
Chin. Ann. Math. Ser. B

40(5), 2019, 765–780
DOI: 10.1007/s11401-019-0159-z

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2019

A Study of Hyperbolicity of Kinetic Stochastic Galerkin
System for the Isentropic Euler Equations with

Uncertainty∗

Shi JIN1 Ruiwen SHU2

(Dedicated to Professor Andrew J. Majda on the occasion of his 70th birthday)

Abstract The authors study the fluid dynamic behavior of the stochastic Galerkin (SG
for short) approximation to the kinetic Fokker-Planck equation with random uncertainty.
While the SG system at the kinetic level is hyperbolic, its fluid dynamic limit, as the Knud-
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isentropic Euler equations, is not necessarily hyperbolic, as will be shown in the case study
fashion for various orders of the SG approximations.
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1 Introduction

Hyperbolic conservation laws are one of the classical nonlinear partial differential equations
with important applications from gas dynamics, shallow water, combustion, to magnetohydro-
dynamics. A general system of conservation laws reads

∂tU + ∂xF (U) = 0, (1.1)

where t ∈ R≥0 is time, and x ∈ Ω ⊂ R is space, assumed to be one-dimensional for sim-
plicity. U(t, x) = (U1(t, x), · · · , Un(t, x))

T is the vector of conserved quantities, and F (U) =
(F1(U), · · · , Fn(U)) is the flux function, assumed to be at least C1. The system is called hy-
perbolic if the Jacobian matrix ∇UF is real-diagonalizable. For most models from physics
in conservation forms, in particular, the compressible Euler equations in gas dynamics, the
hyperbolicity condition is satisfied.

Consider the isentropic Euler equations





∂tρ+ ∂xm = 0,

∂tm+ ∂x

(
ρ+

m2

ρ

)
= 0.

(1.2)
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Here ρ > 0 is the density of gas, and m is the momentum. The Jacobian of ∇UF is given by

J =

(
0 1

1− u2 2u

)
, (1.3)

with u = m
ρ
being the velocity of gas. The eigenvalues of J are u±1, and thus (1.2) is hyperbolic.

Hydrodynamic equations have two components: Conservations and equations of state (or
constitutive relations). While the conservation properties are basic physical properties typically
satisfied for an ensemble of large number of particles, the equation of state or constitutive
relations are usually empirical, thus inevitably contains uncertainty. Uncertainties also arise
from initial and/or boundary data, and/or forcing or source terms, due to measurement or
modeling errors. By quantifying how these uncertainties affect the behavior of the solution,
one can make reliable predictions of the physical quantities modeled by the conservation laws
and further calibrate or improve the models. To model the uncertainty, we introduce a random
variable z lying in a random space Iz ⊂ R

d with a probability distribution π(z) dz, and any
uncertain quantity is described by its dependence on z. For example, uncertain initial data is
modeled by Uin = Uin(x, z). As a result, the solution U also depends on z: U = U(t, x, z).
The solution U(t, x, z) still satisfies the same equations (1.1), but depends on an extra random
parameter z.

In the last few decades, many methods have been developed for uncertainty quantification
(UQ for short) (see [8–9, 17, 28–29]), including the Monte Carlo methods, stochastic collocation
(SC for short) methods and stochastic Galerkin (SG for short) methods. The Monte Carlo
methods (see [20]) solve the deterministic problem on random sample points, and then obtain
statistical information by averaging. Stochastic collocation methods (see [1, 3, 21, 30]) solve
the deterministic problem on some well-chosen sample points (for example, quadrature points,
or points chosen by some optimization procedure), and then compute statistical quantities
by interpolation. Stochastic Galerkin methods (see [2–3, 31]) use a finite (K-)dimensional
orthonormal basis in the random space Iz (with respect to π(z) dz), expand any function in z

in the L2 space as a linear combination of this basis. After conducting the Galerkin projection
one obtains a deterministic system of the K coefficients in the expansion. A popular choice
of basis is the generalized polynomial chaos (gPC for short) basis (see [31]), which are the
orthonormal polynomials with respect to π(z) dz.

The main advantage of the Monte Carlo methods is that it maintains a convergence order
1
2 for any dimensional random spaces, thus it is efficient even if the dimension d is large. SC
and SG methods can achieve high convergence order if the solution is sufficiently smooth in the
random space, but they suffer from the ‘curse of dimensionality’ if d becomes large.

The Monte Carlo and SC methods are non-intrusive methods: One only needs to run the
deterministic solver many times to obtain statistical information of the random solution. How-
ever, for the intrusive gPC-SG methods, the system of the gPC coefficients is a coupled system,
which may be significantly different from the deterministic equations. One usually needs to
design new numerical methods to solve it.

