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Abstract Models for weather and climate prediction are complex, and each model typi-
cally has at least a small number of phenomena that are poorly represented, such as perhaps
the Madden-Julian Oscillation (MJO for short) or El Niño-Southern Oscillation (ENSO for
short) or sea ice. Furthermore, it is often a very challenging task to modify and improve
a complex model without creating new deficiencies. On the other hand, it is sometimes
possible to design a low-dimensional model for a particular phenomenon, such as the MJO
or ENSO, with significant skill, although the model may not represent the dynamics of the
full weather-climate system. Here a strategy is proposed to mitigate these model errors
by taking advantage of each model’s strengths. The strategy involves inter-model data
assimilation, during a forecast simulation, whereby models can exchange information in
order to obtain more faithful representations of the full weather-climate system. As an
initial investigation, the method is examined here using a simplified scenario of linear
models, involving a system of stochastic partial differential equations (SPDEs for short)
as an imperfect tropical climate model and stochastic differential equations (SDEs for
short) as a low-dimensional model for the MJO. It is shown that the MJO prediction skill
of the imperfect climate model can be enhanced to equal the predictive skill of the low-
dimensional model. Such an approach could provide a route to improving global model
forecasts in a minimally invasive way, with modifications to the prediction system but
without modifying the complex global physical model itself.
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1 Introduction

In this paper, in brief, we investigate an approach to weather and climate forecasting that

uses multiple dynamical models. Such an approach becomes more relevant as prediction models

have advanced from being local, regional models to being global models, since global models

aim to represent the entire weather-climate system as a whole, but doing this accurately with

a single model is difficult.
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Furthermore, predictions are advancing beyond the short-term forecasts of only a few days,

and now a major challenge is to make forecasts at the intersection of weather and climate,

at lead times of weeks, months, or seasons in advance (see [5, 21, 39, 50, 54, 69, 78, 82,

94, 95, 97]). Such subseasonal to seasonal (S2S for short) predictions are related to some

of the strongest signals of intraseasonal and interannual variability, such as monsoons, the

Madden-Julian Oscillation (MJO for short), El Niño-Southern Oscillation (ENSO for short),

sea ice, etc., and these phenomena can be global themselves or linked globally through various

teleconnections.

While global models such as global climate models (GCMs for short) are powerful tools for

making predictions, they can have significant deficiencies, and the deficiencies cause prediction

skills that are below the estimated predictability limits. For instance, GCMs commonly have

deficient representations of the MJO (see [34, 36, 58, 84]) , and their predictions of the MJO

are likewise below the estimated theoretical predictability (see [25, 49, 72, 95, 97, 99]). Other

phenomena that have deficient representations in GCMs include the intertropical convergence

zone (ITCZ for short) (for which there is a serious double-ITCZ problem) (see [35, 57]) and the

El Niño-Southern Oscillation (ENSO for short) (see [27, 37]).

Improving a complex dynamical model such as a GCM is a very challenging task. Sometimes

improving one aspect could cause a worsening of another aspect of the simulation. For example,

such an issue has been noticed in attempts to improve the MJO in GCMs, where improvements

in the MJO have sometimes been seen to be accompanied by a worsened climatological mean

state (see [1, 48]). Such attempts to modify GCMs to improve their simulations of the MJO

are undoubtedly worthwhile. Nevertheless, the difficulties of such a challenging task can also

be taken as motivation for alternative methods for simulating and predicting the MJO (as well

as other challenging phenomena such as ENSO and sea ice).

Besides global models such as GCMs, an alternative approach to forecasting is to use simple

models. For example, the MJO could be crudely represented by two indices, x1(t) and x2(t),

which represent the amplitudes of the two empirical orthogonal functions (EOFs for short)

of the MJO’s structure from principal component analysis (PCA for short) (see [102]). Then

stochastic/statistical models can be used for predicting these types of indices (see [8, 10]).

Other types of simple models might incorporate aspects of atmospheric and/or oceanic fluid

dynamics, thereby providing some added physical realism while still maintaining a simplified

modeling approach with, say, O(100) degrees of freedom; examples of this type include the

skeleton model for the MJO in [11, 12, 13, 65, 74, 76, 85, 92, 93] and models for ENSO in

[91, 108]. Despite the simplicity of these types of models, they can often produce forecasts

with significant skill. In fact, forecast skill with simple models sometimes meets or exceeds

the skill of forecasts with comprehensive physical dynamical models such as GCMs (see [8, 10,

38, 95, 98, 104]). Such results have been seen for not only the MJO but also other aspects of

weather/climate variability, such as ENSO (see [80, 81]) and sea ice (see [7, 59, 100]).

Given the background described above, the main goal of the present paper is to investigate

a multi-model communication strategy for forecasting with deficient models. As a concrete

example, the case of the MJO will be used (although the general idea should be applicable

to other scenarios described above as well). It is assumed that two models are available: (i) a

deficient tropical climate model, which is meant to be an adequate model of climate but deficient
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in its representation of climate variability (the MJO), and (ii) a low-order model for the MJO,

which has no representation at all of the rest of the weather-climate system. The goal is to

utilize both models together to achieve the best possible forecast of tropical weather/climate

variability, and to do so in a way that will emphasize each model’s strengths and mitigate each

model’s deficiencies.

To carry out the multi-model communication strategy, the models will be allowed to

assimilate data from each other while in forecast mode. In other words, each model will be

run forward in time for a forecast, and occasionally each model will consider the other model’s

forecast to be providing an “observation”, and this data will be assimilated. Schematically, the

strategy could be described for two models as follows:

u0= Fu0 + σ1

↓
u1 = Fu0 + σ1

↓
u2 = Fu1 + σ2

↓
...

Fu0Fu0

↓
Fu0 ←→ Fu0

↓
Fu0 ←→ Fu0

↓
...

v0= F̃ v0 + σ̃1

↓
v1 = F̃ v0 + σ̃1

↓
v2 = F̃ v1 + σ̃2

↓
...

Here, u and v represent the state vectors of the two models, F and F̃ represent the dynamical

operators, σ and σ̃ represent (potentially random) forcing, the subscripts (0, 1, 2, · · · ) represent
points in time, the downward arrows represent evolution in time, and the horizontal arrows

indicate the exchange of information via data assimilation.

For the specific scenario described above, the deficient tropical climate model will occasion-

ally assimilate information about the MJO from the low-order MJO model forecast. It is hoped

that the assimilated forecast data will help the deficient climate model to, e.g., maintain and

propagate an MJO with an enhanced skill that would otherwise be impossible if the climate

model were run on its own. Such a strategy is plausible given that reanalysis products (see

[40, e.g.]) (which assimilate actual observational data into deficient climate models in order

to provide a best estimate of the actual atmospheric state and its evolution) are commonly

assumed to have reasonable (although not perfect) representations of the MJO and used to

study its behavior (see [47, e.g.]), whereas free-running climate models that do not assimilate

observational data are commonly seen to have deficient MJOs (see [34, 36, 58, 84]). Here, it

will be the low-order MJO model forecast that provides the “observations” of the MJO that

could potentially drive a reasonable MJO in the deficient climate model’s forecast. On the

other hand, in the opposite direction, one can imagine that the low-order MJO model would

benefit from assimilating data from the climate model, which could provide information about

the rest of the climate system and its influence on the MJO.

