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Abstract An intrinsic property of almost any physical measuring device is that it makes

observations which are slightly blurred in time. The authors consider a nudging-based

approach for data assimilation that constructs an approximate solution based on a feed-

back control mechanism that is designed to account for observations that have been blurred

by a moving time average. Analysis of this nudging model in the context of the subcritical

surface quasi-geostrophic equation shows, provided the time-averaging window is sufficient-

ly small and the resolution of the observations sufficiently fine, that the approximating

solution converges exponentially fast to the observed solution over time. In particular,

the authors demonstrate that observational data with a small blur in time possess no sig-

nificant obstructions to data assimilation provided that the nudging properly takes the

time averaging into account. Two key ingredients in our analysis are additional bounded-

ness properties for the relevant interpolant observation operators and a non-local Gronwall

inequality.

Keywords Data assimilation, Nudging, Time-Averaged observables, Surface quasi-

geostrophic equation
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1 Introduction

The surface quasi-geostrophic (SQG for short) equation models the dynamics of the poten-

tial temperature on the two-dimensional horizontal boundaries of the three-dimensional quasi-

geostrophic equations, which, in turn, are approximations to the shallow water equations in the

limit of small Rossby number where the inertial forces are an order of magnitude smaller than
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the Coriolis and pressure forces. This is the regime of strong rotation, where the time scales

associated with atmospheric flow over long distances are much larger than the time scales asso-

ciated with the Earth’s rotation (cf. [38]). The model of focus in our study of data assimilation

is the subcritically dissipative SQG equation subject to periodic boundary conditions over the

fundamental domain T2 = [−π, π]2. In non-dimensionalized variables, it is given by
{
∂tθ + κΛγθ + u· ∇θ = f,

u = R⊥θ, θ(x, 0) = θ0(x),
(1.1)

where Λγ = (−∆)
γ
2 corresponds to the Fourier muliplier operator |k|γ , R⊥ = (−R2, R1) is

the perpendicular Riesz transform, where each Rj corresponds to (−ikj/|k|)k∈Z2\{0}, and the

strength of dissipation satisfies 1 < γ ≤ 2. Note that γ = 1 gives the critical case while

0 < γ < 1 gives the supercritical case. The scalar function θ represents the surface temperature

or buoyancy of a fluid adverted along the vector velocity field u. The parameter κ is a fixed

positive quantity, which appears due to the phenomenon of Ekman pumping at the surface.

Note, also, that if θ0 has zero mean over T2, then the property 1
4π2

∫
T2 θ(t)dx = 0 is propagated

for all t > 0, so long as f has zero mean over T2 as well.

Since their introduction into the mathematical community by Constantin, Majda and Tabak

[15], the subcritical, critical and supercritical SQG equations have been thoroughly studied.

Well-posedness and global regularity in various function spaces has been resolved in all but the

supercritical case (cf. [9, 16–18, 20, 21, 34–35, 39]), and also for certain inviscid regularizations

(cf. [33]). The long-time behavior in the subcritical and critical has been studied as well and in

particular, a global attractor theory has been established for them (cf. [10, 12, 13, 16, 19, 29]).

These equations have been used to simulate the production of fronts in geophysical flows and in

spite of being a scalar model in two dimensions, possess solutions that behave in ways that are

strikingly similar to fully three-dimensional flows. Therefore, (1.1) provide a physically-relevant

dynamical context in which to analyze the performance of our model for data assimilation, that

also supplies additional analytical difficulties that requires us to further develop the theoretical

foundations of our approach.

Given a geophysical equation that describes some aspect of reality, the ability to predict the

future using this equation requires an initial condition that accurately represents the current

physical state. Although weather data has been collected nearly continuously in time since the

1960s, this data represents, at best, an incomplete picture of the current state of the atmosphere.

Thus, rather than an exact initial condition, in practice one has a time series of low-resolution

observations. Moreover, due to the nature of the measuring devices, the data itself may contain

noise as well as systematic errors. Of particular interest to our present study is the fact that

nearly all physical instrumentation produces measurements which are manifestly blurred in

time. For example, the heat capacity of a thermometer naturally averages temperatures as they

change over time while the rotational inertial of an anemometer similarly averages velocities.

Time averages in satellite images result from finite shutter speeds and further averages result

when satellite data is obtained by comparing two subsequent images. Blocher [6] shows both

analytically and computationally that noisy, blurred-in-time observations of the X variable can

be used to synchronize two copies of the three-dimensional Lorenz system of ordinary differential
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equations (ODEs for short) up to a factor of the variance of the noise, see also [7]. As the analysis

of the SQG equation is more complicated, we do not consider noise or systematic errors in this

work, as this was studied in [5] and [26], but instead focus solely on how to assimilate data that

has been subject to a moving time average.

The idea of finding the current physical state by combining a time-series of partial observa-

tions with knowledge about the dynamics dates back to a 1969 paper of Charney, Halem and

Jastrow [11]. Doing this optimally is the subject of data assimilation. Data assimilation has

received considerable attention in both its theoretical development and practical use for the

prediction of the weather (cf. Kalnay [30] and references therein). The approach of interest in

this article computes an approximation using a “auxiliary system” obtained by taking the ori-

ginal model, which is assumed to coincide with the observations in the absence of measurement

error, and applying feedback control based on the observations. This feedback control serves to

nudge the solution towards the unknown but observed solution no matter what original initial

condition was chosen for it. In theory, one could then integrate the approximate solution for-

ward in time to obtain a good approximation of the current physical state. This approximation

would then serve as an initial condition for subsequent forecasts.

The auxiliary system described above was first proposed as an approach to data assimila-

tion for the model problem of the two-dimensional incompressible Navier-Stokes equations by

Azouani, Olson and Titi in [2]. In that work, exponential convergence of the approximating

solution to the observed solution was shown under general conditions in which the observations

were assumed to be taken continuously and instantaneously in time. By now this approach

has been studied for several other physical systems such as the one-dimensional Chaffee-Infante

equation, the two-dimensional Boussinesq, the three-dimensional Brinkman-Forchheimer ex-

tended Darcy equations, the three-dimensional Bénard convection in porous media, and the

three-dimensional Navier-Stokes α-model (cf. [1–3, 22–24, 36]). Notably, Farhat, Lunasin and

Titi in [25], recently verified, in the case of the three-dimensional planetary geostrophic model,

an earlier conjecture of Charney that posited that in simple atmospheric models, the tempera-

ture history determines all other state variables. The effects of noisy data were studied by

Bloemker, Law, Stuart and Zygalakis [8] and Bessaih, Olson and Titi [5]. A case related to

the study undertaken by this paper, where observations are taken at discrete moments in time,

rather than continuously, and with systematic deterministic errors, was studied in [26], while

fully discretized versions were considered in [27]. Postprocessing methods were also applied to

further ameliorate errors in this downscaling algorithm and in particular, obtain error bounds

which are uniform-in-time (cf. [37]). See also [4] for a study into the continuous-time extended

Kalman-Bucy filter in the setting of stochastic nonlinear ODEs. Observational measurements

that have been blurred in time are studied here.

In continuation of the work in [28], we combine a feedback control based on time-averaged

modal observables with the dynamics of the 2π-periodic subcritical SQG equation to obtain
{
∂tη + κΛγη + v· ∇η = f − µ(Jδ

h(η)− Jδ
h(θ)),

v = R⊥η, η(x, t)|t∈(−2δ,0] = g(x, t).
(1.2)

Here µ is a relaxation parameter, Jδ
h(θ) represents an idealized interpolant based on modal
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measurements with observation resolution h along with a moving time average over intervals of

width δ that represents the blur intrinsic to the measuring device used to obtain the data. It is

natural to suppose that the observed solution, θ, represents the long-time evolution of the SQG

equations, which is to say that θ belongs to the global attractor and therefore exists backward

in time for all t < 0. For our analysis, however, it is sufficient to go back only as far as t = −2δ.

We therefore make the milder assumption that θ(·,−2δ) belongs to an absorbing ball for (1.1)

with a sufficient regularity. Note also that in order to construct the data assimilation algorithm

given by (1.2), we have assumed that the SQG equation is known in addition to the exact value

of κ. What is not known, of course, is the initial condition for η represented by the function

g(x, t). Theoretically speaking one might as well take g(x, t) = 0; however, any 2π-periodic

function with mean zero that lies in the aforementioned absorbing set would be fine. Therefore,

there may be better choices for g in practice. In particular, if we take g(x, t) = θ(x, t) for

t ∈ (−2δ, 0], then Jδ
h(η) = Jδ

h(θ) in (1.2), so that η(x, t) = θ(x, t), for all t > 0; we refer the

reader to Subsection 4.1 to help clarify this fact. Although there would be no need for data

assimilation if θ(x, t) were already known, this cancellation is necessary to obtain the important

mathematical property that, in the absence of noise or model error, η exactly synchronizes with

θ over time.

We will assume that (1.2) governs the evolution of the approximating solution, η, used in

our analysis of data assimilation for the SQG equation with observations that have been blurred

in time and with 2π-periodic boundary conditions over T2. We will treat the subcritical case,

when γ ∈ (1, 2). Our main results consist of the following two theorems:

(1) The data assimilation equations given by (1.2) are well posed (Theorem 3.1).

(2) For h sufficiently small, there exists a choice of µ and δ, for which the differences between

η and θ vanish over time (Theorem 3.2).

Note that treating the critical case γ = 1 would, of course, also be very interesting for any

type of observational data. However, this is beyond the scope of our present analysis.

We defer formal statements of our theorems to Subsection 3, after we have defined the

mathe-matical setting of our problem in Section 2. Let us point out, however, that the presence

of the moving time average introduces certain analytical difficulties. Firstly, it is difficult to

control temporal oscillations in the approximating solution and that arise due to deviations of

the blurred-in-time observations from the exact values of the reference solution. For this, we

must especially make use of more delicate boundedness properties of the interpolant operator,

which we identify and prove in Subsection 2.2 and Appendix B, respectively. Second, a suitable

non-local Gronwall inequality is required to control the difference between the approximating

solution and the observed solution. Theorem 3.2 shows that these obstacles can indeed be

surmounted provided that δ is small enough. In this regime, (1.2) achieves exact asymptotic

synchronization at an exponential rate and therefore performs similarly to the case studied in

[28], where the observations are not blurred in time. Lastly, we emphasize that our approach

to the analysis of this problem renders transparent which errors arise from the delay and which

arise from the blurring, as well as the manner in which these errors transfer from one time-

window to the next. Because of this, we are able to capture mathematically the role of the size
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of the averaging window.

2 Preliminaries

2.1 Function spaces: Lp

per
, Vσ, H

σ

per
, Ḣσ

per
, C∞

per

Let 1 ≤ p ≤ ∞, σ ∈ R and T2 = R2/(2πZ) = [−π, π]2. Let M denote the set of real-valued

Lebesgue measurable functions over T2. Since we will be working with periodic functions, define

Mper := {φ ∈ M : φ(x, y) = φ(x + 2π, y) = φ(x, y + 2π) = φ(x + 2π, y + 2π) a.e.}.

Let C∞(R2) be the class of functions which are infinitely differentiable on R2. Define C∞
per(T

2)

by

C∞
per(T

2) := C∞(R2) ∩Mper.

For 1 ≤ p ≤ ∞, define the periodic Lebesgue spaces by

Lp
per(T

2) := {φ ∈ Mper : ‖φ‖Lp <∞},

where

‖φ‖Lp :=
(∫

T2

|φ(x)|p dx
) 1

p

, 1 ≤ p <∞ and ‖φ‖L∞ := ess sup|φ(x)|.

Let us also define

Z :=
{
φ ∈ L1

per :

∫

T2

φ(x) dx = 0
}
. (2.1)

For φ ∈ L1
per(T

2), let φ̂(k) denote the Fourier coefficient of φ at wave-number k ∈ Z2, i.e.,

φ̂(k) :=
1

4π2

∫

T2

e−ik·xφ(x) dx.

For any real number σ ≥ 0, define the homogeneous Sobolev space Ḣσ
per(T

2), by

Ḣσ
per(T

2) := {φ ∈ L2
per(T

2) ∩ Z : ‖φ‖Ḣσ <∞}, (2.2)

where

‖φ‖2
Ḣσ := 4π2

∑

k∈Z2\{0}
|k|2σ|φ̂(k)|2. (2.3)

Similarly, for σ ≥ 0, we define the inhomogeneous Sobolev space Hσ
per(T

2), by

Hσ
per(T

2) := {φ ∈ L2
per(T

2) : ‖φ‖Hσ <∞}, (2.4)

where

‖φ‖2Hσ := 4π2
∑

k∈Z2

(1 + |k|2)σ|φ̂(k)|2. (2.5)
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Let V0 ⊂ Z denote the set of trigonometric polynomials with mean zero over T2 and set

Vσ := V0
Hσ

, (2.6)

where the closure is taken with respect to the norm given by (2.5). Observe that the mean-zero

condition can be equivalently stated as φ̂(0) = 0. Thus, ‖· ‖Ḣσ and ‖· ‖Hσ are equivalent as

norms over Vσ. Moreover, by Plancherel’s theorem we have

‖φ‖Ḣσ = ‖Λσφ‖L2 .

Finally, for σ ≥ 0, we identify V−σ as the dual space (Vσ)
′ of Vσ , which can be characterized

as the space of all bounded linear functionals ψ on Vσ represented by the Fourier coefficients

ψ̂(k) with duality paring

〈ψ, φ〉 = 4π2
∑

k∈Z2\0
ψ̂(k) · φ̂(k) such that ‖ψ‖Ḣ−σ = 4π2

∑

k∈Z2\0
|k|−2σ|φ̂(k)| <∞.

Given our use of non-dimensional variables and the 2π spatial periodicity of our functions, the

Poincaré inequality may be written with a non-dimensional constant equal to one as

‖φ‖Ḣσ′ ≤ ‖φ‖Ḣσ for σ′ ≤ σ. (2.7)

Moreover, we have the following continuous embeddings

Vσ →֒ Vσ′ →֒ V0 →֒ V−σ′ →֒ V−σ, when 0 ≤ σ′ ≤ σ.

Remark 2.1 Since we will be working over Vσ and ‖· ‖Ḣσ , ‖· ‖Hσ determine equivalent

norms over Vσ, we will often denote ‖· ‖Ḣσ simply by ‖· ‖Hσ for convenience. Similarly, we will

often abuse notation and denote Lp
per(T

2) simply by Lp.

2.2 General interpolant observables

We will consider general interpolant observables Jh, which are defined as those which sa-

tisfy certain boundedness and approximation-of-identity properties. The canonical examples of

such observables include projection onto local spatial averages or projection onto finitely many

Fourier modes. It was shown in [28] that such projections do in fact satisfy the properties we

impose on Jh.

