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Abstract This is in the sequel of authors’ paper [Lin, F. H., Pan, X. B. and Wang, C. Y.,
Phase transition for potentials of high dimensional wells, Comm. Pure Appl. Math., 65(6),
2012, 833–888] in which the authors had set up a program to verify rigorously some formal
statements associated with the multiple component phase transitions with higher dimen-
sional wells. The main goal here is to establish a regularity theory for minimizing maps
with a rather non-standard boundary condition at the sharp interface of the transition.
The authors also present a proof, under simplified geometric assumptions, of existence of
local smooth gradient flows under such constraints on interfaces which are in the motion
by the mean-curvature. In a forthcoming paper, a general theory for such gradient flows
and its relation to Keller-Rubinstein-Sternberg’s work (in 1989) on the fast reaction, slow
diffusion and motion by the mean curvature would be addressed.
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1 Introduction

This is a continuation of our previous work Lin-Pan-Wang [12] in which we had set up a

program to verify various phenomena associated with multiple components phase transitions

with higher dimensional wells. One of the goals here is to show rigorously the formal asymptotic

arguments for the description of fast reaction, slow diffusion and sharp interface dynamics using

the Ginzburg-Landau approximation as in the celebrated papers [17–18] by Keller-Rubinstein-

Sternberg. For the leading term of the energy functional in the static energy minimization,

we showed in [12] that the sharp interfaces for these general phase transition problem must

be area minimizing hypersurfaces with weights. For the energy minimization, each of weights

must be a constant giving by the length of a so-called minimal connection between a pair of

potential wells. Therefore for the gradient flow, the dynamic of these sharp interfaces would

simply be the motion by mean curvature provided that this weight function remains to be a

constant that equals the length of a minimal connection. The latter leads to a challenging issue
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of studying energy minimizing maps (phases) and its gradient flows that lie in multiple potential

wells (submanifolds) of high dimensions and, that each patch of such maps (phases) possesses

a specific and non-standard boundary condition at corresponding sharp interfaces. The phases

and their dynamics within each of the potential wells would be derived from the “slow diffusion”

part as in [17–18], and it is hence in the next term of formal asymptotic for the energy of the

system. This gives a nonlinear coupling between terms of different orders (in formal expansions)

of the energy through boundary conditions, and it leads us to the study of harmonic maps with

these unusual boundary conditions. In this paper, we show a boundary regularity theory of

minimizing harmonic maps in the above described problems. We also establish a theorem on

the short time existence of classical solutions to the corresponding heat flows. In a forthcoming

work, we will address these dynamical issues in a more general context.

Let us first recall the Cahn-Hilliard energy functional that models the phase transition

described by a scalar function v:

Eǫ(v) =

∫

Ω

(
ǫ|∇v|2 + 1

ǫ
W (v)

)
dx,

where Ω ⊂ Rn is assumed to be a bounded, smooth domain in Rn throughout this paper,

v : Ω 7→ R is the density function, and W : R 7→ R+ is a double-well potential function that

has two minima (zeros) at ±1. The term ǫ|∇v|2 is the interfacial energy that penalizes the

formation of interface. The asymptotic behavior of minimizers vǫ of Eǫ(·) under the constraint∫
Ω
vǫ = c, as ǫ → 0, was first studied by Modica-Mortola [16], Modica [15], and Luckhaus-

Modica [13]: They have showed that the separation region between the two stable phases has

O(ǫ) thickness and the phase transition converges to a minimal hypersurface within the frame

work of De Giorgi’s Γ-convergence theory. There are many important contributions to this

problem (see for examples [5, 10, 13–15, 21–22]).

Rubinstein-Sternberg-Keller [17–18] introduced the vector-valued system of fast reaction

and slow diffusion:

∂tvǫ = ǫ∆vǫ − ǫ−1Wv(vǫ) in Ω;
∂vǫ

∂ν
= 0 on ∂Ω,

where the order paramter vǫ : Ω 7→ Rk represents the multiple component phases, and W :

R
k 7→ R+ vanishes on two disjoint submanifolds in R

k. In this case, a front develops in Ω.

By the formal WKB analysis on the asymptotic expansion for potential functions vanishing

on two submanifolds, it was found in [17–18] the front moves by its mean curvature, and vǫ

approximates the heat flow of harmonic maps away from the front. Although there have been

many studies for the rigorous analysis of such an asymptotics for the scalar case k = 1, the

corresponding analysis has remained an open problem for k ≥ 2.

Next we recall the main results of [12]. For k > 1, let

N = N+ ∪N− ⊂ R
k

be the union of two disjoint, compact, connected, smooth Riemannian manifolds N± ⊂ Rk

without boundaries. For δ > 0, let

Nδ = {p ∈ R
k : d(p,N) = inf

y∈N
|p− y| ≤ δ}
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denote the δ-neighborhood of N . It is well known that there exists δN > 0 such that d2(p,N) ∈
C∞(NδN ). Consider the class of double-well potential functions depending only on the distance

function from N , namely,

F (p) = f(d2(p,N)),

where f ∈ C∞(R+,R+) satisfies the property that there exist c1, c2, c3 > 0 such that
{
c1t ≤ f(t) ≤ c2t, if 0 ≤ t ≤ δ2N ,

f(t) ≥ c3, if t ≥ 4δ2N .
(1.1)

Consider the family of Cahn-Hiliard functional

Eǫ(u) =

∫

Ω

(ǫ2|∇u|2 + F (u)) dx, u ∈ H1(Ω,Rk), ǫ > 0,

that are singular perturbations of the functional of phase transitions of high dimensional wells:

E0(u) =

∫

Ω

F (u) dx, u ∈ L1(Ω,Rk).

For the boundary conditions, we let Σ± ⊂ ∂Ω be two disjoint, connected, open subsets of ∂Ω

such that

(1) ∂Σ+ = ∂Σ− = Σ is a connected (n− 2)-dimensional smooth manifold;

(2) ∂Ω = Σ+ ∪ Σ− ∪ Σ.

For any small η > 0, let Ση = {x ∈ Rn : d(x,Σ) < η} be the η-neighborhood of Σ, and

denote Σ±
η = Σ± \ Ση. Assume that for some β > 0, R > 0, L > 0, and C > 0, gǫ : ∂Ω 7→ Rk

satisfy:

(1) gǫ(Σ
±
ǫβ
) ⊂ N±, gǫ(∂Ω) ⊂ Bk

R, and
∫

∂Ω

(ǫ|∇τgǫ|2 + ǫ−1F (gǫ)) dσ ≤ L; (1.2)

(2) for any p± ∈ N±, ∃ extension maps

G±
ǫ : Σ±

ǫβ
× [0, ǫβ] 7→ N±

such that

G±
ǫ

∣∣
Σ±

ǫβ
×{0}

= gǫ, G±
ǫ

∣∣
Σ±

ǫβ
×{ǫβ}

= p±,

∫

Σ±

ǫβ
×[0,ǫβ]

|∇G±
ǫ |2 dx ≤ C

{
ǫβ

∫

Σ±

ǫβ

|∇τgǫ|2 dHn−1 +
1

ǫβ

∫

Σ±

ǫβ

|gǫ − p±|2 dHn−1
}
,

(1.3)

where ∇τ denotes the tangential derivative on hypersurfaces in Rn.

Set

E(ǫ) = min
{∫

Ω

(
|∇u|2 + 1

ǫ2
F (u)

)
dx : u

∣∣
∂Ω

= gǫ

}
. (1.4)

In [12], we proved the following theorem.

Theorem A Assume that F ∈ C∞(Rk) satisfies (1.1), Γ ⊂ Ω is an area-minimizing

hypersurface with ∂Γ = Σ and gǫ : ∂Ω 7→ Rk satisfies conditions (1.2) and (1.3). Then

lim
ǫ→0

ǫE(ǫ) = cF0 H
n−1(Γ), (1.5)
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where cF0 is the energy of the minimal connecting orbits between N+ and N− defined by

cF0 = inf{cF (p+, p−) : p± ∈ N±} (1.6)

and

cF (p+, p−) = inf
{∫

R

(|ξ′(t)|2 + F (ξ)) dt : ξ ∈ H1(R,Rk), ξ(±∞) = p±
}
. (1.7)

Let

dN = inf{|p+ − p−| : p± ∈ N±}

be the euclidean distance between N+ and N−, and

{
M+ = {p+ ∈ N+ : ∃ p− ∈ N− s.t. |p+ − p−| = dN};
M− = {q− ∈ N− : ∃ q+ ∈ N+ s.t. |q+ − q−| = dN} (1.8)

be the pair of minimal sets in N±.

Assume that gǫ is almost optimal near Σ in the sense that its limit g = lim
ǫ→0

gǫ gives the

minimal connecting orbits between N+ and N− (see [12, pp.804–841] for more details). Then

we also proved in [12] the following result.

Theorem B Assume F (p) = f(d2(p,N)) satisfies (1.1), Γ is a unique area minimizing

hypersurface with ∂Γ = Σ, which is smooth and strictly stable. Assume also that

A = {v ∈ H1(Ω±, N±) : v|∂Ω = g, |v(x+)− v(x−)| = dN a.e. x ∈ Γ} 6= ∅.

Then

E(ǫ) =
cF0
ǫ
Hn−1(Γ) +D+ o(1), (1.9)

where

D = inf
{∫

Ω+

|∇v|2 dx+

∫

Ω−

|∇v|2 dx : v ∈ A
}
. (1.10)

Furthermore, if {uǫ} is a sequence of minimizers of E(ǫ), then there exists u ∈ A attaining the

value D such that after taking a possible subsequence, uǫ converges to u in L1(Ω,Rk).

The first aim of this paper is to study the boundary regularity of a minimizing harmonic

map v ∈ A that attains D near the sharp interface Γ. In order to achieve it, we make some

further assumptions on the minimal sets M±. More precisely, let M+ ⊂ N+ and M− ⊂ N−

be such that

• M+ and M− are connected, C1-manifolds without boundaries, equipped with induced

metric from N+ and N− respectively;

• there exists a C1 diffeomorphism Φ+ : M+ 7→ M−, whose inverse map is Φ− : M− 7→ M+.