When applied to system of hyperbolic conservation laws (1.1), the gPC-SG method gives a
system of conservation laws for the gPC coefficients which may lose the hyperbolicity, unless
for special classes of systems which include:

• Symmetric conservation laws, i.e., ∇UF is symmetric. This includes scalar conservation
laws. See [11] for an example.

• Linear conservation laws, i.e., F is linear.

One example of loss of hyperbolicity is given in [5] for the Euler equations. When hyperbo-
licity of the gPC-SG method is lost, the initial value problem of the gPC-SG system becomes
ill-posed.
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One possible fix of the loss of hyperbolicity of the gPC-SG method is proposed by [24].
By using entropy variables, they write (1.1) into a symmetric form, and this symmetry can be
maintained by the gPC-SG method. However, this method requires the transformation between
the conservative variables U and the entropy variables in each time step and every grid point,
which is very costly in general. For other efforts in this direction see [7, 23, 26].

It is well known that many hyperbolic conservation laws can be obtained as the hydrody-
namic limit of kinetic equations. For example, the Euler equations are the hydrodynamic limit
of the Boltzmann equation (with the hyperbolic scaling) (see [4]), and the isentropic Euler
equations (1.2) is the hydrodynamic limit of the kinetic Fokker-Planck equation (see [27])

∂tf + v∂xf =
1

Kn
Lf (f), (1.4)

where v ∈ R is the velocity variable, f = f(t, x, v) is the particle distribution function, and Lf

is the kinetic Fokker-Planck operator

Lf (g) = ∂v(∂vg + (v − u)g), u =
m

ρ
=

∫
fv dv

∫
f dv

. (1.5)

Here Kn is the Knudsen number, the dimensionless particle mean free path. As Kn → 0, the
hydrodynamic limit (1.2) is (formally) obtained.

Recently there has been a rapid progress on the gPC-SG methods for multiscale kinetic
equations with uncertainty (see [10, 13–15, 32]). Many gPC-SG methods have the stochastic
asymptotic-preserving (s-AP for short) property (see [15]), which means that the method works
uniformly from the kinetic regime (Kn = O(1)) to the fluid regime (Kn << 1), with a fixed
number K of basis functions. Also, the random space regularity of the solutions for various
kinetic equations have been proved, in the linear cases (see [12–13, 18]), and nonlinear ones
(see [16, 19, 25]). Consequently one can even establish the spectral accuracy, uniform in Kn,
of the gPC-SG methods. In the case of nonlinear kinetic equations, such results were obtained
for solutions near the global Maxwellian. Note that at the kinetic level, the equation is a
scalar equation, and moreover, with a linear convection, thus the gPC-SG approximations
naturally preserve the hyperbolicity of the kinetic equations. Therefore, one may be curious
whether the hyperbolicity of the kinetic gPC-SG system for a kinetic equation will survive in
the fluid dynamic limit. If it does, then this would provide a vehicle to derive stable gPC-SG
approximations for the compressible Euler equations, as in their deterministic counterparts,
which is known as the kinetic schemes for the Euler equations (see [22]).

In this work, we give a counter-argument to this. For the kinetic Fokker-Planck equation
(1.4), we show that the gPC-SG system for (1.4), after taking a formal hydrodynamic limit
by sending Kn → 0, does not necessarily give a hyperbolic gPC-SG approximation for (1.2).
To be precise, our numerical results suggest that the gPC-SG method obtained from a kinetic
approach may fail to be hyperbolic even for arbitrarily small randomness, if K = 4. However,
for K = 2, 3, we prove that hyperbolicity holds under reasonable assumptions.

The paper is organized as follows: In Section 2 we introduce the gPC-SG method for the
kinetic Fokker-Planck equation (1.4) with uncertainty, and formally derive its hydrodynamic
limit as the gPC-SG method for the isentropic Euler equations (1.2); in Section 3 we show
that the Jacobian matrix of the gPC-SG system of (1.2), if contains imaginary eigenvalues, the
imaginary part will be small if the uncertainty of ρ and m is small; in Section 4 we prove the
hyperbolicity of this gPC-SG system for K = 2, 3 under reasonable assumptions, and provide
numerical evidence suggesting that hyperbolicity may fail for arbitrarily small randomness when
K = 4. The paper is concluded in Section 5.
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2 The gPC-SG Method

In this section we aim to derive a gPC-SG method for the isentropic Euler equations (1.2)
with uncertainty as the hydrodynamic limit of a gPC-SG method for the kinetic Fokker-Planck
equation (1.4) with uncertainty.

We start by deriving formally the hydrodynamic limit of the deterministic kinetic Fokker-
Planck equation (1.4). The Fokker-Planck operator (1.5) conserves mass and momentum:

∫
Lf(f) dv =

∫
Lf (f)v dv = 0, ∀f > 0. (2.1)

The local equilibrium of Lf(f), i.e., the f with Lf (f) = 0, is given by the local Maxwellian

f = ρMu, Mu(v) =
1√
2π

e−
(v−u)2

2 , (2.2)

with ρ(t, x) and u(t, x) being the local density and bulk velocity. As Kn → 0 in (1.4), one can
see (formally) that f is at this local equilibrium. Then by taking moments of (1.4) against 1, v
and using (2.2), one obtains the hydrodynamic limit (1.2) with m = ρu.