Let 0 < h < π
3 and 1 ≤ q ≤ p ≤ ∞. Let Jh : Lp(T2) → Lp(T2) be a linear operator

satisfying

sup
h>0

‖Jhφ‖Lp ≤ C‖φ‖Lp , (2.8)

‖Jhφ‖Lp ≤ Ch2(
1
p
− 1

q
)‖φ‖Lq , (2.9)

where C > 0 represents a constant independent of φ, h. Note that 1
p
− 1

q
< 0 when q < p in

which case the bound in (2.9) gets worse as h becomes smaller. In addition to (2.8)–(2.9), we

will also suppose that Jh satisfies the following approximation-of-identity properties

‖φ− Jhφ‖L2 ≤ Chβ‖φ‖Ḣβ and ‖φ− Jhφ‖Ḣ−β ≤ Chβ‖φ‖L2 , β ∈ (0, 1]. (2.10)
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We will also require Jh to satisfy some boundedness properties. We verify in Appendix B

that these properties hold for local spatial averages. They also hold for spectral projection, that

is, projection onto finitely many lowest Fourier modes (see Remark B.1). To state these boun-

dedness properties, we will adopt the following notation. For β1 and β2 non-negative integers we

let Dβ := ∂β1

1 ∂β2

2 where β1+β2 = β, while if βj ≥ 0 are real then Dβ := ∂
⌊β1⌋
1 ∂

⌊β2⌋
2 Λβ−⌊β1⌋−⌊β2⌋.

Here ⌊β⌋ represents the greatest integer less or equal β. Finally, if β ∈ (−2, 0), then Dβ := Λβ ,

i.e., the Riesz potential.

Now, given α ≥ 1, let ǫ(α) be as in Proposition B.1(v) when α ∈ [1, 2) and identically 0

otherwise. Let Cα > 0 be a sufficiently large constant, depending possibly on α, and define

CI(α, h) :=





Cα

(2π
h

)
, α < 1,

Cα

(2π
h

)2+|α|−ǫ(α)

, α ≥ 1.
(2.11)

We assume that

‖Jhφ‖Ḣρ(T2) ≤ CI(β, h)h
−(ρ−β)‖φ‖Ḣβ(T2), (ρ, β) ∈ [0,∞)× [0, 2), (2.12)

‖Jhφ‖Ḣρ(T2) ≤ Ch−ρ(hβ‖φ‖Ḣβ + ‖φ‖L2(T2)), (ρ, β) ∈ [0,∞)× (−2, 0], (2.13)

‖Jhφ‖Ḣρ(T2)

≤ CI(|ρ|, h)h−(ρ−β)‖φ‖Ḣβ(T2), (ρ, β) ∈ (−2, 0)× (−∞, 0], (2.14)

‖JhDβφ‖Ḣρ(T2)

≤ CI(|ρ|, h)h−(ρ+β−β′)‖φ‖Ḣβ′ (T2), (ρ, β, β′) ∈ (−2, 0)× (−2,∞)× (−∞, β], (2.15)

‖JhDℓφ‖Ḣρ(T2)

≤ CI(|ρ|, h)h−1−ρ−ℓ‖φ‖L1(T2), (ρ, ℓ) ∈ (−2, 0)× Z≥0. (2.16)

We again emphasize that the above properties are consistent with those satisfied by the

projection onto local spatial averages (see (B.11)–(B.12) in Appendix B). Furthermore, we

again point out that they are also consistent with those satisfied by the spectral projection, up

to possibly different constants (see Remarks 2.3 and B.1). For clarity of exposition, our analysis

will be performed with the constants detailed above, though the conclusions are also true for

Jh given by spectral projection.

Remark 2.2 We are able to prove other boundedness properties in Appendix B in addition

to the ones shown above. While our analysis requires us only to invoke properties (2.8)–

(2.16), the additional boundedness properties asserted in Proposition B.3 may find use in other

applications.

Remark 2.3 In the case where Jh is given by the Littlewood-Paley spectral projection, i.e.,

projection onto Fourier modes . 2
1
h , then we replace CI(α, h) everywhere above by CS(α, h)

according to the rule

CI(α, h)h
r 7→ CS(α, h)h

r :=

{
C, r ≥ 0,

Chr, r < 0,
and C̃S := C.
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Note that α = α(p) implicitly. One may thus refer to operators Jh with constants CI as “Type

I operators” and those with prefactors CS as “Spectral Type I operators”. Observe that in

general we have CS . CI , so all Spectral Type I operators are automatically Type I operators.

We further observe that the Type II operators defined in [2], see also [5], using nodal-point

measurements of the velocity field in physical space do not satisfy the above bounds.

Remark 2.4 Note that in the estimates we perform below, the constant C > 0 appearing

in (2.11) may change line-to-line when invoking the above properties. Nevertheless, it can be

fixed to be sufficiently large in the statement of the theorems where such constants appear.

2.3 Time-averaged interpolant observables

Suppose φ = φ(x, t). We define the time-averaged general interpolant operator Jδ
h, by

(Jδ
hφ)(x, t) :=

1

δ

∫ t−δ

t−2δ

(Jhφ)(x, s) ds. (2.17)

Due to the time-averaging, one must also control errors that arise from temporal deviations of

the time-average from the instantaneous value. Indeed, observe that by the mean value theorem

and by commuting ∂τ with Jh we have

φ− Jδ
hφ = (φ − Jhφ) +

1

δ

∫ t−δ

t−2δ

∫ t

s

Jh∂τφ(x, τ) dτ ds. (2.18)

We will make crucial use of (2.18) when we perform the a priori estimates.

Remark 2.5 It may seem more natural to represent blurred-in-time measurements at time

t by an average of the form

(Iδhφ)(x, t) :=
1

δ

∫ t+ δ
2

t− δ
2

(Jhφ)(x, s) ds.

However, in this case the corresponding a feedback term obtained by using Iδh(η) in place of

Jδ
h(η) in (1.2) would violate causality by introducing an integral over times in the future. We

emphasize that the same interpolant operator must be used in the feedback as used for the

measurements in order to maintain the property that g = θ for t ∈ (−δ, 0] implies η = θ for all

times t > 0 in the future. Therefore, the best we could do is insert the measurement Iδh(φ) into

the model delayed in time by δ
2 . This approach was taken in [6–7] for the Lorenz equations. In

the present work, an additional delay has been inserted into the definition of Jδ
hφ to make the

analysis more convenient. This allows the feedback control to be treated as a time-dependent

force, thereby transforming what would have been partial integro-differential equations into

merely partial differential equations. While any additional delay would achieve the same effect,

for simplicity we choose its order to be δ
2 which is the same as the delay already dictated by

causality.

2.4 Calculus inequalities

We will make use of the following bound for the fractional Laplacian, which can be found

for instance in [14, 16, 29].
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Proposition 2.1 Let p ≥ 2, 0 ≤ γ ≤ 2 and φ ∈ C∞(T2). Then

2

p
‖Λ γ

2 (φ
p
2 )‖2L2 ≤

∫

T2

|φ|p−2(x)φ(x)Λγφ(x) dx.

We will also make use of the following calculus inequality for fractional derivatives (cf.

[31–32] and references therein).

Proposition 2.2 Let φ, ψ ∈ C∞(T2), β > 0 and p ∈ (1,∞). Then we have that

‖Λβ(φψ)‖Lp ≤ C‖ψ‖Lp1‖Λβφ‖Lp2 + C‖Λβψ‖Lp3‖φ‖Lp4 ,

where 1
p
= 1

p1
+ 1

p2
= 1

p3
+ 1

p4
, and p2, p3 ∈ (1,∞), for a sufficiently large constant C > 0 that

depends only on σ, p, pi.

Finally, we will frequently apply the following interpolation inequality, which is a special

case of the Gagliardo-Nirenberg interpolation inequality and can be proven with Plancherel’s

theorem and the Cauchy-Schwarz inequality.

Proposition 2.3 Let φ ∈ Ḣβ
per(T

2) and 0 ≤ α ≤ β. Then

‖Λαφ‖L2 ≤ C‖Λβφ‖
α
β

L2‖φ‖
1−α

β

L2 , (2.19)

where C depends on α, β.

2.5 Well-posedness and Global attractor of the SQG equation

Let us recall the following well-posedness results of the SQG equation. In [18] it was shown

that global strong solutions exist and that weak solutions are unique in the class of strong

solutions.

Proposition 2.4 (Global existence) Let 1 < γ ≤ 2 and σ > 2− γ. Given T > 0, suppose

that θ0 ∈ Vσ and f satisfies

f ∈ L2(0, T ;Vσ−γ
2
) ∩ L1(0, T ;Lp

per(T
2)),

where 1− σ ≤ 2
p
< γ − 1. Then there is a weak solution θ of (1.1) such that

θ ∈ L∞(0, T ;Vσ) ∩ L2(0, T ;Vσ+ γ
2
).

Proposition 2.5 (Uniqueness) Let T > 0 and 1 < γ ≤ 2. Suppose that θ0 ∈ L2
per(T

2) ∩ Z
and f ∈ L2(0, T ;V−γ

2
). Then for p ≥ 1, q > 0 satisfying

1

p
+

γ

2q
=
γ − 1

2
,

there is at most one solution to (1.1) such that θ ∈ Lq(0, T ;Lp
per(T

2)).

Let us recall the following estimates for the reference solution θ (cf. [16, 29, 39]).

Proposition 2.6 Let γ ∈ (0, 2], σ > 2 − γ and θ0 ∈ Vσ, f ∈ Vσ− γ
2
∩ Lp

per(T
2). Then there

exists a constant C > 0 such that for any p ≥ 2 satisfying 1− σ < 2
p
< γ − 1, we have

‖θ(t)‖Lp ≤
(
‖θ0‖Lp − 1

C
FLp

)
e−Cκt +

1

C
FLp , FLp :=

1

κ
‖f‖Lp. (2.20)



730 M. S. Jolly, V. R. Martinez, E. J. Olson and E. S. Titi

Moreover, if θ0 ∈ L2
per(T

2) and f ∈ V− γ
2
, then any weak solution θ of (1.1) satisfies

‖θ(t)‖2L2 ≤ (‖θ0‖2L2 − F 2

H
−

γ
2
)e−κt + F 2

H
−

γ
2
, F

H
−

γ
2
:=

1

κ
‖f‖

H
−

γ
2
. (2.21)

It was shown in [29] for the subcritical range 1 < γ ≤ 2, that (1.1) has an absorbing ball

in Vσ and corresponding global attractor A ⊂ Vσ when σ > 2 − γ. In other words, there is a

bounded set B ⊂ Vσ characterized by the property that for any θ0 ∈ Vσ, there exists t0 > 0

depending on ‖θ0‖Hσ such that S(t)θ0 ∈ B for all t ≥ t0. Here {S(t)}t≥0 denotes the semigroup

of the corresponding dissipative equation.

Proposition 2.7 (Global attractor) Suppose that 1 < γ ≤ 2 and σ > 2 − γ. Let f ∈
Vσ− γ

2
∩ Lp

per(T
2), where 1− σ < 2

p
< γ − 1. Then (1.1) has an absorbing ball BHσ given by

BHσ := {θ0 ∈ Ḣσ
per : ‖θ0‖Hσ ≤ ΘHσ} (2.22)

for some ΘHσ <∞. Moreover, the solution operator S = Sf of (1.1) given by S(t)θ0 = θ(t) for

t ≥ 0 defines a semigroup in the space Vσ and possesses a global attractor A ⊂ Vσ, i.e., A is a

compact, connected subset of Vσ satisfying the following properties:

(1) A is the maximal bounded invariant set;

(2) A attracts all bounded subsets in Vσ in the topology of Ḣσ
per.

3 Standing Hypotheses and Statements of Main Theorems

We will work under the following assumptions for the remainder of the paper.

Standing Hypotheses Assume the following:

(H1) 1 < γ < 2;

(H2) σ ∈ (2− γ, γ];

(H3) p ∈ [1,∞] such that 1− σ < 2
p
< γ − 1;

(H4) f ∈ Vσ− γ
2
∩ Lp, time-independent;

(H5) θ−2δ ∈ BHσ ;

(H6) g ∈ C((−2δ, 0];Vmax{σ, γ2 }) ∩ L
2((−2δ, 0];Vσ+γ

2
);

(H7) 0 < h < π
4 .

Observe that (H1) expresses the subcritical range of dissipation, while (H2)–(H5) ensure

that we are in a regime of global strong solutions for (1.1) and that the global attractor exists.

Also observe that since γ < 2, the range for σ in (H2) covers the natural spatial regularity

class for strong solutions, e.g. Hγ .

On the other hand, from (H1)–(H5), Propositions 2.6–2.7 imply that

ΘL2 := sup
t>−2δ

‖θ(t)‖L2 <∞ and ΘLp := sup
t>−2δ

‖θ(t)‖Lp <∞. (3.1)

In particular, it immediately follows from (2.8) that

sup
t>−2δ

‖Jδ
hθ(t)‖2Lq ≤ CJΘ

2
Lq , q ∈ [1,∞], (3.2)
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and from (2.12) that

sup
t>−2δ

‖Jδ
hθ(t)‖Hσ ≤ CJΘHσ (3.3)

for some constant CJ > 0. Also, for 1 ≤ q ≤ ∞ and α ∈ R, let us define

ΓLq := sup
t∈(−2δ,0]

‖g(t)‖Lq and ΓHα := sup
t∈(−2δ,0]

‖g(t)‖Hα . (3.4)

Then for p given by (H3), the Sobolev embedding theorem and (H6) imply

ΓLp <∞, ΓHσ <∞ and Γ
H

γ
2
<∞. (3.5)

Finally, we give exact mathematical statements of our main results.

Theorem 3.1 Let θ be the unique global strong solution of (1.1) corresponding to initial

data θ−2δ having zero mean over T2. Then under the Standing Hypotheses, for all T > 0, there

exist a unique strong solution η ∈ L∞(0, T ; Ḣσ
per(T

2))∩L2(0, T ; Ḣ
σ+γ

2
per (T2)) satisfying (1.2) with

η(· , 0) = g(· , 0).

Theorem 3.2 Under the hypotheses of Theorem 3.1, there exist constants c0, c
′
0 > 0 such

that if h, µ satisfy

1

c′0

(ΘLp

κ

) γ

γ−1− 2
p ≤ µ

κ
≤ 1

c0
h−γ , (3.6)

and δ > 0 is chosen sufficiently small, depending on h, then the solution η given by (1.2) satisfies

‖η(t)− θ(t)‖2L2 ≤ O(e−λ0µ(t−2δ)), t > 2δ (3.7)

for some constant λ0 ∈ (0, 1).

Remark 3.1 Note that the condition that δ > 0 be sufficiently small can be described

precisely by simultaneously satisfying (4.7) and (5.7) below.

Remark 3.2 As we pointed out in Remark 2.3, since Spectral Type I operators satisfy all

the properties of Type I operators, both Theorem 3.1 and 3.2 are also valid for Spectral Type

I operators. In particular, they are valid when Jh is given by projection onto finitely many

Fourier modes.

Remark 3.3 The relationship between the full three-dimensional quasi-geostrophic equa-

tions and the SQG equation implies that being able to approximate θ by η, as in the conclusion

of Theorem 3.2, is the same as synchronizing the corresponding three-dimensional solutions in

which the potential vorticity is identically zero and the vertical motion eliminated. Therefore,

in a way analogous to the discussion in [28], our theorem provides an example where time-

averaged data collected on a two-dimensional surface is sufficient to obtain synchronization in

a three-dimensional domain.

Before we move on to the a priori analysis, we will set forth the following convention for

constants.
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Remark 3.4 In the estimates that follow below, c and C will generically denote positive

constants, which depend only on other non-dimensional scalar quantities, and may change line-

to-line in the estimates. We emphasize that in the estimates we perform below, the constants

c and C may change in magnitude from line-to-line, but as the equations were fully non-

dimensionalized from the beginning they will never carry any physical dimensions.

4 A Priori Estimates

4.1 Initial value problem and proof of Theorem 3.1

We recouch (1.2) as a sequence of initial value problems over consecutive time intervals. Once

we have defined the setting properly, we may immediately prove Theorem 3.1 by appealing to

Propositions 2.4–2.5.