If such a strategy could be successful, it could allow one to leverage advancements in simpli-

fied models and predictions (see [8, 9, 10, 65, 74, 76, 92]) to improve predictions with compre-

hensive global models. Furthermore, such an approach will potentially allow improvements in

a minimally invasive way, since it is the prediction system that would be modified rather than

the dynamics of the climate model itself.
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Several simplifications will be utilized in the present paper. The main simplification will be

the use of linear, Gaussian models for both the deficient climate model and the MJO model.

On one hand, such a simplification is crude; on the other hand, it allows the use of the Kalman

filter for the inter-model data assimilation, which will help provide a more transparent view of

the workings of the methods here. Another simplification is that the deficient tropical climate

model will use a crude vertical structure and no meridional structure (so it represents variability

directly above the equator at y = 0). On one hand, such a simplification will restrict the variety

of modes of climate variability; on the other hand, this restriction can be taken as one way in

which this climate model is deficient.

Another approach that involves the use of multiple models is the multi-model ensemble

mean, which has been in use for some time (see [17, 28, 42, 51, 52, 53, 103]), but it involves

multiple models only in post-processing, not through any type of direct communication between

models. In allowing the coupling of multiple models, the multi-model communication approach

is, to some extent, reminiscent of the topic of synchronization of chaotic dynamical systems

(see [16, 106]) and the approach of superparameterization methods which couple the dynamics

of macro-scale and micro-scale models (see [26, 41]). Also, there has been some use of artificial

intelligence, machine learning, neural networks, multifidelity methods (see [79]), and other data

science methods for weather and climate applications (see [68, 83]). To an extent, the method of

the present paper could be viewed as a type of machine learning, where one model learns of some

components of the weather-climate system from another model. While this idea is implemented

here through a data assimilation algorithm, it is possible that other machine learning techniques

could potentially be investigated for similar purposes in the future.

This article is dedicated to Andrew J. Majda to celebrate his 70th birthday, and it has

drawn on his influence through his many contributions to topics of models for tropical weather

and climate variability (see [2, 4, 44, 45, 61, 65, 105]), new convective parameterizations for

GCMs (see [14, 15, 22, 23, 24, 46]), data assimilation and filtering (see [6, 9, 19, 20, 29, 30,

31, 32, 55, 62, 64]), predictions of tropical weather and climate variability (see [8, 10]), and

multi-model ensemble strategies (see [3]), to name only a few.

The paper is organized as follows. The observational data and data analysis methods are

described in Section 2. The two models—the deficient tropical climate model and the simple

MJO model—are described in Section 3 and Section 4, respectively, including descriptions of

the models themselves as well as their individual skill as models for data assimilation and fore-

casting. Finally, the model communication strategy is then investigated in Section 5, followed

by conclusions in Section 6. Many details of the methods are presented in the appendices in

order to streamline the presentation in the main text.

2 Data Source and Data Processing Methodology

Our tropical climate model (which will be presented below in Section 3) involves three

variables: Wind (zonal velocity) u, potential temperature θ, and a variable q that represents

moisture or water vapor or cloudiness. To assess the model’s skill, observation-based estimates

of the three model variables are needed. This section provides a brief overview of the data

sources and data processing methodology, and a more detailed description is given in Appendix

7.
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Two data sources are used here. First, the National Oceanic and Atmospheric Administra-

tion (NOAA for short) interpolated outgoing longwave radiation (OLR for short) is used (see

[56]). OLR is commonly used as a surrogate for cloudiness, and it is also somewhat well cor-

related with moisture anomalies (see [47, e.g.]). For the purposes of the present paper and its

simple and deficient model, the distinction between moisture and cloudiness is not a major con-

sideration, although in other frameworks, such as the MJO skeleton model, such a distinction

is important (see [65, 66]). Second, National Centers for Environmental Prediction-National

Center for Atmospheric Research (NCEP-NCAR for short) reanalysis daily zonal winds and

geopotential height are used (see [40]). Despite the fact that reanalysis data are a combined

product of observational data and model dynamics, we sometimes refer to it as observational

for simplicity. Both datasets have a horizontal spatial resolution of 2.5◦ × 2.5◦ and a daily

temporal resolution from 1 January 1979 to 31 December 2011. Since the connections between

the model variables and observations are largely based on previous work (see [13, 75, 88, 90]),

further details are relegated to Appendix 7.

Here the influence of the seasonal cycle is removed via subtracting the time mean and first

three harmonics of the annual cycle, based on the 1979–2011 observation record. And to further

remove low-frequency variability, a 120-day-mean of the previous 120 days is subtracted, as is

recommended by the Climate Variability and Predictability (see [96]).

Figure 1 Plots of dimensionless (a) u, (b) θ, (c) q variables derived from observational

data. The time period is 1 Jan 1979–31 Dec 1979.

An example of the observed evolution of the atmosphere is shown in Figure 1. Inspection of

Figure 1 reveals some features occurring in MJO, especially the typical eastward-propagating

waves, which are most visible in the wind u and also in the moisture/cloudiness q.
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3 Deficient Tropical Climate Model

Our main goal of this paper is to illustrate an idea for multi-model communication, using

inter-model data assimilation, as a strategy to improve forecasts. The improvements will come

from mitigating the effects of model errors. As an illustration in a simplified setting, we utilize

a simplified tropical climate model that has some significant deficiencies (Subsection 3.1). We

intend to treat it as a complex climate model that can simulate the outlines of the climate

but is deficient in its description of some important climate phenomena, such as the MJO. To

finish the section, we describe the model’s free-running climate and variability (Subsection 3.2)

as well as the model’s performance in data assimilation and prediction (Subsection 3.3 and

Subsection 3.4, respectively). In later sections, we will use this deficient climate model as part

of the multi-model communication strategy to improve its forecasting performance.

3.1 Model description

The deficient tropical climate model (DTCM for short) is a three-variable system of stochas-

tic partial differential equations (SPDEs for short) with the following form:

∂u

∂t
− ∂θ

∂x
= − 1

τu
u, (3.1)

∂θ

∂t
− ∂u

∂x
=

1

τc
q − 1

τθ
θ, (3.2)

∂q

∂t
+ Q̃

∂u

∂x
= − 1

τc
q + b

∂2q

∂x2
+D∗Ẇ , (3.3)

where u is the zonal wind velocity anomaly, θ is the potential temperature, q is the water vapor

anomaly and Ẇ is spatiotemporal white noise. The equations have been nondimensionalized

using the standard equatorial reference scales shown in Table 1 (see [60, 88, 89, 90]).

Table 1 Model parameters and reference scales.

Parameter Description Dimensional Nondimensional

L Equatorial length scale 1500 km 1
T Equatorial time scale 8 h 1
τu Rayleigh drag coefficient 384 h 48
τθ Newtonian cooling coefficient 384 h 48
τc Convective adjustment time 96 h 12

Q̃ Background vertical moisture gradient 0.9
b Diffusion coefficient 8.33 km2 s−1 0.1066

D∗ Magnitude of stochastic forcing 12.87 g kg−1 km
1
2 h−

1
2 0.15

C Velocity scale 52.08 m s−1 1
Potential temperature scale 15.6 K 1
Geopotential height scale 265 m 1

Water vapor scale 6.27 g kg−1 1
Pe Circumference of Earth at the equator 40132.8 km 26.7552

HOLR OLR-to-heating-rate conversion factor 0.06 K day−1(W m−2)−1

In the model in (3.1)–(3.3), the left-hand side terms represent a linearization of hydrostatic

atmospheric dynamics (see [89, e.g.]). On the right-hand side, − u
τu

represents momentum

damping (Rayleigh friction), and − θ
τθ

represents Newtonian cooling. The term q
τc

represents a

heat source and moisture sink associated with deep convection and precipitation. Finally, b∂xxq
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and D∗Ẇ represent turbulent advection-diffusion of water vapor, represented as eddy diffusion

plus stochastic forcing.

