along the same line, we write
(1(6) = 1)d = Tiuo)-1yd + Tulu(6) — 1) + R(u(6) — 1,d).
Applying Lemma 3.1 gives
1A T -1y d@ e S D 1801 (1(0) = 1)) oo | Ard ()] oo

je—jl<4
Sd; (1 (1(0) = D) o< a5 5

and for p(t) “ 6(1+ || Vully(1)).

1A R(1(8) = 1,d)(#) |1 S27T > [|Ab(E)]| < | Aed®)]] oo

1>5-3
87 _ 3¢
S 200 N de(t)27 70 [Valt) oo 0] s
>5-3 B:o,l

S di () [Vul)ll oo 10 s -

~ r

)
B
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The same estimate holds for Ty (u(6) — 1).
Resuming the above two inequalities into (5.11) and summing up the resulting inequality

over j in Z, we arrive at

lllsgise. < Cllluoll s, + lullzgmias lull sy + 11— @) e~ llul sy
+pOIVullyoonloll s ). (5.12)
LyEBZY)
Without loss of generality, we may assume that 7" > 1. We define
(5.13)

« def
t* = sup{ t €]0,1] : p(t) = 6(1 + [VullL1(zey) < 8}

We claim that under the assumptions of Proposition 5.1, t* = 1. Otherwise, it follows from [2,

Lemma 3.1] that
10 s < Cllboll s (14 [IVullpire)) < Cllboll 3 1+ IVullLyze)),
L= (BLY) B BZ.a

[

and (2.1) ensures that
2p (1) < Ct%(f) ||’LL0||B§ ) for ¢t <t*.

-
IVullgy (powy < 2O |V
Ltp(t)*3 (Lr(1))

Then taking ¢ = ¢* in (5.12), for g, € being sufficiently small in (1.6), we deduce from (2.1) and

(5.12) that
lull s, e ) < Cllluollgg, + lluollg 0oll Ly (14 [IVullZy, (1)),
? > ! co,1

which together with (5.1) ensures
lullzr, s,y < Clluoll o, (1 + ||90||Bi1) < Cle+e).
In particular, if we take £,e1 so small that C'(e + 1) < %, we obtain
31 )) <7,

p(t*) < 6(1+ lull 1,51

which contradicts with (5.13) if ¢* < 1, and this in turn shows that t* = 1 and there holds (2.2).

Hence we complete the proof of Proposition 5.1.

Proposition 5.2 Under the assumptions of Proposition 5.1, one has
1905y < Cllollzg, and 161 . < Clooll -
||u||Zfo(H—2é) + ||U||Z%(H2(1—6)) < C(l|uoll g-2s + ||90||B§,1||u0||1’3§y1)

Proof We first apply the dyadic operator Aj to (5.2) and then taking the L? inner product

of the resulting equation with Aju that
1d, . . . . . ) .
53l Az + VA ulfe = =((A;P - Viu | Aju) + (A;Pdiv((1(0) = 1)d) | Aju),
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from which and Lemma 3.1, we infer
il -0y + 0l 73 - S ol gzs + 272 0[A,Bs - Flull gz
(5.15)

+ (@O ASP(u(6) — D)l 1 12))ee-

Whereas using Bony’s decomposition (3.5) and divu = 0, one has
[A;P;u - Viu = [A;P; T, Vu + div A;PTu — div T/Ajuu

Applying commutator’s estimate (see [7, 29]) gives
AP TVl iy S Y 1Si-1 Vel i |Ajul oo (z2)

7/ —j1<4
N Cj22J6||vu||L%(L°°) HUHZTJ(H—%)

While since § €]0, %[, applying Lemma 3.1 yields

Idiv AT ull 1y 27 D Al ni el Sy 42t oo 22y
>3~ No

jo
< &2 |Vl 3 ooy ol e s

The same estimate holds for div T u. We thus obtain
J

AP w - Vil ey S Cj22j6||vu”L}(L°°)HUHE?O(H—M)
(5.16)

jo
< 052 |luoll gy, (L + N00ll g Ml pe (sr-25),
! oco,1

where we used (2.2) in the last step.
Along the same line, we get, by using paraproduct estimates in [7] that

IAP((u(0) = D)l 12y S NAPTuio)-1)dll 12y + 1APTYH(1(0) = Dl L1 (12
< cj2j(26_1)||,u(9) - 1||Lf°(L°°)||u||Z%(Hz(1—6>)

+ AT (u(0) — Dllz1z2)-

However applying Lemma 3.1 gives
AT 0) = Dlizrzey S D IS5+2dllnacro Ay (1(8) = Dl| e r9)

Jj'2j—No
S 2V ey IVl s )

< 20l sy (IVulgiasy + el o).

And it follows from [7, Theorem 3.14] and (1.6), (2.2) that
(5.17)

1007 51 ) < 160lly, x0(Cllull yisn. ) < 6ol

Therefore by virtue of (2.1) for p = 12, we obtain
IAP((1(8) = D)l 122y S 27V (11(80) = Ul zoe lull 71 a0y + 1001151, ol 5o )
1( ) ) 3,1
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Resuming the above estimate and (5.16) into (5.15), we write

[ell oo (g-28) + lullp1 205y < Clllwoll 25 + 160l 51, 1uoll g,

)

+ ol g, Tl iy (14 0]y

1

2
+ 11(00) = U= llull 71 graa-5))-

Taking £¢,¢ small enough in (1.6) and &7 small enough in (5.1), we obtain the second line of

(5.14).
Finally similar to (5.17), we can prove

I\GIIZTO(B<%)+) < 0”90“3;%{;'

This concludes the proof of the proposition.
Corollary 5.1 Under the assumptions of Proposition 5.1, we can find some to €]0, 1] such
1
that (to) € (B3, N B(()oz,)(;)(RB), u(to) € H'(R?), moreover, there holds (2.3).

Proof Note that since § €]0, 1[, we have
gt < IS0l a0y + 10— Soull gy
S ||50U||Z;0(H726) +I(Id — S’O)“Hii(fp(lf&))v
from which and (5.14), we deduce that there exists some to €]0, 1] so that

[uto)llar < lluto)llsy, < Clluollz-25 + [l6oll sy, luoll sy ,)-

2,1 —

This together with (5.14) concludes the proof of (2.3).

5.2 The propagation of H! regularity for u

As a convention in the remaining of this section, we shall always denote ty to be the positive

time determined by Corollary 5.1.

Proposition 5.3 Let (0,u) be a smooth enough solution of (1.4) on [0,T*[. Then under
the assumptions of Proposition 5.1, we have (2.4) for t €]ty, T*[.

Proof The proof of this proposition is motivated by that of [16, Theorem 1] for 2-D
inhomogeneous Navier-Stokes system and that of [5, Proposition 2.1] for 3-D inhomogeneous
Navier-Stokes system. In fact, since divu = 0, we get, by taking L? inner product of the velocity
equation of (1.4) with wu, that

1d
——/ lu(t)|*dz + 2/ w(0)d : ddxz =0, (5.18)
2dt R3 R3
integrating the above inequality over [to,t] and using (1.5) and divu = 0, we obtain the first
line of (2.4).

Whereas by taking the L? inner product of (5.2) with dyu, we write

/ |0pu|?da —/ div(2u(0)d) | dpudx = —/ O | (u - Vu)de. (5.19)
R? R? R?
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Motivated by the derivation of (29) in [16], we get, by using integration by parts, that

— [ div(2u(0)d) | Opudz = / 2u(0)d : dyddx

R3 R3
= 4 w(0)d : ddx — O (u(0))d : ddz.
dt R3 R3

Using the 6 equation of (1.4) and then integration by parts, we get

— | Ou(u(8)d : ddx = / u-Vu(0)d : ddx

R3 R3

- - -1 T = U
= / V((0) " (1(0)d) : (n(6)d)d Z / d - 0:(2u(0)d)da.