Observe that owing to the delay in the interpolant operator Jδ
h, we must initialize the

averaging process. By (H1)–(H5) and Proposition 2.7, we may assume that θ is the strong

solution of (1.1) with initial data starting at t = −2δ such that θ−2δ ∈ BHσ .

For any k ≥ −2 set

I−2 := ∅, I−1 := (−2δ, 0] and δk := kδ, Ik := (δk, δk+1] for k ≥ 0. (4.1)

Let η(−1)(· , t) = g(· , t) for t ∈ I−1. Then we may express a solution η of

∂tη + κΛγη + v· ∇η = f − µJδ
h(η − θ), v = R⊥η, η(x, t)|t∈I−1 = g(x, t), (4.2)

as the sum

η(x, t) :=
∑

k≥−1

η(k)(x, t)χIk(t),

where for each k ≥ 0, η(k) satisfies

∂tη
(k) + κΛγη(k) + v(k)· ∇η(k) = f − µJδ

h(η
(k) − θ), t ∈ Ik,

v(k) = R⊥η(k), η(k)(x, t)|t∈Ik−1∪Ik−2
= η(k−1)(x, t).

(4.3)

Hence, over each interval Ik we may view the term Jδ
hη

(k) in (4.3) as a smooth, time-dependent

forcing term and (4.3) as an initial value problem over Ik with initial data η0(x) = η(x, δk).

The proof of Theorem 3.1 follows readily.

Proof of Theorem 3.1 We proceed by induction on k. For k = 0, from (H6) we have

that η(· , 0) = g(· , 0) ∈ Vσ. Since we assume the Standing Hypotheses, we have that Jδ
hg =

Jδ
hη

(0), Jδ
hθ ∈ L2(0, T ;Vσ− γ

2
) ∩ L1(0, T ;Lp

per(T
2)) holds for all T > 0 (by (2.8) and (2.12)),

so that we may apply Propositions 2.4–2.5 to deduce existence and uniqueness of a strong

solution η(0) over I0 to (4.3). Suppose unique strong solutions to (4.3) exist for all ℓ = 0, · · · , k.
Consider (4.3) over Ik+1. Observe that by hypothesis η(k+1)(· , δk+1) = η(k)(· , δk+1) ∈ Vσ and

Jδ
hη

(k+1), Jδ
hθ ∈ L2(δk−1, δk−1+T ;Vσ−γ

2
)∩L1(δk−1, δk−1+T ;L

p
per(T

2)) hold once again by (2.8)

and (2.12). Therefore, we apply Propositions 2.4–2.5 to guarantee existence and uniqueness of

a strong solution η(k+1) to (4.3) over Ik+1, completing the proof.
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In the remainder of Section 4 we establish uniform-in-time estimates for η in L2, Lp and

Hσ. As we will see, the synchronization property will rely crucially on these uniform estimates.

To obtain uniform Hσ estimates, we perform a bootstrap from L2 to Lp, then from Lp to Hσ.

Once we have collected the requisite uniform bounds, we proceed to Section 5 and the proof of

Theorem 3.2.

4.2 Uniform L2 estimates

In this section, we will ultimately obtain L2 estimates for the solution η of (4.2) that are

uniform in time. In this work, any bound of this type shall be referred to as a “good” bound.

The main result in this section is the “good” bound stated as Proposition 4.1 below. We

emphasize that the structure of the analysis in Subsections 4.2.2–4.2.4 will be mimicked in

Section 5 when we establish the synchronization property.

We begin by introducing some notation that will be convenient when expressing the neces-

sary bounds in our proofs. Let

R̃2
L2 :=

κ2

µ2
F 2

H
−

γ
2
+ CJΘ

2
L2 , R2

L2 :=
κ

µ
F 2

H
−

γ
2
+ CJΘ

2
L2 , M2

L2 := Γ2
2,1 + 8R2

L2 , (4.4)

where Γ2,k is the function of δ > 0 given by

Γ2,−1 := ΓL2 and Γ2
2,k := Γ2

2,k−1 + C
δµ2

κ
(Γ2

2,k−1 + R̃2
L2) for k ≥ 0. (4.5)

Note that Γ2,k and consequently M2
L2 are increasing functions of δ. Therefore, any upper

bounds given by the constants defined in (4.4) and (4.5) for a particular δ = δ0 continue to hold

when δ < δ0. We shall immediately make use of this property to show that the hypotheses on

δ in Proposition 4.1 stated below are not vacuous.

Proposition 4.1 There exist constants c0, c1 > 0, with c1 depending on c0, such that if

h, µ satisfy

µ

κ
≤ 1

c0
h−γ , (4.6)

and δ is chosen such that

δ ≤ 1

c1

hγ

κ
min

{
1, hγ

8R2
L2

(M2
L2 + R̃2

L2)
,
( h

2π

) 1

(1 + κ−1hγ−2)

RL2

(1 +M2
L2 +R2

L2)

}
(4.7)

as well as

δ ≤ 1

c1

( h

2π

)
min

{(µhγ
κ

) 1
2 h2

ML2

,
hγ

κ

}
, (4.8)

where R̃2
L2 , R2

L2 and M2
L2 are given in (4.4), then

‖η(t)‖2L2 ≤ (Γ2
2,1 − 8R2

L2)e−(µ
2 )(t−2δ) + 8R2

L2 for t ≥ 2δ (4.9)

and

κ

4

∫

Ik

‖η(s)‖2
H

γ
2
ds ≤ Γ2

2,1 + 8R2
L2 ≤M2

L2 for k ≥ 2. (4.10)
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Observe that both sides of the inequalities given by (4.7)–(4.8) depend on δ. This is, as

already mentioned, becauseM2
L2 depends on δ. However, sinceM2

L2 appears in the denominator

of the right-hand side and is an increasing function of δ, it is easy to see that there must be a

δ > 0 which satisfies both these inequalities.

To prove Proposition 4.1, we employ three preliminary lemmas. First, in Subsection 4.2.1

we establish bounds in L2 which are uniform in each time interval Ik, but ultimately depend

on k. Throughout this work we will refer to any bounds that depend on k as “rough” bounds.

Such bounds are insufficient on their own but needed in order to close estimates later. Then

in Subsection 4.2.2, we establish time-derivative estimates to control the temporal oscillations

that emanate from the feedback term (see Subsection 4.2.2). The third lemma is a non-local

Gronwall inequality that ensures uniform bounds provided that the window of time-averaging

is sufficiently small; its proof is deferred to Appendix A. This Gronwall inequality will be used

again to establish the synchronization property in Section 5. We finally prove Proposition 4.1

in Subsection 4.2.4.

Remark 4.1 We will often exchange the quantity µ for the quantity κh−γ via the relation

(4.6), in order to emphasize that δ and µ ultimately depend only on h (and ΘLp) alone.

4.2.1 Rough L2 estimates

We will first establish the following “rough” a priori bound. We omit most of the details,

though they can easily be gleaned from the proof of Proposition 4.1. An alternative form of

Lemma 4.1 is given by Corollary 4.1 stated below, which will be convenient to use in the proof

of Proposition 4.1 later.

Lemma 4.1 Let F
H

−
γ
2
,ΘL2 , R̃L2 be given by (2.21), (3.1), (4.4), respectively. There exists

a constant C0 > 0, independent of k, such that

‖η(t)‖2L2 + κ

∫ t

δk

‖η(s)‖2
H

γ
2
ds ≤ M̃2

L2(k, t), t ∈ Ik, k ≥ 0, (4.11)

where

M̃2
L2(k, t) := ‖η(δk)‖2L2 + C0

δµ2

κ

[
R̃2

L2 +
(

sup
s∈Ik−2∪Ik−1

‖η(s)‖2L2

)]
. (4.12)

Proof Suppose t ∈ Ik for some k ≥ 0. We perform standard energy estimates to obtain

d

dt
‖η‖2L2 + κ‖Λ γ

2 η‖2L2 ≤ κF 2

H
−

γ
2
+ C

µ2

κ
(‖Jδ

hθ‖2L2 + ‖Jδ
hη‖2L2). (4.13)

Observe that by the Cauchy-Schwarz inequality and (2.8) we have

‖Jδ
hη(t)‖2L2 ≤ C

(
sup

s∈Ik−2∪Ik−1

‖η(s)‖2L2

)
, t ∈ Ik.

Returning to (4.13) and applying these facts along with (3.2), we obtain

d

dt
‖η‖2L2 + κ‖η‖2

H
γ
2
≤

(
κF 2

H
−

γ
2
+ C

µ2

κ
Θ2

L2

)
+ C

µ2

κ

(
sup

s∈Ik−2∪Ik−1

‖η(s)‖2L2

)
. (4.14)
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Finally, by integrating (4.14) over [δk, t] for t ∈ Ik we arrive at

‖η(t)‖2L2 + κ

∫ t

δk

‖η(s)‖2
H

γ
2
ds

≤ ‖η(δk)‖2L2 + δ
µ2

κ

[(κ2
µ2
F 2

H
−

γ
2
+ CΘ2

L2

)
+ C

(
sup

s∈Ik−2∪Ik−1

‖η(s)‖2L2

)]
, (4.15)

which can be simplified to (4.11) using (4.4), as desired.

Corollary 4.1 Let k > 0. Suppose that for each 0 ≤ ℓ ≤ k, there exists Mℓ > 0 such that

‖η(t)‖2L2 + κ

∫ t

δk

‖η(s)‖2
H

γ
2
ds ≤Mℓ, t ∈ (−2δ, δℓ+1].

Then there exists a constant C0 > 0, independent of k, such that

‖η(t)‖2L2 + κ

∫ t

δk+1

‖η(s)‖2
H

γ
2
ds ≤Mk + C0

δµ2

κ
(R̃2

L2 +Mk), t ∈ Ik+1.

While δ can be chosen in these bounds so that the size of δµ2

κ
is small, this alone does not

suffice to obtain uniform-in-time bounds for ‖η(t)‖L2 upon iteration in k, which will be crucial

in establishing the synchronization property. Nevertheless, these “rough” bounds will be useful

in order to close our estimates and achieve uniform bounds later.

4.2.2 Control of temporal oscillations at fixed spatial scale

We recall from (2.18) that we will require estimates for the time-derivative ∂tη, but only

over length scales & h where h measures the spatial resolution of the observables.

Lemma 4.2 Let k > 0. Suppose there exists Mℓ > 0 such that

sup
t∈(−2δ,δℓ]

‖η(t)‖L2 ≤Mℓ−1 for each 0 ≤ ℓ ≤ k + 2. (4.16)

Let c0 > 0 be any constant such that

µhγ

κ
≤ 1

c0
. (4.17)

Then there exists a constant C0 > 0, depending on c0, but independent of k, such that

‖(Jh∂tη)(t)‖2
H

−
γ
2
≤ C0

(2π
h

)2 κ2

hγ

(
1 +

1

κ

1

h2−γ

)2

(1 +M2
k +R2

L2)2 (4.18)

holds for all t ∈ (−2δ, δk+1], and

‖(Jh∂tη)(t)‖2
H

−
γ
2
≤ C0

(2π
h

)2

κ2‖η(t)‖2
H

γ
2
+ C0

(2π
h

)2M2
k+1

h4−γ
‖η(t)‖2L2

+ C0

(2π
h

)2 κ2

hγ
(M2

k +R2
L2) (4.19)

holds for all t ∈ Ik+1.
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Proof By (H1) we have γ
2 < 1. Therefore, by (2.11), see also (B.16), we have

CI

(γ
2
, h

)
= C

(2π
h

)
.

Now, applying Jh to (1.2), using the fact that v is divergence free, and then taking the H−γ
2 -

norm we have

‖Jh∂tη‖
H

−
γ
2
≤ κ‖JhΛγη‖

H
−

γ
2
+ ‖Jh∇· (vη)‖

H
−

γ
2

+ ‖Jhf‖
H

−
γ
2
+ µ‖Jδ

hη‖H−
γ
2
+ µ‖Jδ

hθj‖H−
γ
2
. (4.20)

By (H1), (H7), (2.15), (2.21), (3.1) and (4.16) we may estimate

κ‖JhΛγη(t)‖
H

−
γ
2
≤ C

(2π
h

)
κh−

γ
2 ‖η(t)‖L2

≤ C
(2π
h

)
κh−

γ
2Mk, t ∈ (−2δ, δk+1],

κ‖JhΛγη(t)‖
H

−
γ
2
≤ C

(2π
h

)
κ‖η(t)‖

H
γ
2
, t ∈ Ik+1,

‖Jhf‖
H

−
γ
2
≤ C

(2π
h

)
κF

H
−

γ
2
,

µ‖Jδ
hη(t)‖H−

γ
2
≤ C

(2π
h

)
µh

γ
2

(
sup

s∈(−2δ,δk+1]

‖η(s)‖L2

)

≤ C
(2π
h

)
µh

γ
2Mk, t ∈ (−2δ, δk+2],

µ‖Jδ
hθ(t)‖H−

γ
2
≤ C

(2π
h

)
µh

γ
2 ΘL2 , t > −2δ.

For the quadratic term apply (2.16), the Cauchy-Schwarz inequality and the fact that R⊥ is a

bounded operator in L2 to estimate

‖Jh∇· (vη)‖
H

−
γ
2
≤ C

(2π
h

)
h−2+ γ

2 ‖vη‖L1 ≤ C
(2π
h

)
h−2+ γ

2M2
k , t ∈ (−2δ, δk+1],

and

‖Jh∇· (vη)‖
H

−
γ
2
≤ C

(2π
h

)
h−2+ γ

2Mk+1‖η(t)‖L2 , t ∈ Ik+1.

Upon collecting these estimates, returning to (4.20), we apply (3.1) and (4.4) to obtain

‖(Jh∂tη)(t)‖
H

−
γ
2
≤ C

(2π
h

)(
1 +

µhγ

κ

)2 κ

h
γ
2

(
1 +

1

κ

1

h2−γ

)
(1 +Mk +RL2)2

for t ∈ (−2δ, δk+1], as well as

‖(Jh∂tη)(t)‖
H

−
γ
2
≤ C

(2π
h

)
κ‖η(t)‖

H
γ
2
+ C

(2π
h

)Mk+1

h2−
γ
2

‖η(t)‖L2

+ C
(2π
h

) κ

h
γ
2

(
1 +

µhγ

κ

)2

(Mk +RL2)

for t ∈ Ik+1. Note that in collecting the terms we have used the fact that all constants and

variables have been non-dimensionalized so that, for example, terms such as 1 + 1
κh2−γ and

1 +Mk +RL2 make sense. Thus, upon squaring both sides of these inequalities, then applying

Young’s inequality and (4.17), we arrive at (4.18) and (4.19).



Data Assimilation Using Blurred-in-Time Observations 737

4.2.3 Growth during initial transient period

Due to the delay, we must quantify bounds over the initial transient period during which

the feedback effects from large scales can amplify the solution. Consider the definition of Γ2,k

for k = −1, 0, 1, · · · given by (4.5). Observe that

Γ2,k−1 ≤ Γ2,k, k ≥ 0. (4.21)

By (3.5), Lemma 4.1 and Corollary 4.1 we have

‖η(t)‖2L2 + κ

∫ t

δk

‖η(s)‖2
H

γ
2
ds ≤ Γ2

2,k, t ∈ Ik, k = −1, 0, 1.