Let Γ ⊂ Ω be a smooth hypersurface with boundary Σ, i.e., ∂Γ = Σ. Denote the two connected

components of Ω separated by Γ by Ω±, i.e., Ω \ Γ = Ω+ ∪ Ω−, so that

∂Ω± = Σ± ∪ Γ.
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Let g : ∂Ω → N be a given map such that g ∈ H1(Σ±, N±), and the two one-side trace

values of g on Σ satisfy:

g±(x)(= g(x±)) ∈ H
1
2 (Σ,M±) and Φ+(g+(x)) = g−(x) a.e. x ∈ Σ. (1.11)

The minimization problem seeks

inf{E(u) | u ∈ H1(Ω±, N±), u|∂Ω = g, u(Γ±) ⊂ M±,

Φ+(u+(x)) = u−(x) a.e. x ∈ Γ}, (1.12)

where

E(u) =
1

2

∫

Ω+

|∇u|2 dx+
1

2

∫

Ω−

|∇u|2 dx.

It is readily seen that if the configuration space

A ≡ {u ∈ H1(Ω±, N±) : u|∂Ω = g, u(Γ±) ⊂ M±, Φ+(u+(x)) = u−(x) a.e. x ∈ Γ} (1.13)

is non-empty, then there exists at least one energy minimizing map u ∈ A, i.e.,

E(u) ≤ E(v), ∀v ∈ A.

Note that for n ≥ 3 if, up to a diffeomorphism, Ω = B1 ⊂ Rn, the unit ball, Σ = ∂B1∩{xn =

0}, Σ± = ∂B1 ∩ Rn
±, Γ = B1 ∩ {xn = 0}, and g ∈ H1(Σ±, N±) satisfies (1.11), then A 6= ∅. In

fact, it is not hard to verify that the homogeneous of degree zero extension g(x) = g
(

x
|x|

)
, x ∈ B1,

belongs to A. In general, we have the following lemma.

Lemma 1.1 Assume that Π1(N
+) = Π1(N

−) = {0}, g : ∂Ω 7→ N satisfies g|Σ± ∈
H1(Σ±, N±), and the condition (1.11) holds. Then A is non-empty.

Proof Denote the two one side trace of g on Σ by g±(x) for x ∈ Σ. Then by (1.11)

g± ∈ H
1
2 (Σ,M±). First, we want to extend g± : Σ 7→ M± to maps G± : Γ 7→ M±. By (1.11),

it suffices to construct an extension map G+ of g+, since G−(x) = Φ+(G+(x)) for x ∈ Γ will

provide an extension of g−. Since M+ is connected, i.e., Π0(M
+) = {0}, Theorem 6.2 of Hardt-

Lin [7–8] implies that for any 1 < p < 2, there exists an extension map G+ ∈ W 1,p(Γ,M+)

such that G+
∣∣
Σ
= g+ in the trace sense. Now we let u+ ∈ H1(Ω+,Rk) solve





∆u+ = 0 in Ω+,

u+ = g on Σ+,

u+ = G+ on Γ.

(1.14)

Since Π1(N
+) = 0, by applying the extension Lemma 6.1 of [8] as in the proof of Theorem 6.2

of [8] we conclude that there exists a map ũ+ ∈ H1(Ω+, N+) such that ũ+ − u+ ∈ H1
0 (Ω

+,Rk)

and
∫

Ω+

|∇ũ+|2 ≤ C

∫

Ω+

|∇u+|2 ≤ C(‖g‖
H

1
2 (Σ+)

+ ‖G+‖
H

1
2 (Γ)

)

≤ C(‖g‖
H

1
2 (Σ+)

+ ‖g+‖
H

1
2 (Σ)

) ≤ C‖g‖H1(Σ+).

Similarly, we can find an extension map ũ− ∈ H1(Ω−, N−) such that ũ− = g on Σ− and

ũ− = G− on Γ. Now if we set ũ : Ω 7→ N by letting ũ(x) = ũ±(x) for x ∈ Ω±, then ũ ∈ A.

This completes the proof.
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For a minimizing harmonic map u ∈ A, denote the set of discontinuous points of u in Ω±∪Γ

by S±(u) ⊂ Ω± ∪ Γ and define

S(u) = S+(u) ∪ S−(u)

as the set of discontinuous points of u in Ω.

It follows from the interior regularity theory of minimizing harmonic maps by Schoen-

Uhlenbeck [19] that S(u) ∩ (Ω \ {Γ}) has Hausdorff dimension at most n− 3.

Our first main result concerns the boundary partial regularity at Γ for a minimizing harmonic

map u in A, which is stated as follows.

Theorem 1.1 Assume that the boundary value g ∈ H1(Σ±, N±) satisfies the condition

(1.11). If u ∈ A is an energy minimizing harmonic map, then

(i) S(u) ∩ Γ is discrete for n = 3;

(ii) S(u) ∩ Γ is of Hausdorff dimension at most (n− 3) for n ≥ 4.

The paper is organized as follows. In §2, we will give a proof of Theorem 1.1. In §3, we will

discuss the corresponding problem on the heat flow and establish the existence of short time

regular solutions. In §4, we will provide boundary monotonicity inequalities for both stationary

harmonic maps and their corresponding heat flows under the same boundary condition in

Theorem 1.1, which may have its own interest and are useful to future studies.

2 Proof of Theorem 1.1

2.1 Euler-Lagrange equation

In this subsection, we will derive the Euler-Lagrange equation for energy minimizing maps

in A.

Assume that u ∈ A is an energy minimizing map. For a sufficiently small δ > 0, let

u(t, ·) ∈ A, t ∈ (−δ, δ), be a family of comparison maps for u, i.e., u(0, ·) = u(·). For t ∈ (−δ, δ),

let u±(t, x) denote the two one-sided trace value of u(t, x) for x ∈ Γ. Then for t ∈ (−δ, δ), we

have

u(t, x) = g(x) for x ∈ Σ; u(t, x) ∈ N± for x ∈ Ω±; u±(t, x) ∈ M± for x ∈ Γ,

and

Φ+(u+(t, x)) = u−(t, x) for Hn−1 a.e. x ∈ Γ.

Set φ(x) = d
dt

∣∣
t=0

u(t, x) for x ∈ Ω. Then we have

0 =
d

dt

∣∣
t=0

(1
2

∫

Ω+

|∇ut|2 +
1

2

∫

Ω−

|∇ut|2
)

=

∫

Ω+

∇u · ∇φ +

∫

Ω−

∇u · ∇φ.

For the test function φ, if we denote by φ±(x) the two one-sided trace value of φ on Γ from Ω±,

then

φ(x) ∈ Tu(x)N
± for a.e. x ∈ Ω±; φ±(x) ∈ Tu±(x)M

± for Hn−1 a.e. x ∈ Γ,
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and

DΦ+(u+(x))(φ+(x)) = φ−(x) for Hn−1 a.e. x ∈ Γ.

Let A± denote the second fundamental form of N± in Rk and denote u± = u
∣∣
Ω± . Then by

integration by parts u satisfies





−∆u+ = A+(u+)(∇u+,∇u+) in Ω+,

−∆u− = A−(u−)(∇u−,∇u−) in Ω−,

u = g on ∂Ω,

u±(x) ∈ M±,Φ+(u+(x)) = u−(x) on Γ,

(∂u+

∂ν

)T

(x) = (DΦ+(u+(x)))t
[(∂u−

∂ν

)T

(x)
]

on Γ.

(2.1)

Here (·)T(x) : Tu+(x)N
+ 7→ Tu+(x)M

+ (and (·)T(x) : Tu−(x)N
− 7→ Tu−(x)M

−) denotes the

orthogonal projection map for x ∈ Γ, and

P t : Tu−(x)M
− 7→ Tu+(x)M

+ (or Tu+(x)M
+ 7→ Tu−(x)M

−)

denotes the adjoint of the linear map

P : Tu+(x)M
+ 7→ Tu−(x)M

− (or Tu−(x)M
− 7→ Tu+(x)M

+).

It is not hard to see that the 5th equation of (2.1) can also be written as

(∂u−

∂ν

)T

(x) = (DΦ−(u−(x)))t
[(∂u+

∂ν

)T

(x)
]

on Γ.

2.2 Boundary monotonicity inequality

In order to establish the partial boundary regularity for energy minimizing maps in A, we

need a version of boundary monotonicity inequality.

For R > 0, denote by BR ⊂ Rn the ball of radius R and center 0, B±
R = BR ∩ Rn

±.

Since Γ is smooth, there exists r0 = r0(Γ) > 0 such that for any x0 ∈ Γ, 0 < r ≤ r1 :=
1
2 min{r0, dist(x0, ∂Ω)}, there exist C > 0 and C1-diffeomorphism Ψ : Br(x0) = Br(x0) ∩ Ω 7→
Br so that

Ψ(Ω± ∩Br(x0)) = B±
r , |DΨ(x)− In| ≤ C|x− x0| for x ∈ Br(x0). (2.2)

Here In is the identity matrix of order n. By Fubini’s theorem, u ∈ H1(∂Br(x0)∩Ω±, N±) for

almost all r ∈ (0, r1) so that if we define

ũ(x) =





u(x), x ∈ Ω \Br(x0),

u
(
Ψ−1

[
r
Ψ(x)

|Ψ(x)|
])

, x ∈ Ω ∩Br(x0),

then ũ ∈ A is a comparison map for u. Thus by the energy minimality, we have

∫

Ω+∩Br(x0)

|∇u|2 +
∫

Ω−∩Br(x0)

|∇u|2 ≤
∫

Ω+∩Br(x0)

|∇ũ|2 +
∫

Ω−∩Br(x0)

|∇ũ|2.
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Utilizing (2.2) and direct calculations, we have that

(n− 2− Cr)
( ∫

Ω+∩Br(x0)

|∇u|2 +
∫

Ω−∩Br(x0)

|∇u|2
)

≤ r
( ∫

Ω+∩∂Br(x0)

|∇u|2 +
∫

Ω−∩∂Br(x0)

|∇u|2
)

− r
( ∫

Ω+∩∂Br(x0)

∣∣∣ ∂u

∂|x− x0|
∣∣∣
2

+

∫

Ω−∩∂Br(x0)

∣∣∣ ∂u

∂|x− x0|
∣∣∣
2)

.

Therefore, for any x0 ∈ Γ and r ∈ (0, r1), we have that

d

dr

[
eCrr2−n

(∫

Ω+∩Br(x0)

|∇u|2 +
∫

Ω−∩Br(x0)

|∇u|2
)]

≥ r2−n
[ ∫

Ω+∩∂Br(x0)

∣∣∣ ∂u

∂|x− x0|
∣∣∣
2

+

∫

Ω−∩∂Br(x0)

∣∣∣ ∂u

∂|x− x0|
∣∣∣
2]

(2.3)

holds, provided u ∈ A is an energy minimizing map. In particular, by integrating (2.3) with

respect to r, we obtain that for any x0 ∈ Γ and 0 < R1 ≤ R2 < r1,

eCR1R2−n
1

( ∫

Ω+∩BR1(x0)

|∇u|2 +
∫

Ω−∩BR1(x0)

|∇u|2
)

+

∫

Ω∩(BR2 (x0)\BR1(x0))

|x− x0|2−n
∣∣∣ ∂u

∂|x− x0|
∣∣∣
2

≤ eCR2R2−n
2

( ∫

Ω+∩BR2(x0)

|∇u|2 +
∫

Ω−∩BR2(x0)

|∇u|2
)

(2.4)

holds for any energy minimizing map u ∈ A.

