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Abstract Data assimilation refers to the methodology of combining dynamical models
and observed data with the objective of improving state estimation. Most data assimilation
algorithms are viewed as approximations of the Bayesian posterior (filtering distribution)
on the signal given the observations. Some of these approximations are controlled, such as
particle filters which may be refined to produce the true filtering distribution in the large
particle number limit, and some are uncontrolled, such as ensemble Kalman filter methods
which do not recover the true filtering distribution in the large ensemble limit. Other data
assimilation algorithms, such as cycled 3DVAR methods, may be thought of as controlled
estimators of the state, in the small observational noise scenario, but are also uncontrolled
in general in relation to the true filtering distribution. For particle filters and ensemble
Kalman filters it is of practical importance to understand how and why data assimilation
methods can be effective when used with a fixed small number of particles, since for many
large-scale applications it is not practical to deploy algorithms close to the large particle
limit asymptotic. In this paper, the authors address this question for particle filters and,
in particular, study their accuracy (in the small noise limit) and ergodicity (for noisy
signal and observation) without appealing to the large particle number limit. The authors
first overview the accuracy and minorization properties for the true filtering distribution,
working in the setting of conditional Gaussianity for the dynamics-observation model. They
then show that these properties are inherited by optimal particle filters for any fixed number
of particles, and use the minorization to establish ergodicity of the filters. For completeness
we also prove large particle number consistency results for the optimal particle filters, by
writing the update equations for the underlying distributions as recursions. In addition
to looking at the optimal particle filter with standard resampling, they derive all the
above results for (what they term) the Gaussianized optimal particle filter and show that
the theoretical properties are favorable for this method, when compared to the standard
optimal particle filter.
Keywords Particle filters, Data assimilation, Ergodic theory
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1 Introduction

1.1 Background and literature review

Data assimilation describes the blending of dynamical models with data, with the objective

of improving state estimation and forecasts. The use of data assimilation originated in the
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geophysical sciences, but is now ubiquitous in engineering and the applied sciences. In numerical

weather prediction, large scale ocean-atmosphere models are assimilated with massive data sets,

comprising observational data from satellites, ground based weather stations and underwater

sensors for example [3]. Data assimilation is prevalent in robotics; the SLAM problem seeks

to use sensory data made by robots in an unknown environment to create a map of that

environment and locate the robot within it in [46]. It is used in modelling of traffic flow in [50].

And data assimilation is being used in bio-medical applications such as glucose-insulin systems

in [41] and the sleep cycle in [42]. These examples serve to illustrate the growth in the use of

the methodology, its breadth of applicability and the very different levels of fidelity present in

the models and the data in these many applications.

Although typical data assimilation problems can be understood from a Bayesian perspective,

for non-linear and potentially high dimensional models it is often infeasible to make useful exact

computations with the posterior. To circumvent this problem, practitioners have developed

assimilation methods that approximate the true posterior, but for which computations are more

feasible. In the engineering communities, particle filters have been developed for this purpose,

providing empirical approximations of non-Gaussian posteriors in [12–13]. In the geoscience

communities, methods are typically built on Kalman filtering theory, after making suitable

Gaussian approximations in [26]; such methods include variational methods like 3DVAR and

4DVAR in [16, 33], the extended Kalman filter (ExKF for short) in [14] and the ensemble

Kalman filter (EnKF for short) in [6, 15]. For these methods the underlying Gaussian ansatz

render them, in general, invalid as approximations of the true filtering distribution in [29].

Despite their widespread use, many of these algorithms used in geophysical applications

remain mysterious from a theoretical perspective. At the heart of the mystery is the fact

that data assimilation methods are frequently and successfully implemented in regimes where

the approximate filter is not provably valid; it is not known which features of the posterior

(the true filtering distribution) are reflected in the approximation and which are not. For

example, the ensemble Kalman filter is often implemented with ensemble size several orders

of magnitude smaller than needed to reproduce large sample size behaviour, and is applied to

problems for which the Gaussian ansatz may not be valid; it nonetheless can still exhibit skillful

state estimates, with high correlations between the estimate and true trajectories in [19, 34].