2.1 The gPC-SG method for (1.4)

For simplicity, we assume the random space is one-dimensional. The gPC basis associated
to π(z) dz is denoted by {φk(z)}∞k=1. φk(z) is a polynomial of degree k − 1, satisfying the
orthonormal property

∫
φjφkπ(z) dz = δjk. (2.3)

We expand the solution f(t, x, v, z) to (1.4) into gPC series and truncate:

f(t, x, v, z) =

∞∑

k=1

fk(t, x, v)φk(z) ≈
K∑

k=1

fk(t, x, v)φk(z) := fK(t, x, v, z). (2.4)

Here fk(t, x, v) are the gPC coefficients, which no longer depend on the random variable z.
If one directly substitutes (2.4) into (1.4) and conduct Galerkin projection, then the term

uf = m
ρ
f in the Fokker-Planck operator will become

∫
mK

ρK fKφkπ(z) dz, with ρK ,mK defined

similarly to (2.4). This term is not easy to compute numerically from the gPC coefficients
f1, · · · , fK . Instead, by conducting the gPC-SG method on the identity

ρ(ρ−1f) = f, (2.5)

we get an approximation

A(ρ)
−−−→
ρ−1f ≈ ~f, (2.6)

where

~f = (f1, · · · , fK)T (2.7)

is the vector of the gPC coefficients, and A(ρ) is the multiplication matrix given by

A(ρ)ij =

K∑

k=1

Sijkρk, Sijk =

∫
φiφjφkπ(z) dz. (2.8)
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Notice that A(ρ) is symmetric, and positive-definite if ρK(z) =
K∑

k=1

ρkφk(z) > 0 for all z. In

this case,

−−−→
ρ−1f ≈ A(ρ)−1 ~f. (2.9)

Similarly, we obtain

−−→m
ρ
f ≈ A(m)A(ρ)−1 ~f. (2.10)

Using these two approximations, we obtain the gPC system

∂t ~f + v∂x ~f =
1

Kn
~L~f

(~f). (2.11)

Here ~L is the vectorized Fokker-Planck operator, given by

~L~f
(~g) = ∂v(∂v~g + (v −A)~g), A = A(ρ,m) = A(m)A(ρ)−1. (2.12)

Remark 2.1 There is more than one way to approximate the gPC coefficients of the term
m
ρ
f , for example, by A(ρ)−1A(m)~f . However, (2.12) seems to be the only consistent approxima-

tion which is easy to compute and conserves momentum (see next section for the conservation
properties).

2.2 Properties of the gPC system

(2.12) has the same conservation properties.

Lemma 2.1 (2.12) conserves mass and momentum:
∫

~L~f
(~f) dv =

∫
~L~f

(~f)v dv = ~0. (2.13)

Proof It is clear that
∫
~L~f

(~f) dv = ~0. To see the second equality,
∫

~L~f
(~f)v dv = −

∫
(v −A(m)A(ρ)−1)~f dv = −~m+A(m)A(ρ)−1~ρ

= −~m+A(m)~e = ~0, (2.14)

where ~e = (1, 0, · · · , 0)T. Here we used A(ρ)−1~ρ = ~e which follows from

(A(ρ)~e)i =

K∑

j,k=1

Sijkρkδ1,j =

K∑

k=1

Si,1,kρk = ρi. (2.15)

Notice that if we use A(ρ)−1A(m) instead of A(m)A(ρ)−1 then the momentum conservation
does not hold.

Then, similar to [14], we have the local equilibrium of ~L~f
(~f) given by the following.

Lemma 2.2 Assume ρK(z) > 0 for all z. Then ~L~f
(~f) = ~0 implies

~f = exp(−A∂v)(M0~ρ), M0(v) =
1√
2π

e−
v2

2 , (2.16)

where exp(−A∂v)~g0 is defined as the solution at s = 1 to the system

∂s~g +A∂v~g = 0, (2.17)

with initial data ~g|s=0 = ~g0.
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Proof We first show that exp(−A∂v) is well-defined, i.e., the linear system of conservation
laws (2.17) is hyperbolic. We need to show that the matrix A is real-diagonalizable. To see
this, notice that

A = A(m)A(ρ)−1 = A(ρ)
1
2 (A(ρ)−

1
2A(m)A(ρ)−

1
2 )A(ρ)−

1
2 , (2.18)

where A(ρ)
1
2 is the square root of the symmetric positive-definite matrix A(ρ). Therefore A is

conjugate to the symmetric matrix A(ρ)−
1
2A(m)A(ρ)−

1
2 , thus real diagonalizable.