2.3 Boundary extension lemma

A crucial ingredient to prove Theorem 1.1 is the following boundary extension lemma, similar

to [9, Lemma 3.1].

Lemma 2.1 There exist positive constants δ, q, and C such that, if 0 < ǫ < 1, x0 ∈ Γ, and

0 < r0 < dist(x0, ∂Ω), if η
± ∈ H1(∂Br0(x0) ∩ Ω±, N±) satisfies

∫

∂Br0 (x0)∩Ω±

|∇tanη
±|2 dHn−1

[ ∫

∂Br0 (x0)∩Ω±

|η± − p±|2 dHn−1

+

∫

∂Br0 (x0)∩Γ

|η± − p±|2 dHn−2
]
≤ δ2ǫq (2.5)

for some p± ∈ Rk, and if η± : ∂Br0(x0) ∩ Γ 7→ M± satisfies

η−(x) = Φ+(η+(x)) for Hn−2 a.e. x ∈ ∂Br0(x0) ∩ Γ,

then there exist maps ω± ∈ H1(Br0(x0) ∩Ω±, N±) such that ω± = η± on ∂Br0(x0) ∩Ω±, and

ω± : Br0(x0) ∩ Γ 7→ M± satisfies

ω−(x) = Φ+(ω+(x)) for Hn−1 a.e. x ∈ Br0(x0) ∩ Γ.
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Furthermore, it holds that

∫

Br0 (x0)∩Ω±

|∇ω±|2 dx

≤ ǫ

∫

∂Br0 (x0)∩Ω±

|∇tanη
±|2 dHn−1

+ Cǫ−q
[ ∫

∂Br0(x0)∩Ω±

|η± − p±|2 dHn−1 +

∫

∂Br0(x0)∩Γ

|η± − p±|2 dHn−2
]
. (2.6)

Here ∇tan denotes the tangential gradient on ∂Br0(x0).

Proof The proof can be done by suitable modifications of the arguments from [8–9] and

[19]. It is based on an induction of the dimension n. There are two crucial ingredients of the

construction:

(i) Construction in dimension n = 2;

(ii) Homogeneous of degree zero extension for n ≥ 3.

For simplicity, we will only indicate how to implement these two ingredients in our situation.

The interested readers can consult with [8–9, 19] for more details.

Case 1 n = 2 (linear interpolation). Since the problem is invariant under bi-Lipschitz

transformations, we may assume that x0 = 0, r0 = 1, Ω = B1, and Γ = Γ1(= B2
1 ∩ {x2 = 0}).

Denote by S±
1 ⊂ ∂B2

1 the half unit circles. Choose θ±0 ∈ S±
1 so that

|η±(θ±0 )− p±| = inf{|η±(θ)− p±| : θ ∈ S±
1 }.

Then it is easy to see that





|η±(θ±0 )− p±|2 ≤ c

∫

S
±
1

|η± − p±|2,
∫

S
±
1

|η± − η±(θ0)|2 ≤ c

∫

S
±
1

|η± − p±|2.

By Sobolev’s embedding inequality H1(S±
1 ) ⊂ C

1
2 (S±

1 ), we have that

max
θ∈S

±
1

{|η±(θ)− η±(θ0)|2} ≤ c
(∫

S
±
1

|∇tanη
±|2

) 1
2
(∫

S
±
1

|η± − η(θ0)|2
) 1

2

≤ cδǫ
q
2 .

Set

w+(t, 0) =
(1− t)

2
η+(−1, 0) +

(1 + t)

2
η+(1, 0), −1 ≤ t ≤ 1.

Then we have

max
−1≤t≤1

dist(w+(t, 0),M+) ≤ c|η+(1, 0)− η+(−1, 0)| ≤ cδǫ
q
2 .

Recall that there exists δ0 = δ0(M
±) > 0 such that for any 0 < δ < δ0, the nearest point

projection maps ΠM± : (M±)δ 7→ M± and ΠN± : (N±)δ 7→ N± are smooth, where (M±)δ
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(or (N±)δ respectively) denotes the δ-neighborhood of M± (or N± respectively) in R
k. Let

v+ : B+
1 7→ Rk solve





∆v+ = 0 in B+
1 ,

v+ = η+ on S+
1 ,

v+ = ΠM+(w+) on Γ1.

Since max{oscS+
1
η+, oscΓ1ΠM+(w+)} ≤ Cδǫ

q
2 , it follows from the maximum principle that

max
x∈B+

1

dist(v+(x), N+) ≤ cδǫ
q
2 .

Thus we can define

ω+(x) = ΠN+(v+(x)), x ∈ B+
1 .

To construct ω−, first let

w−(t, 0) = Φ+(ΠM+(w+(t, 0))), −1 ≤ t ≤ 1,

so that w−(Γ1) ⊂ M−. Let v− : B−
1 7→ Rk solve





∆v− = 0 in B−
1 ,

v− = η− on S−
1 ,

v− = w− on Γ1.

Then we also have

max
x∈B

−
1

dist(v−(x), N−) ≤ cδǫ
q
2 ,

so that we can define

ω−(x) = ΠN−(v−(x)), x ∈ B−
1 .

It follows directly from the above construction that ω−(x) = Φ+(ω+(x)) for x ∈ Γ1, and (2.6)

follows from the standard estimate on harmonic functions.

Case 2 n ≥ 3 (homogeneous of degree zero extension). For 0 < δ < 1, let B±,n−1
δ be (n−1)-

dimensional half balls of radius δ > 0, and C
±,n
δ = B

±,n−1
δ × [−δ, δ] be the n-dimensional half

cylinders of size δ. Let S
±,n−2
δ be the (n − 2)-dimensional half spheres of radius δ so that

∂B
±,n−1
δ = S

±,n−2
δ ∪Bn−2

δ .

Lemma 2.2 For u± ∈ H1((B±,n−1
δ ×{±δ})∪(S±,n−2

δ ×[−δ, δ]), N±), if u±
1 (x) = u±(x,−δ)

and u±
2 (x) = u±(x, δ), x ∈ B

±,n−1
δ , satisfies u±

1 , u
±
2 ∈ H1(B±,n−1

δ , N±), if u±(x, t) = u±
0 (x)

for (x, t) ∈ S
±,n−2
δ × [−δ, δ], with u±

0 ∈ H1(S±,n−2
δ , N±), and if

u±(x, t) ∈ M± satisfies u−(x, t) = Φ+(u−(x, t))

for Hn−2 a.e. x ∈ Bn−2
δ and t = −δ, δ. (2.7)

Then there exist extension maps u± ∈ H1(C±,n
δ , N±) such that

u± = u± on (B±,n−1
δ × {±δ}) ∪ (S±,n−2

δ × [−δ, δ]),

u±(x, t) ∈ M±, u−(x, t) = Φ+(u+(x, t)) for Hn−1 a.e. (x, t) ∈ Bn−2
δ × [−δ, δ]

(2.8)
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and

E(u±;C±,n
δ ) ≤ cδ[Eδ(u

±
1 ) + Eδ(u

±
2 ) + δE(u±

0 )], (2.9)

W (u±;C±,n
δ ) ≤ cδ[Wδ(u

±
1 ) +Wδ(u

±
2 ) + δW (u±

0 )]. (2.10)

Here

Eδ(u
±
i ) =

∫

B
±,n−1
δ

|∇u±
i |2 dHn−1, i = 1, 2; E(u±

0 ) =

∫

S
±,n−2
δ

|∇tanu
±
0 |2 dHn−2

and

Wδ(u
±
i ) =

∫

B
±,n−1
δ

|u±
i − p∗|2 dHn−1, i = 1, 2; W (u±

0 ) =

∫

S
±,n−2
δ

|u±
0 − p∗|2 dHn−2

for some fixed p∗ ∈ RL.

Proof By scaling, we may assume δ = 1. There exists a bi-Lipschitz homeomorphism

f± : ∂B±,n
1 7→ ∂C

±,n
1 such that f±(x) = |x|f±

(
x
|x|

)
: B

±,n
1 7→ C

±,n
1 is also a bi-Lipschitz

homeomorphism. Let Π(x) = x
|x| : B

n
1 \ {0} 7→ ∂Bn

1 be the radial projection map. Define the

projection map Π± : C±,n
1 \ {0} 7→ ∂C

±,n
1 by Π± = f± ◦Π ◦ (f±)−1. Then define

u±(x) = u± ◦Π±(x), x ∈ C
±,n
1 .

It is easy to see that (2.7) implies that u± satisfies the trace condition (2.8) on Γ1. It is also

easy to see that

E(u±;C±,n
1 ) ≤ KE(u± ◦ f±;B±,n

1 ) ≤ K

n− 2
E(u± ◦ f±; ∂B±,n

1 ) ≤ C(K)E(u±; ∂C±,n
1 ),

where K is a constant depending on the Lipschitz constants of f± and (f±)−1. This implies

(2.9). Similar argument for W also yields (2.10).

Corollary 2.1 There is a constant c > 0 such that under the same assumptions of Lemma

2.1, if u ∈ H1(Ω±, N±) ∩ A is energy minimizing among all maps in A, and for any x0 ∈ Γ

and 0 < r0 < dist(x0, ∂Ω),

r2−n
0

(∫

Ω+∩Br0 (x0)

|∇u+|2 +
∫

Ω−∩Br0(x0)

|∇u−|2
)
≤ c−1λ− q

2 ,

then

(r0
2

)2−n( ∫

Ω+∩B r0
2
(x0)

|∇u+|2 +
∫

Ω−∩B r0
2

(x0)

|∇u−|2
)

≤ λr2−n
0

(∫

Ω+∩Br0(x0)

|∇u+|2 +
∫

Ω−∩Br0(x0)

|∇u−|2
)

+ cλ−qr−n
0

[ ∫

Ω+∩Br0 (x0)

|u+ − û+|2 +
∫

Ω−∩Br0(x0)

|u− − û−|2
]

+ cλ−qr2−n
0

[ ∫

∂Br0 (x0)∩Γ

|u+ − û+|2 dHn−2 +

∫

∂Br0 (x0)∩Γ

|u− − û−|2 dHn−2
]
, (2.11)
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where u± = u|Ω± denotes the restriction of u on Ω±, and

û± =
1

|Br0(x0) ∩ Γ|

∫

Br0 (x0)∩Γ

u± dHn−1

is the average of the one-side trace of u± in Br0(x0) ∩ Γ.