Indeed, the success of the methods in this non-asymptotic regime is the crux of their success;

the methods would often be computationally intractable at large ensemble sizes.

This lack of theory has motivated recent efforts to better understand the properties of data

assimilation methods in the practical, non-asymptotic regimes. The 3DVAR algorithm has

been investigated in the context of toy models for numerical weather prediction, including the

Lorenz-63 in [28], Lorenz-96 in [27] and 2d Navier-Stokes equations in [4] (see also [36]). These

works focus primarily on the question of accuracy – how well does the state estimate track the

true underlying signal. Accuracy for the EnKF with fixed ensemble size was first investigated

in [23]; the study of accuracy for the EnKF was further developed in [35] using linear models

with random coefficients, but much more realistic (practical) assumptions on observations than

[23], and moreover focussing on covariance consistency through the Mahalanobis norm. The

articles in [48–49] were the first to investigate the stability of EnKF with fixed ensemble size,

by formulating the filter as a Markov chain and applying coupling techniques; here by stability
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we mean robustness with respect to initialization, and study the issue through the lens of

ergodicity. This line of research has been continued in [9] by framing the EnKF as a McKean-

Vlasov system. The limitations of the non-practical regimes have also been investigated; in [21]

the authors construct simple dissipative dynamical models for which the EnKF is shown to be

highly unstable with respect to initial perturbations. This was the first theoretical insight into

the frequently observed effect of catastrophic filter divergence [18].

For the nonlinear filtering distribution itself, there has been a great deal of research over

the last several decades, particularly on the question of stability. Conditional ergodicity for the

filtering distribution for general nonlinear hidden Markov models has been investigated in [25]

and later refined in [17]. Ergodicity for nonlinear filters has been discussed in [8, 10, 23] and

exponential convergence results were first obtained in [2, 5].

1.2 Our contributions

For particle filters, much of the theoretical literature focuses on the question of consistency

in the large ensemble limit, that is, does the empirical approximation converge to the true

posterior as the number of particles in the ensemble N approaches infinity. However, in many

high dimensional applications such as robotics in [46] and ocean-atmosphere forecasting in [30],

particle filters are implemented in the non-asymptotic regime. Indeed in the geosciences, new

filtering algorithms have been proposed to beat the curse of dimensionality and are implemented

with ensemble sizes many orders of magnitude smaller than the state dimension in [31]. In this

article we contribute to the program of analyzing filtering algorithms in practical small ensemble

regimes, focusing on the accuracy and stability of particle filters for fixed ensemble sizes. In

particular, we address the following question concerning the long-time behaviour of the particle

filters: If it is known that the true posterior distribution is accurate and satisfies a minorization

condition, can accuracy and conditional ergodicity be proved for the approximate filter?

We focus our attention on the optimal particle filter (OPF for short) in [1, 32, 51]. The OPF

is a sequential importance sampling procedure in which particle updates are proposed using a

convex combination of the model prediction and the observational data at the next time step.

For details on the OPF, including the justification for calling it optimal (see [13]). There are

two main reasons that we focus our attention on the OPF. First, the optimal particle filter is

known to compare favorably to the standard particle filter, particularly from the perspective

of weight degeneracy in high dimensions in [43–44]. Indeed the optimal particle filter can be

considered a special case of more complicated filters that have been proposed to beat the curse

of dimensionality in [7, 31]. Secondly, under natural assumptions on the dynamics-observation

model, the optimal particle filter can be formulated as a random dynamical system which is

very similar to the 3DVAR algorithm. This means that techniques for proving accuracy for the

3DVAR filter in earlier literature in [40] can be leveraged for the OPF.