It then follows from (4.21) that

‖η(t)‖2L2 + κ

∫ t

δk

‖η(s)‖2
H

γ
2
ds ≤ Γ2

2,1 ≤ Γ2
2,1 + ρ, t ∈ Ik, k = −1, 0, 1 (4.22)

for any ρ ≥ 0.

As we will see, the choice of ρ will be dictated by the estimates (4.37) and (4.41) below. In

anticipation of this, consider the third definition of (4.4) given by

M2
L2 := Γ2

2,1 + 8R2
L2 . (4.23)

Then (4.22) implies

‖η(t)‖2L2 +
κ

2

∫ t

δk

‖η(s)‖2
H

γ
2
ds ≤M2

L2 , t ∈ Ik, k = −1, 0, 1. (4.24)

Therefore, the conclusion of Proposition 4.1 is that there is a choice of ρ such that the bound

given by (4.24) propagates beyond the initial transient period, provided that δ is chosen small

enough. In particular, Proposition 4.1 provides a more precise version of (4.24), which not only

allows this bound to propagate through all times t > 2δ, but in such a way that it eventually

“forgets” the initializing function g as well.

We are now ready to prove Proposition 4.1.

4.2.4 Proof of Proposition 4.1

We proceed by induction on k. As we shall see shortly, by Lemma A.1(ii), it suffices to show

for k ≥ 2 and t ∈ Ik that

‖η(t)‖2L2 +
κ

2

∫ t

δk

e−(µ
2 )(t−s)‖η(t)‖2

H
γ
2
ds

≤ (‖η(δk)‖2L2 − 8R2
L2)e−(µ

2 )(t−δk) + 8R2
L2 . (4.25)

We proceed in three steps. Step I proves the base case when k = 2 while Step II provides

the induction step thereby completing the induction. Finally, Step III uses (4.25) along with

Lemma A.1(ii) to obtain (4.9)–(4.10) which finishes the proof.

I Base case Let k = 2 and suppose t ∈ I2. By Corollary 4.1 and (4.24) we have

‖η(t)‖2L2 ≤ Γ2
2,1 + C

δµ2

κ
(Γ2

2,1 + R̃2
L2) = Γ2

2,2, t ∈ I2.
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It then follows from (4.24) and the second condition of (4.7) that

‖η(t)‖2L2 ≤ Γ2
2,2 ≤M2

L2, t ∈ (−2δ, 3δ]. (4.26)

Multiply (4.3) by η, integrate over T2, and apply (2.18) to obtain

1

2

d

dt
‖η‖2L2 + κ‖Λ γ

2 η‖2L2 + µ‖η‖2L2 = I1 + I2 + I3 + I4,

where

I1 =

∫
fη dx, I2 = µ

∫
(η − Jhη)η dx, I4 = µ

∫
(Jδ

hθ)η dx

and

I3 =
µ

δ

∫ ∫ t−δ

t−2δ

∫ t

s

[Jh∂τη(τ)]η(t) dτdsdx.

Observe that by (2.10), Cauchy-Schwarz inequality, Young’s inequality and (3.2) we have

I1 ≤ 1

κ
‖Λ−γ

2 f‖2L2 +
κ

4
‖Λ γ

2 η‖2L2 ,

I2 ≤ Cµh
γ
2 ‖Λ γ

2 η‖L2‖η‖L2 ≤ κ

8
‖Λ γ

2 η‖2L2 + Chγ
µ2

κ
‖η‖2L2

and

I4 ≤ µ‖Jδ
hθ‖L2‖η‖L2 ≤ CµΘ2

L2 +
µ

4
‖η‖2L2.

Further estimating I1, I2 and I4 using (4.6), (3.2) and (4.4) gives

1

2

d

dt
‖η‖2L2 +

5κ

8
‖Λ γ

2 η‖2L2 +
µ

2
‖η‖2L2 ≤ µR2

L2 + I3. (4.27)

To estimate I3, apply Fubini’s theorem, Parseval’s theorem, the Cauchy-Schwarz inequality,

(2.8) and Young’s inequalities in the following sequence of estimates,

I3 ≤ µ

δ

∫ t−δ

t−2δ

∫ t

s

∣∣∣
∫
(Jh∂τη(x, τ))(η(x, t)) dx

∣∣∣dτ ds

≤ Cµ
1

δ

∫ t−δ

t−2δ

(t− s)
( ∫ t

s

‖Jh∂τη(τ)‖2
H

−
γ
2
dτ

) 1
2

ds‖η(t)‖
H

γ
2

≤ Cµ
(1
δ

∫ t−δ

t−2δ

(t− s)

∫ t

t−2δ

‖Jh∂τη(τ)‖2
H

−
γ
2
dτ ds

) 1
2 ‖η(t)‖

H
γ
2

≤ 1

2

(
C
δµ2

κ

∫ t

t−2δ

‖Jh∂sη(s)‖2
H

−
γ
2
ds

)
+
κ

8
‖η(t)‖2

H
γ
2
. (4.28)

Let

S(t) := C
δµ2

κ

∫ t

t−2δ

‖Jh∂sη(s)‖2
H

−
γ
2
ds. (4.29)

Observe that S(t) = S0 + S1 + S2(t), where for ℓ ≥ 0, we have defined

Sℓ(t) := Cδ
µ2

κ

∫ t

δℓ

‖Jh∂sη(s)‖2
H

−
γ
2
ds and Sℓ := Sℓ(δℓ+1). (4.30)
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Returning to (4.27) and applying (4.28) and (4.6), we have

d

dt
‖η(t)‖2L2 + κ‖η(t)‖2

H
γ
2
+ µ‖η(t)‖2L2 ≤ 2

c0

κ

hγ
R2

L2 + S0 + S1 + S2(t). (4.31)

To obtain bounds on S0 and S1 define

O1(δ
2) := Cδ2

κ3

h3γ

(2π
h

)2(
1 +

1

κ

1

h2−γ

)2

(1 +M2
L2 +R2

L2)2, (4.32)

so that, upon simplifying (4.18) with (4.6), we obtain from Lemma 4.2 and (4.26) that

max{S0,S1} ≤ O1(δ
2). (4.33)

To bound S2(t) for t ∈ I2, observe that by Lemma 4.2 and (4.26) we have

S2(t) ≤ C1(h)δ

∫ t

δ2

‖η(s)‖2L2 ds+ C2(h)δ

∫ t

δ2

‖η(s)‖2
H

γ
2
ds+O2(δ

2), (4.34)

where, upon simplifying (4.19) with (4.6), we have defined

C1(h) := Cκ
(2π
h

)2M2
L2

h4+γ
, C2(h) := C

κ3

h2γ

(2π
h

)2

and

O2(δ
2) := Cδ2

κ3

h3γ

(2π
h

)2

(M2
L2 +R2

L2).

Combining (4.33) and (4.34) then gives

S(t) ≤ C1(h)δ

∫ t

δ2

‖η(s)‖2
H

γ
2
ds+ C2(h)δ

∫ t

δ2

‖η(s)‖2L2 ds+O1(δ
2) +O2(δ

2). (4.35)

Observe that since O2(δ
2) ≤ O1(δ

2), it follows from the third condition on δ in (4.7) that

O1(δ
2) +O2(δ

2) ≤ 2

c0

κ

hγ
R2

L2 .

Thus, upon returning to (4.28), we have

I3 ≤ C1(h)δ

∫ t

δ2

‖η(s)‖2
H

γ
2
ds+ C2(h)δ

∫ t

δ2

‖η(s)‖2L2 ds+
2

c0

κ

hγ
R2

L2 +
κ

8
‖η(t)‖2

H
γ
2
.

By applying the resulting bounds on S(t) in (4.31), we have for t ∈ I2 that

d

dt
‖η‖2L2 + µ‖η‖2L2 + κ‖η‖2

H
γ
2

≤ 4

c0

κ

hγ
R2

L2 + C1(h)δ

∫ t

δ2

‖η(s)‖2L2 ds+ C2(h)δ

∫ t

δ2

‖η(s)‖2
H

γ
2
ds. (4.36)

Now observe that (4.8) ensures that (A.2) holds in Lemma A.1 with

a = µ, b = κ, A = C1, B = C2, F =
4

c0

κ

hγ
R2

L2 .



740 M. S. Jolly, V. R. Martinez, E. J. Olson and E. S. Titi

Applying Lemma A.1(i) then gives

‖η(t)‖2L2 +
κ

2

∫ t

δ2

e−(µ
2 )(t−s)‖η(s)‖2

H
γ
2
ds

≤ (‖η(δ2)‖2L2 − 8R2
L2)e−(µ

2 )(t−δ2) + 8R2
L2 , t ∈ I2, (4.37)

which finishes the proof of the base case.

II Induction step Suppose k ≥ 2 and for each ℓ = 2, · · · , k and t ∈ Iℓ that

‖η(t)‖2L2 +
κ

2

∫ t

δℓ

e−(µ
2 )(t−s)‖η(s)‖2

H
γ
2
ds ≤ (‖η(δℓ)‖2L2 − 8R2

L2)e−(µ
2 )(t−δℓ) + 8R2

L2 . (4.38)

We show the bound corresponding to ℓ = k + 1 holds for t ∈ Ik+1.

As already demonstrated, our choice of δ has been chosen so that the hypotheses of Lem-

ma A.1 hold for the differential inequality (4.36). These hypotheses are also satisfied for the

modified inequality obtained by replacing δ2 by δℓ for ℓ = 2, · · · , k which we write as

d

dt
‖η‖2L2 + µ‖η‖2L2 + κ‖η‖2

H
γ
2

≤ 4

c0

κ

hγ
R2

L2 + C1(h)δ

∫ t

δℓ

‖η(s)‖2L2 ds+ C2(h)δ

∫ t

δℓ

‖η(s)‖2
H

γ
2
ds (4.39)

for t ∈ Iℓ. Now, dropping the integral in (4.38) and rewriting the last term yields

‖η(t)‖2L2 ≤ ‖η(δℓ)‖2L2e−(µ
2 )(t−δℓ) + 8R2

L2

∫ t

δℓ

2

µ
e−(µ

2 )(t−s)ds for t ∈ Iℓ,

so that by iterating part (ii) of Lemma A.1 for ℓ = 2, · · · , k we obtain

‖η(t)‖2L2 ≤ ‖η(δ2)‖2L2e−(µ
2 )(t−δ2) + 8R2

L2

∫ t

δ2

2

µ
e−(µ

2 )(t−s)ds for t ∈ (δ2, δk+1].

Since ‖η(δ2)‖2L2 ≤ Γ2
2,1 by (4.22), we immediately obtain (4.9) and in particular that

‖η(t)‖2L2 ≤ Γ2
2,1 + 8R2

L2 =M2
L2 , t ∈ (δ2, δk+1]. (4.40)

By Corollary 4.1 it follows that

‖η(t)‖2L2 ≤M2
L2 + C

δµ2

κ
(M2

L2 + R̃2
L2), t ∈ Ik+1.

Thus, by the second condition in (4.7) we have

‖η(t)‖2L2 +
κ

4

∫ t

δk+1

‖η(s)‖
H

γ
2
ds ≤M2

L2, t ∈ Ik+1. (4.41)

Now proceed exactly as in the base case, this time making use of the bounds (4.40)–(4.41).

Indeed, we may derive (4.31) as before. Then, since t ∈ Ik+1, we may split the time integral

over three regions

∫ t

t−2δ

≤
∫

Ik−1

+

∫

Ik

+

∫ t

δk+1

.
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Over Ik−1 and Ik, Lemma 4.2 and (4.41) imply (4.33) for Sk−1 and Sk. Over Ik+1, we have

(4.41), so that Lemma 4.2 implies (4.34) for Sk+1(t). We then deduce (4.35) for t ∈ Ik+1, which

leads to the differential inequality (4.39) with ℓ = k+1. Applying Lemma A.1(i) as before then

yields

‖η(t)‖2L2 +
κ

2

∫ t

δk+1

e−(µ
2 )(t−s)‖η(s)‖2

H
γ
2
ds

≤ (‖η(δk+1)‖2L2 − 8R2
L2)e−(µ

2 )(t−δk+1) + 8R2
L2 (4.42)

for t ∈ Ik+1 thus completing the induction.

III Finish the proof We have already obtained (4.9) for all values of k by iterating

Lemma A.1 (ii) as part of the induction step. To obtain (4.10) drop the first term in (4.25) and

keep the integral. Consequently, we may then deduce that

κ

2
e−(µ

2 )(t−δk)

∫ t

δk

‖η(s)‖2
H

γ
2
ds ≤ (‖η(δk)‖2L2 − 8R2

L2)e−(µ
2 )(t−δk) + 8R2

L2 , t ∈ Ik.

Since the first condition in (4.6)–(4.7) together imply e(
µ
2 )δ ≤ 2, it follows from (4.4) and (4.22)

that

κ

4

∫

Ik

‖η(s)‖2
H

γ
2
ds ≤ ‖η(δk)‖2L2 + 8R2

L2(e(
µ
2 )δ − 1) ≤M2

L2 . (4.43)

This completes the proof.

Remark 4.2 We point out that the energy estimates in Lp and Hσ will not proceed along

these lines, the reason being that even if one were to do so, the resulting bounds would still not

be independent of h. So long as these bounds are uniform-in-time, however, we will be able to

use them strengthen the topology of convergence in which the synchronization takes place via

interpolation. We will thus be content with rather modest bounds in Lp and Hσ.

4.3 L2 to Lp uniform bounds

We will prove the following “good” bound.

Proposition 4.2 Let FLp ,ΘLp ,ML2 be given by (2.20), (3.1) and (4.4), respectively. Define

R̃p
Lp(h) := F p

Lp +Θp
Lp + C̃(h, p)pMp

L2, (4.44)

where

C̃(h, p)p := 1 + h−(p−2). (4.45)

Let c0 > 0 be any constant. Suppose that

µhγ

κ
≤ 1

c0
. (4.46)

Then there exists a constant C0 > 0, depending on c0, such that

‖η(t)‖pLp ≤
(
Γp
Lp −

(C0

hγ

)p

R̃p
Lp

)
e−κt +

(C0

hγ

)p

R̃p
Lp , t ≥ 0.
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In particular,

‖η(t)‖Lp ≤ M̃Lp , t ≥ 0,

where

M̃Lp(h)p := Γp
Lp +

(C0

hγ

)p

R̃p
Lp(h). (4.47)

Proof Observe that by (3.5), we have

‖η(t)‖Lp ≤ ΓLp , t ∈ I−1.