Proof For simplicity, we assume r0 = 1. Since u± : Ω± → N± and N± is compact, it

follows ∣∣∣
∫

B1(x0)∩Γ

u± dHn−1
∣∣∣ ≤ C.

From the Poincaré inequality, we have that

∫

Ω±∩B1(x0)

|u± − û±|2 ≤ c

∫

Ω±∩B1(x0)

|∇u±|2.

From the trace estimate and the Poincaré inequality, we also have that

∫

B1(x0)∩Γ

|u± − û±|2 dHn−1 ≤ c‖u± − û±‖2
H

1
2 (B1(x0)∩Γ)

≤ c

∫

Ω±∩B1(x0)

|∇u±|2.

Applying Fubini’s theorem, we can choose r ∈
[
1
2 , 1

]
such that

∫

Ω±∩∂Br(x0)

|∇u±|2 dHn−1 ≤ c

∫

Ω±∩B1(x0)

|∇u±|2

and

[ ∫

Ω±∩∂Br(x0)

|u± − û±|2 dHn−1 +

∫

∂Br(x0)∩Γ

|u± − û±|2 dHn−2
]

≤ c
[ ∫

Ω±∩B1(x0)

|u± − û±|2 +
∫

Γ∩B1(x0)

|u± − û±|2
]

≤ c

∫

Ω±∩B1(x0)

|∇u±|2.

By choosing a sufficiently small c > 0, we can apply Lemma 2.1 with η± = u± | ∂Br(x0) ∩ Ω±

and p± = û± to obtain an extension map ω± ∈ H1(Br(x0) ∩ Ω±, N±) such that ω± = u± on

∂Br(x0) ∩ Ω±, ω±
∣∣
Br(x0)∩Γ

has image in M± that satisfies

ω−(x) = Φ+(ω+(x)) for Hn−1 a.e. x ∈ Br(x0) ∩ Γ,

and the estimate (2.6). If we define ũ : Ω → N by

ũ(x) =

{
ω±(x) x ∈ Br(x0) ∩ Ω±,

u(x) x ∈ Ω \Br(x0).

Then ũ ∈ A is a comparison map of u. Hence the energy minimality of u implies that

∫

Ω+∩Br(x0)

|∇u+|2 +
∫

Ω−∩Br(x0)

|∇u−|2 ≤
∫

Ω+∩Br(x0)

|∇ω+|2 +
∫

Ω−∩Br(x0)

|∇ω−|2,

which, combined with (2.6), then implies (2.11). This completes the proof.
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2.4 Small energy regularity

Another crucial step to prove Theorem 1.1 is the following energy improvement property.

Lemma 2.3 There exist positive constants ǫ, C, and θ < 1 such that if u ∈ A is an energy

minimizing map that satisfies, for x0 ∈ Γ and some 0 < r0 < dist(x0, ∂Ω),

r2−n
0

(∫

Ω+∩Br0(x0)

|∇u|2 +
∫

Ω−∩Br0(x0)

|∇u|2
)
≤ ǫ2, (2.12)

then

(θr0)
2−n

(∫

Ω+∩Bθr0
(x0)

|∇u|2 +
∫

Ω−∩Bθr0
(x0)

|∇u|2
)

≤ 1

2
max

{
r2−n
0

(∫

Ω+∩Br0(x0)

|∇u|2 +
∫

Ω−∩Br0 (x0)

|∇u|2
)
, CLip(Γ)

}
. (2.13)

The proof of Lemma 2.3 is based on a blowing up argument, similar to [9, Theorem 3.3].

Before presenting it, we need the following regularity estimate on the linear equation, resulting

from the blow-up process of the nonlinear harmonic map equation (2.2).

Denote by B+
1 and B−

1 the upper half and lower half unit ball, and set Γ1 = B1 ∩{xn = 0}.
For a+ ∈ M+, let a− = Φ+(a+) ∈ M−. Let Tan(a±,M±) denote the tangent space of M± at

a±, and Nor(a±,M±) denote the normal space of M± ⊂ N± at a±, i.e.,

Tan(a±,M±)⊕Nor(a±,M±) = Tan(a±, N±).

For any vector v± ∈ Tan(a±, N±), we decompose it as

v± = vt± + vn±,

where vt± denotes the orthogonal projection of v± into Tan(a±,M±), and vn± denotes the

orthogonal projection of v± into Nor(a±,M±).

Lemma 2.4 Suppose that v± ∈ H1(B±
1 ,Tan(a±, N±)) are two harmonic functions, with

traces v±
∣∣
Γ1

∈ H
1
2 (Γ1,Tan(a

±,M±)), satisfying





v− = DΦ+(a+)(v+) on Γ1,

(∂v+
∂xn

)T

= (DΦ+(a+))t
(∂v−
∂xn

)T

on Γ1.

(2.14)

Then v± ∈ C∞(B±
1
2

∪ Γ 1
2
), and for any l ≥ 1, it holds

‖v±‖Cl(B±
1
2

∪Γ 1
2
) ≤ C(l, ‖Φ+‖C1(M+), ‖v±‖H1(B±

1 )). (2.15)

Proof Since a± ∈ M±, we can decompose v± = vt± + vn± so that

∆vt± = 0 in B±
1 , (2.16)

and

∆vn± = 0 in B±
1 . (2.17)
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Since v±(x) ∈ Tan(a±,M±) for Hn−1 a.e. x ∈ Γ1, we have that

vn± = 0 on Γ1. (2.18)

It is readily seen that by (2.17) and (2.18), vn± ∈ C∞(B±
1
2

∪ Γ 1
2
), and for any l ≥ 1,

‖vn±‖Cl(B±
1
2

∪Γ 1
2
) ≤ C(l, ‖vn±‖H1(B±

1 )). (2.19)

To show regularity of vt±, we denote P = DΦ+(a+) and proceed as follows. Define ṽ− : B+
1 7→

Ta+N+ be an even extension v−, i.e.,

ṽ−(x
′, xn) = v−(x

′,−xn), (x′, xn) ∈ B+
1 .

Then it is easy to see that

{
∆(ṽ−

t − P (vt+)) = 0 in B+
1 ,

ṽ−
t − P (vt+) = 0 on Γ1

(2.20)

and





∆(vt+ − P t(ṽ−
t
)) = 0 in B+

1 ,

∂

∂xn

(vt+ − P t(ṽ−
t
)) = 0 on Γ1.

(2.21)

From the standard theory of harmonic functions, we see that (2.20) and (2.21) imply

(ṽ−
t − P (vt+)), (vt+ + P t(ṽ−

t)) ∈ C∞(B−
1
2

∪ Γ 1
2
),

and it holds that, for any l ≥ 1,

‖ṽ−t − P (vt+)‖Cl(B−
1
2

∪Γ 1
2
) + ‖vt+ + P t(ṽ−

t
)‖Cl(B−

1
2

∪Γ 1
2
) ≤ C(l, ‖v±‖H1(B±

1 )). (2.22)

If PP t = Ik, i.e., P ∈ O(k) is an orthogonal matrix, then we have

|ṽ−t − P (vt+)| = |P (P t(ṽ−
t
)− vt+)| = |P t(ṽ−

t
)− vt+|.

This and (2.22) easily yield (2.15).

If PP t 6= Ik, then P−1 6= P t and we can also see easily that (2.15) follows from (2.22). This

completes the proof.

Proof of Lemma 2.4 The proof follows from a blow-up argument, Lemma 2.4, and the

boundary extension Lemma 2.2. Here we only sketch the argument.

For simplicity, assume that x0 = 0, r0 = 1, Ω = B1, and Γ = Γ1 so that Lip(Γ) = 0.

Suppose that the conclusion were false. Then for any θ ∈ (0, 1), there would exist ǫi → 0 and

a sequence of minimizing harmonic maps ui ∈ A that satisfy

∫

B
+
1

|∇u+
i |2 +

∫

B
−
1

|∇u−
i |2 = ǫ2i (2.23)
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and

θ2−n
(∫

B
+
θ

|∇u+
i |2 +

∫

B
−
θ

|∇u−
i |2

)
>

1

2
ǫ2i . (2.24)

Let u±
i = 1

|Γ1|

∫
Γ1

u±
i denote the average of the two one-sided traces of ui on Γ1. By the Poincaré

inequality on Γ1 and H1 trace theory, we have

dist(u+
i ,M

+)2 ≤ 1

|Γ1|

∫

Γ1

|u+
i − u+

i |2 dHn−1 ≤ c‖∇u+
i ‖2L2(B+

1 )
≤ cǫ2i .

Therefore for i sufficiently large there is a unique nearest point a+i = ΠM+(u+
i ) ∈ M+ such

that

|u+
i − a+i | = dist(u+

i ,M
+).

Since u−
i = Φ+(u+

i ) on Γ1, it is readily seen that a−i ≡ Φ+(a+i ) ∈ M− satisfies

|u−
i − a−i |2 =

∣∣∣ 1
Γ1

∫

Γ1

Φ+(u+
i )− Φ+(a+i )

∣∣∣
2

≤ cLip2(Φ+)

∫

Γ1

|u+
i − a+i |2

≤ c

∫

Γ1

|u+
i − u+

i |2 + |u+
i − a+i |2 ≤ cǫ2i .

Now we define the corresponding blow-up sequence vi : B1 → Rk by letting

vi(x) :=





v+i (x) =
u+
i (x) − a+i

ǫi
, x ∈ B+

1 ,

v−i (x) =
u−
i (x)− a−i

ǫi
, x ∈ B−

1 .

It is easy to see that

∫

B
+
1

|∇v+i |2 +
∫

B
−
1

|∇v−i |2 = 1 (2.25)

and

θ2−n
(∫

B
+
θ

|∇v+i |2 +
∫

B
−
θ

|∇v−i |2
)
>

1

2
. (2.26)

By (2.25) and the H1-trace theory, we have

‖v±i ‖H1(B±
1 ) ≤ c.