Throughout the article, we make the assumption of conditional Gaussianity for the dynamics-

observation model. This framework is frequently employed in practice, particularly in geoscience

data assimilation problems. Under this assumption, we show that the true posterior, the fil-

tering distribution, satisfies the properties of long-time accuracy and of minorization. The

accuracy result states that, if sufficiently many variables are observed, the posterior will con-

centrate around the true trajectory in the long time limit. The minorization result shows that
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the transition kernel of the nonlinear Markov process generating the filtering distribution is

bounded below, uniformly in time, by a time-dependent multiple of a fixed time-independent

probability measure. Minorization may be used to prove coupling and ergodicity in linear

Markov processes and this fact will be exploited when we study particle filters. Conditional

ergodicity results exploiting coupling are obtained under quite general assumptions in [17, 47].

Having introduced concepts in the context of the filtering distribution itself, we go on to show

that, under the same model-observation assumptions, the OPF exhibits the long-time properties

of conditional ergodicity and accuracy for any fixed ensemble size. For the conditional ergodicity

result, we show that two copies of the particle ensembles, initialized differently, but updated

with the same observational data, will converge to each other in the long term limit, in a

distributional sense. The accuracy result shows that all ensemble members in the particle filter

will concentrate near the true signal underlying the data, in the large-time regime. Both the

accuracy and ergodicity results use very similar arguments to those employed for the analysis of

the filtering distribution itself. In recent work, ergodicity has been used to study the long-run

asymptotic behaviour of particle based optimization algorithms in [45], with motivation taken

from parameter estimation in partially observed dynamical systems in [38].

In addition, we also establish large ensemble consistency results for the OPF. Here we employ

a technique exposed very clearly in [39], which finds a recursion that is approximately satisfied

by the bootstrap particle filter, and leverages this fact to obtain an estimate on the distance

between the true posterior and the empirical approximation. We show that the same idea

can be applied to not only the OPF, but a very large class of sequential importance sampling

procedures. We note that large particle consistency results for particle filters should not be

considered practical results for high dimensional data assimilation problems, as in practice

particle filters are never implemented in this regime. The consistency results are included here as

they are practically informative for low dimensional data assimilation problems and moreover as

the results are natural consequences of the random dynamical system formulation that has been

adopted for accuracy and ergodicity results. For high dimensional data assimilation problems,

it may be more practical to look at covariance consistency, as done in [35]. We also note that

quite general consistency results are proved for optimal particle filters in [20], using the setting

of auxiliary particle filters introduced in [37]; this work was taken further in [11].

As well as obtaining results concerning the stability, accuracy and consistency for the OPF,

for which we perform resampling at the end of each assimilation cycle, we also prove the

corresponding results for the so called Gaussianized OPF. The terminology Gaussianized OPF

was introduced in [22], but the idea was introduced two decades ago in [37] in the context of the

auxiliary particle filter (see [32]). The method differs from the OPF only in the implementation

of the resampling. Nevertheless, it was shown numerically in [22] that the GOPF compares

favorably to the OPF, particularly when applied to high dimensional models. The analysis in

this article lends theoretical weight to the advantages of the GOPF over the OPF. In particular

we find that the upper bound on the convergence rate for conditional ergodicity for the GOPF

has favourable dimension dependence in comparison with the OPF.

1.3 Structure of article and notation

The remainder of the article is structured as follows. At the end of this section we introduce
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some notation and terminology that will be useful in the sequel. In Section 2, we formulate

the Bayesian problem of data assimilation, introduce the model-observation assumptions under

which we work, and prove the accuracy and minorization results for the true posterior. In

Section 3, we introduce the bootstrap particle filter, optimal particle filter and Gaussianized

optimal particle filter. In Section 4, we prove the conditional ergodicity results for the optimal

particle filters. In Section 5, we prove the accuracy results for the optimal particle filters.

Finally, in Section 6, we prove the consistency results for the optimal particle filters.