To put the model in perspective, it can be compared with other models that are similar in

spirit. For instance, it is similar to convective adjustment models (see [18, 70, 71, 87, 107]),

although a nonlinear switch is not used here (for simplicity), and eddy diffusion of moisture has

been added here (for allowing a somewhat realistic representation of the background spectrum

of tropical convection). From another perspective, one could view this as an extension of a

model for stochastic advection-diffusion of tropical moisture (see [33]), where the present model

has been extended to include equations for u and θ in order to represent waves. Only a single

moisture variable has been included here, as opposed to a similar model that distinguishes

between lower and middle tropospheric moisture (see [86]); and the use of a single moisture

variable here will lead to deficiencies in the present model’s representation of the MJO and

convectively coupled equatorial waves (CCEWs for short).

The values of the parameters are chosen to obtain the best (although quite deficient) match

of the climatological statistics between observational data and free-running model simulations,

as described in more detail below in Subsection 3.2. Such an approach for parameter estimation

is somewhat common (see [33, 86, e.g.]). The parameter values are summarized in Table 1.

The model only has two independent coordinates, x and t, which represent the longitude and

the time, respectively. Therefore the model describes the tropical climate along the equator

(y = 0) for all longitudes. The dependence on the vertical (z) coordinate would come from

associating u, θ and q with vertical basis functions that represent the first baroclinic mode, as

is common practice (see [65, 88, 89, e.g.]).

To facilitate comparison between the model and the observational data, the same spatial

resolution should be used in the model. As described above in Section 2, the observational

dataset has a spatial resolution of 2.5◦ × 2.5◦. Since the circumference of the Earth at the

equator is 40132.8 km (26.7552 in nondimensional units), there are in total N = 144 data

points along the equator, and the grid spacing is ∆x=278.7 km (0.1858 in nondimensional

units).

The model is a system of stochastic partial differential equations as functions of x and t,

which are linear with constant coefficients and can be solved using Fourier transforms (see

[33, 62, 63, 86]). Some details of the solutions methods are described in Appendix 8. In the

following paragraphs we refer to the model as the DTCM.

3.2 Free-running simulations

In this section, we present free-running simulations of the DTCM. The simulations can be

compared versus observational data to assess the deficiencies in the model, and the comparison

also provides a way to choose model parameter values (in order to obtain the best possible

comparison of climatological statistics).

A free-running model simulation is shown in Figure 2. The plots are set up for comparison

with the observational data in Figure 1. Both Figure 1 and Figure 2 represent only a small

section from statistical steady states, and therefore the weather cannot be compared on a

day-by-day basis, but the variability of the two datasets can be compared in a statistical sense.

Note the deficiency in the waves of the climate model. In particular, note that DTCM
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Figure 2 Plots of free-running model simulation of (a) u, (b) θ, (c) q variables. The time

evolution is sampled one time every 8 hours. A one-year free-running simulation is plotted.

appears to have equal amounts of waves that propagate in the eastward and westward directions

(see Figure 2), whereas in observational data the eastward-propagating waves clearly dominate

over the westward-propagating waves (see Figure 1). (One can identify eastward-propagating

waves in these figures as streaks that are tilted from lower-left to upper-right in the plot.

Conversely, one can identify westward-propagating waves in these figures as streaks that are

tilted from lower-right to upper-left in the plot.) In addition to this visual appearance, this

behavior can be quantified statistically by considering the power spectral density, as shown in

Figure 3 and Figure 4. For observational data, the power spectra show larger power for positive

wavenumbers (k > 0), which corresponds with eastward-propagating waves (as the phase speed

is ω
k
and power is plotted for ω > 0). In contrast, for the deficient climate model, the spectral

power has equal magnitude for positive (k > 0) versus negative (k < 0) wavenumbers, and

therefore has equal magnitude for eastward- and westward-propagating waves, respectively. In

short, the climate model is deficient in the sense that it fails to properly simulate the different

wave types (MJO, CCEWs, etc.) and their different propagation directions. (This deficiency

is also evident from the model equations, which do not include the Coriolis term, which would

introduce east-west asymmetry and plays a major role in determining the propagation of the

MJO and CCEWs.)

Despite its deficiency in simulating waves, note that the model does at least present a good

simulation of the climate variables in two ways. First, the model and observations have similar
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order of magnitudes of the anomalies (roughly 0.1 to 0.3, as seen by comparing Figure 1 and

Figure 2). Second, the model and observations have the same broad structure of the power

spectral density (see Figure 3 and Figure 4), which, to a first approximation, resembles the

power spectrum of spatiotemporal red noise (see [33]) (although the model is deficient in that

it looks like the “background spectrum” and lacks the detailed additional shape imparted by

the MJO and CCEWs (see [73, 86, 101])).

Figure 3 (a) Power spectral density plot of observational q data. (b) Power spectral density

plot of model-simulated q data.

Figure 4 (a) Power spectral density plot of observational u data. (b) Power spectral density

plot of model-simulated u data.

The comparisons between model and observations (Figure 1 through Figure 4) were also

used to determine the parameter values in the model. As a starting point, parameter values

similar to [86] were used, and then slight modifications were made in order to obtain the best

comparison between model and observations. Note that θ is noisier and more difficult to filter or

predict accurately than the other two variables, so we mainly focused on fitting u and q better.

This method of parameter tuning is somewhat ad hoc, although it is also quite common, and

it serves the purposes of the present paper.

3.3 Filtering

In this section, we describe the Kalman filter method that is used for data assimilation,

which will be used in later sections to provide the initial conditions for forecasts. The Kalman

filter is an algorithm which uses two estimates together—an estimate from the physical model
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and an estimate from observational data—to produce a best estimate of the state of the system

(u, θ, q). The details of the Kalman filter and the method of applying it to DTCM can be found

in Appendix 8.

To assess the DTCM’s performance as a filter model, we use the following approach. We

treat the observational data as a “true signal”, and then we add artificial observation noise to

the “true signal” to get artificial “corrupted observations”. The Kalman filter is then applied

using the artificial “corrupted observations” as one of the inputs. The strength (standard

deviation) of the artificial observation noise is chosen to be 15% of the climatological standard

deviation of the observational data (“true signal”), similar to other previous studies (see [8,

e.g.]).

An example of filtering performance of q in Fourier wavenumber 1 is shown in Figure 5(a),

and overall RMS error comparison for each longitude is shown in Figure 5(b). (Notice that

the corrupted observations in panel (a) appear to be quite close to true signal, despite the

presence of 15% noise in the corrupted observations; the closeness is due to the fact that this

figure illustrates the signal for Fourier wavenumber 1, whereas the 15% noise is added at each

grid point in physical space; so the impact of the noise on Fourier wavenumber 1 will appear

smaller than the noise’s impact in physical space.) As a baseline for comparison in panel (b), the

corrupted observations are seen to differ from the true signal with a RMS error of approximately

0.01. The filter result, on the other hand, appears to provide an estimate of the true signal that

is actually slightly worse; its RMS error is roughly in the range of 0.010 to 0.013. Hence the

DTCM with Kalman filter does not help us to get closer to the true signal, which is another

indication of the model’s deficiencies.