Hence, after taking a subsequence, there exists v : B1 → Rk, with v±(= v|B±
1
) ∈ H1(B±

1 ,Rk),

such that v±i converge to v± weakly in H1(B±
1 ,Rk). In particular, by (2.25), we have

∫

B
+
1

|∇v+|2 +
∫

B
−
1

|∇v−|2 ≤ 1. (2.27)

Again passing to a subsequence, we assume that

lim
i→∞

a+i = a+ ∈ M+ and lim
i→∞

a−i = a− = Φ+(a+) ∈ M−.
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It is not hard to verify that v+(x) ∈ Ta+N+ for a.e. x ∈ B+
1 , and v−(x) ∈ Ta−N− for a.e.

x ∈ B−
1 . Since u±

i (x) ∈ M± for Hn−1 a.e. x ∈ Γ1, it is also not hard to see that

v±(x) ∈ Tan(a±,M±) and v−(x) = DΦ+(a+)(v+(x)) H
n−1 a.e. x ∈ Γ1. (2.28)

Since v±i satisfies

−∆v±i = ǫiA
±(u±

i )(∇v±i ,∇v±i ) in B±
1

and ∫

B
±
1

|A±(u±
i )(∇v±i ,∇v±i )| ≤ c

∫

B
±
1

|∇v±i |2 ≤ c,

we have, after taking i to infinity, that

−∆v± = 0 in B±
1 . (2.29)

Since v±i also satisfies the trace condition

(
ǫi
∂v+i
∂ν

)T

= (DΦ+(ǫiv
+
i (x) + a+i ))

t
(
ǫi
∂v−i
∂ν

)T

on Γ1,

we obtain, after taking i to infinity, that

(∂v+
∂ν

)T

= (DΦ+(a+))t
(∂v−

∂ν

)T

on Γ1. (2.30)

Here (·)T : Ta±N± 7→ Ta±M± is the orthogonal projection map. Moreover, we claim

∫

Γ1

v± dHn−1 = 0. (2.31)

Set w+
i =

u
+
i
−a

+
i

ǫi
and w+ = lim

i→∞
w+

i . Then we have that w+ ∈ Nor(a+,M+). Hence for Hn−1

a.e. x ∈ Γ1,

lim
i→∞

u+
i (x) − a+i

ǫi
· w+

i = 0,

since
u
+
i
(x)−a

+
i

ǫi
converges to a vector in Tan(a+,M+). Thus

|w+|2 = lim
i→∞

|w+
i |2 =

1

|Γ1|
lim
i→∞

∫

Γ1

u+
i (x) − a+i

ǫi
· w+

i dHn−1 = 0.

This implies

1

|Γ1|

∫

Γ1

v+ dHn−1 =
1

|Γ1|
lim
i→∞

∫

Γ1

u+
i − a+i
ǫi

dHn−1 = lim
i→∞

u+
i − a+i
ǫi

= w+ = 0.

To see
∫
Γ1

v− dHn−1 = 0, observe that

u−
i − a−i
ǫi

= DΦ+(a+i )
(u+

i − a+i
ǫi

)
+ o(1)

∫

Γ1

∣∣∣u
+
i − a+i
ǫi

∣∣∣ dHn−1

= DΦ+(a+i )(w
+
i ) + o(1)‖v+i ‖L1(Γ1),
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so that ∫

Γ1

v− dHn−1 =
1

|Γ1|
lim
i→∞

u−
i − a−i
ǫi

=
1

|Γ1|
DΦ+(a+)(w+) = 0.

By (2.28)–(2.30), we can apply Lemma 2.4 to conclude that v± ∈ C∞(B±
1
2

). Moreover, by

(2.27) and (2.31) we have that for any 0 < θ < 1,

θ−n
(∫

B
+
θ

|v+ − (v+)θ|2 +
∫

B
−
θ

|v− − (v−)θ|2
)

≤ cθ2
(∫

B
+
1

|∇v+|2 +
∫

B
−
1

|∇v−|2
)
≤ cθ2, (2.32)

where (v±)θ = 1
|Γθ|

∫
Γθ

v± dHn−1. By the Poincaré inequality and the trace theory we also have

θ1−n
(∫

Γθ

|v+ − (v+)θ|2 +
∫

Γθ

|v− − (v−)θ|2
)

≤ cθ2
(∫

B
+
1

|∇v+|2 +
∫

B
−
1

|∇v−|2
)
≤ cθ2. (2.33)

Since v±i → v± in L2(B±
1 ) and L2(Γ1), it follows from (2.32)–(2.33) that for i sufficiently large

θ−n
( ∫

B
+
θ

|u+
i − (u+

i )θ|2 +
∫

B
−
θ

|u−
i − (u−

i )θ|2
)
+ θ1−n

∫

Γθ

(|u+
i − (u+

i )θ|2 + |u−
i − (u−

i )θ|2)

≤ cθ2ǫ2i . (2.34)

Combining (2.11) with (2.34). we can repeat the argument of [8] to get a desired contradiction.

Proof of Theorem 1.1 It is well-known that iterations of Lemma 2.3, combined with the

interior ǫ-regularity, implies that there exist ǫ0 > 0 and α0 ∈ (0, 1) such that if for x0 ∈ Γ, there

exists r0 > 0 such that

r2−n
0

(∫

Ω+∩Br0(x0)

|∇u|2 +
∫

Ω−∩Br0(x0)

|∇u|2
)
≤ ǫ20,

then u ∈ Cα0(Ω± ∩ B r0
2
(x0), N

±)1. It follows from this property that the set S(u) of discon-
tinuity for u in Ω± ∪ Γ can be shown to have Hn−2(S(u)) = 0. It follows from [19] that the

Hausdorff dimension of S(u), dimH(S(u) ∩ (Ω+ ∪ Ω−)) ≤ n − 3 for n ≥ 3. Employing the

boundary extension Lemma 2.1 and Federer’s dimension reduction argument, we can proceed,

similar to [9, 20], to conclude that dimH(S(u)∩Γ) ≤ n− 3 for n ≥ 3, and S(u) is discrete when
n = 3. This completes the proof.

3 On the Local Existence of Regular Solutions to Heat Flow

In this section, we will consider the gradient flow associated with the minimization problem

(1.12), or, equivalently, the parabolic version of the harmonic map equation (2.1). Under some

further assumptions on M± and Γ, to be specified below, we will establish the local existence

1Higher order regularity of u, e.g, u ∈ Cl,α(Ω± ∩ B r0
2
(x0)), can be shown, provided that the map Φ+ :

M+ → M− is assumed to be Cl+1,α for some l ≥ 1 and 0 < α < 1.
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of regular solutions of the heat flow under the initial and corresponding boundary conditions.

For the harmonic map heat flow, the reader can refer to the articles [2–3, 24–25].

Before describing the corresponding heat flow problem, we first need to introduce some

notations. For a given T > 0, let {Γ(t) : t ∈ [0, T ]} be a smooth family of smooth hypersurfaces,

with Γ(0) = Γ, such that

∂Γ(t) = ∂Γ = Σ, ∀0 ≤ t ≤ T.

For t ∈ [0, T ], decompose Ω \ Γ(t) into the disjoint union of two simply connected components

Ω+(t) and Ω−(t), i.e.,

Ω \ Γ(t) = Ω+(t) ∪ Ω−(t), t ∈ [0, T ].

Denote Ω± = Ω±(0), and write

Ω \ Γ = Ω+ ∪Ω−, ∂Ω \ Σ = Σ+ ∪ Σ−,

so that ∂Ω± = Γ ∪ Σ±. Set

QT = {(x, t) : x ∈ Ω, 0 < t ≤ T }, ∂pQT = (Ω× {0}) ∪ (∂Ω× (0, T ])

and

ΓT = {(x, t) : x ∈ Γ(t), 0 < t ≤ T }, Q±
T = {(x, t) : x ∈ Ω±(t), 0 < t ≤ T }.

The harmonic heat flow problem corresponding to (2.1) can be formulated as follows. We are

looking for u± : Q±
T 7→ N±, with u±(x, t) ∈ M± for (x, t) ∈ ΓT , that solves





∂tu
+ −∆u+ = A+(u+)(∇u+,∇u+) in Q+

T ,

∂tu
− −∆u− = A−(u−)(∇u−,∇u−) in Q−

T ,

u±(x, t) = g±(x) (x, t) ∈ Σ± × [0, T ],

u = u±
0 on Ω± × {0},

Φ+(u+) = u− on ΓT ,

(∂u+

∂ν

)T

= (DΦ+(u+))t
[(∂u−

∂ν

)T]
on ΓT .

(3.1)

Here u±
0 : Ω± 7→ N±, with u±

0 (x) ∈ M± satisfying u−
0 (x) = Φ+(u+

0 (x)) for x ∈ Γ, and

g± = u±
0

∣∣
Σ± are given initial and boundary values.

In order to establish the short time existence of regular solutions to (3.1), we need to set up

the problem appropriately by specifying the assumptions (A), (B), and (C) on N± and M±:

(A) The target Riemannian manifolds (N±, h±) have the same dimension dim(N±) = k+m.

For, otherwise, if k1 = dim(N+) < k2 = dim(N−), then we can replace (N+, h+) by

(N̂+ = N+ × S
k2−k1 , ĥ+ = h+ ⊕ hcan),

where hcan denotes the standard metric on Sk2−k1 . Notice that dim(N̂+) = k2. Moreover, for

any map u : Ω+(t) × [0, T ] → N+, if we define ũ(x, t) = (u(x, t), e) : Ω+(t) × [0, T ] → N̂+,

where e ∈ Sk2−k1 , then we can show that if u is a solution to the heat flow of harmonic maps

to N+, then ũ is also a solution to the heat flow of harmonic maps to N̂+. This follows from

the chain rule and the fact that (N+, h+) is a totally geodesic sub-manifold of (N̂+, ĥ+).



Harmonic Maps in Connection of Phase Transitions with Higher Dimensional Potential Wells 799

(B) The manifolds M± ⊂ N± are two k-dimensional compact smooth sub-manifolds, with

∂M± = ∅, such that there exists a smooth diffeomorphism Φ+ : M+ 7→ M−, whose inverse

is denoted by Φ− : M− 7→ M+. Moreover, there exists r0 = r0(M
+) > 0 such that for any

p+ ∈ M+, Φ+ can be extended into a smooth diffeomorphism, still denoted as itself,

Φ+ : BN+

r0
(p+) = {p ∈ N+ : dN+(p, p+) < r0} 7→ BN−

r0
(p−) = {p ∈ N− : dN−(p, p−) < r0},

whose inverse is also denoted by Φ−.