Then, to see the local equilibrium (2.16), we use the conjugate structure of ~L:
~L~f

= exp(−A∂v) ~L0 exp(A∂v), (2.19)

where ~L0(~g) = ∂v(∂v~g + v~g) is nothing but the deterministic Fokker-Planck operator acting on
each component. In fact, (2.19) can be formally seen by

exp(−A∂v) ~L0~g = exp(−A∂v)(∂
2
v~g + ∂v(v~g))

= ∂2
v exp(−A∂v)~g + ∂v

∞∑

j=0

(−A)j∂j
v

j!
(v~g)

= ∂2
v exp(−A∂v)~g + ∂v

∞∑

j=0

v
(−A)j∂j

v

j!
~g + ∂v

∞∑

j=1

j
(−A)j∂j−1

v

j!
~g

= ∂2
v exp(−A∂v)~g + ∂v(v exp(−A∂v)~g)− ∂v(A exp(−A∂v)~g)

= ~L~f
exp(−A∂v)~g. (2.20)

The null space of ~L0 is clearly ~g = exp(−A∂v)(M0
~C) where ~C is any constant vector. Then by

taking moments, one sees ~C =
∫
~g dv. Therefore the local equilibrium (2.16) follows.

Remark 2.2 A rigorous proof of (2.19) can be obtained in a similar way to [14]. We omit
the details.

Using (2.16), one obtains

∫
~fv2 dv =

∫
exp(−A∂v)(M0~ρ)v

2 dv =

∫ ∞∑

j=0

(−A∂v)
j

j!
(M0~ρ)v

2 dv

=

∞∑

j=0

Aj

j!
~ρ

∫
M0∂

j
v(v

2) dv = ~ρ+A2~ρ, (2.21)

where we first integrate by parts, and use the fact that only the terms with j = 0, 2 do not
vanish. Taking moments of (2.11) and using this, one obtains the limiting fluid dynamic system

{
∂t~ρ+ ∂x ~m = 0,

∂t ~m+ ∂x(~ρ+A(m)A(ρ)−1 ~m) = 0,
(2.22)

where we used A2~ρ = A(m)A(ρ)−1 ~m. This system is a consistent gPC-SG approximation of

the isentropic Euler equations (1.2) since A(m)A(ρ)−1 ~m is an approximation of m2

ρ
.

(2.22) is a system of conservation laws for the 2K functions ~ρ and ~m. The Jacobian of the
flux function of (2.22) is given by the block matrix

J =

(
0 I

I +B(1) B(2)

)
, (2.23)
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where I stands for the identity matrix,

B
(1)
·,j = ∂ρj

(A(m)A(ρ)−1 ~m) = −A(m)A(ρ)−1S·,·,jA(ρ)
−1 ~m (2.24)

and

B
(2)
·,j = ∂mj

(A(m)A(ρ)−1 ~m) = S·,·,jA(ρ)
−1 ~m+ A(m)A(ρ)−1~ej , (2.25)

where the vector (~ej)k = δjk.

3 Analysis of Hyperbolicity of (2.22) for Small Randomness

In this section we study the eigenvalues of J , in the case when the randomness is small.
We assume ~ρ = (ρ1, ǫρ

′
2, · · · , ǫρ′K), ~m = (m1, ǫm

′
2, · · · , ǫm′

K) is such that ρ1 > 0, ρ′2, · · · , ρ′K
and m1,m

′
2, · · · ,m′

K are of order O(1). Here ǫ > 0 is assumed to be small enough. Then we
have the following theorem.

Theorem 3.1 The imaginary part of any eigenvalue of J is at most O(ǫ2).

To prove the theorem, we start with the following lemma.

Lemma 3.1 For given ~ρ, ~m, we denote the corresponding J as J(~ρ, ~m). Then one has

eig(J(~ρ, ~m+ α~ρ)) = eig(J(~ρ, ~m)) + α, (3.1)

where eig means the eigenvalues of matrix, and the last +α means adding α to each eigenvalue.

Proof Explicit calculation shows that

J(~ρ, ~m+ α~ρ) =

(
0 I

I +B(1) − αB(2) − α2I B(2) + 2αI

)
, (3.2)

where B(1), B(2) are those in J(~ρ, ~m). Thus
(

I 0
−αI I

)
J(~ρ, ~m+ α~ρ)

(
I 0
αI I

)
=

(
αI I

I +B(1) B(2) + αI

)
, (3.3)

i.e., J(~ρ, ~m+ α~ρ) is similar to J(~ρ, ~m) + αI. Thus the conclusion follows.