For t ≥ 0, the evolution of ‖η(t)‖Lp is obtained by multiplying (4.2) by η|η|p−2, integrating

over T2, applying Proposition 2.1, Hölder’s inequality, Young’s inequality and (2.20) to obtain

1

p

d

dt
‖η‖pLp +

2κ

p
‖Λ γ

2 (η
p
2 )‖2L2 ≤ Cpκ

p
F p
Lp + Cpκ

p

(µ
κ

)p

(‖Jδ
hη‖pLp

+ ‖Jδ
hθ‖pLp) +

κ

2p
‖η‖pLp . (4.48)

Applying Hölder’s inequality, the Fubini-Tonelli theorem, (2.9) with q = 2 and Proposition 4.1

we have

‖Jδ
hη‖pLp ≤ 1

δ

∫ t−δ

t−2δ

‖Jhη(s)‖pLpds ≤ Cph2−pMp

L2 . (4.49)

Similarly, by (3.2), ‖Jδ
hθ‖pLp ≤ Cp

JΘ
p
Lp . Upon defining

〈η p
2 〉T2 =

1

4π2

∫

T2

η
p
2 dx,

observe that

‖η‖pLp − (4π2)−1‖η‖p
L

p
2
= ‖η p

2 − 〈η p
2 〉T2‖2L2 ≤ C(2π)γ‖Λ γ

2 (η
p
2 )‖2L2 . (4.50)

Note that the constant (2π)γ carries the units of Lγ ; however, as L = 2π throughout this paper

we avoid keeping track of the dimensions in this case, and simply denote the prefactor C(2π)γ

by C. By interpolation, Young’s inequality and Hölder’s inequality we have

‖η‖p
L

p
2
≤ ‖η‖

p(p−2)
p−1

Lp ‖η‖
p

p−1

L1 ≤ Cp
(p− 2

p− 1

)p−2

Mp

L2 + π2‖η‖pLp. (4.51)

Upon combining (4.49)–(4.51), (4.45) and returning to (4.48), we arrive at

d

dt
‖η‖pLp + κ‖η‖pLp ≤ Cp κ

hγp

(µhγ
κ

)p

(F p
Lp + C̃(h, p)pMp

L2 +Θp
Lp).

An application of (4.46) and Gronwall’s inequality completes the proof.

4.4 Uniform Hσ-estimates

As in the previous section, we obtain “good”Hσ-bounds without appealing to time-derivative

estimates.
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Proposition 4.3 Let ML2 be given by (4.23) and let ΘHσ , M̃Lp be given by (2.22), (4.47),

respectively. Define

Ξ̃Lp(h) :=
(M̃Lp(h)

κ

) σ

γ−1− 2
p , (4.52)

as well as

F
H

σ−
γ
2
:=

1

κ
‖f‖

H
σ−

γ
2

and R2
Hσ := F 2

H
σ−

γ
2
+Θ2

L2. (4.53)

Let c0 > 0 be the constant given in Proposition 4.1. Suppose that

µhγ

κ
≤ 1

c0
. (4.54)

Then there exists a constant C0 > 0, depending on c0, such that

‖η(t)‖2Hσ ≤ Γ2
Hσ e−κt + C0

[(
Ξ̃

2σ+γ
σ

Lp +
1

h2γ

)
M2

L2 +
1

h2γ
R2

Hσ

]
(1− e−κt)

holds for t ≥ 0 and σ ≤ γ
2 , and

‖η(t)‖2Hσ ≤ Γ2
Hσ e−κt + C0

[(
Ξ̃

2σ+γ
σ

Lp +
1

h2σ+γ

)
M2

L2 +
1

h2σ+γ
+

1

h2σ+γ
R2

Hσ

]
(1 − e−κt)

holds for t ≥ 0 and σ > γ
2 .

Proof Suppose t ≥ 0. We multiply (4.2) by Λ2ση and integrate over T2 to obtain

1

2

d

dt
‖η‖2Hσ + κ‖η‖2

H
σ+

γ
2

= −
∫
v· ∇ηΛ2ση dx+

∫
fΛ2ση dx+ µ

∫
Jδ
hηΛ

2ση dx+ µ

∫
Jδ
hθΛ

2ση dx

= J1 + J2 + J3 + J4. (4.55)

We estimate J1 with Hölder’s inequality, interpolation and Young’s inequality as in [18, 33],

and invoke (4.52) to obtain

|J1| ≤ C‖Λσ+ γ
2 η‖

2σ−(γ−1− 2
p
)

σ

L2 ‖Λ γ
2 η‖

γ−1− 2
p

σ

L2 ‖η‖Lp ≤ κ

10
‖η‖2

H
σ+

γ
2
+ CΞ̃2

Lp(κ‖η‖2
H

γ
2
).

Note that (H1)–(H3) are needed for the interpolation. We interpolate once more to obtain

‖η‖
H

γ
2
≤ C‖η‖

γ
2

σ+
γ
2

H
σ+

γ
2
‖η‖

σ

σ+
γ
2

L2 .

Thus, by Young’s inequality, we have

CΞ̃2
Lp(κ‖η‖2

H
γ
2
) ≤ Cκ‖η‖

γ

σ+
γ
2

H
σ+

γ
2
(Ξ̃2

Lp‖η‖
2σ

σ+
γ
2

L2 ) ≤ κ

10
‖η‖2

H
σ+

γ
2
+ CκΞ̃

2+ γ
σ

Lp M2
L2.

For J2, we make the familiar estimate through Parseval’s theorem, the Cauchy-Schwarz

inequality, and then (4.53) to obtain

|J2| ≤ κF 2

H
σ−

γ
2
+

κ

10
‖η‖2

H
σ+

γ
2
.
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For J3 and J4, we consider two cases: σ ≤ γ
2 and σ > γ

2 .

Case σ ≤ γ

2
It follows from Fubini’s theorem, Hölder’s inequality, (2.8) and the Poincarè

inequality that

∣∣∣
∫
Jδ
hηΛ

2ση dx
∣∣∣ ≤ 1

δ

∫ t−δ

t−2δ

‖Jhη(s)‖L2‖η(t)‖H2σ ds

≤
(

sup
s∈Ik−2∪Ik−1

‖η(s)‖L2

)
‖η(t)‖

H
σ+

γ
2

≤ CML2‖η(t)‖
H

σ+
γ
2
.

Thus, by Young’s inequality we have

|J3| ≤ C
µ2

κ
M2

L2 +
κ

10
‖η‖2

H
σ+

γ
2
.

Similarly, since θ−2δ ∈ BL2 by (H5), by (2.22) we have

|J4| ≤ C
µ2

κ
Θ2

L2 +
κ

10
‖η‖2

H
σ+

γ
2
.

Therefore, upon returning to (4.55), then applying the estimates for J1 through J4 and the

Poincaré inequality gives

d

dt
‖η‖2Hσ + κ‖η‖2Hσ ≤ 8κF 2

H
σ−

γ
2
+ CκΞ̃

2+ γ
σ

Lp M2
L2 + C

µ2

κ
(M2

L2 +Θ2
L2).

Then the Gronwall inequality implies

‖η(t)‖2Hσ +

∫ t

0

e−κ(t−s)‖η(s)‖2
H

σ+
γ
2
ds

≤ Γ2
Hσe−κt + C

[(
Ξ̃
2+ γ

σ

Lp +
1

h2γ

)
M2

L2 +
1

h2γ
R2

Hσ

]
(1− e−κt),

as desired.

Case σ >
γ

2
Observe that by Fubini’s theorem, Plancherel’s theorem, Hölder’s inequality,

(2.12), Proposition 4.1 and Young’s inequality we have

|J3| ≤ µ‖Jδ
hη(t)‖Hσ−

γ
2
‖η(t)‖

H
σ+

γ
2

≤ µ
(1
δ

∫ t−δ

t−2δ

‖Jhη(s)‖
H

σ−
γ
2
ds

)
‖η(t)‖

H
σ+

γ
2

≤ Cµh−(σ− γ
2 )
(

sup
s∈Ik−2∪Ik−1

‖η(s)‖L2

)
‖η(t)‖

H
σ+

γ
2

≤ C
µ

h2σ
µhγ

κ
M2

L2 +
κ

10
‖η(t)‖2

H
σ+

γ
2
.

Similarly, since θ−2δ ∈ BL2 by (H5), by (2.22) we have

|J4| ≤ C
µ

h2σ
µhγ

κ
Θ2

L2 +
κ

10
‖η(t)‖2

H
σ+

γ
2
.

Therefore, upon returning to (4.55), then applying the estimates for J1 through J4 and the

Poincaré inequality gives

d

dt
‖η‖2Hσ + κ‖η‖2Hσ ≤ 8κF 2

H
σ+

γ
2
+ CκΞ̃

2+ γ
σ

Lp M2
L2 + C

µ2

h2σ−γκ
(M2

L2 +Θ2
L2).
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Then the Gronwall inequality and (4.54) implies

‖η(t)‖2Hσ +

∫ t

0

e−κ(t−s)‖η(s)‖2
H

σ+
γ
2
ds

≤ Γ2
Hσe−κt + C

[
F 2

H
σ−

γ
2
+
(
Ξ̃

2σ+γ
σ

Lp +
1

h2σ+γ

)
M2

L2 +
1

h2σ+γ
Θ2

L2

]
(1 − e−κt),

as desired.

5 Proof of Theorem 3.2

We are left to establish the synchronization of η to the reference solution θ. We point out

that the uniform L2 bounds will be used in a crucial way to establish suitable control on the time

derivative and guarantee synchronization in a rather weak topology, i.e., the H− 1
2 topology. We

then make use of the uniform Lp and Hσ-bounds in order to strengthen the regularity of the

convergence of the synchronization by interpolation.

Consider the difference ζ := η − θ, where θ ∈ BHσ and η is the unique strong solution of

(4.2). Observe that (3.5) ensures that ζ is defined for t ∈ I−1. The evolution of ζ is given by
{
∂tζ + κΛγζ + w· ∇ζ + w· ∇θ + u· ∇ζ = −µJδ

hζ,

w = R⊥ζ, ζ(t) = g(t)− θ(t), t ∈ (−2δ, 0].
(5.1)

It will be convenient to work at the regularity level of the stream function of ζ. Thus, we define

ψ := −Λ−1ζ. (5.2)

5.1 Synchronization

Our main claim is the following.

Proposition 5.1 Let ΘHσ ,ΘL2 ,ΘLp and ML2 be given by (2.22), (3.1) and (4.4). Define

ΞLp :=
(ΘLp

κ

) γ
2

γ−1− 2
p , Ψ := 4

√
2ML2 , (5.3)

C̃1(h) := κ3
(2π
h

)2( 1

h1+3γ
+

1

κ2
1

h4+γ

)
(1 +M2

L2 +Θ2
L2) (5.4)

and

C̃2(h) :=
(2π
h

)2 1

h4+γ
(M2

L2 +Θ2
L2). (5.5)

There exist constants c0, c
′
0, c1, c2 ≥ 1 such that if h, µ satisfy

1

c′0
Ξ2
Lp ≤ µ

κ
≤ 1

c0
h−γ , (5.6)

and δ is chosen to satisfy

1

κ

δ2C̃1(h) + δC̃2(h)

Ξ2
Lp

≤ c′0
c1

and δ ≤ 1

c
1
2
2

min
{
c

1
2
1 ,
hγ

κ
,

κ
1
2

C̃2(h)
1
2

}
, (5.7)

then

‖ψ(t)‖2
H

1
2
≤ Ψ2e−(µ

4 )(t−δ), t ≥ 2δ. (5.8)

To prove this, we proceed as in Subsection 4.2.4 and make some preparatory estimates.
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5.1.1 Control of temporal oscillations at a fixed spatial scale

Lemma 5.1 Let ΘL2 and ML2 be given by (3.1) and (4.23), respectively. Let c0 > 0 be a

constant. Suppose that

µhγ

κ
≤ 1

c0
, (5.9)

then there exists a constant C0 > 0, depending on c0, such that

‖∂tJhζ(t)‖2
H

−
γ
2
≤ C0

(2π
h

)2 κ2

h1+γ

(1
δ

∫ t−δ

t−2δ

‖ψ(s)‖2
H

1
2
ds

)

+ C0κ
2
(2π
h

)2

(M2
L2 +Θ2

L2)
( 1

hγ+1
+

1

κ2
1

h4−γ

)
‖ψ‖2

H
1
2

+ C0

(2π
h

)2

(M2
L2 +Θ2

L2)h−(4−γ)‖ψ‖2
H

γ+1
2

for t > −2δ. (5.10)

Proof Let t > −2δ. Applying Jh to (5.1) and taking the H−γ
2 -norm yields

‖∂tJhζ‖
H

−
γ
2
≤ κ‖JhΓγζ‖

H
−

γ
2
+ µ‖JhJδ

hζ‖H−
γ
2

+ ‖Jh∇ · (wζ)‖
H

−
γ
2
+ ‖Jh∇ · (wθ)‖

H
−

γ
2
+ ‖Jh∇ · (uζ)‖

H
−

γ
2
.

Observe that by (H1), we have γ
2 < 1, so that by (B.16), we have

CI

(γ
2
, h

)
= C

(2π
h

)
.

By (2.14), (3.1), (5.2), the Cauchy-Schwarz inequality and (5.9) we have

κ‖JhΛγζ(t)‖
H

−
γ
2
≤ Cκ

(2π
h

)
h

γ
2 −γ− 1

2 ‖Λγζ‖
H

−γ− 1
2

≤ Cκ
(2π
h

)
h−

γ+1
2 ‖ψ‖

H
1
2
,

µ‖JhJδ
hζ(t)‖H−

γ
2
≤ µ

δ

∫ t−δ

t−2δ

‖Jhζ(s)‖
H

−
γ
2
ds

≤ C
(2π
h

)
µh

γ−1
2

(1
δ

∫ t−δ

t−2δ

‖ζ(s)‖
H

− 1
2
ds

)

≤ C
(2π
h

)( µ

δ
1
2

)
h

γ−1
2

(∫ t−δ

t−2δ

‖ψ(s)‖2
H

1
2
ds

) 1
2

≤ C
(2π
h

) κ

h
1+γ
2

(1
δ

∫ t−δ

t−2δ

‖ψ(s)‖2
H

1
2
ds

) 1
2

.

To estimate the nonlinear terms, we apply (2.16), the Cauchy-Schwarz inequality, (3.1),

Proposition 4.1, (5.2), interpolation and Young’s inequality. For instance, we have

‖Jh∇· (wζ)‖
H

−
γ
2
≤ C

(2π
h

)
h−2+ γ

2 ‖(R⊥ζ)ζ‖L1

≤ C
(2π
h

)
h−2+ γ

2 ‖ζ‖2L2

≤ C
(2π
h

)
h−2+ γ

2 (ML2 +ΘL2)(‖ψ‖
H

γ+1
2

+ ‖ψ‖
H

1
2
).
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Similarly

‖Jh∇· (wθ)‖
H

−
γ
2
, ‖Jh∇· (uζ)‖

H
−

γ
2
≤ C

(2π
h

)
h−2+ γ

2 ΘL2(‖ψ‖
H

γ+1
2

+ ‖ψ‖
H

1
2
).

Therefore, by summing each of these estimates, we arrive at (5.10) as desired.

5.1.2 Growth during transient period

We introduce the following notation: Let α ∈ (0, 1) and ℓ ∈ Z, then define

δαℓ := αℓδ.

Observe that by the Poincarè inequality, (4.22) implies

‖ψ(t)‖2
H

1
2
+ κ

∫ t

Ik

e−(µ
2 )(t−s)‖ψ(s)‖2

H
1
2
ds ≤M2

L2e(
µ
2 )δ ≤ 32M2

L2, t ∈ Ik, k ≥ −1.

Clearly, one has

M2
L2e(

µ
2 )δ ≤M2

L2e(5
µ
2 )δe

−(µ
2 )(t−δ k

2
) ≤ 32M2

L2e
−(µ

2 )(t−δ k
2
)
, t ∈ Ik, k = −1, 0, 1.

Then

‖ψ(t)‖2
H

1
2
+
κ

2

∫ t

δk

e−(µ
2 )(t−s)‖ψ(s)‖2

H
γ+1
2

ds

≤ Ψ2e
−(µ

2 )(t−δ k
2
)
, t ∈ Ik, k = −1, 0, 1. (5.11)

We are now ready to prove the synchronization property.