Figure 5 (a) Example of SPDE filtering compared with true signal and (corrupted) ob-

servations. The data we show in (a) is Fourier mode 1 of variable q with time period 1

Jan 1979–10 Apr 1979. (b) The averaged RMS error of (corrupted) observations and filter

result for each longitude. The RMS error data are obtained by averaging independent

experiments of time period 1 Jan 1979–24 May 1984.

3.4 Forecasting

In this subsection, the forecasting performance of DTCM is tested. The criterion we use to

assess the prediction performance is the model’s predictability of two RMM indices. RMM 1
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and 2 indices, whose full name is Real-time Multivariate MJO (RMM for short) series 1 and 2,

are first introduced by [102]. They are a pair of principal component (PC for short) time series

based on projecting the observational data onto a pair of empirical orthogonal functions (EOFs

for short). In many previous studies, the leading two EOFs generally appear as a pair and

they are shown to be useful and skillful indices of monitoring the MJO. The spatial patterns of

atmospheric variability, especially the eastward propagating signal, are well captured by RMM

1 and 2. Here we use these indices to aid in assessing the model’s ability of simulating and

forecasting the MJO.

To derive RMM indices, EOF analysis is applied to the observational data. Here the com-

bined field of (u, q) observational data is used to determine the EOF basis. This is essentially

the same choice as in [102], except the step of normalizing each field by its global variance has

been neglected here because, in our model, each variable has been nondimensionalized by its

reference scale and therefore the nondimensional data for u and q already have very similar

global variance. The seasonal cycle and further interannual variablity have been removed in

data processing procedure. The spatial structure of two leading EOFs are shown in Figure 6.

The variance explained by EOF 1 and 2 is 12.02% and 11.87%, respectively. Therefore, leading

pair of EOFs are used to be low-dimensional approximations which desire to capture a consi-

derable amount of variance. By projecting u, q combined field to leading EOF basis, we can

get RMM 1 and 2 time series.

Figure 6 Spatial EOF structure of leading two EOFs.

The forecasting method follows standard procedures. The Kalman filter described above is

used for obtaining the initial conditions for the forecast. Ensembles of DTCM simulations can

be run forward in time to provide the forecast.

The MJO prediction skill (pattern correlation) as a function of prediction lead time is

shown in Figure 7. Each data point is averaged among independent experiments of time period

1 Jan 1979–24 May 1984. As we can observe in the figure, the prediction skill of DTCM

decays dramatically with the lead time. As a baseline, we consider that if the averaged pattern

correlation is greater than 0.5, we deem that the model can provide effective predictions under

this given lead time. Therefore, DTCM can only provide effective predictions within lead time

about 3 days. The prediction skill decays to nearly 0 after lead time 6 days. There is little

difference in the prediction skill of the two indices RMM 1 and 2.
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Figure 7 Prediction skill of the deficient tropical climate model. Pattern correlation data

are averaged among independent tests of time period 1 Jan 1979–24 May 1984.

4 A Simple Model for Intraseasonal Oscillations

4.1 Model description

With the stated DTCM as complex climate model which requires improvements, our next

step is to construct a simple model which can capture the skeleton of the key features of

MJO and use the simple model to improve the performance of DTCM. More specifically, since

our main focus is on predicting RMM indices, the simple model should at least have better

prediction performance for RMM indices. As stated in Subsection 3.4, RMM 1 and 2 indices

are a pair of time series of leading EOFs which can express a considerable amount of atmospheric

variability of MJO. Therefore, a complex-valued stochastic differential equation (SDE for short)

is introduced in this section. The real part and imaginary part of the equation are aimed at

representing the time evolution dynamics of the RMM 1 and 2 indices, respectively. In order

to distinguish it from DTCM, we refer to the SDE model as MJO model in the following text.

The complex-valued SDE has form

dX(t) = (−γ + iω)X(t)dt+ σdW (t), (4.1)

where γ, σ > 0 and ω are real, dW (t) is a complex Gaussian white noise with form

dW (t) =
dW1(t) + i dW2(t)√

2
. (4.2)

Each component is an independent Gaussian white noise. The remaining problem is how to

determine the parameters by the given observation time series. The idea is to choose parameters

to let the MJO model simulation and the observational data have the same (or close to the same)

statistics, especially the autocorrelation function. The MJO model is exactly solvable. Thus a

formula of autocorrelation function in terms of the 3 unknown parameters can be derived. We

can compare the formula with the climatological statistics to make them match as closely as

possible. Detailed calculations can be found in Appendix 9. Here we choose γ = 8.8, ω = 12.1,

σ = 1.84, in nondimensional units; in dimensional units, these parameters are γ = 0.088 day−1,

ω = 0.121 day−1, σ = 0.184 day−
1
2 . Figure 8 shows that there is a reasonably good fit, for such
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a simple model, between the autocorrelation function of the observational RMM series and the

SDE model simulation.

Figure 8 Real parts of autocorrelation function of observational RMM indices (solid) and

SDE simulated indices (dashed).

4.2 Free-running simulation

In this section, the connection is drawn between (i) the MJO model for the RMM indices

and (ii) DTCM. The connection is made by utilizing the EOF structures to associate spatial

structures u(x, t) and q(x, t) to the MJO model time series, and this connection will be used in

the multi-model communication strategy in Section 5.

A free-running simulation of the MJO model will be used to illustrate the model’s variability

and the reconstruction of u(x, t) and q(x, t). Let

X(t) = X1(t) + iX2(t).

Divide the equation into its real part and imaginary part, the equation (4.1) is also equivalent

to the two dimensional system

dX1(t) = [−γX1(t)− ωX2(t)] dt+
σ√
2
dW1(t), (4.3)

dX2(t) = [+ωX1(t)− γX2(t)] dt+
σ√
2
dW2(t). (4.4)

The system is then solved numerically using the standard Euler-Maruyama method with a time

step of 0.01 in nondimensional units.

Given time series of X1(t) and X2(t), we can reconstruct a corresponding combined field

(u(x, t), q(x, t)) by the determined EOF basis functions, which were presented earlier in Figure 6.

An example of reconstructed field is shown in Figure 9. The result is similar to the OLR recon-

struction shown in [102]. Even though it is a simple model, the typical eastward propagation

signal is well simulated. Through these reconstructed signals of u(x, t) and q(x, t), the MJO

model can be connected with DTCM in the multi-model communication strategy in Section 5.



702 Y. A. Chen and S. N. Stechmann

Figure 9 Signals of (a) u and (b) q reconstructed from the MJO model simulated RMM

1&2 time series, using the model in (4.3)–(4.4). The duration of the plotted data is 1 year.

The duration of the plotted data is 1 year.

4.3 Filtering

Data assimilation will be used to provide the initial conditions for the MJO model forecasts

(described below in Subsection 4.4). As a data assimilation strategy, since the MJO model is

linear, we use the Kalman filter to estimate the values of the RMM indices. Before proceeding

with forecasts, we assess the filter’s performance in the present section.

Figure 10 Example of filtering comparing with true signal and (corrupted) observations.