Throughout we let X denote the finite dimensional Euclidean state space and and we let

Y denote the finite dimensional Euclidean observation space. We write M(X ) for the set of

probability measures on X . We denote the Euclidean norm on X by | · | and for a symmetric

positive definite matrix A ∈ L(X ,X ), we define | · |A = |A− 1
2 · |. The notation P (a | b) will

denote the density of random variable a, conditioned on known b. Transition kernels q(a, ·) will
denote transitions from point a, being measures when the second argument is a Borel set in

X , and being densities when the second argument is an element of X . The kernel q will also

be appended with subscript k when emphasizing that it is inhomogeneous in time. A similar

notation will be used for kernels qk on space XN . Superscript k will be used in qk to denote

k−fold composition of the kernels. Finally we define SN : M(X ) → M(X ) to be the sampling

operator SNµ = 1
N

N∑
n=1

δu(n) where u(n) ∼ µ are i.i.d. random variables.

2 Bayesian Data Assimilation

We describe the set-up which encompasses all the work in this paper, and then study the

minorization condition and accuracy for the true filtering distribution.

2.1 Set-up

The state model is taken to be a discrete time Markov chain {uk}k≥0 taking values in the

state space X . We assume that the initial condition u0 of the chain is distributed according to

µ0, where µ0 ∈ M(X ). The transition kernel for the Markov chain is given by P (uk+1 | uk).
For each k ≥ 1, we make an observation of the Markov chain

yk+1 = h(uk+1) + ηk+1 , (2.1)

where h : X → Y maps the state space to the observation space, and ηk ∼ N(0,Γ) are centred

i.i.d. random variables representing observational noise. We denote by Yk = (y1, · · · , yk) the

accumulated observational data up to time k. We are interested in studying and approximating

the filtering distribution µk(·) = P(uk ∈ · | Yk) for all k ≥ 1. We will denote the density of µk

by P (uk | Yk).
Although we will not use it for all of the consistency results at the end of the paper, for the

ergodicity and accuracy results we will always require the following additional assumptions on

the dynamics-observation model.

Assumption 2.1 Let ψ : X 7→ X be bounded. The dynamics-observation model is given
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by

uk+1 = ψ(uk) + ξk, (2.2a)

yk+1 = Huk+1 + ηk+1, (2.2b)

where u0 ∼ µ0, ξk ∼ N(0,Σ) i.i.d., ηk ∼ N(0,Γ) i.i.d. and u0, {ξk} and {ηk} are independent.

We write Σ = σ2Σ0 and Γ = γ2Γ0 and require that Σ0 and Γ0 are strictly positive-definite, and

that σ, γ ∈ (0,∞) so that r := σ/γ ∈ (0,∞).

For most of the results in this article we will be interested in properties of the conditional

distributions P (uk | Yk), and particle approximations of it, when the observational data Yk

is generated by a fixed realization of the model. For this reason, we introduce the following

notation to emphasize that we are considering a fixed realization of the data, generated by a

fixed trajectory of the underlying dynamical system.

Assumption 2.2 Fix u†0 ∈ X and positive semi-definite matrices Σ∗ and Γ∗ on X and Y
respectively. Let {u†k} be a realization of the dynamics satisfying

u†k+1 = ψ(u†k) + rγξ†k,

where u†0 ∈ X is fixed and ξ†k ∼ N(0,Σ∗) i.i.d. Similarly define {y†k} by

y†k+1 = Hu†k+1 + γη†k+1, (2.3)

where η†k+1 ∼ N(0,Γ∗) i.i.d. and {ξk}, {ηk} are independent. We will refer to {u†k}k≥0 as the

true signal and {y†k}k≥1 as the given fixed data. As above, we use the shorthand Y †
k = {y†i }ki=1.