5.2 Proof of Proposition 5.1

Proof of Proposition 5.1 We proceed by induction on k with the base case, k = 1, as

established by (5.11). Suppose that the following holds:

‖ψ(t)‖2
H

1
2
+
κ

2

∫ t

δk

e−(µ
2 )(t−s)‖ψ(s)‖2

H
γ+1
2

ds ≤ Ψ2e
−(µ

2 )(t−δ k
2
)

(5.12)

for t ∈ Iℓ and ℓ = 0, · · · , k, where Ψ is given by (5.3). We show that this corresponding bound

holds over Ik+1 as well.

Let t ∈ Ik+1, k ≥ 1. Multiply (5.1) by ψ and integrate over T2 to obtain

1

2

d

dt
‖ψ‖2

H
1
2
+ κ‖ψ‖2

H
γ+1
2

+ µ‖ψ‖2
H

1
2

=

∫
(u· ∇ψ)ζdx + µ

∫
(ζ − Jhζ)ψdx + µ

∫
(Jhζ − Jδ

hζ)ψ dx

= K1 +K2 +K3. (5.13)

Note that we have used the orthogonality property, i.e., R⊥f · Rf = 0.

We refer to [18, 39] to estimate K1. In particular, by Hölder’s inequality, the Calderòn-

Zygmund theorem and Sobolev embedding, H
1
p →֒ Lq, we have

|K1| ≤ C‖u‖Lp‖ζ‖Lq‖∇ψ‖Lq ≤ C‖θ‖Lp‖ψ‖2
H

1+ 1
p
, (5.14)
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where 1
p
+ 2

q
= 1. Since p > 2

γ−1 by (H3), by interpolation we have

‖ψ‖
H

1+ 1
p
≤ C‖ψ‖

1+ 2
p

γ

H
γ+1
2

‖ψ‖
γ−1− 2

p
γ

H
1
2

.

Thus, by Young’s inequality we obtain

|K1| ≤
κ

6
‖ψ‖2

H
γ+1
2

+ CκΞ2
Lp‖ψ‖2

H
1
2
,

where ΞLp is given by (5.3). We estimate K2 with the Parseval’s theorem, the Cauchy-Schwarz

inequality, (2.10), (5.2), interpolation and Young’s inequality to get

|K2| ≤ µ‖ζ − Jhζ‖
H

−
γ
2
‖ψ‖

H
γ
2

≤ µh
γ
2 ‖ψ‖H1‖ψ‖

H
γ
2

≤ µh
γ
2 ‖ψ‖

H
γ+1
2

‖ψ‖
H

1
2

≤ κ

6
‖ψ‖2

H
γ+1
2

+ C
µ2hγ

κ
‖ψ‖2

H
1
2
.

For K3, similar to (4.28), we estimate

|K3| ≤ Cδ
µ2

κ

∫ t

t−2δ

‖∂sJhζ(s)‖2
H

−
γ
2
ds+

κ

4
‖ψ‖2

H
γ
2

≤ Cδ
µ2

κ

∫ t

t−2δ

‖∂sJhζ(s)‖2
H

−
γ
2
ds+

κ

6
‖ψ‖2

H
γ+1
2
.

Returning to (5.13) and combiningK1 throughK3, then applying (5.6) with c0 and c
′
0 sufficiently

large, we get

d

dt
‖ψ‖2

H
1
2
+ κ‖ψ‖2

H
γ+1
2

+ µ‖ψ‖2
H

1
2
≤ S̃(t), (5.15)

where

S̃(t) := Cδ
κ

h2γ

∫ t

t−2δ

‖Jh∂sψ(s)‖2
H

−
γ
2
ds.

Observe that S̃(t) ≤ S̃k−1 + S̃k + S̃k+1(t), where

S̃ℓ(t) := Cδ
κ

h2γ

∫ t

δℓ

‖Jh∂sψ(s)‖2
H

−
γ
2
ds and S̃ℓ := S̃ℓ(δℓ+1).

Let ℓ ∈ {k − 3, k − 2, k − 1, k}. By the second condition in (5.7), with c2 chosen large enough,

we have δµ ≤ C−1(ln 4), so that Lemma A.2 guarantees that

1

δ

∫

Iℓ

‖ψ(s)‖2
H

1
2
ds ≤ CΨ2e

−(µ
2 )(t−δ ℓ′

2

)
, ℓ′ ∈ (ℓ, ℓ+N ], N = 3, (5.16)

as well as

κ

∫

Iℓ

‖ψ(s)‖2
H

γ+1
2

ds ≤ CΨ2e
−(µ

2 )(t−δ ℓ′
2

)
, ℓ′ ∈ (ℓ, ℓ+N ], N = 3. (5.17)
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Thus, by Lemma 5.1 and (5.12), (5.16)–(5.17) we have

S̃(t) ≤ Cδ2C̃1(h)
k∑

ℓ=k−3

1

δ

∫

Iℓ

‖ψ(s)‖2
H

1
2
ds+ CδC̃2(h)

k∑

ℓ=k−1

κ

∫

Iℓ

‖ψ(s)‖2
H

γ+1
2

ds

+ CδC̃1(h)

∫ t

δk+1

‖ψ(s)‖2
H

1
2
ds+ CδC̃2(h)κ

∫ t

δk+1

‖ψ(s)‖2
H

γ+1
2

ds

≤ Õ(δ)Ψ2e
−(µ

2 )(t−δ k
2
)

+ Õ1(δ)

∫ t

δk+1

‖ψ(s)‖2
H

1
2
ds+ Õ2(δ)κ

∫ t

δk+1

‖ψ(s)‖2
H

γ+1
2

ds, (5.18)

where C̃1(h), C̃2(h) are given by (5.4), (5.5) and

Õ(δ) := C(Õ1(δ
2) + Õ2(δ)), Õ1(δ) := δC̃1(h), Õ2(δ) := CδC̃2(h) (5.19)

for some constant C > 0.

Returning to (5.15) and combining (5.18) gives

d

dt
‖ψ‖2

H
1
2
+ κ‖ψ‖2

H
γ+1
2

+ µ‖ψ‖2
H

1
2

≤ Õ(δ)Ψ2e
−(µ

2 )(t−δ k
2
)

+ Õ1(δ)

∫ t

δk+1

‖ψ(s)‖2
H

1
2
ds+ Õ2(δ)

(
κ

∫ t

δk+1

‖ψ(s)‖2
H

γ+1
2

ds
)
.

Hence, provided that c1, c2 are chosen sufficiently large with c2 depending on c1, it follows from

(5.7) that Lemma A.1(i) applies over t ∈ Ik+1 with

a = µ, b = κ, A = C(δC̃1(h) + C̃2(h)), B = CC̃2(h), F = Õ(δ)Ψ2e
−(µ

2 )(t−δ k
2
)
.

In particular, Lemma A.1(i) implies

‖ψ(t)‖2
H

1
2
+
κ

2

∫ t

δk+1

e−(µ
2 )(t−s)‖ψ(s)‖

H
γ+1
2

ds

≤ ‖ψ(δk+1)‖2
H

1
2
e−(µ

2 )(t−δk+1) + Õ(δ)Ψe
−(µ

2 )(t−δ k
2
)
(t− δk+1).

By (5.12), we have

‖ψ(δk+1)‖2
H

1
2
e−(µ

2 )(t−δk+1) ≤ Ψ2e
−(µ

2 )(δk+1−δ k
2
)
e−(µ

2 )(t−δk+1) = Ψ2e
−(µ

2 )(t−δ k
2
)
, t ∈ Ik+1.

Also, we have

Õ(δ)Ψe
−(µ

2 )(t−δ k
2
)
(t− δk+1) ≤ δÕ(δ)Ψe

−(µ
2 )(t−δ k

2
)
.

Since

e
−(µ

2 )(t−δ k
2
)
= e−(µ

4 )δe
−(µ

2 )(t−δ k+1
2

)
,

it follows that

‖ψ(t)‖2
H

1
2
+
κ

2

∫

δk+1

e−(µ
2 )(t−s)‖ψ(s)‖2

H
γ+1
2

ds

≤ Ψ2(1 + δÕ(δ))e−( µ
4 )δe

−(µ
2 )(t−δ k+1

2

)
, t ∈ Ik+1. (5.20)

Observe that (5.7) with c1 chosen sufficiently large ensures 1 + δÕ(δ) ≤ e(
µ
4 )δ. This establishes

(5.12) for k+1. Through Lemma A.1(ii), we may iterate this bound to deduce (5.8), as desired.
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5.3 Proof of Theorem 3.2

Under the Standing Hypotheses, Theorem 3.1 guarantees a unique, global strong solution η

of (4.2). Let c0 denote the maximum among all the constants, c0, c
′
0, appearing in Propositions

4.1 and 5.1. Then let c1, c2 denote the maximum among all the c1, c2 appearing in those

propositions as well (possibly choosing c2 larger). Suppose that µ, h satisfy

1

c′0
Ξ2
Lp ≤ µ

κ
≤ 1

c0
h−γ . (5.21)

Choose δ so that (4.7), (5.7) are satisfied, and is chosen smaller than

1

c1

( h

2π

)
min

{ h
γ
2

(c′0)
1
2

ΞLp

h2

ML2

,
hγ

κ

}
.

Then (5.21) implies that (4.8) holds as well. Thus, upon applying Propositions 4.1 and 5.1, η

satisfies

‖η(t)− θ(t)‖
H

− 1
2
≤ O(e−(µ

4 )(t−2δ)), t > 2δ.

Observe that Propositions 2.7–4.3 then imply that

sup
t>−2δ

‖η(t)− θ(t)‖Hσ ≤ M̃Hσ (h) + ΘHσ ,

where

M̃Hσ (h) := Γ2
Hσ + C0

[(
Ξ̃

2σ+γ
σ

Lp +
1

h2σ+γ

)
M2

L2 +
1

h2σ+γ
+

1

h2σ+γ
R2

Hσ

]

for some sufficiently large constant C0 > 0. Therefore, for each σ′ < σ, by interpolation, there

exists a constant λ0 = λ0(σ
′) ∈ (0, 1) such that

‖η(t)− θ(t)‖Hσ′ ≤ O(e−λ0µ(t−2δ)), t > 2δ.

Choosing σ′ = 0, yields the desired convergence in L2.

5.4 Concluding remarks

Depending on the type of measurement, the size of the averaging window that effectively

blurs the observations in time may be quite different. For example, radiometers and hot-wire

anemometers may produce data with averages in the microsecond range. Velocities obtained

from mechanical weather-vane anemometers may be averaged with respect to a time window

measured in seconds, while velocity data obtained from the Lagrangian trajectories of buoys

placed in the ocean is likely to include time averages measured in hours if not days. Observa-

tions of temperatures are similar. As we saw, it is important for our analysis that the size of

the time-averaging window is not too large. Intuitively speaking, the length of the averaging

window should be smaller than any dynamically relevant timescales in the flow. Numerical

computations involving the Lorenz system (cf. [6]) show that synchronization occurs when the

averaging window is of size δ = 0.25 which, poetically speaking, is about ten times smaller

than the time it takes to travel around one wing of the butterfly. In the case of the fluids, we

conjecture that the averaging window should be at least ten times smaller than the turnover
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time of the smallest physically relevant eddy. Alternatively, the largest averaging window such

that our data assimilation algorithm leads to full recovery of the observed solution could be

interpreted as a definition of the smallest physically relevant time scale.

We reiterate that a main motivation to consider a more realistic representation of physical

observations is the reason for considering time averages. The additional δ delay introduced into

equations (1.2) helps close the estimates in the analysis while being of the same magnitude as

the δ
2 delay dictated by causality considerations in the feedback controller (see Remark 2.5).

In practice, such a delay may also be used to advance an initial condition already obtained by

data assimilation for a short time into the future to increase the stability of further predictions.

However, this idea must be left for a different study.

A Appendix

To obtain the uniform estimates, we invoked a non-local Gronwall’s inequality, which ensured

such bounds provided that the non-local term was sufficiently small.

Lemma A.1 Let Φ,Ψ, F be non-negative, locally integrable functions on (t0, t0+δ] for some

t0 ∈ R and δ > 0 such that

d

dt
Φ+ aΦ + bΨ ≤ F +Aδ

∫ t

t0

Φ(s) ds+Bδ

∫ t

t0

Ψ(s) ds, t ∈ (t0, t0 + δ) (A.1)

for some a, b, A,B > 0. Suppose that δ, a, c satisfy

δ(e(
a
2 )δ − 1) ≤ a

4
min

{ a
A
,
b

B

}
, (A.2)

where we use the convention that a
A

= ∞, b
B

= ∞ if A = 0, B = 0, respectively. Then the

following hold:

(i) For all t ∈ (t0, t0 + δ] :

Φ(t) +
b

2

∫ t

t0

e−( a
2 )(t−s)Ψ(s) ds ≤ e−(a

2 )(t−t0)Φ(t0) +

∫ t

t0

e−( a
2 )(t−s)F (s) ds. (A.3)

(ii) If Φ satisfies

Φ(t) ≤ e−(a
2 )(t−δ0)Φ(δ0) +

∫ t

δ0

e−( a
2 )(t−s)F (s) ds, t ∈ (δ0, t0] (A.4)

for some δ0 < t0, then (A.4) persists over t ∈ (t0, t0 + δ].

Proof Multiplying by the factor e(
a
2 )κt, then integrating over [t0, t], we obtain

Φ(t) +
a

2

∫ t

t0

e−(a
2 )(t−s)Φ(s) ds+ b

∫ t

t0

e−( a
2 )(t−s)Ψ(s) ds

≤ e−( a
2 )(t−t0)Φ(t0) +

∫ t

t0

e−( a
2 )(t−s)F (s) ds

+Aδ

∫ t

t0

e−( a
2 )κ(t−s)

∫ s

t0

Φ(τ) dτ ds+Bδ

∫ t

t0

e−( a
2 )κ(t−s)

∫ s

t0

Ψ(τ) dτ ds.
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Observe that

a

2

∫ t

t0

e−( a
2 )(t−s)Φ(s) ds ≥ a

2
e−( a

2 )(t−t0)

∫ t

t0

Φ(s) ds,

Aδ

∫ t

t0

e−(a
2 )(t−s)

∫ s

t0

Φ(τ) dτ ds ≤ 2Aδ

a
(1− e−( a

2 )(t−t0))

∫ t

t0

Φ(τ) dτ.

Similarly

b

2

∫ t

t0

e−( a
2 )(t−s)Ψ(s) ds ≥ b

2
e−( a

2 )(t−t0)

∫ t

t0

Ψ(s) ds,

Bδ

∫ t

t0

e−(a
2 )(t−s)

∫ s

t0

Ψ(τ) dτ ds ≤ 2Bδ

b
(1 − e−(a

2 )(t−t0))

∫ t

t0

Ψ(s) ds.

It follows that

a

2

∫ t

t0

e−( a
2 )(t−s)Φ(s) ds− cδ

∫ t

t0

e−( a
2 )(t−s)

∫ s

t0

Φ(τ) dτ ds

≥ a

2

[
1− 4Aδ

a2
(e(

a
2 )(t−t0) − 1)

]
e−( a

2 )(t−t0)

∫ t

t0

Φ(s) ds ≥ 0,

provided that the first condition in (A.2) holds. This also holds with b, B, ψ, replacing a,A,Φ,

respectively, provided the second condition in (A.2) holds. This implies (A.3).