Without loss of generality, we may assume ρ1 = 1. To analyze the imaginary parts of eig(J),
one can replace ~m by ~m− m1

ρ1
~ρ to make m1 = 0, in view of Lemma 3.1. Since m1 = O(1), this

replacement does not affect any smallness condition. From now on we will assume

ρ1 = 1, m1 = 0. (3.4)

Then we define the following matrix:

J̃ =

(
0 I

I −A(m)2 2A(m)

)
. (3.5)

Also define

P2 =

(
A(m)− I −I

−A(m)− I I

)
, (3.6)

and its inverse is given by

P−1
2 = −1

2

(
I I

A(m) + I A(m)− I

)
. (3.7)
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Explicit computation shows

J̃ = P−1
2

(
A(m) + I 0

0 A(m)− I

)
P2. (3.8)

Therefore J̃ is conjugate to diag{A(m) + I, A(m)− I}, which is real-diagonalizable since A(m)
is. Then we claim the following.

Lemma 3.2 Assume (3.4). Then

J − J̃ = O(ǫ2). (3.9)

Proof It suffices to check B(1) = −A(m)2 +O(ǫ2) and B(2) = 2A(m) +O(ǫ2).
The equation for B(1) is clear since both B(1) and −A(m)2 are of order O(ǫ2).
To check the expansion for B(2), notice that

A(ρ)−1 = (I + ǫA(ρ′))−1 = I +O(ǫ), (3.10)

since ~ρ′ := (0, ρ′2, · · · , ρ′K) = O(1). Here we used the fact that ǫ is small enough so the spectral
radius of ǫA(ρ′) is no more than 1

2 . Then

B
(2)
·,j = S·,·,jA(ρ)

−1 ~m+A(m)A(ρ)−1~ej

= S·,·,j ~m+A(m)~ej +O(ǫ2) = 2A(m)·,j +O(ǫ2) (3.11)

since ~m = O(ǫ).

To analyze the size of imaginary part of eigenvalues of J , we need the following lemma,
which is a consequence of the Gershgorin Circle Theorem (see [6]).

Lemma 3.3 Suppose A,B are real matrices. Suppose A can be real-diagonalized by PAP−1

= D = diag{λ1, · · · , λK} with max(‖P‖, ‖P−1‖) ≤ C1 and ‖B − A‖ ≤ C2. Here ‖A‖ =
max

i

∑
j

|aij |. Then

(i) each eigenvalue η of B satisfies |η − λi| ≤ C = C2
1C2 for some i. In particular, the

imaginary part of η is at most C;
(ii) if |λi − λj | > 2C for each i < j, then the eigenvalues {ηk} of B can be arranged so that

|ηk − λk| ≤ C, k = 1, · · · ,K, and B is real-diagonalizable.

Proof First,

PBP−1 = D + P (B −A)P−1. (3.12)

Since ‖P (B−A)P−1‖ ≤ ‖P‖‖B−A‖‖P−1‖ ≤ C, it follows from the Gershgorin Circle Theorem
that each eigenvalue η of B satisfies |η − λi| ≤ C for some i. This proves (i).

To prove (ii), let ηk(t) be the k-th eigenvalue of (1− t)A+ tB, for 0 ≤ t ≤ 1. Then each ηk(t)
is a complex-valued continuous function, with ηk(0) = λk. Also, for each fixed k, t, one has the
estimate |ηk(t)− λi| ≤ C for some i. Since |λi − λj | > 2C for each i < j, the only possibility is
that |ηk(t) − λk| ≤ C for 0 ≤ t ≤ 1. This shows that |Re(ηk(1)) − λk| ≤ C, and thus {ηk(1)},
the eigenvalues of B, have distinct real parts. Since B is a real matrix, this implies that B is
real-diagonalizable.

Finally we prove Theorem 3.1.

Proof of Theorem 3.1 The matrix J̃ can be diagonalized by

P1P2J̃P
−1
2 P−1

1 = diag{λ1 + 1, · · · , λK + 1, λ1 − 1, · · · , λK − 1}, (3.13)
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where P1 is an orthogonal matrix, P2 is defined in (3.6), and λ1, · · · , λK stand for the real
eigenvalues of the symmetric matrix A(m). This is because

P2J̃P
−1
2 =

(
A(m) + I 0

0 A(m) − I

)
(3.14)

is symmetric (see (3.8)), and has eigenvalues {λk±1, k = 1, · · · ,K}. It is clear that P1, P2, P
−1
1 ,

P−1
2 are of order O(1). Therefore the conclusion follows from Lemma 3.2 and Lemma 3.3 (i).

4 Analysis of Hyperbolicity of (2.22) for Specific Values of K

In this section we analyze the hyperbolicity of (2.22) for specific values of K. We will show:

• For K = 2, (2.22) is hyperbolic if ρK(z) =
K∑

k=1

ρkφk(z) > 0 for all z ∈ Iz (Theorem 4.1).

• For K = 3, (2.22) may fail to be hyperbolic if one only assumes ρK(z) > 0 (Subsection
4.2.1). However, (2.22) is hyperbolic if ρ1 = O(1), m1 = O(1) and ρ2, ρ3,m2,m3 are small
enough (Theorem 4.2), for some special cases of π(z).