Notice that

3
;/RS u'd : 0;(2p(0)d)dz = Z / w003 (200(0) dpg )

1<,k <3

= — / Bku u 6 (2;1,(9)d;€g)d

1<, k <3
+ / uiuéﬁiak(m(ﬁ)dkg)dx).
RS
Hence due to divu = 0, we obtain

/ |8tu|2dx+%/ w(0)d : ddx
/ O | (u- Vu)dz — Z / u' Oju’ Bk(2u(9)dkg)dx+/ 241(0) Oy u’ Oy dkgdx)

1<4,k,4<3

which together with the velocity equation of (1.4) implies that

/ |8tu|2dx—|—i/ w(0)d : ddx
R3 dt R3

< 10wl 2w - Vul|p2 — / u-Vu | (Opu+u - Vu+ VIdz + C||Vu| p2|| V|2
R3
1
< Clu- Valta + [Vul 2| Valf) = [ we Va | Vde + 4 oyl
R3

Integrating the above inequality over [to,t] and using again divu = 0 and |lu||zs < C||Vul| 2,

we infer

3 t t
1 panat + 19uol < C(IValto)la + / IVull32 [ Vul2at

/ Va2l V] 2.t

/ / 110; ukakuzdxdt) (5.20)
to JR3
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To deal with the pressure function I, we get, by taking space divergence to the velocity equation
of (1.4), that

I = (—A) " tdiv @ div(2u(0)d) — (—A) " div(u - Vu) (5.21)

and

Z / )~ div(u - V) | utopulde = Z/ ) odiv(u - Vu) | u- Vubde,
i,k=1 R? R?

from which, we deduce
3 .
‘ Z / H&-ukﬁkuldx‘ SVl 2| Vull3a + | Vul| e | Va3 s.
R3

We thus deduce from (5.20) that
3 t t
Z/t /R D dadt’ + [ Vu(t)3 < O(IVu(to) |3 +/t IVul2: [ VulZaar
0 0

+ /tt IVl 2l VulF ot ). (5.22)
On the other hand, it is easy to observe that
Vu = V(=A)"tdivP(2(u(0) — 1)d) — V(—=A) " divP(2u(60)d), (5.23)
from which and

2(1-2)

s_1
lallzr < Cllallzs [Vall for p € [3,6], (5.24)

we infer
g—l . 2(1—%)

[Vullze < C(lu(00) = L= l|Vull o + [VullZs  [[Pdiv(2u(@)d)] . 7).

Taking £¢ sufficiently small in (1.6), we obtain for p € [3, 6],
g1 2(1-2)
IVulrr < CIIVUHLs [0vu + (u - V)UII
2(1— 2(1— 2(1-3)

< CIIVuHLs ol ) + ull s 2|V [P (5.25)

Substituting the above inequality for p = 4 into (5.22), we obtain
t
[ [ o ast 19 ey < CUVaaE: + [ IS 620
to

Applying Gronwall’s lemma and using (2.1) for p = 6, we infer

t
| [ et 190l ) < CIVutto) 2 explCI V)
to
< C||Vu(to)]|2: exp(C||u0||Bg ) fort €10, T*[. (5.27)
This concludes the proof of (2.4).

An immediate consequence of Proposition 5.3 is the following corollary concerning the esti-
mate of [[Vul|lps(zs) for 3 <p <8.
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Corollary 5.2 Under the assumptions of Proposition 5.1, for any p € [3,8] and any t €
Jto, T*[, we have

S§1 2(1-2 .
190l 2un 1) < Clluol 2 IVuto)llZs ™, if p € [3,6),
’ p=s e (5.28)
IVull _spps < Clluolli” I Vu(to)|72°, i p € [6,8]

LApZ—21p+18 (44 £ LP)
Proof For p € [3,6], by virtue of (5.25), (2.1) and (2.4), we have for any ¢ €|to, T™*],
g-1 20-2) 20-2)
IVull L2t b00) < O(HVU||Zz(tmt;L3)||3tUHL2(t0’jt;Lz) + ||VuHLoo(t§,t;L2)HVU”P(tonﬁ;Ls))

2

2(1-2) 61 2(1-8
< O fluoll gy "lluoll g Vulto)llpz ™ exp(Clluollpg ),

which together with (1.6) yields the first inequality of (5.28). For p € [6, 8], applying Holder’s
inequality gives rise to

_3_ 1——3_
\Y% - < C||Vul| 23} \Y% ps
| U||LEAQLP*(2P1—P?’+)1S(1&0¢;LP)7 I U||L2(t07t;L6)|| UHL‘*;%(tO,t;L?P)’ (5.29)

from which, (2.1) and the first inequality of (5.28), we conclude the proof of the second inequality
of (5.28).

Corollary 5.3 Let (t) dzefe +t. Then under the assumption of Proposition 5.1, one has

1 1 *
1) 2Vl F e (100,22 + 1) 200ttl| T2y 112y < Cllulto)llzp  for t €]to, T[. (5.30)

Proof The proof of this proposition basically follows from that of Proposition 5.3. We first
get, by multiplying (5.19) by (¢) and then by using a similar derivation of (5.26), that

1 1
()2 atu||2L2(to,t;L2) +[1(t)2 VUHQLOO(tmt;L?)

t
< O(ITulto) e + [Tul ey zmy + [ (ENTullal Tulfact).

to

By (2.1) and Gronwall’s lemma, we thus obtain

1) Vel G122 + 182 Betl| 24y 412y < Cllulto) | exp(Clluollgg ),
which together with the second inequality of (1.6) leads to (5.30).
5.3 Large time decay estimate for u

Lemma 5.1 Under the assumptions of Proposition 5.1, we have
lw(t)||2 < CT)Y™  for anyt € [to, T*[ and

— def

(5.31)
C= 1+ [[uto)llF-2s + [lu(to) |72 (1 + 100l 5y | + llulto)lZ2)-

Proof We first deduce from (5.18) that

d
E||u(t)||2Lz +2u/|Vu(®)||7. < 0. (5.32)
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Applying Schonbek’s strategy in [31], we split the frequency space R? into two time-dependent
domains: R® = S(t) U S(t)¢, where S(t) def {¢eR:|¢ < 1/%g(t)} for some g(t) < (t)~ 2,
which will be chosen hereafter. Then we deduce from (5.32) that

d 2 2 2 2 -~ 2
ez +g"@llu®)lz. < Mg(2) /s@) |u(t, §)[7dE. (5.33)

To deal with the term on the right hand side of (5.33), we write the velocity equation of (1.4)
as

t
u(t) = et By 4 / AP div(2(u(8) — 1)d — u @ u)(t)dt’.

to

Taking Fourier transform with respect to x variables gives rise to

t
ja(t, &) S el @, €)) + / e~ (IR ]| F, (2((0) — 1)d — u @ w)(¢)]dt,

to

so that
2 t 2
| gaepss [ el ag, ok + 0 [ 1700 0@ lzar)
S(t) S(t) 0

+a" ([ 17:00) = D))l ar') (5.34)

We now estimate term by term above. It is easy to observe that
— —_ 2 o~ —
J T 0, O < 7 ko)
t

and

t

(/ Ewe 0@ lpdr) < ([ woune)mar)’

to
t

2
< ([ Iu®aat) < il n ¢ 10)”
and
t 2 t 2
([ 17:00) = DDt ) < ([ 1((a6) = D)5 dt')
to tD
< [ln(0) — 1||%°°(to,t;L3)||vu||%2(to,t;L2)(t = to).