Remark 2.1 Note that this data is not necessarily generated from the same statistical

model used to define the filtering distribution both since r2γ2Σ∗ and γ2Γ∗ may differ from Σ

and Γ, and since the initial condition is fixed. However the covariance structures match if we

define σ := rγ, Σ∗ = Σ0 and Γ∗ = Γ0. When studying accuracy, we will consider families of

data sets and truths parameterized by γ → 0; in this setting it is natural to think of r and the

noise sequences {ξ†k}k≥0 and {η†k}k≥0 as fixed, whilst the true signal and fixed data sequences

will depend on the value of γ.

The filtering distribution evolves according to the iteration

µk+1 = Lk+1Pµk, (2.4)

where P and Lk+1 are maps on the space of measures defined as follows. The linear map

P : M(X ) → M(X ) is the Markov semigroup

Pν(A) =

∫

A

P (uk+1 | uk)ν(duk).

We define the nonlinear likelihood multiplication operator Lk+1 : M(X ) → M(X ) by

Lk+1ν(A) =

∫
A
P (yk+1 | uk+1)ν(duk+1)∫

X P (yk+1 | uk+1)ν(duk+1)
(2.5)
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for each A ⊂ X measurable. Equation (2.4) simply represents application of Bayes’ formula

with prior Pµk and likelihood P (yk+1 | uk+1).

Expressed in terms of densities (2.4) becomes

P (uk+1 | Yk+1) = P (uk+1 | Yk, yk+1)

=
1

P (yk+1 | Yk)
P (yk+1 | uk+1, Yk)P (uk+1 | Yk)

=

∫

X

1

P (yk+1 | Yk)
P (yk+1 | uk+1, uk, Yk)P (uk+1 | uk, Yk)P (uk | Yk)duk

=

∫

X

1

P (yk+1 | Yk)
P (yk+1 | uk+1)P (uk+1 | uk)P (uk | Yk)duk. (2.6)

Thus we may write

P (uk+1 | Yk+1) =

∫

X

qk+1(uk, uk+1)P (uk | Yk)duk, (2.7)

where the transition density qk+1 has the form

qk+1(uk, uk+1) =
1

Z
exp

(
− 1

2
|yk+1 −Huk+1|2Γ − 1

2
|uk+1 − ψ(uk)|2Σ

)
. (2.8)

If we define

q0k+1(uk, uk+1) = exp
(
− 1

2
|yk+1 −Huk+1|2Γ − 1

2
|uk+1 − ψ(uk)|2Σ

)
,

then we see that

Z =

∫

X

∫

X

q0k+1(uk, uk+1)P (uk | Yk)dukduk+1. (2.9)

Note the inhomogeneous and nonlinear nature of the Markov chain reflected in the fact that Z

depends on yk+1, uk, and on P (uk | Yk). Despite this dependence, the normalization constant

Z can be bounded above independently of k. To see this note that (2.9) gives

Z ≤
√
(2π)d detΣ

∫

X

∫

X

1√
(2π)d detΣ

exp
(
− 1

2
|uk+1 − ψ(uk)|2Σ

)
P (uk | Yk)dukduk+1.

Integrating over uk+1 first, and then over uk, gives

Z ≤
√
(2π)d detΣ. (2.10)

In the next two subsections we state two theorems concerning the minorization conditions

and accuracy of the filtering distribution itself, followed by a subsection which elaborates the

connection between the optimal particle filter and the 3DVAR algorithm. The remainder of the

paper is devoted to establishing analogous results for various particle filters.

2.2 Minorization condition

The result of this subsection is as following.
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Theorem 2.1 Consider the filtering distributions µk under Assumption 2.1. Assume more-

over that the observational data used to define the filtering distribution is given by {y†k}k≥1 from

Assumption 2.2. Consider the transition kernel qk+1(uk, ·) viewed as a random measure, pa-

rameterized by the random observational data. Then there is a probability measure Q ∈ M(X )

and a sequence of random constants ǫk > 0, defined by the observational data, such that, for all

Borel sets A in X ,

qk+1(u,A) ≥ ǫkQ(A). (2.11)