• For K ≥ 4, we provide numerical evidence showing that (2.22) may fail to be hyperbolic
even if ρ1 = O(1), m1 = O(1) and ρk,mk, k = 2, · · · ,K are small (Subsection 4.3).

4.1 The case K = 2

Lemma 4.1 Assume K = 2. Define the 2*2 matrix Φij = φj(zi), where z1, z2 ∈ Iz are the

two-point Gauss quadrature points (with respect to the probability measure π(z) dz). Then for

any ~f = (f1, f2)
T, we have

ΦA(f)Φ−1 = diag{fK(z1), f
K(z2)}. (4.1)

Proof We first show that the matrix Ψ defined by Ψij = φi(zj)wj , where w1, w2 are the
quadrature weights corresponding to z1, z2, is the inverse of Φ. In fact,

(ΨΦ)ik =
∑

j

φi(zj)φk(zj)wj =

∫
φiφkπ(z) dz = δik, (4.2)

where the second equality is because φiφk is a polynomial of degree at most 2, and the quadra-
ture is exact for polynomials of degree at most 3. Similarly,

Sijk =

∫
φiφjφkπ(z) dz =

2∑

l=1

wlφi(zl)φj(zl)φk(zl), (4.3)

since φiφjφk is a polynomial of degree at most 3.
Then, denoting Si as the matrix given by (Si)jk = Sijk, we have

(ΦSi)kj =

2∑

l=1

φl(zk)Silj =

2∑

l,m=1

φl(zk)wmφi(zm)φl(zm)φj(zm)

= φi(zk)φj(zk) = (diag{φi(z1), φi(z2)}Φ)kj , (4.4)

where in the third equality we used ΦΨ = I. Thus

ΦA(f) =

2∑

i=1

fiΦSi =

2∑

i=1

fidiag{φi(z1), φi(z2)}Φ = diag{fK(z1), f
K(z2)}Φ (4.5)

and the conclusion follows.

Then it follows easily.
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Theorem 4.1 Assume K = 2. If ρK(z) > 0 for all z ∈ Iz, then (2.22) is hyperbolic.

Proof We use the same notation as Lemma 4.1. Multiplying by Φ on each equation of

(2.22) and using Lemma 4.1 gives




∂t~̃ρ+ ∂x ~̃m = 0,

∂t ~̃m+ ∂x

(
~̃ρ+ diag

{mK(z1)

ρK(z1)
,
mK(z2)

ρK(z2)

}
~̃m
)
= 0,

(4.6)

where ~̃ρ = Φ~ρ = (ρK(z1), ρ
K(z2))

T, and similar definition for ~̃m. In other words, (ρK(z1),m
K

(z1)) and (ρK(z2),m
K(z2)) satisfy the deterministic hyperbolic system (1.2). Therefore the

conclusion follows from the hyperbolicity of (1.2).

Remark 4.1 In fact, this proof shows that for K = 2 the gPC system (2.22) is equivalent

to a stochastic collocation method at z1, z2.

4.2 The case K = 3

In this subsection we assume K = 3 and prove the hyperbolicity of (2.22) for small random-

ness. Same as the previous subsection, we will assume (3.4) without loss of generality.

Lemma 4.2 Assume (3.4) and |m2| + |m3| = 1. Then there exists c1 > 0 such that any

two eigenvalues λi, λj of the symmetric matrix A(m) satisfy |λi − λj | ≥ c1.

Proof for Special Distributions It is clear that all λi are at most O(1). Therefore, it

suffices to show that the discriminant of det(λI − A(m)) (as a cubic polynomial of λ) is away

from zero. Let us write x = m2, y = m3, a = S223, b = S333 for clarity,

det(λI −A(m)) = det




λ −x −y

−x λ− ay −ax

−y −ax λ− by





= λ3 + (−(a+ b)y)λ2

+ ((ab − 1)y2 − (a2 + 1)x2)λ+ (−2ax2y + ay3 + bx2y). (4.7)

Its discriminant is given by the degree-6 homogeneous polynomial disc = y6G
(
x2

y2

)
. Here G(x)

is a degree three polynomial, given by the following in the special cases:

• When Iz = [−1, 1] with the uniform distribution, φk are the normalized Legendre polyno-

mials, and a =
√

4
5 , b =

√
20
49 . Then

G(x) =
( 2916

300125

)
(2401x3 − 7056x2 + 7965x+ 270). (4.8)

• When Iz = R with the Gaussian distribution, φk are the normalized Hermite polynomials,

and a =
√
2, b =

√
8. Then

G(x) = 108x3 − 162x2 + 324x+ 108. (4.9)

One can easily verify that for both cases G(x) is positive for x > 0. Therefore disc is always

positive, if x 6= 0 or y 6= 0. Since the set |x| + |y| = 1 is compact and disc is continuous with

respect to x and y, disc has a positive lower bound.
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Theorem 4.2 Assume (3.4) and |ρ2| + |ρ3| + |m2| + |m3| ≤ c with c > 0. If c is small

enough, then J defined in (2.23) is real-diagonalizable, i.e., (2.22) is hyperbolic.