The data shown are RMM 1 index with time period 1 Jan 1980–19 Jul 1980.
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The detailed filter setup can be found in Appendix 10. An example of filter performance

is shown in Figure 10. The filter typically provides a smoothed signal, and it often misses the

maximum amplitudes of the strongest events (such as the strong event in Figure 10 from day

60 to day 120). While the filter does not appear to offer an improved estimate of the state of

the RMM indices, it will still be used to provide initial conditions for forecasts, since the idea

is to create a setup that is similar to an actual operational forecast scenario.

4.4 Forecasting

The simple MJO model has much greater forecast skill than the DTCM, as illustrated in

Figure 11. As we can observe in the figure, the MJO model can provide effective predictions

up to lead time 5–6 days, which is much better than DTCM. Therefore, it is hoped that, in the

model communication strategy presented below, the information from this simple MJO model

will be able help improve the DTCM’s MJO forecasts.

Figure 11 MJO model prediction skill of RMM indices 1 and 2. The pattern correlation

data are averaged among 5000 independent tests. The testing time window is 1 Jan 1980–9

Sept 1993.

Note that the skill of this simple MJO model is less than other simple MJO models that

have been presented in other studies (see [8, 10, 95]). Nevertheless, it is useful in that it is easy

to formulate and simulate, and it will still serve the purposes of the present paper, since its

forecast skill is greater than the DTCM’s forecast skill.

5 Model Communication for Improved Forecasts

In previous sections, two different types of models were described with different sets of pros

and cons: The DTCM has certain defects and it has very limited prediction performance of the

RMM indices, whereas the simple MJO model can only simulate two RMM time series but its

prediction performance is much better.

Now, in this section, the key idea is to allow the two models to ‘communicate’ with each

other during the forecast. By letting the comprehensive model assimilate information from the

simple model, we want to improve the prediction performance of the comprehensive model to

reach or even possibly exceed the performance of the simple model. More specifically, we want

the DTCM to assimilate the good MJO predictions given by the MJO model.

Three main advantages of this method are as follows. The first one is that by assimilating

data from simple model, we find a way to improve the comprehensive model and avoid to make
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any changes of the model, as comprehensive models may be too complex to modify and if

modifying some parts of the model, it’s hard not to touch anything else. The second one is

we now have more options to make specific improvement of our model. By choosing several

targeted indices and constructing focused simple models, we are able to work on improve the

model’s performance of these specific indices. The third one is we can also have controls of

the data assimilating process. Choose observation errors to represent the degree of trust to the

simple model and choose proper assimilation frequencies to involve more information or reduce

computing costs. More details are discussed in the following subsections.

In this first investigation of model communication, a simple Kalman filter method is used to

achieve communications between models. When making forecasts, we run the MJO model pre-

dictions of RMM indices independently, and then these RMM index predictions are considered

“observations” by the DTCM. The DTCM assimilates the RMM index predictions to hopefully

get better prediction results. The details about how to apply the filter algorithm in the process

is provided in Appendix 12.

5.1 Forecast skill with model communication

The forecast skill with model communication is shown in Figure 12. Four cases of model

communication are shown, and they are labeled by the strength of artificial “observational

noise” that is added to “observed” RMM indices supplied by the simple MJO model. The

four noise strengths are 0%, 5%, 10% and 15% of the climatological standard deviation of the

RMM time series. It is reasonable to include some noise, partly because the MJO model’s

predictions are themselves not perfect, and partly as a way to assess the impact of errors in the

prediction system. The noise strength could also be taken as an indicator of the trustworthiness

of the simple MJO model predictions, where the extreme case of 0% indicates that the MJO

model predictions are trusted completely relative to the DTCM predictions of the RMM indices.

While the noise strength is simply assigned a fixed value in the tests shown here, it would be

interesting in the future to allow the different models to learn the trustworthiness of the other

models’ information based on the skill of past forecasts. Also shown for comparison in Figure 12

are the forecast skills of the MJO model (SDE model) and the DTCM (SPDE model).

Figure 12 Prediction skills of (a) RMM 1 and (b) RMM 2. The options provided are MJO

predictions (SDE), DTCM predictions (SPDE), and model communication performance

with observation error 0%, 5%, 10%, 15% of climatological standard deviation.
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In brief, one can see in Figure 12 that the skill of model communication can become equal

to that of the MJO model (SDE). Compared to the skill of the DTCM (SPDE model), this

represents a significant improvement. While it is perhaps not surprising that the model commu-

nication skill is equal to the MJO model (SDE) skill in the case of 0% noise (since the forecast

target is the same as the assimilated RMM index data, and the models here are both linear),

it is interesting to note the changes in forecast skill for different noise strengths. In particular,

relative to 0% noise, the case of 5% noise has essentially the same skill, and the case of 5%

noise has only a somewhat small reduction. Furthermore, beyond these points of note for RMM

1, notice that RMM 2 is forecast skillfully via model communication for all considered noise

strengths. Differences in forecast skill for RMM 1 versus RMM 2 have also been noted in some

past studies with other models (see [95, e.g.]). Overall, these results suggest the possibility of

increasing the DTCM’s forecast skill through a model communication strategy.

5.2 Choice of assimilation frequencies

In the results described above, each model communication result is obtained by assimilating

“observations” every 1 day (in nondimensional units, ∆t = 3). Since the MJO model provides

better predictions of the RMM indices, we would expect that assimilating information from the

MJO model more often would generate better results. Also note that assimilation frequencies

lead to no difference when the artificial observational noise is 0. In Figure 13, the observation

error used is fixed to be 15%. Take RMM index 1 as an example. The pattern correlations

of model communication results of different assimilation frequencies are shown in Figure 13.

As we can observe in the figure, assimilation frequencies do affect the forecast skill of model

communication. Higher “observation”/communication frequencies tend to provide better results

but more calculation may be involved in the process.

Figure 13 Model communication prediction skill of RMM 1 for different assimilation fre-

quencies, all with relatively strong artificial observational error of 15%.
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5.3 Comparison with multi-model mean

Another way to utilize multiple models in making a forecast is called the multi-model mean

(MMM for short). To create the multi-model mean, each forecast model is run independently,

with no communication between the different models. For instance, here the result would be

a value xsimple predicted by the simple MJO model alone, and also a value xDTCM predicted

by the DTCM alone. The multi-model mean prediction, xMMM, is then defined simply as the

average: xMMM =
xsimple+xDTCM

2 .

The MMM prediction skill is shown in Figure 14, in comparison with the prediction skills

of the DTCM (SPDE), the MJO model (SDE), and model communication (with 5% standard

deviation artificial observation error). Multi-model mean prediction skill falls in between the

MJOmodel and DTCM. It does provide some improvement over the DTCM by itself, and it does

not require any communication between forecast models during the forecast stage. However

the data assimilation-based model communication strategy we stated in Subsection 5.1 provides

better results.

Figure 14 Multi-model mean prediction skill (crosses) in comparison with the MJO model

(SDE, solid), the DTCM (SPDE, dashed), and the DTCM with 5% observation error.

6 Conclusions

A model communication strategy was investigated for allowing multiple forecast models

to assimilate information from each other in order to overcome individual model deficiencies.

The results show that a deficient climate model’s skill at forecasting the MJO can be signifi-

cantly enhanced through communication with a skillful, simple MJO model. The multi-model

communication strategy is also able to outperform the multi-model mean, which utilizes mul-

tiple models only in post-processing and not in any type of direct communication during the

forecasts.