Resuming the above estimates into (5.34) and using (2.4) yields

/S( ) [a(t, €)12de < O((6) > [lulto) |25 + lulto)lIZ2(11(80) — LI Zatg™ () + [luto) |72t29° (1))
t

Inserting the resulting inequality into (5.33), we get

%Ilu(t)lliz + 2 Ollu)|72 < CC(g* () (t) 7> + g°(1)(t) + g7 (1)(t)?) (5.35)
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for C' given by (5.31).
As g(t) < (£)~2, in the case when & €]0, 11, we deduce from (5.35) that
t/
/ g2 (r)ar) g2 () (¢) "2t

to

o ([ 20000 o)z < o)1+ 00 / e

to
Taking ¢g2(t) = a(t)~! (with o > 24) in the above inequality, we infer
(5.36)

(O lu(®)[|72 < COQ + (£)*%).
Dividing (5.36) by (t) yields (5.31) for § €]0, 1]

In the case when § €]1, 1], we already have

u(t)]|2. < CCH)"%  for t € [to, T,

from which, we infer
‘ / / 2 ! / 2 / 2 =2
([ 1R@ou@iza) < ([ luelia) <o
0 0

Hence a similar derivation of (5.35) leads to
_ _ —2
@Iz + g Ollu®)li: < C(Ce*EM ™ + (6°() + C g ())(1))

< CT g (H)(t) ™,
where in the last step, we used once again that g(¢) < (t)=2. This ensures (5.31) for & €], 1],

and we completes the proof of Lemma 5.1.
Proposition 5.4 Under the assumptions of Proposition 5.1, we have

1 1 2
(')~ VullL2(t0,22) + ||<t/>(é+6)7VUHLoo(tO,t;m) + H<t/>(é+6)’3tu|\L2(to7t;L2) <cc”  (5.37)

for any t € [to, T*[ and C given by (5.31).
Proof Multiplying (5.32) by (#)29- and then integrating the resulting inequality over [tg, ¢]

we get, by applying (5.31), that
[ <t>67u|‘%°°(to7t;L2) + 2H||<t/>(L vU||2L2(to,t;L2)

t
_ —2
S I\U(to)||2L2+/ (t)2 Hu)|7.at' < CC”. (5.38)
to

On the other hand, by multiplying (5.19) by (t)(1*29~ we deduce, by a similar derivation of

(5.26), that
1 1
I <t/>(2 +o)- vU||2L°°(to,t;L2) + <t/>( 210)- 3tu|‘%2(t0,t;L2)

t
1
S IVulo)lZz + 1) VullF 2 422 +/ 1) =0Vl 72|Vl Fadt.
to
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Applying Gronwall’s lemma and using (2.1) gives rise to
| <t/>(%+6)7 VUH%oo(to,t;m) + | <t/>(%+6)7 BtuH%?(tmt;L?)
< O(IVulto)lIZ2 + I)° VullZay 1:12)) exp(Clluoll 59, )-
This together with (2.3) and (5.38) implies (5.37), and we completes the proof of the proposition.
We now present the key estimate of this section.
Proposition 5.5 Under the assumptions of Theorem 1.1, for any p € [6, 8] satisfying

1.3 s (5.39)

4 2p
and C given by (5.31), we have (2.6).
Proof We first deduce from (5.25) that

||<t >( 20)- VUHH (to,t;L6)
oy =0l 2t ,12) + ||<t/>(%+6)’VUHLw(to,t;L%||VUHL2(to7t;L3))
<CC(1+ luoll gy ,) < CcC,

IN

from which, (2.1) and Holder’s inequality, we get

3 (1 3
1Y 7= -Vl _apips < Q|2+ VUH 2( e)”VUH

L4p% =21p+18 (¢4, t;LP) L e (to,t;L2P)
—6

<C,07 *lluoll 3o

On the other hand, since p satisfies (5.39), we get, by applying Holder’s inequality, that

Vu o < () s (@) o3 (aT0)- 7y, 7
H ||L1(t0,t,LP) ~ H< > ||L49(pp 23)) (to,t )||< > |‘LE%(to7t;Lp)
__ 3 =6
< CC" *luolly,”  for t €lto, T
3.1

This together with (2.1) concludes the proof of the proposition.

5.4 The L'(R"; BL .1) estimate for the velocity field

The goal of the this section is to present the a priori L'(R*; BL |(R?)) estimate for the
velocity field, which is the most important ingredient used in the proof of Theorem 1.1.

Lemma 5.2 Let € €]0,1[, let (6,u, VII) be a smooth enough solution of (1.4) on [0,T*].

Then under the assumptions of Theorem 1.1, we have

< C(lJulto)llm (1 + Jlulto)llzn* wollEy )+ Cloll, ) (5.40)

(BEO s

I i) <

for any t €]to, T*[ and C given by (5.31).
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Proof Applying Aj to (5.2) and using a standard commutator’s process, we write

A ju+u-VAju — AAju — 2div((u(0) — 1)Pd(Aju))
= —[A;P;u - Viu + 2div[A,P; u(6)]d. (5.41)

Throughout this paper, we always denote d(v) def (2(8;v; + 0jv;))3x3, and abbreviate d(u) as
d.
Taking L? inner product of (5.41) with |A;ju|*Aju and using Lemma 3.1, we obtain

é% /Rg |Ajul®dz — /R?, AAju | |Ajul*Ajude

< 1Ajull26 (C27[[(1(8) — DPA(Aju)l[ e + [I[A;P; w - V]ul| Lo + C27 | [AGR, p(0)]d]|s).  (5.42)
Using integration by parts and [14, Lemma A.5], one has
—/ AAju | |Ajul*Ajudzs :/ |A;Vul?|Ajultde
R2 R2
[ 1Bl (7185u)Pde > 262 | Al
R2

for some uniform positive constant c.
Whereas it follows from Lemma 3.1 that

1(1(8) = DPA(Aju)|[ s < 27)|0(0) = | oo l|Ajull e < 27[|12(80) — Ll poe | Aju| o

Thus, by taking ¢ sufficiently small in (1.6), we deduce from (5.42) that

d . o . o

g1 Asullze + 2| Ajull s < C(I[A;B;u - Vullgs + 27 [[[A;P, u(6)]d]| 2o )-
This gives rise to

; . t 5 ’ .
A u(®)]lzs < e Aju(to) | s +C / e O ([ AP u - Vul| o
to
+ 27| [AP, u(0)]dl| o) ()t

Then by virtue of Definition 3.2, we infer

(1 .
Il ey < o O (up 2 HHON AP Tl s iz
+ sup 2 H (AP puO)]dl| i) ) (5.43)
Jje

In what follows, we shall handle term by term the right-hand side of (5.43). Firstly applying
Bony’s decomposition (3.5) yields

AP u-Vu = [A;P; T, - Viu+ AJPTL u — Tga, -
Applying [29, Lemma 1] gives

21T [AP; T - Viull e S 2757 3T VS yul pe | Acul| o
[j—£]<4

SV .
Sl uHLGIIuIIBéf



On the Global Well-Posedness of 3-D Boussinesq System with Variable Viscosity 669

And by applying Lemma 3.1, one has

PO APTG ullpe £ 26T Y [ AgullallSer2 Vil s
(>5—3
< |V
S IVullzolull 4

The same estimate holds for T’v Aol Hence, thanks to the interpolation inequality
J

lall 3+ S IVall=*ValZs,

3

and Corollary 5.2 implies

sug 27/ 2JFE)H[A Pyu- Vul| 21 t,600) < ClIVull L2z ,1:16) ||VU||1L22;O t;L2) ||vu||%é2(tg,t;L3)
JE
2(1—¢) €
< Cllu(to) 7~ lluolF - (5.44)

The same process along with (2.6) for p = 6 ensures

21549 || AP, (0)]d <c|o
sup HEEIA P w(Oldl ey < CION e

< CCljo|

|V“||Lg(L6)

. 5.45
L°°(B2+€ ( )

Substituting (5.44) and (5.45) into (5.43) leads to (5.40), and we complete the proof of Lemma
5.2.