Proof We denote δ = |m2|+ |m3|. Then we claim

B(1) = −A(m)2 +O(δ2), B(2) = 2A(m) +O(cδ), (4.10)

where B(1), B(2) are the block matrices appeared in (2.23). The equation for B(1) is clear since

both B(1) and −A(m)2 are of order O(δ2). To check the equation for B(2),

S·,·,jA(ρ)
−1 ~m = S·,·,j(I +A(ρ′))−1 ~m = S·,·,j ~m+O(cδ) = A(m)·,j +O(cδ), (4.11)

where ρ′ = (0, ρ2, ρ3)
T, and we used A(ρ′) = O(c), ~m = O(δ). We also used the fact that c is

small enough so that

(I +A(ρ′))−1 = I +O(c).

As a consequence, J − J̃ = O(cδ).

The eigenvalues of J̃ are λi ± 1, i = 1, 2, 3, where λi are the eigenvalues of A(m). By

Lemma 4.2 applied on m
δ
, |λi − λj | ≥ c1δ for any i 6= j. Also, λi = O(c), which implies that

|(λi+1)−(λj−1)| ≥ 1 for any i, j, if c is small enough. Therefore, if one denotes the eigenvalues

of J̃ as µ1, · · · , µ6, then |µi − µj | ≥ c1δ for any i 6= j.

Now we claim that if c is small enough, then J̃ and J satisfy the assumptions of Lemma

3.3 (ii). In fact, we already showed in Theorem 3.1 that the transformation matrix P = P1P2

of J̃ (defined in the proof of Theorem 3.1) is C1 = O(1) (following the notation in Lemma

3.3). Then we have ‖J − J̃‖ = C2 = O(cδ). Therefore C = C2
1C2 = O(cδ). We also have

|µi − µj | ≥ c1δ. Therefore, if we choose c small enough such that C = O(cδ) < c1δ
2 , then one

has |µi − µj | ≥ 2C. Then the conclusion that J is real-diagonalizable follows from Lemma 3.3

(ii).

4.2.1 Loss of hyperbolicity for K = 3 with large uncertainty

We show by counterexample that for K = 3, even if ρK(z) > 0 for all z ∈ Iz , (2.22) may

still fail to be hyperbolic if the uncertainty of m is large.

We take Iz = [−1, 1] with the uniform distribution (so that φk(z) are the normalized Legen-

dre polynomials). We take ~ρ = (1,−0.1076151078,−0.01061304986)T, ~m = (0, 4.678859141, 3.49

8325096)T. In this case one clearly has ρK(z) > 0. Numerical result shows that J has the com-

plex eigenvalues −2.172329053± 0.009698318358i.

4.3 The case K ≥ 4

For K ≥ 4, we try to find ~ρ, ~m with (3.4) and small uncertainty (in the sense that

ǫ :=
K∑

k=2

(|ρk| + |mk|) is small), such that J(~ρ, ~m) has non-real eigenvalues, and we want the

imaginary part of non-real eigenvalues as large as possible. We take Iz = [−1, 1] with the

uniform distribution (so that φk(z) are the normalized Legendre polynomials). The algorithm

for finding such ~ρ, ~m and the numerical parameters are described in Appendix.
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We take K = 4, 5, 6 and various values of size of randomness ǫ. For each K, we plot the

maximal imaginary part of eigenvalues of J found by the algorithm (the variable maximag

in the algorithm) versus ǫ, see Figure 1. One can clearly see that for each K, maximag is

proportional to ǫ3. In particular, this result strongly suggests that there are examples for which

J has non-real eigenvalues for arbitrarily small size of randomness. Also, this result suggests

that Theorem 3.1 may not be sharp, the sharp estimate could be O(ǫ3).

Figure 1 Maximal imaginary part of eigenvalues of J (found by Algorithm 1) versus ǫ. From

top to bottom: K = 4, 5, 6. Horizontal axis: The size of randomness ǫ. Blue asterisks:

Maximal imaginary part of eigenvalues of J (found by Algorithm 1). Red line: slope= 3.
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5 Conclusion

In this paper, we study the fluid dynamic behavior of the stochastic Galerkin system to

the kinetic Fokker-Planck (FP for short) equation with random uncertainty. As the Knudsen

number goes to zero, the FP system approaches to the isentropic Euler system with uncertainty.