In the future, it would be interesting to test the model communication strategy in a setup
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that is closer to an operational forecast. In the present study, a simplified setup was used in

order to allow transparent evaluation of different components of the strategy. A future next step

could utilize an actual global forecast model rather than the simplified linear Gaussian model

used here, and it could utilize more sophisticated data assimilation methods for the inter-

model communication rather than the simple Kalman filter used here. Also, the nonlinearity

of an operational forecast model would cause the assimilation of MJO EOF information to be

spread to other components of the weather-climate system other than the MJO, and it would

be interesting to see whether such spreading of information is beneficial or detrimental to the

forecast of other components of the weather-climate system other than the MJO.

7 Appendix: Data Processing

7.1 Estimate the first baroclinic component of u and θ

The zonal wind velocity data and geopotential height data are used to estimate u and θ,

respectively. Two pressure levels, 850hPa and 200hPa, are used to represent the bottom and

the top of the troposphere, respectively. Then associate the data with contributions from two

vertical modes, a barotropic contribution and a first baroclinic mode contribution. Take zonal

wind velocity u as an example. The velocity of different pressure level can be expressed as

u(z) = uBT + uBC

√
2 cos(z), (7.1)

where uBT represents the barotropic contribution and uBC represents the first baroclinic mode

contribution. Given the data from two pressure levels, the first baroclinic component can be

estimated by

uBC(x, y, t) =
u(850hPa)− u(200hPa)

2
√
2

. (7.2)

Similarly, the first baroclinic component of the geopotential height can be estimated as

following:

ZBC(x, y, t) =
Z(850hPa)− Z(200hPa)

2
√
2

. (7.3)

And consider the hydrostatic balance, which has form ∂z
∂p

= −θ. It results in the expression

of the potential temperature anomaly θ from the model in terms of the geopotential height

anomaly Z from the data

θBC(x, y, t) = −
Z(850hPa)− Z(200hPa)

2
√
2

. (7.4)

Since we use the standard reference scale to nondimensionalize the model, the reference

scale for u and θ can be directly derived. The reference scales for u and θ are 52.08 m/s and

15.6 K, respectively.
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7.2 Estimate of the water vapor anomaly q

The OLR data are used to estimate water vapor anomaly q. Since water vapor can absorb

certain wavelengths of OLR adding heat to the atmosphere. High concentration of water vapor

tends to reduce OLR below clear sky values. Thus we can use OLR data as simple indicators

to estimate the water vapor anomaly

q(x, y, t) = −OLR. (7.5)

The reference scale for water vapor anomaly q is deduced by the following steps. In a recent

study (see [88]), the water vapor reference scale is 6.27 g · kg−1. We use the same reference

scale here. However unit conversions are needed to apply the reference scale to the OLR dataset

above. The observational OLR dataset has unit wm−2. Firstly, we use a OLR-to-heating-rate

conversion factor which is 0.06 Kday−1(wm−2)−1. This conversion factor is the same as in [88]

which is based on a recent study in [90]. Now the unit becomes Kday−1. We want to further

convert it to mm · day−1. Assume an area of 1 m2, now we estimate the mass of air in the

atmospheric column. Consider the pressure of air is decaying exponentially with the height and

the scale height is Hp = 10 km. The function of pressure in terms of height z can be expressed

by

P (z) = P0e
− z

Hp . (7.6)

Note that the scale height depends on the air temperature, by turning the scale height to a

function of air temperature we can get a better estimate of the pressure. But here we only want

to get a rough estimate so a constant value of scale height is used in the computation. According

to the ideal gas law, assume the temperature is constant, the density of air is proportion to the

air pressure. Thus the density of air can be expressed by

ρ(z) = ρ0e
− z

Hρ . (7.7)

Use ρ0 = 1 kg ·m−3. Integrate the density of air from z = 0 to infinity and times the

area. An estimation of the mass of air in the column is 10000 kg. Assume a depth of 1 mm

of liquid water (after the water vapor is condensed to liquid), we use that the density of water

is 103 kg ·m−3 and the latent heat factor of water is 2500 kJ · kg−1. If this amount of water

is converted from water vapor to liquid, the heat release in the process is 2.5 × 106 J. If this

amount of heat is used to warm the air in the atmospheric column and we use the specific heat

of air is 1004 J · (kg ·K)−1, the temperature of air will raise 0.249 K. Thus we get the unit

conversion relation: 1 K · day−1 ≈ 4 mm · day−1.

Now the unit becomes mm · day−1. Since the reference scale we use is 6.27 g · kg−1 and

the 1 m2 column has 10000 kg air, that equals to 62.7 kg water vapor, which also equals to

62.7 mm liquid water in the column. This value can only apply to the air in low altitude or in

other words, near the surface. If taking the vertical structure of water vapor into account, a

more accurate expression of the ratio is needed. By many other studies (see [43, 71, 77]), the
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water vapor ratio of the vertical atmospheric column also decays exponentially with the height.

Thus the water vapor ratio can be expressed by

q(z) = q0e
− z

Hq . (7.8)

Here we also use Hq = 10 km as scale height and q0 = 62.7 mm. Note that the reference scale

is the ratio of water vapor to the total humid air. And the total amount of humid air decays

with height according to (7.7). Thus the reference scale used in our model can be calculated by

qref =

∫ ∞

0

q(z)ρ(z)dz · 1 m2

= 31.35 mm. (7.9)

To associate the water vapor reference scale with the observational OLR data, divide the

reference scale by τc = 96 h=3 days.Thus the heating-rate reference scale is 10.45 mm · day−1 =

2.61 K · day−1 = 43.54 wm−2. By using this reference scale, we can nondimensionalize the OLR

data.

7.3 Meridional projections

By previous step, we find proper surrogates for all three variables (u, θ, q) in our model. Next

step is to use the meridional mode decomposition method to capture the skeleton of the data.

By utilizing the meridional basis functions which take forms of the parabolic cylinder functions.

Each variable can be expressed as linear combinations of parabolic cylinder functions. Take

uBC as an example,

uBC(x, y, t) =

∞∑

m=0

um(x, t)φm(y), (7.10)

where φm(y) are basis functions and um represents the m-th meridional mode. Use the 0

meridional mode u0(x, t) as the skeleton of the whole data/ This quantity can be obtained by

the projection

u0(x, t) =

∫ ∞

−∞

uBC(x, y, t)φ0(y)dy

=

∫ ∞

−∞

uBC(x, y, t)
1

π
1
4

e−
y2

2 dy. (7.11)

This meridional projection also reduces the 2D (x, y) dataset to a 1D (x) dataset. Same

formula can also apply to θ and q. We can project θBC and q to φ0(y) and get θ0(x, t), q0(x, t)

respectively. We use (u0, θ0, q0) as an estimate of variables (u, θ, q) in our model. To sum

up, we apply the above data processing method to OLR, zonal wind velocity and geopotential

height dataset. Then nondimensionalize the data by their corresponding reference scales and

project them to meridional basis functions to get the observation data we use in our model. The

observation data of three variables derived from the dataset are shown in Figure 1. Eastward

propagating zonal wind can be clearly observed from Figure 1(a).
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8 Appendix: Solving the Tropical Climate Model

Define the discrete Fourier transform for u as following:

ûk =

N−1∑

n=0

une
− 2πikn

N , k = 0, 1, · · · , N − 1. (8.1)

Analogous formulas can also be apply to θ and q. Then we get the expression of the system

in Fourier space,

duk

dt
= − 1

τu
uk +

2πik

L
θk, (8.2)

dθk
dt

=
2πik

L
uk −

1

τθ
θk +

1

τc
qk, (8.3)

dqk
dt

= −Q̃2πik

L
uk −

( 1

τc
+

4π2k2b

L2

)
qk +D∗

̂̇W k, (8.4)

where ̂̇W k =
N−1∑
n=0

Ẇne
− 2πikn

N is the k-th Fourier mode of the white noise. The white noise Ẇ

satisfies {
E[Ẇn(t)] = 0,

E[Ẇn(t)Ẇn(s)] = δ(t− s).
(8.5)

By using the expression of ̂̇W k stated above, the properties of ̂̇W k can be directly derived,




E[̂̇W k(t)] =

N−1∑

n=0

E[Ẇn(t)]e
− 2πikn

N = 0,

E[̂̇W k(t)
̂̇W

∗

k(s)] = E
[(N−1∑

n=0

Ẇn(t)e
− 2πikn

N

)(N−1∑

m=0

Ẇm(s)e
2πikm

N

)]
= Nδ(t− s).

(8.6)

Now the system has been transformed to a three-dimensional linear system. Denote

(uk, θk, qk)
T by Vk. The system can be rewrote by matrices form

dVk

dt
=




− 1

τu

2πik

L
0

2πik

L
− 1

τθ

1

τc

−Q̃2πik

L
0 − 1

τc
− 4π2k2b

L2




Vk +




0
0

D∗
̂̇W k


 = FkVk +Dk. (8.7)

Note that the coefficient matrix depends on the Fourier wavenumber k. But each Fourier

mode is independent with others which makes it possible to focus on solving one system and

apply the same method to all other Fourier modes. Next, diagonalization is performed to

the system. Let Ak be the eigenvector matrix (whose column are eigenvectors) of Fk and Λk

be the eigenvalue matrix (whose diagonal entries are eigenvalues). And let Uk = A−1
k Vk =

(Uk,1, Uk,2, Uk,3)
T. Then Uk satisfies the diagonalized system

dUk

dt
= ΛkUk +A−1

k Dk. (8.8)
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Each variable can be solved analytically by integrating exactly and applying the properties

of ̂̇W k. The exact solution is

Uk,j(t) = eΛk(j,j)tUk,j(0) +

∫ t

0

A−1
k (j, 3)D∗e

Λk(j,j)(t−s)dŴk(s), j = 1, 2, 3. (8.9)

Note that the integral in (8.9) is a Gaussian random variable at each time t. The mean and

variance can be easily derived. Then Uk,j(t) has mean eΛk(j,j)tUk,j(0) and variance

Var[Uk,j(t)U
∗
k,j(t)] =

D2
∗NA−1

k (j, 3)A−1
k (j, 3)∗

−2Real(Λk(j, j))
(1 − e2Real(Λk(j,j))t). (8.10)

This method is called semi-analytical solution method because the solution is derived ana-

lytically which means no numerical integration error occur, but the solution contains random

term which may cause sampling error in realization. This formula can be used to numerically

realize the model. Each Fourier mode can be evolved forward independently. For Fourier mode

k, in each time step, given the initial data vector Vk,n = (un, θn, qn)
T, use the matrix Ak to

diagonalize the system and get Uk. Then draw a Gaussian random variable with mean and

variance given in (8.10). Then use matrix Ak again to change back and get numerical solution

Vk,n+1. Treat it as initial condition in next time step to move forward.

9 Appendix: Kalman Filter for the Tropical Climate Model

A detailed description of the algorithm is introduced in [67]. In the process, two kinds of

information is involved—an estimation from the previous time step and an estimation from cu-

rrent measurement. Assume u is an M-dimensional unknown variable which requires estimation.

And assume the filter model has form

um+1 = Fum + σm+1, (9.1)

where F is a complex dynamic matrix and σm+1 is an M-dimensional complex Gaussian noise

vector with zero mean and covariance R = 〈~σm⊗~σT
m〉. Thus we assume that the equation (9.1)

can give an unbiased estimation of the current state um+1 from the previous state. Two states

of the unknown variable are provided in the process. The prior state um+1|m is an estimation of

the true state prior to the knowledge of the observation at time m+1. The posterior state um|m

is an estimation of the true state after considering the observation at time m. The relation is

given by

um+1|m = Fum|m + σm+1. (9.2)

Define the mean state ~um+1|m by taking the mean of ~um+1|m and the error covariance

Rm+1|m = 〈(~um+1 − ~um+1|m)⊗ (~um+1 − ~um+1|m)T〉. (9.3)

And assume noisy observations satisfy

vm = Gum + σ0
m, (9.4)
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where G is the complex observation matrix and σ0
m is an M-dimensional Gaussian noise vector

with zero mean and covariance R0 = 〈~σ0
m⊗ ~σ0T

m 〉. Kalman filter is a two-step algorithm. In the

prediction step, estimate prior mean state and prior error covariance by
{
~um+1|m = F~um|m,

Rm+1|m = FRm|mFT +R.
(9.5)

In the correction step, the kalman gain matrix is defined as

Km+1 = Rm+1|mGT(GRm+1|mGT +R0)−1. (9.6)

And the estimations of the posterior state are
{
~um+1|m+1 = ~um+1|m +Km+1(~vm+1 −G~um+1|m),

Rm+1|m+1 = (I −Km+1G)Rm+1|m.
(9.7)

The posterior state is used as the kalman filter estimate of the true state. To associate

the filter algorithm with DTCM, several choices should be made. Note that the model can

be linearized in Fourier space. The true signal we want to estimate is Vk = (uk, θk, qk)
T, for

each Fourier wavenumber k. Since there is an easy transition between Vk and Uk stated in

Appendix 8, we will estimate Uk instead. The time evolution dynamics of Uk are given by

equation (8.9). For each time step, the dynamic matrix

Fk,DTCM =



eλk(1,1)∆t

eλk(2,2)∆t

eλk(3,3)∆t


 . (9.8)

And the model error covariance matrix

Rk,DTCM

=



Var[Uk,1(∆t)U∗

k,1(∆t)]

Var[Uk,2(∆t)U∗
k,2(∆t)]

Var[Uk,3(∆t)U∗
k,3(∆t)]


 , (9.9)

where Var[Uk,1(∆t)U∗
k,1(∆t)] is given by equation (8.10). And the observations we use are data

derived from dataset in Section 2. Thus the observation matrix is

GDTCM =



1 0 0
0 1 0
0 0 1


 . (9.10)

Note that the observation error covariance matrix is a measurement of the extent of how we

trust the observation data. We choose 15% of the standard deviation of each variable from the

observation data as observation error, as is common in other similar studies (see [9, 32]). Thus

the observation error matrix is

RDTCM =



(15% of std of u)2

(15% of std of θ)2

(15% of std of q)2


 . (9.11)

Apply Kalman filter algorithm to each time step and provide the filter results given by

DTCM.
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10 Appendix: Kalman Filter for Simple MJO Model

Implement the standard Kalman filter to simple MJO model. For consistency, we use the

same notation as in Appendix 8. As the filter model, we use the complex MJO model (4.1),

and we create complex-valued observational RMM indices by using

X(t) = RMM 1 + i× RMM 2.