With Lemma 5.2, we can prove the a priori L'(R™; BL, | (R?)) estimate for u.
Proposition 5.6 Under the assumptions of Theorem 1.1, one has (2.7) for any t € [0, T*].
Proof By virtue of (2.2), we only need to prove the estimate of [lull ., ;. ) for any

t < T*. As a matter of fact, for any integer N and p €]6, 8] satisfying (5.39), we deduce from
Lemma 3.1 and Lemma 5.2 that

T i
lull 1o ey < NVl sz + D 27 1AVl pagg e + D 22 1AVl iy 4:29)
’ 0<j<N >N

<C2p v 9~ Ne
@7 IVulloronon + 27 Nl L ge

)
< Clllulto)llar (1 + lulto) [ lluollEy )

+27% |Vl gy + C27VJ0)]

5.46
Le=(to tB2+€)) ( )

However as

o1l <0Gl 3 +e exp(Cllull g i1 ), (5.47)

< (to.:B275)
we get, by taking

C
N~ sl se )
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n (5.46), that

ll sy < C o)Lz (14 [futto) |52 o2 )

+Clooll y.. + Hwnm,t;mexp<cnu||L%<B;o,l>>>. (5.48)

Therefore, in view of (2.3) and (2.6), whenever ||u0||3§ _ is so small that

CT7 Jug II" P " exp(2C[[ulto) s (1 + [[uto)ll ™ lluollFy ) +2C*Cloll . )

NIQ

(luCto)llzr (1 + [[utto)ll ™ luollZy )+ Cloll 3., (5.49)

00,00

we infer from (5.48) that

el e 1) < 2Cuto) [l (1 + o)l > NluollZy )+ Cliboll y-0),

50,00

which together with (2.2) leads to (2.7). This completes the proof of the proposition.

6 The Proof of Theorem 1.1

6.1 Existence part of Theorem 1.1

The proof to the existence part of Theorem 1.1 basically follows the following strategy. We
begin by solving an appropriate approximate problem, and then we provide uniform estimates
for such approximate solutions, and finally we prove the convergence of such approximate
solution sequence to a solution of (1.4) through a standard compactness argument.

Lemma 6.1 Let (6, u, VII) be a smooth enough solution of (1.4) on [0, T*[. Then under the
assumption that

[[1(0o) — 1L < o (6.1)
for eqg sufficiently small, one has for any t < T*,
el zee g,y + 10120y ) + Melloy s ) + IVl g
< Clljuollag, + 1ol ay, +Vlluol gy, 10617, ) exp(ClVulligumy). (62

00,00

Proof We first notice that u solves

Ou+ (u- V)u — Au + VII = 2div((p(0) — 1)d),
divu =0,
u|t:0 = Uop,

from which, we get, by using Proposition 4.2, that
[l zeo g ) + lull sz ) + IV Ly g

t
S lallg, + [ Il e )l gy 0+ 1006) = Dl
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whereas it follows from product laws in Besov spaces that

1(a8) = Dl 1y 51 S 11300) = Loz lullp /"HVu e 1(0) — 1)t 3y e,

which together with (6.1) ensures that

||U||Zgo(1‘3gy1) + ||U||L§(B§’1) + ||VH||L5(B_2’1)

t
< Cllluollpg, + [ IVu@)llzoe ()l gy, + 1055 )dt"). (6.3)
3,1 0 3,1 3,1

On the other hand, we get, by first applying the operator Aj to the 0 equation of (1.4) and
then taking the L? inner product of the resulting equation with |A 9|A 0, that

5 S IABO s + (- VA 1A,01A,0)52 + (A ]V0 | 1A;014,0)12 = 0
As divu = 0, by applying (2) of (3.6) for a = 1

5, We write
||Aj9||Lt°°(L3) < [|A;00]| s + ||[AJ;U]V9||L,}(L3)

t
S&W”@%Mh+éOWM&MMWﬂhh+WﬁﬂggWﬂwl)&%
which together with

,1 BZ
llal

8

1 1
53, Slaldy 1al,
and Definition 3.2 implies that

t
1905y, < (100l + [ AP0 =005,

1
FIVu®) e lOE)] , )ar') +

5”“”@(351)- (6.4)
Summing up (6.3) and (6.4), we obtain

lullzeo e ) + 100 zee 1 )+ ull sz ) + IV Ly s

t
< C(uollgg, + 16005y, + [ 190 (ultlag, + 10 53,
t
+ [ Iva@lslow)R, ).
0 BZ o

(6.5)
Yet due to (2.1) for p = 6, we have

IVullLz sy < Clluol| gy

Then applying Gronwall’s lemma to (6.5) and using the fact that

<16
161 g3 <60l

<Ml s ep(ClVulzy )

we conclude the proof of (6.2).

Now let us recall the following lemma from [1]
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Lemma 6.2 (see [1, Lemma 4.2]) Let s € R and (p,r) € [1,00[%. Let G € B;)T(R?’). Then
there exists G™ € H™(R?), such that for all ¢ > 0, there exists some ng € N such that

|G" = Gl|lg. <e forall n>ng.
p,r
If moreover G = (G1,G2,G3) and divG = 0, we can choose G = (G, G5, G%) so that
divG™ = 0.
Proof (The Existence Part of Theorem 1.1) By virtue of Lemma 6.2, we can find
0%, uf € H®(R?) for n € N so that

11065) = Uz S [l1e(Bo) = Uiz + 1165 = boll 1, < co,

1661ty S 160l chy, o lugllpg, <25 and diveg =o.

o0, 00

(6.6)

Then according to [1, Theorem 1.1], we deduce that the System (1.4) with the initial data
(03, uy) admits a unique local in time solution (0™, u™, VII™) on [0, T¢[ verifying

0" € C([0, T [; HMH(R), w" € C([0,T;; HY(R®) N Ly (H*H?),
1
and VII" € L*([0, T [; H*(R?)) for any s > 3

Moreover, whenever ¢, € are small enough in (6.6), we deduce from Proposition 5.6 that there

exists a positive constant Cj, which depends on ||90||B1 and HUOHH*MBQ | so that
3,1 '

nBE %
Hu"HLl([OJ];B;J) <Cy foranyt<T), (6.7)

from which and (5.47), Lemma 6.1, we infer that (6",u", VII") is uniformly bounded in
(Ls° (B3N Ly (BSX%))OZ)) x (L (Bgl) NL} (Bgl)) x L} (Bgl) for any fixed ¢ < T,F. This implies
that T, = co. To prove that there is a subsequence of {(6",u", VII")},en, which converges to
a solution (0, u, VII) of (1.4), which satisfies (1.7), we only need to use a standard compactness
argument of Lions-Aubin’s lemma. Since this argument is rather classical, we shall not present
the details here. One may check similar argument from page 582 to page 583 of [1] for details.