(C) There exists a 0 < r1 = r1(N
+) ≤ r0(M

+) such that for any p+ ∈ N+, there exists a

local parametrization of BN+

r1
(p+) by (Bk

1 ×Bm
1 , φ+), i.e.,

U = (U1, U2) = ((u1, · · · , uk), (uk+1, · · · , uk+m)) ∈ Bk
1 ×Bm

1

provides a local representation of BN+

r1
(p+) via the diffeomorphism φ+ : Bk

1 ×Bm
1 7→ BN+

r1
(p+).

We may assume that U(p+) = (0, 0), and if p+ ∈ M+ then

U(M+ ∩BN+

r1
(p+)) ≡ {U = (U1, U2) ∈ Bk

1 ×Bm
1 : U2 = 0},

and the Riemannian metric h+ on BN+

r1
(p+) can be expressed by

h+(U) =

k+m∑

i,j=1

h+
ij(U)dui ⊗ duj, ∀U ∈ Bk

1 ×Bm
1 ,

and the induced metric of h+ on M+ ∩BN+

r1
(p+) is given by

h+(U1, 0) =

k∑

i,j=1

h+
ij(U

1, 0)dui ⊗ duj , ∀U1 ∈ Bk
1 .

It is readily seen that for p+ ∈ M+ and p− = Φ+(p+), through the diffeomorphism Φ+ :

BN+

r0
(p+) 7→ BN−

r0
(p−), U = (U1, U2) ∈ Bk

1 ×Bm
1 provides a local parametrization of BN−

r1
(p−)

through the diffeomorphism φ− := Φ+(φ+) : Bk
1 × Bm

1 7→ BN−

r1
(p−). In particular, U(p−) =

(0, 0),

U(M− ∩BN−

r1
(p−)) ≡ {U = (U1, U2) ∈ Bk

1 ×Bm
1 : U2 = 0},

and the Riemannian metric h− on BN−

r1
(p−) can be expressed by

h−(U) =

k+m∑

i,j=1

h−
ij(U)dui ⊗ duj , ∀U ∈ Bk

1 ×Bm
1 ,

and the induced metric of h− on M− ∩BN−

r1
(p−) is given by

h−(U1, 0) =

k∑

i,j=1

h−
ij(U

1, 0)dui ⊗ duj, ∀U1 ∈ Bk
1 .

We may assume henceforth that r1(N
+) = r0(M

+) in the assumptions (B) and (C).



800 F. H. Lin and C. Y. Wang

Remark 3.1 Under the assumptions (A), (B), and (C), it is not hard to see that by choosing

a sufficiently small r0 = r0(M
+) > 0, under the above local parametrization of BN±

r0
(p±), the

local representations of the Riemannian metrics h± enjoy the following properties:

h±(U) =
k∑

i,j=1

h±
ij(U

1, U2)dui ⊗ duj +
k+m∑

i,j=k+1

h±
ij(U

1, U2)dui ⊗ duj ,

∀U = (U1, U2) ∈ Bk
1 × Bm

1 ,

such that

k+m∑

i,j=k+1

|h±
ij(U

1, U2)| ≤ C|U2|, ∀U = (U1, U2) ∈ Bk
1 ×Bm

1 , (3.2)

for some C > 0 depending only on M± and N±.

Now we are ready to state a theorem on the local existence of regular solutions to (3.1),

whose full proof will be given in another future work.

Theorem 3.1 Under the assumptions (A), (B), and (C) on N± and M±, for 0 < α < 1,

let u±
0 ∈ C1+α(Ω±, N±) and g± = u±

0 |Σ± ∈ C1+α(Σ±, N±) be given initial and boundary data

such that u±
0 (Γ) ⊂ M± satisfies u−

0 (x) = Φ+(u+
0 (x)) and

(∂u
−
0

∂ν
(x)

)T
= DΦ+(u+

0 (x))
( ∂u

+
0

∂ν
(x)

)T

for x ∈ Γ. Then there exist T0 > 0, depending on ‖u±
0 ‖C1,α(Ω±), and a unique solution u± ∈

C1+α, 1+α
2 (Q±

T0
, N±) of the initial and boundary value problem (3.1).

The proof of Theorem 3.1 is more delicate than the usual proofs of short time smooth

solutions to the heat flow of harmonic maps under the Dirichlet boundary condition (see [1,

6]) or the free boundary condition (see [25]). It involves to first show the local existence

of regular solutions over small balls, and then patch these local solutions by extending the

Schwarz alternating method on linear parabolic equations to the quasilinear harmonic map

heat flows into small neighborhoods of points in N±. For this, we have to overcome major

difficulties that arise near the interface Γ. A detailed proof will be addressed in a forthcoming

work.The approach that we will utilize is based on the Schwartz reflection method adapted to

the parabolic settings, see [4] and [7] for some backgrounds on this method.

In this part, we will indicate a proof of Theorem 3.1 when the images of u± is contained

in a single coordinate chart of N±. Before doing it, we want to rewrite the system (3.1) in an

intrinsic form near a small neighborhood of a point (x0, t0) ∈ ΓT and also derive a generalized

energy inequality.

3.1 Local representation of (3.1)

For t0 ∈ (0, T ) and x0 ∈ Γ(t0), choose a small δ0 > 0, depending on ‖u±‖C0(Q±
T
), such that

u±(Q±
T ∩ Pδ0(x0, t0)) ⊂ BN±

r0
(p±0 ) with p±0 = u±(x0, t0) ∈ M±.

where Pδ0(x0, t0) = Bδ0(x0) × (t0 − δ20 , t0 + δ20). Then, by employing the local representations

given by the assumptions (B) and (C) on M±, N±, we can rewrite the harmonic heat flow
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equation (3.1) as
{
∂tU −∆U = Γ+(U)(∇U,∇U) in Q+

T ∩ Pδ0(x0, t0),

∂tU −∆U = Γ−(U)(∇U,∇U) in Q−
T ∩ Pδ0(x0, t0),

(3.3)

where U = (U1, U2) : Q+
T ∩ Pδ0(x0, t0) 7→ Bk

1 × Bm
1 is the local representation of u = u± :

Q+
T ∩ Pδ0(x0, t0) 7→ N , and Γ±(·)(·, ·) is the Christoffel symbol of N±.

Observe that within this local coordinate system, the boundary condition the 4th equation

of (3.1) on the free interface ΓT gives rise to

U2 = 0 on ΓT ∩ Pδ0(x0, t0), (3.4)

and by (3.2) the boundary condition the 5th equation of (3.1) on the free interface ΓT reduces

to

k∑

j=1

h+
ij(U

1, 0)
∂(U1)j

∂ν
=

k∑

j=1

h−
ij(U

1, 0)
∂(U1)j

∂ν
, 1 ≤ i ≤ k on ΓT ∩ Pδ0(x0, t0). (3.5)

3.2 Parametrization of domains

Since Ω±(t) is t-dependent over [0, T ], in this subsection we will re-parametrize the domains

and rewrite (3.1) so that it can be viewed as the heat flow of harmonic maps over fixed domain

but with time-dependent metrics on the domain.

Assume that Ψ(·, t) : Ω× [0, T ] 7→ Ω is a smooth family of diffeomorphism such that

Ψ(x, t) = x, ∀(x, t) ∈ ∂Ω× [0, T ]; Ψ(Γ(t), t) = Γ

and Ψ(Ω±(t), t) = Ω±, ∀ t ∈ [0, T ].
(3.6)

For u± : Q±
T 7→ N±, define Q̂±

T = Ω± × [0, T ] and û± : Q̂±
T 7→ N± through

u±(x, t) = û±(Ψ(x, t), t) : Q̂±
T 7→ N±.

Given that u± : Q±
T 7→ N± satisfies (3.1), we want to derive the equation for û± now. To

do it, first set

aij(x, t) =
(∂Ψi

∂xα

∂Ψj

∂xα

)
(x, t) : QT 7→ R

n×n,

and

âij(y, t) = aij(x, t) : QT 7→ R
n×n, where (x, t) = Ψ−1(y, t).

Then direct calculations imply that




∂tu
±(x, t) = ∂tû

±(Ψ(x, t), t) +
∂û±

∂yj
(Ψ(x, t), t)∂tΨj ,

∂u±

∂xα

=
∂û±

∂yi
(Ψ(x, t), t)

∂Ψi

∂xα

,

(3.7)

and

∆u±(x, t) =
∂

∂xα

(∂û±

∂yi
(Ψ(x, t), t)

∂Ψi

∂xα

)

=
∂2û±

∂yi∂yj
(Ψ(x, t), t)

∂Ψi

∂xα

∂Ψj

∂xα

+
∂û±

∂yi
(Ψ(x, t), t)∆Ψi.
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Hence the 1st and 2nd equation of (3.1) becomes





∂tû
+ − ∂

∂yi

(
âij

∂û+

∂yj

)
= âijA

+(û+)
(∂û+

∂yi
,
∂û+

∂yj

)
+Ai

∂û+

∂yi
in Q̂+

T ,

∂tû
− − ∂

∂yi

(
âij

∂û−

∂yj

)
= âijA

−(û−)
(∂û−

∂yi
,
∂û−

∂yj

)
+Ai

∂û−

∂yi
in Q̂−

T ,

(3.8)

where

Ai(y, t) =
∂âij

∂yj
(y, t)− (∆Ψi)(Ψ

−1(y, t), t)− (∂tΨi)(Ψ
−1(y, t), t), ∀(y, t) ∈ QT .

Observe that the boundary condition the 4th equation of (3.1) on the free interface ΓT gives

rise to

û−(y, t) = Φ+(û+)(y, t), ∀(y, t) ∈ Γ× [0, T ], (3.9)

while the boundary condition the 5th equation of (3.1) on the free interface ΓT gives rise to

(∂û−

∂ν

)T

(y, t) = DΦ+(û+)
(∂û+

∂ν

)T

(y, t), ∀(y, t) ∈ Γ× [0, T ], (3.10)

where ν(= ν(t)) is the unit outer normal of Γ with respect to the metric ĝ(t) = âij(y, t) dy
idyj .

First we observe that a sufficiently regular solution of (3.1) enjoys a generalized energy

inequality. For 1 < p < ∞, T > 0, and an open set E ⊂ Rn, denote

W 2,1
p (E × [0, T ]) = {u ∈ Lp(E × [0, T ]) : ∂tu, ∇2u ∈ Lp(E × [0, T ])}.

Lemma 3.1 For T > 0, and g ∈ C1(Σ±, N±), if u± ∈ W
2,1
2 (Q±

T , N
±), with ∇∂u±

∂t
∈

L2(Q±
T ), is a strong solution of (3.1), then there exists constant C > 0 depending on ΓT such

that

E(u(t)) +
1

4

∫ t

s

eC(t−τ)
( ∫

Ω+(t)

|∂tu+|2 +
∫

Ω−(t)

|∂tu−|2
)
dxdτ ≤ eC(t−s)E(u(s)), (3.11)

for all 0 ≤ s < t ∈ [0, T ].