For various orders of the Stochastic Galerkin (SG for short) system for the FP, we show that

their fluid dynamic limits, which give rise to SG systems to the Euler equations, are not nece-

ssarily hyperbolic. Thus one cannot expect to derive kinetic SG system to the isentropic Euler

equations with uncertainty from the kinetic approximation, in contrast to the deterministic

case where kinetic approximations provide a robust mechanism to derive kinetic schemes for

the Euler equations.

Our analysis was carried out in the case study fashion, for various orders of the SG appro-

ximation. So far there has been no general theory for general order of the SG approximation. It

will be interesting to develop a more general theory for the problem. It will also be interesting

to study the problem for the full Euler equations as the fluid dynamic limit of the Boltzmann

equation.

6 Appendix: The Algorithm for Finding J with Non-real Eigenvalues

We use the following algorithm to find J with non-real eigenvalues: For a randomly chosen

(~ρ, ~m), we try to adjust (~ρ, ~m) to decrease the minimum distance of two distinct real eigenvalues

of J as much as possible. This procedure drives J to have multiple eigenvalues, and one expects

a small perturbation may make J have non-real eigenvalues, in case there are no obstruction

for the eigenvalues of being non-real. Then we try to adjust (~ρ, ~m) to increase the imaginary

parts of non-real eigenvalues.

Here we provide the code for the algorithm used in Subsection 4.3 to find J with non-real

eigenvalues. It looks for ~ρ, ~m such that the size of randomness, measured by

K∑

k=2

(|ρk|+ |mk|),

is equal to a given ǫ > 0. We need three numerical parameters ntrial, niter1 and niter2, whose

meanings are explained as follows: For each randomly chosen (~ρ, ~m), we try niter1 times to

adjust it in order to decrease the minimum distance of two distinct real eigenvalues of J . In

case we find (~ρ, ~m) such that J has non-real eigenvalues, we then try niter2 times to adjust it in

order to increase the imaginary parts of non-real eigenvalues. The whole procedure is repeated

ntrial times and the largest imaginary part of non-real eigenvalues (the variable maximag) is

reported. In all the numerical results, we take the numerical parameters ntrial = 100 and

niter1 = niter2 = 1000.

Acknowledgement The authors thank Prof. Pierre Degond for stimulating discussions

and encouragement for this work.
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Algorithm 1 Look for ~ρ, ~m such that J has large non-real eigenvalues

Require: ǫ > 0, ntrial, niter1, niter2 ∈ Z>0

Ensure: Print ~ρmax, ~mmax,maximag such that ρ1 = 1, m1 = 0,
K∑

k=2

(|ρk| + |mk|) = ǫ, and

eig(J(~ρmax, ~mmax)) has a complex eigenvalue with imaginary part maximag > 0, or print ‘Did
not found’.

1: maximag← 0
2: for itrial = 1 : ntrial do

3: ρ1 ← 1, m1 ← 0

4: Randomly generate ρk, mk, k = 2, · · · , K such that
K∑

k=2

(|ρk|+ |mk|) = ǫ

5: eigJ ← eig(J(~ρ, ~m))
6: ind← min{|λ1 − λ2| : λ1, λ2 ∈ eigJ, λ1 6= λ2}
7: for iiter1 = 1 : niter1 do

8: if not isreal(eigJ) then

9: break
10: end if

11: Perturb ρk, mk, k = 2, · · · , K into ρ1k,m
1

k randomly, with size of perturbation ind, such that

they do not change sign, and
K∑

k=2

(|ρk|+ |mk|) = ǫ is kept the same.

12: eigJ1 ← eig(J(~ρ1, ~m1))
13: ind1 ← min{|λ1 − λ2| : λ1, λ2 ∈ eigJ1, λ1 6= λ2}
14: if not isreal(eigJ1) or ind1 < ind then

15: ~ρ← ~ρ1, ~m← ~m1, eigJ ← eigJ1, ind← ind1

16: end if

17: end for

18: if isreal(eigJ) then
19: continue
20: end if

21: ind← max{Im(λ) : λ ∈ eigJ}
22: for iiter2 = 1 : niter2 do

23: Perturb ρk, mk, k = 2, · · · , K into ρ1k,m
1

k randomly, with size of perturbation ind, such that

they do not change sign, and
K∑

k=2

(|ρk|+ |mk|) = ǫ is kept the same.

24: eigJ1 ← eig(J(~ρ1, ~m1))
25: if isreal(eigJ1) then
26: ind1 ← 0
27: else

28: ind1 ← max{Im(λ) : λ ∈ eigJ1}
29: end if

30: if ind1 > ind then

31: ~ρ← ~ρ1, ~m← ~m1, eigJ ← eigJ1, ind← ind1

32: end if

33: end for

34: if ind > maximag then

35: ~ρmax ← ~ρ, ~mmax ← ~m, maximag ← ind

36: end if

37: end for

38: if maximag > 0 then

39: print ~ρmax, ~mmax,maximag

40: else

41: print ‘Did not found’
42: end if
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