Now assume that (A.1) holds over (t0, t0 + δ) and that (A.4) holds over [δ0, t0], for some

δ0 > 0. Then applying (A.4) at t0 to (A.3) we have

Φ(t) ≤ Φ(δ0)e
−( a

2 )(t−δ0) +

∫ t0

δ0

e−(a
2 )(t−s)F (s) ds+

∫ t

t0

e−(a
2 )(t−s)F (s) ds,

which simplifies to (A.4), as desired.

We also made use of the following lemma in order to control feedback effects that enter the

present instant through a past time interval and ultimately, ensure synchronization (see (5.15)).

Lemma A.2 Let ℓ ≥ −1 and N > 0. Let δ > 0 and define δℓ := ℓδ and Iℓ := (δℓ, δℓ+1]. Let

Φ,Ψ be non-negative, locally integrable functions. Suppose that for some ℓ ≥ −1, there exist

constants a, b,Φ0 > 0, independent of ℓ,N , such that

Φ(t) + b

∫ t

δℓ

e−(a
2 )(t−s)Ψ(s) ds ≤ Φ0e

−( a
2 )(t−δ ℓ

2
)
, t ∈ Iℓ. (A.5)

If δ satisfies

δ <
c

a
(A.6)

for some constant c > 0, then there exists a constant CN > 0 such that

1

δ

∫

Iℓ

Φ(s) ds ≤ CNΦ0e
−(a

2 )(t−δ ℓ′
2

)
, ℓ′ ∈ (ℓ, ℓ+N ] (A.7)

and

b

∫

Iℓ

Ψ(s) ds ≤ CNΦ0e
−(a

2 )(t−δ ℓ′
2

)
, ℓ′ ∈ (ℓ, ℓ+N ]. (A.8)
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Proof Observe that by the mean value theorem

∫

Iℓ

Φ(s) ds ≤ Φ0

∫ δℓ+1

δℓ

e
−( a

2 )(s−δ ℓ
2
)
ds

= Φ0e
( a
2 )δ ℓ

2
2

a
(e−( a

2 )δℓ − e−( a
2 )δℓ+1)

= Φ0e
( a
2 )δ ℓ

2 e−( a
2 )δℓ+1

2

a
(e(

a
2 )δ − 1)

= Φ0e
−( a

2 )δ ℓ
2 e−(a

2 )δ(1−θ)δ

for some 0 < θ < 1, depending on δ.

By assumption on ℓ′, ℓ, and the fact that t ≤ δℓ′+1, we have

e
−( a

2 )δ ℓ
2 = e

−( a
2 )(t−δ ℓ′

2

)
e
−( a

2 )δ ℓ
2 e

( a
2 )(t−δ ℓ′

2

)

≤ e
−( a

2 )(t−δ ℓ′
2

)
e
( a
2 )(δ ℓ′

2

−δ ℓ
2
)
e(

a
2 )δ

≤ e(
a
2 )δ(1+

N
2 )e

−(a
2 )(t−δ ℓ′

2

)
. (A.9)

Thus, by letting CN := e(
c
2 )(1+

N
2 ), (A.6) and (A.9) imply (A.7).

On the other hand, observe that

b

∫ t

δℓ

e−(a
2 )(t−s)Ψ(s) ds ≥ e−( a

2 )(t−δℓ)b

∫ t

δℓ

Ψ(s) ds.

Upon application of (A.5), we have

b

∫ t

δℓ

Ψ(s) ds ≤ e(
a
2 )(t−δℓ)Φ0e

−(a
2 )(t−δ ℓ

2
)
= Φ0e

−(a
2 )δ ℓ

2 , t ∈ Iℓ.

Thus, by (A.9) we have

b

∫

Iℓ

Ψ(s) ds ≤ CNe
−( a

2 )(t−δ ℓ′
2

)
,

and we are done.

B Appendix

B.1 Partition of unity

Let us briefly recall the partition of unity constructed in [2] and used in [28]. To this end,

we define for φ ∈ L1(T2),

〈φ〉 := 1

4π2

∫

T2

φ(x) dx. (B.1)

LetN > 0 be a perfect square integer and partition Ω into 4N squares of side-length h = π√
N
.

Let J = {0,±1,±2, · · · ,±(
√
N − 1),−

√
N}2 and for each α ∈ J , define the semi-open square

Qα = [ih, (i+ 1)h)× [jh, (j + 1)h), where α = (i, j) ∈ J .
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Let Q denote the collection of all Qα, i.e.,

Q := {Qα}α∈J .

Suppose that N ≥ 9 and ǫ = h
10 . For each α = (i, j) ∈ J , let us also define the augmented

squares, Q̂α and Qα(ǫ), by

Q̂α := [(i − 1)h, (i+ 2)h]× [(j − 1)h, (j + 2)h] and Qα(ǫ) := Qα +B(0, ǫ), (B.2)

so that Qα ⊂ Qα(ǫ) ⊂ Q̂α for each α ∈ J , and the “core” Cα(ǫ), by

Cα(ǫ) := Qα(ǫ) \
⋃

α′ 6=α

Qα′(ǫ) 6= ∅, α ∈ J .

Then there exists a collection of functions {ψα} satisfying the properties in Proposition B.1.

Note that we will use the convention that when β is a positive integer, then Dβ = ∂β1

1 ∂β2

2 , where

β1+β2 = β and βj ≥ 0 are integers, while if β > 0 is not an integer then Dβ = ∂
[β1]
1 ∂

[β2]
2 Λβ−[β],

where [β] = [β1] + [β2], and finally, if β ∈ (−2, 0), then Dβ = Λβ.

Proposition B.1 Let N ≥ 9, h := L√
N

and ǫ := h
10 . The collection {ψα}α∈J forms a

smooth partition of unity satisfying

(i) 0 ≤ ψ̃α ≤ 1 and spt ψ̃α ⊂ (Qα(ǫ) + (2πZ)2);

(ii) ψ̃α = 1, for all x ∈ (Cα(ǫ) + (2πZ)2) and
∑
α∈J

ψ̃α(x) = 1, for all x ∈ R2;

(iii) c1h
2
p ≤ ‖ψ̃α‖Lp(T2) ≤ c2h

2
p , for all p ∈ [1,∞), for some constants c1, c2 > 0; in

particular
(

h
2π

)2 ≤ 〈ψ̃α〉 ≤ c
(

h
2π

)2
, for some constant c > 1;

(iv) sup
α∈J

‖ψ̃α‖Ḣβ(T2) . h1−β, for all β > −1;

(v) sup
α∈J

‖ψ̃α‖Ḣβ(T2) .
(
2π
h

)1−β−ǫ(|β|)
h1−β, for all β ∈ (−2,−1], for some ǫ ∈ (1, 2), where

the suppressed constant depends on β;

(vi) sup
α∈J

‖ΛβDkψα‖L∞(T2) . h−k−β , for all β ∈ [0, 1), k ≥ 0 integer.

Property (iii) was exploited in [28], but only in the case p = 2. We observe here, however,

that it also holds for any p ∈ [1,∞) since IQα
≤ ψ̃α ≤ 1 and spt ψ̃α ⊂ (Qα(ǫ) + (2πZ)2). On

the other hand, property (iv) for β ≥ 0 was sufficient for the purposes in [28]. We will show

here that it also holds β ∈ (−2, 0), i.e., property (v) as well as the L∞ estimate (vi). For this,

we will appeal to the following elementary fact:

(Λβ(φ(λ· )))(x) = λβ(Λβφ)(λx), x ∈ T2, λ > 0, (B.3)

where we define

φ(λ· )(x) := φ(λx).

The relation (B.3) can be seen easily by appealing to the Fourier transform. Due to the subtleties

of working with periodic functions, we include the details in Lemma B.1 below. To this end,

let us define

〈φ, ψ〉L2(Ω) :=

∫

Ω

φ(x)ψ(x) dx.
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Let us also denote the Fourier transform on T2, i.e., for functions which are periodic with period

2π in x, y, by

F(φ)(k) =
1

4π2

∫

T2

e−ik·xφ(x) dx,

and by Fλ the Fourier transform on λ−1T2, for λ > 0, i.e., for functions which are periodic with

period λ−12π in x, y, by

(Fλφ)(k̃) =
λ2

4π2

∫

λ−1T2

e−ik̃·xφ(x) dx, k̃ ∈ λZ2.

Lemma B.1 Let β ∈ (−2, 2]. Then

(i) 〈φ, ψ〉L2(T2) = λ2〈φ(λ· ), ψ(λ· )〉L2(λ−1T2), for λ > 0.

(ii) Λβφ(λ· )(x) = λβ(Λβφ)(λx), for λ > 0, and any β ∈ R, provided that φ ∈ Z.

Proof The first property follows by a change of variables. Now observe that if φ ∈
C∞

per(T
2) ∩ Z, then φ(λ· ) ∈ C∞

per(λ
−1T2) ∩ Z with period 2πλ−1 in x, y, where Z is as in

(2.1). Let k̃ = λk, for k ∈ Z2. Then

Fλ(Λ
βφ(λ· ))(k̃) = λ2

4π2

∫

λ−1T2

eik̃·x|k̃|βφ(λx) dx

= λβ
1

4π2

∫

T2

e−ik·x|k|βφ(x) dx = λβF(Λβφ)(k).

It follows that for x ∈ λ−1T2, we have

Λβφ(λ· )(x) =
∑

k̃∈λZ2

eik̃·xFλ(Λ
βφ(λ· ))(k̃) = λβ

∑

k∈Z2

eik·(λx)F(Λβφ)(k) = λβ(Λβφ)(λx).

Let us now return to the proof of Proposition B.1(v)–(vii). For this, let

Ψ̃α(x) = ψ̃α(hx), (B.4)

and Ψα = Ψ̃α −
(

h
2π

)2 ∫
h−1T2 Ψ̃α(x) dx, so that ψα(x) = Ψα(h

−1x) and 〈Ψα〉 = 0. Moreover,

observe that Ψ̃α is supported in a square of area . 1.

Proof of Proposition B.1(iv) through (vi).

Proof of (iv) for β ∈ (−1, 0). For convenience, let β > 0. By Lemma B.1(ii), we have

‖ψ̃α‖Ḣ−β(T2) = ‖Λ−β(Ψ̃α(h
−1· ))‖L2(T2) = hβ‖(Λ−βΨ̃α)(h

−1· )‖L2(T2)

= hβ+1‖Λ−βΨ̃α‖L2(h−1T2). (B.5)

It follows from the Hardy-Littlewood-Sobolev inequality that

‖Λ−βΨ̃α‖L2(h−1T2) ≤ C‖Ψ̃α‖
L

2
1+β (h−1T2)

≤ C.

We see now that from (B.5) we have

‖ψ̃α‖Ḣ−β(T2) ≤ Chβ+1, β ∈ (0, 1)
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with constant independent of α and h, as desired.

Proof of (v). Let β ∈ [1, 2). We estimate by duality. Indeed, let χ ∈ Ḣβ(T2) such that

‖χ‖Ḣβ(T2). Then since χ ∈ Z, by Parseval’s theorem we have

〈ψ̃α, χ〉L2(T2) = 〈ψα, χ〉L2(T2) = 〈Λ−βψα,Λ
βχ〉L2(T2).

Let q > 2
2−β

, so that q ∈ (2,∞), and let q∗ ∈ (1, 2) be its Sobolev conjugate, i.e., 1
q
= 1

q∗
− β

2 .

Let ǫ = 2
q∗

and q′ denote the Hölder conjugate of q. Observe that 1 < q′ < 2 < q < ∞. Then

by Hölder’s inequality (B.4), and the Hardy-Littlewood-Sobolev inequality, we have

|〈ψ̃α, χ〉L2(T2)| ≤ ‖Λ−βψα‖Lq(T2)‖Λβχ‖Lq′(T2)

≤ (2π)
2
q′

−1
hβ+

2
q ‖Λ−βΨα‖Lq(h−1T2)‖Λβχ‖L2(T2)

≤ C
(2π
h

)1− 2
q

h1+β‖Ψα‖Lq∗ (T2)‖χ‖Ḣβ(T2),

≤ C
(2π
h

)1+β−ǫ(β)

h1+β ,

where for the last inequality, we made use of the fact that |Ψ̃α| . 1 in h−1T2 and Ψ̃α is

supported in a ball of area ∼ 1. Thus

‖ψ̃α‖Ḣ−β(T2) ≤ C
(2π
h

)1+β−ǫ(β)

h1+β , β ∈ [1, 2),

as desired.

Proof of (vi). The result is trivial when β = 0 and k > 0 simply by rescaling and observing

that Dkψ̃α is still supported in Qα(ǫ).

Suppose that β ∈ (0, 1). Now observe that for x ∈ T2, Lemma B.1(ii) implies that

(Λβψ̃α)(x) = cβ
∑

k

p.v.

∫

T2

ψ̃α(x) − ψ̃α(y)

|x− y − 2πk|2+β
dy

=
cβ
hβ

∑

k

p.v.

∫

h−1T2

Ψ̃α(h
−1x)− Ψ̃α(y)

|x
h
− y − 2π

h
k|2+β

dy = h−β(ΛβΨα)(h
−1x). (B.6)

Since ‖∆Ψα‖L∞(h−1T2) ≤ C, this settles the case β = 2. Since L∞ is invariant under dilations

and Ψ̃α is 2πh−1-periodic in x, y, it suffices to consider

ΛβΨα(x) = cβ
∑

k

p.v.

∫

h−1T2

Ψ̃α(x)− Ψ̃α(y)

|x− y − 2π
h
k|2+β

dy

= cβp.v.

∫

R2

Ψ̃α(x) − Ψ̃α(y)

|x− y|2+β
dy, x ∈ h−1T2.

Let us consider two cases: x /∈ 2h−1Qα and x ∈ 2h−1Qα.

If x /∈ 2h−1Qα ∩ h−1T2, then Ψ̃α(x) = 0 and |x− y| ≥ 2. Thus

|ΛβΨα(x)| ≤ C‖Ψ̃‖L∞

∫

|y|≥2

dy

|y|2+β
≤ C.
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If x ∈ 2h−1Qα ∩ h−1T2, then |x− y| ≤ 2 and we have

( ∫
|x−y|≤2
|y|≤1

+

∫
|x−y|≤2
|y|≥1

) |Ψ̃α(x) − Ψ̃α(y)|
|x− y|2+β

dy

≤ C‖∇Ψα‖L∞

∫

|y|≤1

dy

|y|1+β
+ C‖Ψα‖L∞

∫

|y|≥δ

dy

|y|2+β

≤ C

1− β
‖∇Ψα‖L∞ +

C

β
‖Ψα‖L∞ ≤ C.

Thus |ΛβΨα(x)| ≤ C for all x ∈ h−1T2, which implies |Λβψα(x)| ≤ Ch−β for all x ∈ T2, where

C is independent of α ∈ J . This establishes (v).

To ultimately prove (2.12)–(2.14), we will exploit an additional property of the bump func-

tions ψ̃α. For this, we will make use of the following short-hand for φ localized to the squares

Qα(ǫ):

φα(x) = φ(x)IQα(ǫ)(x), x ∈ T2.

Lemma B.2 Let β ∈ (−∞, 0) and φ ∈ Ḣβ(T2). Then there exists a constant C > 0 such

that

|〈φ, ψ̃α〉L2(T2)| ≤ Ch1+β‖φα‖Ḣβ(T2) + C
( h

2π

)2

h‖φ‖L2(T2). (B.7)

Proof Suppose that β ∈ (−∞, 0). Observe that

〈φ, ψ̃α〉L2(T2) = 〈φα, ψ̃α〉L2(T2) = 〈φα, ψα〉L2(T2) +
ã(Qα)

4π2

∫

T2

φα(x) dx.