6.2 Uniqueness part of Theorem 1.1
Let (0;,u;, VIL;), for i = 1,2 be two solutions of (1.4), which satisfy (1.7). We denote
(56‘, 5’(1,, V&H) d:ef (92 — 91, U — Uy, VHQ — VHl)

Then due to (1.4), the system for (06, du, §VII) reads
0100 + ug - VOO = —du - VO,
Opdu + (ug - V)ou — A u+ VIl = 0 F,
divéu = 0,
(66, 0u)|i=0 = (0,0),

where JF' is determined by

F X (Su - V)ur + 2div((u(62) — p(81))d(wr)) + 2div((u(8s) — 1)d(Su)).  (6.9)
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We first deduce from the transport equation of (6.8) that
196]| L= 23y < N16ull L zoo) VOl o= (23) < CllO oo i1 10ull Ly 53 - (6.10)

Yet notice that

||5’LL||Z1(BO ) + ||5“||Z1(B2 )
Sull ;1 < Clloul|+1, 5 1o (e+ L = )
Ioullzey ) < Clloulzyey ) los loullz s )

and
2 2
10l zymy ) <D Nuillimeag,) and 0ullzy s ) <3 luillies )
i=1 =1
we infer
50 < Oy i llSullz e 1 a(t)
1980157 < ClA 0l o o+ ) (6.11)
with

2 2
def
o) 0 Nl g,y + 3 Il
i=1 i=1
On the other hand, it follows from (6.8) and Proposition 4.2 that
10ullZee i1y + N0l zy iy ) + IVl za 51 ) < ClIF 3 (s ) exP(Clluzllpy sz ). (6.12)
While we deduce from (6.9) and standard product laws in Besov spaces (see [7]) that
t
10F Nz 52y S Nluallpyess plloullzee 5 +/0 [Vur ()| 2= [|00(E) || Ladt’
+ [[(60) — 1||L°°||5u||fg(B§m) + [|u(02) — 1”23(3;0||V5u||fg(g?:;)'
Observing that
1 1
1102) = Uz 1980l 2352, < OVE6) ~ gy W00l L oy 1500
and u; € L} (B3 ), we can find some positive function ¢(t) with %il% ¢(t) = 0 so that
’ —
¢
I5F gy < © [ IVl 15000 o
o 0
O + 1a(B0) — 1) (15l g+ 10l 7355 ).
Resuming the above inequality into (6.12), we obtain for ¢ < 4,
¢
I8l sy + W0l sy Ly + 1900y 5y < © IV (0l 130(¢) o0

As for a > 0 and x € (0, 1], there holds

In(e +az™!) < (1 —Inz)In(e + ),
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therefore, by virtue of (6.11), we eventually find for ¢t < 4,

def
W(t) = ||5U||Z;>°(B;;) + ||5u||fg(331’m) + HV(SHHZ%(B;;)

t
<C [ 19wl Gl 5y (1 =l 5y ) (6.13)

Since z — x(1 —log ) is increasing on ]0, 1], we obtain for ¢ < t;,

W) < 0/0 Vs (7)o W () (1 — In W (7)) dlr- (6.14)

/li—m
o r(1—1In7) ’

applying Osgood lemma to (6.14) leads to

Due to

W(t)=0 fort<t.

This proves the uniqueness part of Theorem 1.1 for ¢ < t;. The global in time uniqueness
of solutions to (1.4), which satisfies (1.7), can be obtained by a boot-strap argument. This
completes the proof of Theorem 1.1.

7 The a Priori Estimates Related to the System (1.9)

In this section, we shall present the a priori estimates, which we need to prove Theorem 1.2,
for the System (1.9). As in Section 5, we shall first present the short time a priori estimates.

7.1 The short time estimates for smooth enough solutions of (1.9)

Proposition 7.1 Let (0,u) be a smooth enough solution of (1.9) on [0,T*[. We assume
that ||0o|| L1 and ||uo||B,g1 are so small that

60ll< < CIOOIE 10057 < (7.1)
and that
160llc: + lruoll g, + 100l13: 16015, + 1100l 1601, +1160ll £ (160l
+ 160l 3o )= <2 (7.2)

for some sufficiently small constants n1,m2. Then one has (2.8).
Proof We first rewrite the velocity equation of (1.9) as

u(t) = e"®ug + / t eIAP(—div(u ® u) + div(2(u(0) — 1)d) + Bes)(t')dt’, (7.3)
0

applying Aj to the above equation and using Lemmas 3.1 and 3.2, we get

1 . t 12 _7 . .
1A u(t)| = < e | Ajug|| = + C / e 2 (I (| A (u @ u) 1
0

+ 145 ((1(8) = 1)) L) + 1A;6]| =) (t)dt', (7.4)
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. def - e
from which, for p(t) = 6(1 + [Vul[ L1 (L)), we get, by a similar derivation of (5.12), that

llzsn ) < luollsos, + CCIBl ey )+ Nullzm o llull s
ol lull sy + 1600 IVl 22 ooe)

+lel s ||vu||L1(L°°)(1 + I Vul 1 z=)))- (7.5)
p(t) 1

Yet it follows from [19] that
1611 L= (30 ) < Cllfoll g0 (1 + [ VullLy(z<))  for p=3, oo.

And it is easy to observe from the proof of [2, Lemma 3.1] that this lemma still holds for smooth
enough solutions of (4.5), so that we have

el s < Cliboll, o (14 [[Vufr).
p(t),1 p(t)l

Whereas according to Definition 3.1, for any fixed integer N, one has

160l oy < D 2B 00l + D (271 A560l12) 717 (27 | A0 | w) ' 727205t

Bpwya  j<nN J>N

< O follzs +27 YD (60153 + Mol 5. )

< O Gollrr +27 7% (100l 3, + 190l 5 )5

where we used the fact that 1 — % > 1 in the last step. Taking N in the above inequality so
that

Z

16oll sy, + 60l 55 _
ol

we obtain
6
00ll . < ClIBOITT (1ollzy , + 60ll e )7
p(t),1

Along the same line, we have
1 2
160ll 9, < Cllboll7:ll6oll 3, — and |0l < [loll 0 , < Cll60ll 35 60l Mm' (7.6)
Hence by virtue of (7.1), we deduce from (7.5) that

1 2
Il g,y < Clluollsg, +e0oll 10l E, (1 + lullgga )

3+o¢

+ ||U||L°°(L31°°)||U||Lg(3;o’1) + ||90||L1a ||90| ||U||L1(31 D

11615 (160l 55 +||eo||Bgow)w—a||u||@<3;o,l><1+||u||L%<B;O,1>>2>. (7.7)

To estimate ||ul| o0 (13.), we need the following lemma, which we admit for the time being.

Lemma 7.1 Under the assumptions of Proposition 7.1, one has

1 5
lull 2o (zo.oe) < Cllluoll g, + I00llzx + 160ll 1 160ll 3, ) < Cro. (7.8)
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Thanks to (7.2) and (7.8), we infer from (7.7) that
1 2
Iy, < Cluolag, + 10003000l -+ maClulZyan )+ Bl sy )

which leads to (2.8), and this completes the proof of Proposition 7.1.

Proposition 7.1 is proved provided that we present the proof of Lemma 7.1, which we give
as follows.