Proof Recall Assumption 2.1 and define ρ†k,0 = σHξ†k + γη†k+1 where ξ†k ∼ N(0,Σ∗) i.i.d. ,

η†k ∼ N(0,Γ∗) i.i.d. Recalling (2.8), (2.10) we obtain the lower bound

√
(2π)d detΣ qk+1(u, dv) =

√
(2π)d detΣ

Z
exp

(
− 1

2
|yk+1 −Hv|2Γ − 1

2
|v − ψ(u)|2Σ

)
dv

≥ exp
(
− 1

2
|Hψ(u†k) + ρ†k,0 −Hv|2Γ − 1

2
|v − ψ(u)|2Σ

)
dv

≥ exp(−2|Hψ(u†k)|2Γ − |ψ(u)|2Σ − 2|ρ†k,0|2Γ − |Hv|2Γ − |v|2Σ)dv

≥ exp(−λ2 − 2|ρ†k,0|2Γ) exp
(
− 1

2
|v|2D

)
dv, (2.12)

where

λ2 = sup
u,v

(2|Hψ(v)|2Γ + |ψ(u)|2Σ) (2.13)

and
1

2
D−1 = Σ−1 +H∗Γ−1H .

Thus we have a minorization condition of the form (2.11) where Q(·) is the Gaussian N(0, D)

and the data-dependent random constants ǫk are given by

ǫk =

√
detD√
detΣ

exp(−λ2 − 2|ρ†k,0|2Γ).

Remark 2.2 For linear Markov processes the existence of a minorization condition leads in

a straightforward way to ergodicity via coupling arguments. In these arguments a new Markov

chain, equivalent in law to the original one, is used; in this new Markov chain moves are made

according to kernel Q with probability ǫk, being governed by a Bernoulli process. In the linear

case it is possible to fix a realization of the Bernoulli process and then average with respect to

it and obtain a process equivalent to the original one. This facilitates coupling. For nonlinear

Markov processes fixing the Bernoulli process and then averaging does not lead to a process

equivalent to the original one and so coupling arguments are more complex (see [10]). The

filtering distribution is governed by a nonlinear Markov process and hence we do not prove

ergodicity. However for the particle filters studied in later sections we work with linear Markov

processes governing the particle ensemble; the proof of minorization is structurally similar to

that in the preceding theorem and this is why we include the preceding theorem here.
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2.3 Accuracy

We now discuss accuracy of the posterior filtering distribution in the small noise limit γ ≪ 1.

The assumptions are somewhat restrictive, but give a flavour of what can be achieved; more

careful use of ideas from control theory, such as observability, detectability and stabilizibility

may lead to improved results, similar in flavour. The result uses the 3DVAR filter as an upper

bound, and in the next subsection we will also show that the 3DVAR filter connects very

naturally with the filtering distribution itself, and with the optimal particle filter in the next

section of the paper.

Assumption 2.3 Let r = σ
γ
and assume that there is rc > 0 such that, for all r ∈ [0, rc),

the function (I −KH)ψ(·), with K defined through (2.17) and (2.19), is globally Lipschitz on

X with respect to the norm ‖ · ‖ with Lipschitz constant α = α(r) < 1.

Theorem 2.2 Suppose Assumptions 2.1, 2.3 hold for some rc > 0. Then for all r ∈ [0, rc)

we have

lim sup
k→∞

E‖uk − Eµkuk‖2 ≤ cγ2 ,

where Eµk denotes expectation with respect to measure µk defined through (2.4) and E denotes

expectation over the dynamical model and the observational data.

Proof This follows similarly to Corollary 4.3 in [40], using the fact that the mean of the

filtering distribution is optimal in the sense that

E‖uk − Eµkuk‖2 ≤ E‖uk −mk‖2

for any Yk-measurable sequence {mk}. We use for mk the 3DVAR filter

mk+1 = (I −KH)ψ(mk) +Kyk+1.

Let ek = uk −mk. Following closely Theorem 4.10 of [26] we obtain

E‖ek+1‖2k+1 ≤ α2E‖ek‖2 +O(γ2).