Then by Parseval’s theorem, the Cauchy-Schwarz inequality and Proposition B.1(iv), we have

|〈φ, ψ̃α〉| ≤ ‖φα‖Ḣβ(T2)‖ψ̃α‖Ḣ|β|(T2) + C
( h

2π

)2

h‖φ‖L2(T2)

≤ Ch1−|β|‖φα‖Ḣβ(T2) + C
( h

2π

)2

h‖φ‖L2(T2), (B.8)

as desired.

B.2 Boundedness properties of volume element interpolants

For φ ∈ L1
loc(Ω), define

φQ =
1

a(Q)

∫

Q

φ(x) dx and φ̃Qα
=

1

ã(Qα)

∫

T2

φ(x)ψ̃α(x) dx,

where a(Q) denotes the area of Q and

ã(Qα) :=

∫

T2

ψ̃α(x) dx. (B.9)

Observe that for each α ∈ J , there exists a constant c > 0, independent of h, α, ǫ such that

c−1 ≤ ã(Qα)

a(Q)
,
a(Q)

a(Q̂α)
,

a(Q)

a(Qα(ǫ))
≤ c, Q ∈ {Qα, Qα(ǫ), Q̂α}. (B.10)
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We define the smooth volume element interpolant by

Ih(φ) :=
∑

α∈J
φ̃Qα

ψ̃α, (B.11)

and the “shifted” smooth volume element interpolant by

Ih(φ) :=
∑

α∈J
φ̃Qα

ψα, ψα = ψ̃α − 〈ψ̃α〉. (B.12)

We will make use of the following elementary fact for a “square-type” function. Let A be a

finite index set and {Aα}α∈A ⊂ T2 be a countable collection of sets such that for each x ∈ T2,

sup
x∈T2

#{α ∈ A : x ∈ Qα} <∞. Define

(Sφ)(x) :=
( ∑

α∈A
(φα(x))

2
) 1

2

, φα(x) := φ(x)IAα
(x).

Lemma B.3 Let φ ∈ L1(T2). There exists a constant C > 0 such that

|Sφ(x)| ≤ C|φ(x)| a.e. x ∈ T2 (B.13)

and

∑

α∈A

( ∫
φα(x) dx

)2

≤
( ∫

Sφ(x) dx
)2

. (B.14)

Proof Let N := sup
x∈T2

#{α ∈ A : x ∈ Aα}. Since N < ∞, we have that for each x ∈ T2,

there are at most N sets Aα such that x ∈ Aα. It follows that for each x ∈ T2, there exists an

integer C(x) > 0 such that C(x) ≤ N. In particular, we have
∑

α

|φα(x)|2 = C(x)|φ(x)|2 ≤ N |φ(x)|2.

On the other hand, by Fubini’s theorem and the Cauchy-Schwarz inequality we have that

∑

α

(∫
φα(x) dx

)2

=
∑

α

∫∫
φα(x)φα(y) dxdy

≤
∫∫

(Sφ)(x)(Sφ)(y) dxdy =
( ∫

(Sφ)(x) dx
)2

.

This completes the proof.

We immediately obtain the following corollary.

Corollary B.1 Let K ∈ L1
loc(R

2) such that K ≥ 0. Let φ ∈ L1(T2) such that K ∗ φ ∈
L2(T2),

∑

α∈A
‖K ∗ φα‖2L2 ≤ C‖K ∗ φ‖2L2 .

In particular, for β ∈ (−2, 0), we have

∑

α∈J
‖φα‖2Ḣβ ≤ C‖φ‖2

Ḣβ , (B.15)

where (A, {Aα}) is given by (J , {Qα(ǫ)}) as in (B.2).
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Proof Observe that

‖K ∗ φα‖2L2 =

∫
(K ∗ φα)(x)2 dx

=

∫ (∫
K(x− y)φα(y) dy

)2

dx

≤
∫ ∫ ∫

K(x− y)K(x− y′)|φα(y)||φα(y′)| dydy′dx.

Therefore, by the non-negativity of K, the Cauchy-Schwarz inequality and (B.13) of Lemma

B.3, we have

∑

α∈A
‖K ∗ φα‖2L2 ≤

∫ ∫ ∫
K(x− y)K(x− y′)(Sφ)(y)(Sφ)(y′) dydy′dx

≤ C2

∫ ∫ ∫
K(x− y)K(x− y′)φ(y)φ(y′) dydy′dx

≤ C2‖K ∗ φ‖2L2 .

It then follows as a special case that (B.15) holds. Indeed, the Riesz potential, Λβ, β ∈ (−2, 0),

has kernel K(x) ∼ |x|−2+β , which is locally integrable and non-negative.

Proposition B.2 Let Jh be given by either (B.11) or (B.12). Given α ≥ 1, let ǫ(α) be as

in Proposition B.1(v) when α ∈ [1, 2), and identically 0 otherwise. Let C > 0 and define

CI(α, h) :=





C
(2π
h

)
, α < 1,

C
(2π
h

)2+α−ǫ(α)

, α ≥ 1.

(B.16)

There exists a constant C > 0, depending on α, such that:

(1) If (ρ, β) ∈ [0,∞)× [0, 2), then

‖Jhφ‖Ḣρ(T2) ≤ CI(β, h)h
β−ρ‖φ‖Ḣβ(T2). (B.17)

(2) If (ρ, β) ∈ [0,∞)× (−2, 0], then

‖Jhφ‖Ḣρ(T2) ≤ Ch−ρ(hβ‖φ‖Ḣβ + ‖φ‖L2(T2)). (B.18)

(3) If (ρ, β) ∈ (−2, 0)× (−∞, 0], then

‖Jhφ‖Ḣρ(T2) ≤ CI(|ρ|, h)hβ−ρ‖φ‖Ḣβ(T2). (B.19)

Proof We will prove the lemma for the case Jh given by (B.11). The case when Jh is given

by (B.12) is similar.

Let (ρ, β) ∈ [0,∞)× [0, 2). Then by Proposition B.1(iv)–(v), we have

‖Jhφ‖2Ḣρ(T2)
≤ C

∑

α

φ̃2Qα
‖ψ̃α‖2Ḣρ(T2)

≤ Ch−2−2ρ
∑

α

|〈φ, ψ̃α〉|2

≤ C̃(β, h)2h−2−2ρh2+2β
∑

α

‖φ‖2
Ḣβ(T2)

≤ C̃(β, h)2h−2−2ρh2+2β
(2π
h

)2

‖φ‖2
Ḣβ(T2)

,
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where the constant C̃ is defined as

C̃(α, h) :=





C, α < 1,

C
(2π
h

)1+|α|−ǫ(α)

, α ≥ 1,

(B.20)

where ǫ(α) > 0 is chosen according to Proposition B.1(v) and C > 0 is some constant, depending

on α.

Hence, by (B.16) we have

‖Jhφ‖Ḣρ(T2) ≤ CI(β, h)h
β−ρ‖φ‖Ḣβ(T2), (B.21)

where CI(β, h) is defined by (B.16), as desired.

Next, let (ρ, β) ∈ [0,∞)× (−2, 0]. We estimate as before, except that we apply Lemma B.2

and Corollary B.1 to obtain

‖Jhφ‖2Ḣρ(T2)
≤ Ch−2−2ρ

∑

α

|〈φ, ψ̃α〉|2

≤ Ch2β−2ρ
∑

α

‖φα‖2Ḣβ(T2)
+ Ch−2ρ‖φ‖2L2(T2)

≤ Ch2β−2ρ‖φ‖2
Ḣβ + Ch−2ρ‖φ‖2L2(T2),

as desired.

Finally, let (ρ, β) ∈ (−2, 0) × (−∞, 0]. To prove (B.19), we proceed by duality. Let

‖χ‖Ḣ|ρ|(T2) = 1. Since Jh is self-adjoint and φ ∈ Z, it follows from Parseval’s theorem and

(B.17) that

|〈Jhφ, χ〉L2(T2)| ≤ ‖φ‖Ḣβ(T2)‖Jhχ‖Ḣ|β|(T2)

≤ C̃(|ρ|, h)h|ρ|−|β|
(2π
h

)
‖φ‖Ḣβ(T2)‖χ‖Ḣ|ρ|(T2).

Thus, we have

‖Jhφ‖Ḣρ(T2) ≤ CI(|ρ|, h)hβ−ρ‖φ‖Ḣβ(T2),

as desired.

Proposition B.3 Let Jh be given by (B.11) or (B.12). Let CI(α, h) be defined as in (B.16).

Define

C̃I :=
2π

h
. (B.22)

Let ρ, β ∈ R. There exists a constant C > 0, depending only on ρ, β, such that:

(1) If ρ ≥ 0 and β = ℓ is an integer, then

‖JhDℓφ‖Ḣρ(T2) ≤ Ch−(ρ+ℓ−ℓ′)‖φ‖Ḣℓ′(T2), 0 ≤ ℓ′ ≤ ℓ (B.23)

and

‖JhDℓφ‖Ḣρ(T2) ≤ Ch−1−(ρ+ℓ−ℓ′)‖Dℓ′φ‖L1(T2), 0 ≤ ℓ′ ≤ ℓ. (B.24)
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(2) If ρ ∈ (−2, 0), β ∈ (−2,∞) and β′ ∈ (−∞, β], then

‖JhDβφ‖Ḣρ(T2) ≤ CI(|ρ|, h)h−(ρ+β−β′)‖φ‖Ḣβ′ (T2). (B.25)

On the other hand, if β = ℓ is an integer, then

‖JhDℓφ‖Ḣρ(T2) ≤ CI(|ρ|, h)h−1−ρ−ℓ‖φ‖L1(T2). (B.26)

(3) For ρ ≥ 0 and β ∈ (0, 2) such that β 6= 1, we have

‖JhDβφ‖Ḣρ(T2) ≤ C̃Ih
−(ρ+β−β′)‖φ‖Ḣβ′(T2), 0 ≤ β′ ≤ β. (B.27)

Proof Let ρ ≥ 0. By integrating by parts, Proposition B.1(iv), and the Cauchy-Schwarz

inequality we have

‖JhDℓφ‖2
Ḣρ(T2)

≤ C
∑

α

|(̃Dℓφ)Qα
|2‖ψ̃α‖2Ḣρ(T2)

≤ Ch−2−2ρ
∑

α

|〈Dℓ′φ,Dℓ−ℓ′ψ̃α〉L2(T2)|2

≤ Ch−2ρ−2(ℓ−ℓ′)
∑

α

‖Dℓ′φ‖2L2(Qα(ǫ))

≤ Ch−2(ρ+ℓ−ℓ′)‖Dℓ′φ‖2L2(T2),

which proves (B.23).

Similarly, estimating as before and applying Proposition B.1(vi) (instead of (iv)) and Hölder’s

inequality (instead of Cauchy-Schwarz) we have

‖JhDℓφ‖2
Ḣρ(T2)

≤ C
∑

α

|(̃Dℓφ)Qα
|2‖ψ̃α‖2Ḣρ(T2)

≤ Ch−2−2ρ
∑

α

|〈Dℓ′φ,Dℓ−ℓ′ψ̃α〉L2(T2)|2

≤ Ch−2−2ρ−2(ℓ−ℓ′)
∑

α

‖Dℓ′φ‖2L1(Qα(ǫ))

≤ Ch−2−2(ρ+ℓ−ℓ′)‖Dℓ′φ‖2L1(T2).

Arguing as before, we ultimately arrive at (B.24).

For ρ ∈ (−2, 0) and β′ ∈ (−∞, β], we proceed by duality. Indeed, let χ ∈ Ḣ |ρ|(T2) with

‖χ‖Ḣ|ρ|(T2) = 1. Since Jh is self-adjoint, by Parseval’s theorem we have

|〈JhDβφ, χ〉L2(T2)| = |〈φ,DβJhχ〉L2(T2)|.

Then by Parseval’s theorem, the fact that φ ∈ Z, the Cauchy-Schwarz inequality, the Poincaré

inequality and (B.17) of Proposition B.2, we have

|〈JhDβφ, χ〉L2(T2)| ≤ C‖φ‖Ḣβ′ (T2)‖Jhχ‖Ḣβ−β′ (T2)

≤ C‖φ‖Ḣβ′ (T2)‖Jhχ‖Ḣβ−β′ (T2)

≤ CI(|ρ|, h)h|ρ|−(β−β′)‖φ‖Ḣβ′ (T2)‖χ‖Ḣ|ρ|(T2),
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which implies (B.25).

On the other hand, to prove (B.26), let β = k be an integer. Since Jh is self-adjoint, upon

integrating by parts, then applying Hölder’s inequality we obtain

|〈JhDkφ, χ〉L2(T2)| = |〈φ,DkJhχ〉L2(T2)|
≤ C‖φ‖L1(T2)‖DkJhχ‖L∞(T2).

Observe that

(DkJhχ)(x) = h−k
∑

α

χ̃Qα
(DkΨ̃α)(h

−1x).

Now recall that N = sup
x∈T2

#{α ∈ J : x ∈ Qα(ǫ)} < ∞. Let J ′(x) := {α ∈ J : x ∈ Qα(ǫ)}.
Then it follows from Parseval’s theorem, the Cauchy-Schwarz inequality and Proposition B.1(iv)

through (vi) that

|DkJhχ(x)| ≤ Ch−2−k
∑

α∈J ′(x)

‖ψ̃α‖Ḣρ(T2)‖χ‖Ḣ|ρ|(T2)‖DkΨ̃α(h
−1· )‖L∞(T2)

≤ CI(|ρ|, h)Nh−1−kh−ρ‖χ‖Ḣρ(T2).

Therefore

|〈JhDkφ, χ〉L2(T2)| ≤ CI(|ρ|, h)h−1−k−ρ‖φ‖L1(T2)‖χ‖Ḣρ(T2),

which implies (B.26), as desired.

Finally, we prove (B.27). Let β ∈ (0, 2) be a non-integer. Then by Proposition B.1(iv)–(v),

integration by parts, the fact that Λ is self-adjoint, and the Cauchy-Schwarz inequality we have

‖JhDβφ‖2
Ḣρ(T2)

≤ C
∑

α

|D̃βφQα
|2‖ψ̃α‖2Ḣρ(T2)

≤ Ch−2−ρ
∑

α

|〈Dβ′

φ,Dβ−β′

ψ̃α〉L2(T2)|2

≤ Ch−2ρ−2(β−β′)
(2π
h

)2

‖φ‖2
Ḣβ′ (T2)

.

This completes the proof.

Remark B.1 We point out that all of the above boundedness properties for Jh hold also

when Jh is given by projection onto finitely many Fourier modes, in specific, when Jh is given by

the Littlewood-Paley projection. The only difference is in the constants. Indeed, one may notice

above that this “defect” between the spectral projection and the “volume-elements” projection

can be traced to the fact the operator, Λβ , β ∈ (−2, 2), is a non-local operator; although its input

may be compactly supported, the output need not have compact support. Generally speaking,

the projection onto Fourier modes up to wave-number . 1
h
satisfies convenient “orthogonality”

properties, as captured by the Bernstein inequalities, that are not enjoyed by projection onto

local spatial averages. The above boundedness properties then follow immediately from this

inequality and the fact that differential operators will commute Jh when it is given as this

projection. For this reason, we omit the details, but refer to [28], where the relevant estimates

are carried out.
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