To choose the filter parameters such as the model’s evolution operator and noise magnitude,

consider the analytic solution of the MJO model:

X(t) = e(−γ+iω)tX(0) + σ

∫ t

0

e(−γ+iω)(t−s)dW (s). (10.1)

Such a formula will be used to evolve the model from one observation time to the next, with

observation time interval ∆t. Therefore, if using XT as the signal we want to estimate, the

filter model dynamic matrix will be

FMJO = e(−γ+iω)∆t. (10.2)

The model error matrix

RMJO =
σ2

2γ
(1− e−2γ∆t) (10.3)

and the observation matrix GMJO = 1. To create a scenario with “observational error”, we

treat the observed RMM indices as the “true signal” and add artificial observation error to get

artificial “observations”. For this purpose, we use 15% of the RMM indices’ standard deviation

as the “observation error” (R0 = 15%(std(RMM 1) + i× std(RMM 2))).

11 Appendix: Determining Parameters in the MJO Model

Autocorrelation function is a useful tool to analyze the repeating patterns in a signal. In

order to determine the parameter values, we assume the RMM indices satisfy the form of the

MJO model (4.1). We first derive the autocorrelation function of the given SDE equation. Note

that the MJO model is a complex Ornstein-Uhlenbeck process. The analytic solution is

X(t) = e(−γ+iω)tX(0) + σ

∫ t

0

e(−γ+iω)(t−s)dW (s). (11.1)

That means at any time t, the solution is a random Gaussian variable with mean and

variance

E[X(t)] = e(−γ+iω)tX(0), (11.2)

Var [X(t)] =
σ2

2γ
(1− e−2γt). (11.3)

Define the autocorrelation function

R(τ) = lim
T→∞

1

TVar[X(∞)]

∫ T

0

X(s)X(s+ τ)∗ds. (11.4)
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Then we can calculate the autocorrelation function of the SDE,

R(τ) = lim
T→∞

1

Var[X(∞)]
E
[(

σ

∫ T

0

e(−γ+iω)(T−t′)dW (t′)
)(

σ

∫ T+τ

0

e(−γ+iω)(T+τ−s′)dW (s′)
)∗]

= lim
T→∞

1

Var[X(∞)]
σ2e−2γT

∫ T

0

∫ T+τ

0

eγ(t
′+s′−τ)−iω(t′−s′+τ)δ(t′ − s′)dt′ds′

= e−τ(γ−iω). (11.5)

We denote the integral of the autocorrelation function as

∫ ∞

0

R(τ)dτ =
γ − iω

γ2 + ω2
= S1 + iS2. (11.6)

Thus the integral of the autocorrelation function can be used to calculate the parameters.

And furthermore, by equation (11.3), σ can also be calculated,

γ =
S1

S2
1 + S2

2

, (11.7)

ω = − S2

S2
1 + S2

2

, (11.8)

σ =
√

2γVar[X(∞)]. (11.9)

12 Appendix: Kalman Filter for Model Communication

To implement standard Kalman filter for model communication, we now use RMM time

series simulated by the simple SDE model. The following equations summarize the relations

between signals,

{
(uk, θk, qk)

T
m+1 = Fk,DTCM · (uk, θk, qk)

T
m + σm+1,DTCM,

(RMM 1 + iRMM 2)m+1 = FMJO · (RMM 1 + iRMM 2)m + σm+1,MJO,
(12.1)

(RMM 1,RMM 2)Tm = G · (uk, qk)
T
m + σ0

m. (12.2)

The true signal we want to estimate is (uk, θk, qk) and the “observations” are RMM time

series (PC1,PC2). These two signals can be evolved by equations (12.1). However the true

signal is not fully observed since only two components (uk, qk) contribute to the time series. In

this case, the relation between true signal and observation can be expressed in equation (12.2).

Now the problem is to find observation matrix G and properties of the error term σ0
m. To de-

termine the observation matrixG, an alternative representation of time series in terms of Fourier

modes is required. Firstly, by EOF analysis, the (u, q) combined field can be decomposed by the

EOF basis. Let φ1, φ2, · · · , φN denote the EOF basis vector and PC1(t),PC2(t), · · · ,PCN(t)

denote their corresponding time series. Note that PC1(t),PC2(t) are exactly RMM 1 and RMM

2 indices. Let u and q be of form time×longitude. Then we can write

(u, q)T = PC1(t)φ1 + PC2(t)φ2 + · · ·+ PCN(t)φN . (12.3)
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Since EOF basis vectors are pairwise orthogonal, the PC time series can be calculated by

inner products

PCj(t) = 〈(u, q)T, φj〉. (12.4)

Let u = (u1, u2, · · · , uN ), q = (q1, q2, · · · , qN ) and φj = (φj,1, φj,2, · · · , φj,2N )T. By discrete

Fourier transformation,

un =
1

N

N−1∑

k=0

ûke
i2πkn

N , (12.5)

qn =
1

N

N−1∑

k=0

q̂ke
i2πkn

N . (12.6)

Then plug in equation (12.4),

PCj(t) = 〈(u, q)T, φj〉

=

N−1∑

k=0

[ 1

N

N−1∑

n=0

e
i2πkn

N φj,n

]
ûk +

N−1∑

k=0

[ 1

N

N−1∑

n=0

e
i2πkn

N φj,n+N

]
ûk

=

N−1∑

k=0

αj,kûk +

N−1∑

k=0

βj,k q̂k. (12.7)

Therefore, by equation (12.7), we associate the EOF time series with Fourier modes. Con-

sequently, we can bring the Fourier representation of the time series in the filter algorithm.

According to the diagonalization in Appendix 8, Vk = AkUk. Denote

Ak =



Ak,1,1 Ak,1,2 Ak,1,3

Ak,2,1 Ak,2,2 Ak,2,3

Ak,3,1 Ak,3,2 Ak,3,3


 . (12.8)

Then

ûk =

3∑

l=1

Ak,1,lUk,l, (12.9)

q̂k =

3∑

l=1

Ak,3,lUk,l. (12.10)

Plug in equation (12.7),

PCj(t) =

N−1∑

k=0

3∑

l=1

(αj,kAk,1,l + βj,kAk,3,l)Uk,l. (12.11)

With the above preparations, now we turn to the filter algorithm. For each time step tm, the

true signal which requires estimation is um = (U0,1, U0,2, U0,3, · · · , UN−1,1, UN−1,2, UN−1,3)
T.

Note that we omit the time subscript m in the vector to avoid redundant subscripts. Note that

the observations (RMM 1, RMM 2) are time series vm = (PC1(tm),PC2(tm)). According to

equation (12.11), the observation matrix is

G =
(
α1,0A0,1,1 + β1,0A0,3,1 α1,0A0,1,2 + β1,0A0,3,2 · · · α1,N−1AN−1,1,3 + β1,N−1AN−1,3,3

α2,0A0,1,1 + β2,0A0,3,1 α2,0A0,1,2 + β2,0A0,3,2 · · · α2,N−1AN−1,1,3 + β2,N−1AN−1,3,3

)
. (12.12)
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And assume RMM time series 1 and series 2 are decorrelated with each other. Then the

observation error matrix is a diagonal matrix. Different choices of observation error are discussed

in Subsection 5.1.
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