Proof Let Ψ(·, t) : Ω × [0, T ] 7→ Ω be a smooth family of diffeomorphism given by (3.6).

Define û± : Q̂±
T 7→ N± by

u±(x, t) = û±(Ψ(x, t), t), ∀(x, t) ∈ Q̂±
T .

Then û± solves (3.8) in Q̂±
T , (3.9) and (3.10) on ΓT , and the Dirichlet boundary condition:

û±(y, t) = g±(y), (y, t) ∈ ∂Ω× [0, T ]. (3.12)

Within this time dependent parametrization, we can write

E(u(t)) =
1

2

∫

Ω+

âαβ

〈∂û+

∂yα
,
∂û+

∂yβ

〉
dvĝ +

1

2

∫

Ω−

âαβ

〈∂û−

∂yα
,
∂û−

∂yβ

〉
dvĝ,

where dvĝ =
√
ĝ dy, and ĝ(y, t) = det(∇Ψ)(Ψ−1(y, t), t).
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From u± ∈ W
2,1
2 (Q±

T , N) and ∇∂u±

∂t
∈ L2(Q±

T ), û
± ∈ W

2,1
2 (Q̂±

T , N
±) and ∇∂û±

∂t
∈ L2(Q̂±

T ).

By direct calculations, we have that

d

dt
E(u(t)) =

∫

Ω+

âαβ

〈 ∂

∂yα
(∂tû

+),
∂û+

∂yβ

〉√
ĝ dy +

∫

Ω−

âαβ

〈 ∂

∂yα
(∂tû

−),
∂û−

∂yβ

〉√
ĝ dy

+
1

2

(∫

Ω+

〈∂û+

∂yα
,
∂û+

∂yβ

〉
∂t(âαβ

√
ĝ) dy +

∫

Ω−

〈∂û−

∂yα
,
∂û−

∂yβ

〉
∂t(âαβ

√
ĝ) dy

)

= I(t) + II(t).

It is easy to see that

|II(t)| ≤ CE(u(t)).

While, applying the integration by parts, (3.8), the boundary conditions (3.9), (3.10) and

(3.12), and the fact that ∂tû
−(x, t) = DΦ+(u+)(∂tû

+)(x, t) ∈ Tu±(x,t)M
± for (x, t) ∈ ΓT , and

∂tû
±(x, t) = 0 on Σ± × [0, T ], we can show that the boundary contributions on both Γ and ∂Ω

are zeroes. Hence we can estimate I by

I(t) = −
∫

Ω+

〈
∂tû

+,
∂

∂yα

(
âαβ

∂û+

∂yβ

)〉
dvĝ −

∫

Ω−

〈
∂tû

−,
∂

∂yα

(
âαβ

∂û−

∂yβ

)〉
dvĝ

−
∫

Ω+

〈
∂tû

+, âαβ
∂û+

∂yβ

〉∂
√
ĝ

∂yα
dy −

∫

Ω−

〈
∂tû

−, âαβ
∂û−

∂yβ

〉∂
√
ĝ

∂yα
dy

= −
(∫

Ω+

|∂tû+|2 dvĝ +
∫

Ω−

|∂tû−|2 dvĝ
)

+
( ∫

Ω+

〈
∂tû

+, Ai

∂û+

∂yi

〉
dvĝ +

∫

Ω−

〈
∂tû

−, Ai

∂û−

∂yi

〉
dvĝ

)

−
( ∫

Ω+

〈
∂tû

+, âαβ
∂û+

∂yβ

〉∂
√
ĝ

∂yα
dy +

∫

Ω−

〈
∂tû

−, âαβ
∂û−

∂yβ

〉∂
√
ĝ

∂yα
dy

)

= III(t) + IV(t) + V(t).

It is easy to see that

|IV(t)|+ |V(t)| ≤ 1

8

(∫

Ω+

|∂tû+|2 dvĝ +
∫

Ω−

|∂tû−|2 dvĝ
)
+ CE(u(t)).

Hence

|I(t)| ≤ −7

8

(∫

Ω+

|∂tû+|2 dvĝ +
∫

Ω−

|∂tû−|2 dvĝ
)
.

On the other hand, it follows from the chain rule (3.7) that

∫

Ω+

|∂tû+|2 dvĝ +
∫

Ω−

|∂tû−|2 dvĝ

≥ 1

2

( ∫

Ω+(t)

|∂tu+|2 dx+

∫

Ω−(t)

|∂tu−|2 dx
)
− CE(u(t)).

Putting all these estimate together, we obtain

d

dt
E(u(t)) ≤ −1

4

(∫

Ω+(t)

|∂tu+|2 dx+

∫

Ω−(t)

|∂tu−|2 dx
)
+ CE(u(t)),

which, combined with Gronwall’s inequality, implies (3.11).
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We will sketch a proof of Theorem 3.1 by employing the fixed point argument, under two

extra assumptions that

(i) the images of u±
0 is contained in a single coordinate chart, i.e.,

u±
0 (x) ⊂ BN±

r0
(p±0 ), ∀x ∈ Ω, (3.13)

for a pair of points p±0 ∈ M± that satisfies p−0 = Φ+(p+0 ); and

(ii)

Φ+ : M+ 7→ M− is an isometry. (3.14)

First we will give some heuristic arguments to indicate that the appropriate function spaces

for the local existence of regular solutions are

C1+α, 1+α
2

(u0,g)
(QT , B

N±

r0
(p±0 ))

=
{
u : QT 7→ BN±

r0
(p±0 ) : u± = u

∣∣
Q

±
T

∈ C1+α, 1+α
2 (Q±

T ),

u = u0 in Ω× {0}, u = g on ∂Ω× [0, T ],

u±(ΓT ) ⊂ M±, u− = Φ+(u+),
(∂u+

∂ν

)T

= (DΦ+(u+))t
(∂u−

∂ν

)T

on ΓT

}
,

which is equipped with the norm

‖u‖
C1+α,

1+α
2 (QT )

= ‖u+‖
C

1+α,
1+α
2 (Q+

T
)
+ ‖u−‖

C
1+α,

1+α
2 (Q−

T
)
.

To see this, assume that Γ(t) ≡ Γ for 0 ≤ t ≤ T . Let u± ∈ C1+α, 1+α
2

(u0,g)
(Q±

T , B
N±

r0
(p±0 )) be

given, and U = (U1, U2) : QT 7→ Bk
1 × Bm

1 be a local representation of u± : Q±
T 7→ BN±

r0
(p±0 ).

Consider V = (V 1, V 2) : QT 7→ Bk
1 ×Bm

1 that is a weak solution of

{
∂tV −∆V = Γ+(U)(∇U,∇U) in Q+

T ,

∂tV −∆V = Γ−(U)(∇U,∇U) in Q−
T ,

(3.15)

under the initial and boundary condition:





V = U0 on ∂pQT ,

V 2(x+, t) = V 2(x−, t) = 0,
∂V 1

∂ν
(x+, t) =

∂V 1

∂ν
(x−, t), (x, t) ∈ ΓT .

(3.16)

Here U0 : Ω 7→ Bk
1 ×Bm

1 is a local representation of u0.

It follows from the regularity of linear parabolic equations that V ∈ C1+α, 1+α
2 (Q±

T ). More-

over, since

‖Γ+(U)(∇U,∇U)‖L∞(Q+
T
) + ‖Γ−(U)(∇U,∇U)‖L∞(Q−

T
) ≤ C‖∇U‖2L∞(QT ),

it follows from the W 2,1
p -theory of linear parabolic equations that V ∈ W 2,1

p (Q±
T ) and

‖V ‖
W

2,1
p (Q±

T
) ≤ C(p)(‖∇U‖2L∞(QT ) + ‖U0‖C1+α(Ω±)),
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for any 1 < p < ∞.

By the Sobolev’s embedding theorem (see [11, Lemma II.3.3]), we conclude that V ∈
C1+α, 1+α

2 (Q±
T ) and

‖V ‖
C

1+α,
1+α
2 (Q±

T
)
≤ C(p)(‖∇U‖2L∞(QT ) + ‖U0‖C1+α(Ω±)).

Proof of Theorem 3.1 under the assumptions (3.13) and (3.14) For a pair of initial

and boundary data (u0, g) given by Theorem 3.1, let U0 : ∂pQT 7→ Bk
1 ×Bm

1 be a local represen-

tation of u0. It follows from the assumptions (3.13) and (3.14) that u ∈ C1+α, 1+α
2

(u0,g)
(QT , B

N±

r0
(p±0 ))

if and only if its local representation U belongs to the space

C1+α, 1+α
2

U0
(QT , B

k
1 ×Bm

1 )

=
{
U = (U1, U2) ∈ C1+α, 1+α

2 (Q±
T , B

k
1 ×Bm

1 ) : U = U0 on ∂pQT ,

U2(x+, t) = U2(x−, t) = 0,
∂U1

∂ν
(x+, t) =

∂U1

∂ν
(x−, t), (x, t) ∈ ΓT

}
.

Now we define Û0 = (Û0

1
, Û0

2
) : QT 7→ Bk

1 ×Bm
1 to the solution of the heat equation in Q±

T :





∂tÛ0 −∆Û0 = 0 in Q±
T ,

Û0 = U0 on ∂pQT ,

Û0

2
(x+, t) = Û0

2
(x−, t) = 0 on ΓT ,

∂Û0

1

∂ν
(x+, t) =

∂Û0

1

∂ν
(x−, t) on ΓT .

(3.17)

From the condition on U0, we know that there exists ǫ0 > 0 such that

|U1
0 | ≤ 1− 4ǫ0, |U2

0 | ≤ 1− 4ǫ0 in Ω.

Hence by the maximum principle, we have that

|Û0

1| ≤ 1− 2ǫ0, |Û0

2| ≤ 1− 2ǫ0 in QT ,

and hence Û0 ∈ C1+α, 1+α
2

U0
(QT , B

k
1−2ǫ0 ×Bm

1−2ǫ0).

As a consequence, for any 0 < ǫ ≤ ǫ0, we can see that

B(Û0, ǫ) = {U ∈ C1+α, 1+α
2

U0
(QT , B

k
1 ×Bm

1 ) : ‖U − Û0‖
C1+α,

1+α
2 (QT )

< ǫ}

is a ball in C1+α, 1+α
2

U0
(QT , B

k
1 ×Bm

1 ) with center Û0 and radius ǫ.