Proof of Lemma 7.1 In fact, it follows from (7.3) and [26, Lemma 23] that
t ’
lull oo (z3.00y S [luoll s, + ||U||2L;><>(L3,ao) + H/ elt—t )APdiv((u(G) — 1)d)(¢")dt’
0

t
i H/ o mIAP(Ges) (¢)
0

Lge(L3=)

. 7.9
L2 (1) (79

Applying Lemma 4.2 for p = 6 yields

< Ol (u(0) = 1)d|| L2113y

< Cllp0) = Ulpge ooy IVull 2.1 1y

| / o3 Bi((u(9) — 1)d)(¢)

L°°(L3)

Whereas due to (7.3), we get, by a similar proof of (5.8) and (5.9), that
lull 20y S 1S @ ol Loz roy + Nl Zacs) + 11— w(B0) | oo | Vull Lz(zsy + 11DI7100 L2 1s)
and
IVl 2100y S IVSEuoll 2 g+ Nl g+ 11— (60} o [l 2oy 110161 2
so that thanks to (7.1) and (7.6), one has
lull g2 poy + [Vl 21 oy < Cllluoll gy | + 1l ooy + NP0l 21 1s))-

Since for p > ¢, there holds (see [18])

t P »
ol = ([ 5#7as)" = ()"
0 q

we have

IIDI7 00 21 g2y S L2 [1DI 7 00 e o) S WLpogllze 100 e iney
< Villfol| s

As a result, it comes out
lull ga2gpe) + 1Vl 2018y < Clluoll g, + ul2azge) + VEllollzinzs).

In particular, if
luoll g | + [10llLrLs <1,
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we infer
l[ell 2oy + 1Vull L2 sy S lluoll gy, + 160l LinLs.

Finally it is easy to observe that

t
| [ etrspoea)
0

t
/ < H/ (t—t')AD D_l]P’G
sy S| [ O5DYDI B0

Lge(L3>)
S D 1¢9||Loo 3oy S 0Ly S [100]] 1 (7.10)
Inserting the above two inequalities into (7.9), we arrive at
||U||L§°(L3m) < C([Juollps. + ||u||%T°(L3’°°)
+ 100l (luoll sy , + 100l Lrnze) + 160l 2r)- (7.11)

Note from (7.2) that
[woll .o + 1ol o< (lluoll 5o | + 16ollL1nzs) + 160l s
1 5
< Cllluoll g, + lI6llzr + I6oll 2. 1160l 3, ) < Ce,

from which and (7.11), we conclude the proof of (7.8).

Proposition 7.2 Let (0,u) be a smooth enough solution of (1.9) on [0, T*[. Then under
the assumptions of Proposition 7.1 and

1 2
(luoll s, + 160112160115, I(Iollsy , + 100l 5 )+ W0ollzrl00ll, < s (7.12)
for some sufficiently small ns, we have

||u||Zf°(Bg’1) +lullpyss )

L 2
< (100l 1001l + (luoll g, + 100llz4ll60]1E, )1+ 160ll55,))- (7.13)
Proof Let us denote U(1 ) = ||u||L°°(B° + ||u||L1(B§ .- Then we get, by a similar derivation

of (6.3), that

U) < Clluollsg, + 10lz3sn y + lll g ) + 1001z 5y ) IVl 3z,
from which, (7.2) and (2.8), we infer

L 2 L 2
U) < Clluol g, + 1061101 55 )+ 100z, ol g, + WolF ol )
However it follows from part (4) of Lemma 4.3 and Proposition 7.1 that
101z 51 ) < Cllloll g, + 100l 5o Null pr22))-
So that we obtain
1 2
U1) < C((luollag, + 1001001, )+ Wollay, + 160l _llulyize))

1 2
+ 1606015, luly g o). (7.14)



678 H. Abidi and P. Zhang

Yet by using interpolation and Young’s inequalities, one has for any o > 0, there exists some
positive constant C, > 0 such that

1 2 2
160170100l Null?, oma) <oUQ)+CollbollLr 0ol
00,00 Ll(BS,l ) 00,00
and
1 2
(luollgg , + 1oll 2+ 1100l boll g, Nullzy(sz-e)
2 1 2 2
< ollullyes,) + Calloollg, _(luollsg, + I6oll3: 100l , )2UCD)

Resuming the above two inequalities into (7.14), we conclude the proof of (7.13) if there holds
(7.12) and the assumptions of Proposition 7.1.

Corollary 7.1 Let (6,u) be a smooth enough solution of (1.9) on [0,T*[. Let no and n3 be
given by (7.2) and (7.12) respectively. Then under the assumptions of Proposition 7.2, we can
find some ty €]5,1[ so that there holds (2.9).

Proof We first deduce from (7.13) that
1 1
which ensures that there exists some 7 €]0, 1[ so that
@l g s, < Clora -+ ). (7.16)
Next we claim that
gy < Clm + 1)1+ 160l + 160l ) (117)
Indeed we first infer from (7.4) that
ol sy < i@y, + OBz + Nu @ ey
T o)1 allze @189,y + 1Tal(®) = Dlize @, )
RGO ~ LD 7215
Note that by using (1) of (3.6) and (7.8), we have
o ® llz g ) < Cllullgeqeomylull ey ) < Omellull ey
and
||T(u(0)—1)d||Zoo(al;BgJ) < Cllu(0) — 1||Lf°(L°°)||'UJ||Zoo({71;B%J)
< 1ol Nl 1 < Ol e
Hence by virtue of (7.1), we obtain
||“||Zoo($71;3511) < C(”“@)”Bé’l + ||9||Zz($71;3g11)
+ ||Td(u(9) — 1)||Z°°(f,1;32’1) + ||R(,LL(9) - 17 d)”Z?(f,l;B_%’l))’
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from which, and the para-product estimates (see e.g. [7]), we infer
HuHZoo(EJ;B%J) < C(HUG)HB%l + He”Zoo(EJ;BO + ||9||L°° ”u”Loo(t LB )
+ ||9||Z<1>O(leyl)||u||Z2(z)1;331‘1))- (7-18)
However, it follows from (2.8) that
100z, ) < Cllboll o, (1+ IVullzyzm)) < CIOOIT= 00 ZE < O,
100750 0 ) = Cllfoll gy, (L + [[VullLire)) < C||90||21||90||]§3§’1 < Cna.
While part (4) of Lemma 4.3 and (7.13) ensures that
10 z50 (B3 ) + 1011 itey < CUlGoll gy, + 100l Mull 1 22))
< C(10oll sy, + 60l 5 ). (7.19)

Resuming the above estimates into (7.18) and using (7.13) leads to (7.17).

On the other hand, it follows from (7.19) that there exists some ¢; €]3, 1] so that there holds
the second inequality of (2.9). And (7.17) ensures the first inequality of (2.9). This completes
the proof of Corollary 7.1.

7.2 The L'(RT; Bclxj’l) estimate for the velocity field

As a convention in the remaining of this subsection, we always denote t; to be the positive
time determined by Corollary 7.1.

Proposition 7.3 Let 3—+/6 < s < 1, and (0,u) be a smooth enough solution of the System
(1.9) on [0, T*[. Then under the assumptions of Proposition 7.2 and

(1= F(14+2) -2 2
lat)llzg sy, + 100llr + N6oll s 7 100l 7 + 160l ™ 160l <ma  (7:20)

for some small enough constant ny, and where

ps & 3(3%_;) € ]2 6. (7.21)

we have
lull s, ) < Clluollpg | + llut)llzo, (141160l 55, + ||9(t1)||B§w)
2 3 3
+ V(100 gy, + 10Ol 5 )™+ OlGoll bl ) for s =1, (7.22)
' 3,00 ,
and for s € |3 —/6,1],
1 2
lullzy s, ) < Cllluollpg, + N0l Z: 160l 5y A+ llulta)llsg,

2(6—ps)

= oo, ||90|| 270

(Ps

+0@ON g+ lboll gy, (Nlut)llpy, +1

S—ps 3
X () g g, + 5+ 05) 55 ool ool ). (7.23)
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We remark that for s €]3 — /6, 1], there holds

||9(t1)||B§m + ”9(“)”3300 S0 + 110 e
which is bounded according to (2.9).

Proof of Proposition 7.3 We admit Lemmas 2.1 and 2.2 for the time being and continue
the proof of Proposition 7.3.