Now we define the solution map T : B(Û0, ǫ) 7→ C1+α, 1+α
2

Û0
(QT , B

k
1 × Bm

1 ) by letting V =

T(U), U ∈ B(Û0, ǫ), be the solution of

∂tV −∆V =

{
Γ+(U)(∇U,∇U) on Q+

T ,

Γ−(U)(∇U,∇U) on Q−
T ,

(3.18)

subject to the initial and boundary condition (3.16).

Now we need the following lemma.
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Lemma 3.2 There exist ǫ > 0 and T > 0 such that T : B(Û0, ǫ) 7→ B(Û0, ǫ) is a contractive

map, i.e., for any θ ∈ (0, 1), we can find ǫ > 0 and T > 0 such that

‖T(U1)− T(U2)‖
C1+α,

1+α
2 (QT )

≤ θ‖U1 − U2‖
C1+α,

1+α
2 (QT )

, ∀U1, U2 ∈ B(Û0, ǫ). (3.19)

Therefore there exists a unique U ∈ B(Û0, ǫ) such that U = T(U). In particular, if u± = u
∣∣
Q±

T

:

Q±
T 7→ N± has U as its local representation, then u is a unique regular solution of (3.1) in QT .

Proof For U ∈ B(Û0, ǫ), since V − Û0 satisfies

∂t(V − Û0)−∆(V − Û0) =

{
Γ+(U)(∇U,∇U) on Q+

T ,

Γ−(U)(∇U,∇U) on Q−
T ,

(3.20)

and




V − Û0 = 0 on ∂pQT ,

(V − Û0)
2(x+, t) = (V − Û0)

2(x−, t) = 0 on ΓT ,

∂(V − Û0)
1

∂ν
(x+, t) =

∂(V − Û0)
1

∂ν
(x−, t) on ΓT .

Hence, similar to the earlier discussion, we have that for some p = p(α) > n+ 2,

‖V − Û0‖
C1+α,

1+α
2 (QT )

≤ C‖V − Û0‖W 2,1
p (Q±

T
)

≤ C‖|∇U |2‖Lp(QT )

≤ C‖∇U‖2L∞(QT )T
1
p

≤ C(‖Û0‖
C1+α,

1+α
2 (QT )

+ ǫ)2T
1
p

< ǫ,

provided we choose a sufficiently small T = T0 > 0, depending only on U0 and α. Hence

V = T(U) ∈ B(Û0, ǫ).

For i = 1, 2, let Ui ∈ B(Û0, ǫ) and Vi = T(Ui). Then

∂t(U1 − U2)−∆(U1 − U2) =

{
Γ+(U1)(∇U1,∇U1)− Γ+(U2)(∇U2,∇U2) on Q+

T ,

Γ−(U1)(∇U1,∇U1)− Γ−(U2)(∇U2,∇U2) on Q−
T ,

(3.21)

and




U1 − U2 = 0 on ∂pQT ,

(U1 − U2)
2(x+, t) = (U1 − U2)

2(x−, t) = 0 on ΓT ,

∂(U1 − U2)
1

∂ν
(x+, t) =

∂(U1 − U2)
1

∂ν
(x−, t) on ΓT .
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Hence we can conclude that for any θ ∈ (0, 1) such that for p = p(α) > n+ 2,

‖U1 − U2‖
C1+α,

1+α
2 (QT )

≤ C‖U1 − U2‖W 2,1
p (Q±

T
)

≤ C‖(|∇U1|+ |∇U2|)2(U1 − U2) + (|∇U1|+ |∇U2|)|∇(U1 − U2)|‖Lp(QT )

≤ C‖|∇U1|+ |∇U2|‖2Lp(QT )‖U1 − U2‖L∞(QT ) + C‖|∇U1|+ |∇U2|‖Lp(QT )‖∇(U1 − U2)‖L∞(QT )

≤ C(1 + ‖Û0‖2
C1+α,

1+α
2 (QT )

)T
1
p ‖U1 − U2‖

C1+α,
1+α
2 (QT )

< θ‖U1 − U2‖
C1+α,

1+α
2 (QT )

,

provided T = T0 > 0 is chosen so that

C(1 + ‖Û0‖2
C1+α,

1+α
2 (QT )

)T
1
p

0 ≤ θ.

This completes the proof of both Lemma 3.2 and Theorem 3.1 under the assumptions (3.13)

and (3.14).

4 Boundary Monotonicity Inequality of (3.1)

In this section, we will derive a boundary monotonicity inequality on (3.1), analogous to

Struwe’s monotonicity formula, which may have its own interest.

To simplify the presentation, we assume that

Ω = R
n, T > 0 and Γ(t) = Γ = ∂Rn

+ for 0 ≤ t ≤ T.

Let u± : Rn
± × [0,+∞) → N±, with u±(x, t) ∈ M± for (x, t) ∈ ∂Rn

+ × (0,∞), satisfy





∂tu
+ −∆u+ = A+(u+)(∇u+,∇u+) in Rn

+ × (0,+∞),

∂tu
− −∆u− = A−(u−)(∇u−,∇u−) in Rn

− × (0,+∞),

Φ+(u+) = u− in ∂Rn
+ × (0,+∞),

(∂u+

∂xn

)T

= (DΦ+(u+))t
[(∂u−

∂xn

)T]
on ∂Rn

+ × (0,+∞).

(4.1)

For (x0, t0) ∈ Rn × (0,+∞) and 0 < R ≤ √
t0, let

G(x0,t0)(x, t) =
1

(4π(t0 − t))
n
2
e
−

|x−x0|2

4(t0−t) , (x, t) ∈ R
n × (0, t0)

denote the backward heat kernel on Rn. Set

E(u±; (x0, t0), R)

= R2
[ ∫

R
n
+×{t0−R2}

|∇u+|2G(x0,t0)(x, t) dx+

∫

R
n
−×{t0−R2}

|∇u−|2G(x0,t0)(x, t) dx
]
.

Lemma 4.1 Suppose that (x0, t0) = (0, 0) ∈ ∂Rn
+×(−∞, 0] and u± ∈ C2(Rn

±×(−∞, 0], N±)

is a solution to the system (4.1). Then

d

dR
E(R) ≥ 0. (4.2)
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Proof Write G(x, t) for G(0,0)(x, t) and define

u±
R(x, t) = u±(Rx,R2t), (x, t) ∈ R

n × (−∞, 0].

It is easy to see that

E(u±;R) = E(u±
R; 1).

For simplicity, we only verify (4.2) at R = 1. Since

d

dR

∣∣∣
R=1

u±
R = x · ∇u± − 2∂tu

±,

we have

d

dR

∣∣∣
R=1

E(u±;R) =
d

dR

∣∣∣
R=1

E(u±
R; 1)

= 2

∫

R
n
+×{−1}

∇u+ · ∇(x · ∇u+ − 2∂tu
+)e−

|x|2

4

+ 2

∫

R
n
−×{−1}

∇u− · ∇(x · ∇u− − 2∂tu
−)e−

|x|2

4

= −2
[ ∫

R
n
+×{−1}

∇ · (∇u+e−
|x|2

4 ) · (x · ∇u+ − 2∂tu
+)

+

∫

R
n
−×{−1}

∇ · (∇u−e−
|x|2

4 ) · (x · ∇u− − 2∂tu
−)

]

− 2
[ ∫

∂Rn
+×{−1}

∂u+

∂xn

· (x · ∇u+ − 2∂tu
+)e−

|x|2

4

−
∫

∂Rn
−×{−1}

∂u−

∂xn

· (x · ∇u− − 2∂tu
−)e−

|x|2

4

]
.

Since

∇ · (∇u±e−
|x|2

4 ) = ∆u± − 1

2
x · ∇u± = ∂tu

± −A±(u±)(∇u±, u±)− 1

2
x · ∇u±

and

A±(u±)(∇u±, u±) · (x · ∇u± − 2∂tu
±) = 0,

we have

− 2
[ ∫

R
n
+×{−1}

∇ · (∇u+e−
|x|2

4 ) · (x · ∇u+ − 2∂tu
+)

+

∫

R
n
−×{−1}

∇ · (∇u−e−
|x|2

4 ) · (x · ∇u− − 2∂tu
−)

]

=
[ ∫

R
n
+×{−1}

|x · ∇u+ − 2∂tu
+|2e− |x|2

4 +

∫

R
n
−×{−1}

|x · ∇u− − 2∂tu
−|2e− |x|2

4

]
.

Since x = (x′, 0) for x ∈ ∂Rn
±, and

u±(∂Rn
± × (−∞, 0)) ⊂ M±,
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we have

x · ∇u± − 2∂tu
±
∣∣
∂Rn

±×(−∞,0)
∈ Tu±(x,t)M

±,

so that

∂u±

∂xn

· (x · ∇u± − 2∂tu
±) =

(∂u±

∂xn

)T

· (x · ∇u± − 2∂tu
±) on ∂Rn

± × (−∞, 0).

Since

u−(x, t) = Φ+(u+(x, t)) on ∂Rn
± × (−∞, 0),

we have

∇tanu
−(x, t) = DΦ+(u+(x, t))∇tanu

+(x, t), ∂tu
−(x, t) = DΦ+(u+(x, t))∂tu

+(x, t)

on ∂Rn
± × (−∞, 0) and hence

x · ∇u−(x, t)− 2∂tu
−(x, t) = DΦ+(u+(x, t))(x · ∇u+(x, t)− 2∂tu

+(x, t)) on ∂Rn
± × (−∞, 0).

Therefore we have

[ ∫

∂Rn
+×{−1}

∂u+

∂xn

· (x · ∇u+ − 2∂tu
+)e−

|x|2

4

−
∫

∂Rn
−×{−1}

∂u−

∂xn

· (x · ∇u− − 2∂tu
−)e−

|x|2

4

]

=

∫

∂Rn
+×{−1}

[(∂u+

∂xn

)T

− (DΦ+(u+(x, t)))t
(∂u−

∂xn

)T]
· (x · ∇u+ − 2∂tu

+)e−
|x|2

4

= 0,

where we have used the boundary condition the 5th equation of (4.1) in the last step. Putting

all these calculations together, we obtain

d

dR

∣∣∣
R=1

E(u±;R)

=
[ ∫

R
n
+×{−1}

|x · ∇u+ − 2∂tu
+|2e− |x|2

4 +

∫

R
n
−1×{−1}

|x · ∇u− − 2∂tu
−|2e− |x|2

4

]
≥ 0. (4.3)

This completes the proof.
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