As a matter of fact, due to (2.8), we only need to prove (7.22) and (7.23) for [[ul[ 114, 4. 51 -
Indeed by virtue of (2.10) and Lemma 3.2, we deduce that 1

[l s SOl s +lluey] 2
Li(t1,t:B, 7°) B, 1" LY(t1,6B)° )
(@) = DVull | N o (| Ay} (7.24)
t1, prs ) 1 Bp&lps)

Note that for s € |3 — /6,1], ps given by (7.21) belongs to ]3,6]. Hence by part (1) of Lemma
4.3, we have

61, e, S0 221850l neqary + 30 2 NA e o)
PRt JEN J>N

< 12N ||6ollr + 27N o | 1)
Choosing N in the above inequality so that

23N(1—i) -~ ||90||LP87
[160]| 1

we obtain

2ps 1 2
3( s— 1) 3(ps—1) 3 3
16]] B, < CHll6oll 3 160l 57 < Ctllfoll 2 ll6oll, -

Whereas applying (1) of (3.6) and para-product estimates (see [7] for instance) leads to

l[u @ ull 2 S COllullpee ey o) ull ey
! t1>t§BppS,1)

L (t1,t:B, 1*)
and

[(1(0) — 1)V 3
L (t1,6:B)° )
< O([(0) = Ulpge (nooy llull

gy T [T (p(0) = D)l
< C([l0oll Lo lu]

lyvpl

1+ 2 Py + ||TVu( (9) - 1)”

RS-

3
Li(t1,tBr° )
. 3 )

L(t1,6:B)? 1)
where in the last step, we used (1.5) so that

18060) = Ul e (1) < Cllll ey < Clolle < ClloolI 5 ||9o||3“‘

(7.25)
Resuming the above estimates into (7.24) and using (7.1) and (2.11) gives rise to
1 2
_ 3 5 _
Il ey S OO g, eI IOy 1T =D, s ) (726

LY (6, 6B )
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It remain to handle the last term in (7.26). In the case when s = 1, py given by (7.21) equals
6, and then we get, by using para-product estimate, that

| T (u(6) 1) < OO = Vlzacs ey V054, 0

Ll(tl,t;BEl’l)
Yet it follows from part (3) of Lemma 4.3 and (7.31) below that

<10l 3+ Cllolle Vol

101z, 2 ) < B
+ 16055, 7). (727)

< )l 5

Whereas similar to (7.24), we infer from (2.10) that

lllz8 4, oy S COCDN 3+ Nl o ity [l g o

6,1
10l 1l ;4 F1Teunl®) = Dlig )

L3 (1,8 )

Note that para-product estimates (see [7]) along with (7.27) and (7.31) below ensures that

[T9u(1(0) — < Oll(u®) = Dlizaq, vy lull

1|+ .
)”L%(tht;BgJ) L2(t1,t; Bgl)

< C\/ZH@”Z%1 t‘Bl,oo)(HuHL‘*(tht;Lﬁ) =+ HVUHL‘*(tht;LS))

< VIOl s+ 19llg; -

%
3
Hence by virtue of (7.1) and (7.31), we infer

[l

< O(llut)ll g, + VE(lOoll 5y, + 10t B )-

Z% (tht;Bé )
We thus obtain

0 o(t
Ll(h,t;BG%, ) — (” OHBl +|| (1)” 300)

x (lu(t)llgg , + Vol gy, + 10N 5 )
’ o 3,00

[T (p(0) = 1)

Resuming the above estimate into (7.26) leads to (7.22).
When 3 — /6 < s < 1, which corresponds to ps given by (7.21) satisfying pi < s<1and
3 < ps < 6, we get, by using para-product estimate (see [7]), that

[Twu(u(0) = 1)l 2 S ON(u0) = DI 2ey oyl oz o (7.28)
LY (t1, 58]0 ) L7531y tBﬁap;S - (t“t’B;sﬂs;l )

Yet it follows from part (3) of Lemma 4.3 that

0 st e, < CUBEN e+ )
6—ps Tl 00
). (7.29)

Coe)l s +l10ollz=l[Vull
3,00

3(if tL6 PS)
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And according to Definition 3.1 and Lemma 3.3, for any integer L, we write

lall 1oviz = =Y PO Ajall s + Y 27T A Val| | s,

31’5 1 J<L j>L

< O 50 |la|| poee + 27 L<S-i>||v0,|| pa ).

Taking L so that

o IVal
2L(1+E) -~ Lps—3
llall a0
in the above inequality, we obtain
sps—3 pPs(1—s)+6
lall 1-evz < Cllall 52 IIVaII b’
B e Ds =
ps-3'"
from which, we infer
lull_p,  aiis < O [full g szo) + [Vl L spa ) (7.30)

_SPs_
L% (4,68 3ps 3 (t1,t;LPs-3)

Ps—

Resuming the estimates (7.29), (7.30) into (7.28) and using Lemmas 2.1 and 2.2, we arrive at

[T5u(u(0) = D 2
Ll(t1>t§BI?SS,1)

2(ps— 2(6-ps) 5ps—12

CaleOl g+ 10ollze=(llut)l gy, +t Goll ||90|| )

3,00

2(ps—3) pPs+6

X (na(t"7 +t75) + ult)ll gy | + 27 160]l L7 160l 53 o -)-

Substituting the above estimate into (7.26) and using (2.8) gives rise to (7.23). This completes
the proof of Proposition 7.3.

We now turn to the proof of Lemmas 2.1 and 2.2.

Proof of Lemma 2.1 Note that for s €]0, 1], ps given by (7.21) belongs to |3, 6]. Then we
get, by a similar derivation of (5.4) and (5.5) that

u < C(||u(t 3 _ + [Jul|?
ol 2 gy < OO s Tl
Ps ps—3
) —1 . \V4 . ,
+ [l (0) ||L;%3(L IVl TR + 116 || 22 Ly
and
\Y% <C t \Y
I u|| (t1,t;LPs) (I 1)”35’%1 +||u|| (t Jt:LPs )H u”Lp—i,E—%(tl,t;Lps)

0 s
L TP U [

).

By virtue of Part (1) and Part (2) of Lemma 4.3, we have

% < 0||90||sz 16oll3:

1_
||9||Lp_2sg%(m <61l s ||9||Loo o) <C||9|| Gt 18oll

)

2( 1——
11l < ||9|| < Clbollye 7

6o 7o

LpPs =3 (L*
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and
l(l_i) l(l—i-i)
4(0) =10 2pe < CNO 2. < Cllbolle ™60l "
LPs=3 (Lrs) LPs=3 (Lrs) 31
Therefore, whenever there hold (7.1) and (7.20), we have
a2 g+ 1900 2
< C(”U(tl)HBO Bl
l ( +
T Il 16oll N e ||9o| p,) S o (7.31)

On the other hand, since py given by (5.39) is greater than 2, we get, by applying Lemma
4.2, that

< Cll(u(0) = Dl c2ey

L°°(t L3) L)
<Clol 2 ||Vu||
Ltps (L P

H /O AR (u(6) — 1)d)

a3 (4 45 Lpe)
Then by virtute of (7.9), (7.10) and (7.31), we conclude

|2(+ )

1
[ell Lot 2300y < Clllultn)l g, +IIUII%w<t1,t;Ls,m>+||9o||21 716y M1+ 160l 1)

We thus infer from (7.20) that

|2(1+

),

11—
lull oo 2 522y < Cllult) | gg | + 16ollzr + 16017 7160

which leads to (2.11).

Proof of Lemma 2.2 Thanks to (7.3), we get, by applying Proposition 4.1 and Lemma
4.2, that

<Ol o +l0olllIVull

ttLSP) 3ps  _ps S(ttLS PS)
6—ps ' ps—3
2
7.32
R e WO g e ) (182)

Note that for ¢ €]3, oo, we have
} }
||f||Lq(]R3) S ||f||L3v°°(]R3)”vf||L%(R3
Applying the above inequality for ¢ = GG_L; gives

2
< .
”u”mipfs (tht;LﬁGsz) Ol e pose=) [V HLP a3 (t tLﬁ_%)

Resuming the above estimate into (7.32) and using (2.11) and the fact that

(ps 3) (T—'s 3)

< <
e = ]




684 H. Abidi and P. Zhang

we obtain the first inequality of (2.12).
Similar to the proof of (7.32), one has

Vu < O( t _6 ol L[|V ’
I HL 2 “ tL_&_) [Ju( 1)”31_31)5} N + 100l o= || U|‘L%£(t " _Es_) + [l 250 (thtLPs 3)
ps—3" 3

t
+|v / =) AP(ges) (t
0

s2e, ) (7.33)

L (LFe3)

By using interpolation inequality that

lall | ens, < CHGHL ||Va|\L2pp§
and (7.31), we obtain
||u||2 s <Ct W |u||2 6ps_
(17tL s=3) Pb*?’(tl)tLPs 3)
259 s 6=ps
<ot ||U|| o IVull "5, < COmt s
=3 (t1,t;LPs) Lps=3 (tq,t;LPs)

While applying Lemma 4.2 gives rise to

v /0 (=P bes) (1)

3
sp. < Ct2rs

t
v / e=IAP(Ges) () dt

2ps 3ps

Lt3 (Lps=3) 0 t3 (LPs—3)
< Ct=a||6]] e _se < Ctoe||6) 224

L, 3 (L2(Ps=3)) L°°(L2(ps*3))

2(ps—3) Ps+6

<C’t2ps ||90||L1 s H00| 3“ .

Resuming the above two estimates into (7.33) and using the assumption (7.1), we get the second
inequality of (2.12). This completes the proof of Lemma 2.2.

8 Proof of Theorem 1.2

8.1 Existence part of Theorem 1.2

As in Subsection 6.1, we first present the following a priori estimate.

Lemma 8.1 Let (0,u) be a sufficiently smooth solution of (1.9) on [0, T*[. We assume that
there holds (7.1). Then for any « €]0,1], one has

lullzeo o )+ lullzresz ) + IV Za g
< O(HUOHJ‘gg1 + %160l L2 + HGOHBgJ)eXp(C”quL,}(L"O))

x exp (Ctlool5, _exp (221 Vulogam) ). (8.)

Proof We first write the u equation of (1.9) as

Opu + div(u @ u) — Au + VII = fes + div(2(u(0) — 1)d),
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from which and Proposition 4.2, we deduce
el oo g,y + ullyesz ) + IV Zy g
t
< llwoll g, + 1011250 )+ 1161(6) = Dl g + / 19| )] 5t
Yet by using Bony’s decomposition, we have

1G(0) = Delll gy ) < NTalp(®) = Dllpaess )y + 1 Tuoy-1 @l ass )
< CUIVullpyweolli(0) = Ul e s,y + 1000) = Uloge oo llullr sz ),

and it is easy to observe that
1 2

100)1155, < COOIE IO, -

Hence by virtue of (7.1) and (7.25), we obtain
el zge g,y + el acaz ) + IVIIEy g )
t
< eollgg, + 100l + 100753, (0 + IV ulzzizm) + [ 190 (e, 0

which together with part (4) of Lemma 4.3 implies that

t
ez g+ Wl oz ) + IV g ) S lsoll g, + / It ) 5t

+ 1002 + (100l gy , + 1000 el y 2o
x exp(Cl[Vull 3 1) )- (8.2)

However, it follows from interpolation and Young’s inequalities that for any o > 0, there exists
some C, > 0 so that

2
Jull g2 05, _ exp(CIVuliyam)) < s + Collolls,
20 i
<exp (S 19ulzgam) [ u(t)lag, 0t
We thus infer from (8.2) that
el Zo g,y + all gz ) + IV Z g
t
S luolag, + 160l + [ IVl (el gy, 2
% 2C k / /
+ 160l 53, exp(ClVull Ly (z<)) + [160oll jo  OXP (?HVUHL%(L“’O ; [u(@)]] g, At

Applying Gronwall’s lemma to the above inequality leads to (8.1).

We now turn to the existence part of Theorem 1.2.
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The existence part of Theorem 1.2 We basically follow the same line as that in
Subsection 6.1. Firstly by virtue of Lemma 6.2, we can find 63, ujf € H®(R*) for n € N so
that

1051 <200, 10505 _npy, S W00lse sy, leflpy, <20 and divug =0. (83)

Then according to [1, Theorem 1.1], we deduce that the System (1.9) with the initial data
(08, ugy) admits a unique local in time solution (0™, u", VII™) on [0, T¥[ verifying

6" € C([0,T;[; H*M'(R?)), w™ € C([0,T;[; H*(R®)) N L. (H*)
and
VII" € LY(J0, T [; H*(R?)) for any s > %

Moreover, whenever 7, n are small enough in (1.10), we deduce from Proposition 7.3 that there
exists a positive constant C, which depends on [|6o|[pz ~pa _ so that

HunHLl([Qt];B; ) SOy foranyt< Tr, (8.4)
from which and Lemma 8.1, we infer that (0™, u", VII™) is uniformly bounded in E?O(Bél) X
(Lg*(BS,) N L}(B3,)) x LE(BY,) for any fixed ¢t < T);. This implies that
T = oo.

To prove that there is a subsequence of {(0™,u", VII")},en, which converges to a solution
(0,u, VII) of (1.9), which satisfies (1.11), we need to use a standard compactness argument
of Lions-Aubin’s lemma, which we shall not present the details here. One may check similar
argument from page 582 to page 583 of [1] for details.

8.2 Uniqueness part of Theorem 1.2
Let (0;,u;, VIL;), for i = 1,2 be two solutions of (1.9) which satisfy (1.11). We denote

(59, 5’&, V5H) d:ef (92 - 91, Uz — Uy, VHQ - VHl)

Then thanks to (1.9), the system for (66, du, VII) reads

000 + ug - V6O + |D|?60 = —bu - Vo,
Opdu + (uz - V)ou — Adu + VIl = 6G,
divéu = 0,

(660, 6u)|i=0 = (0,0),

(8.5)

where 0G is determined by
0G = 0F + 00es

for 6 F given by (6.9).
Then similar to (6.10), we first deduce from the transport diffusion equation of (8.5) and
part (1) of Lemma 4.3 that

160 Lg= 3y < Ol ooz llOull L2z )
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and

1601 oo (351, < ClIo0] < OlIVOill Ly o lldull LiLs)

LeLd) =

< OVl e, >||5UI| l1dullZ - (8.6)

L>=(B; 1,
While a similar derivation of (6.13) yields for some small enough positive time t5 and for ¢ < {5,

def

W) 110ull e s ) + 10l g py )+ VT 1

< C(/O ||V’LL1(T)”L0<>H(SUHZ#(B;,YOO)(l —In ||(5u||z;(3?1m))d7 + ||59||L%(B;io)>' (8.7)

Resuming the Estimate (8.6) into (8.7) ensures that for some small enough positive time t, and
t < to,

0§CAHWMﬂhMWﬂO—mWhWh (8.8)

With (8.8), we can follow the same line as that in Subsection 6.2 to complete the uniqueness
part of Theorem 1.2.
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