Application of the Gronwall lemma, plus use of the optimality property, gives the required

bound.

2.4 Connection with 3DVAR

In the previous subsection we used 3DVAR as a test function to upper bound the error in

the true filtering distribution. Here we further develop connections with 3DVAR with an eye

on the formulation of the optimal particle filter as a random dynamical system. Consider the

general filtering distribution. Application of Bayes’ formula in the form

qk+1(uk, duk+1) ∝ P (yk+1|uk+1)P (uk+1|uk)duk+1 (2.14)

gives

qk+1(uk, duk+1) ∝ exp
(
− 1

2
|yk+1 − h(uk+1)|2Γ − 1

2
|uk+1 − ψ(uk)|2Σ

)
duk+1,
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initialized at the measure µ0. Assumption 2.1, namely the linearity of the observation operator,

introduces a key simplification in this expression: we obtain

qk+1(uk, duk+1) ∝ exp
(
− 1

2
|yk+1 −Huk+1|2Γ − 1

2
|uk+1 − ψ(uk)|2Σ

)
duk+1 (2.15)

and a simple completion of the square yields an alternative representation for the transition

kernel, namely

qk+1(uk, duk+1) ∝ exp
(
− 1

2
|yk+1 −Hψ(uk)|2S − 1

2
|uk+1 −mk+1|2C

)
duk+1 , (2.16)

where

C−1 = Σ−1 +H∗Γ−1H,

S = HΣH∗ + Γ,

mk+1 = C(Σ−1ψ(uk) +H∗Γ−1yk+1) .

(2.17)

The conditional mean mk+1 is often given in Kalman filter form

mk+1 = (I −KH)ψ(uk) +Kyk+1 , (2.18)

where K is the Kalman gain matrix

K = ΣH∗S−1. (2.19)

The expression (2.15) arises from application of Bayes’ formula, derived above in (2.6)–(2.8),

in the form (2.14), whilst (2.16) follows from a second application of Bayes’ formula to derive

the identity

P (yk+1 | uk+1)P (uk+1 | uk)duk+1 = P (yk+1 | uk)P (uk+1 | uk, yk+1)duk+1.

We note that

P (yk+1 | uk) = Z−1
S exp

(
− 1

2
|yk+1 −Hψ(uk)|2S

)
,

P (uk+1 | uk, yk+1) = Z−1
C exp

(
− 1

2
|uk+1 −mk+1|2C

)
.

(2.20)

These formulae are prevalent in the data assimilation literature; in particular (2.18) describes

the evolution of the mean state estimate in the cycled 3DVAR algorithm, setting uk+1 = mk+1

in [26]. We will make use of the formulae in Section 3 when describing optimal particle filters

as random dynamical systems.

3 Particle Filters with Resampling

In this section we introduce the bootstrap particle filter, and the two optimal particle filters,

in all three cases with resampling at every step. Assumption 2.1 ensures that the three particle

filters have an elegant interpretation as a random dynamical system (RDS for short) which, in

addition, is useful for our analyses. We thus introduce the filters in this way before giving the

algorithmic definition which is more commonly found in the literature. The bootstrap particle
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filter will not be the focus of subsequent theory, but does serve as an important motivation for

the optimal particle filters, and in particular for the consistency results in Section 6.

For each of the three particle filters we will make frequent use of a resampling operator,

which draws a sample u
(n)
k from {û(m)

k }Nm=1 with weights {w(m)
k }Nm=1 which sum to one. To

define this operator, we define the intervals I
(m)
k = [α

(m)
k , α

(m+1)
k ), where

α
(m+1)
k = α

(m)
k + w

(m+1)
k , m = 0, · · · , N − 1,

α
(0)
k = 0.

We then set

u
(n)
k =

N∑

m=1

I
I
(m)
k

(r
(n)
k )û

(m)
k , (3.1)

where r
(n)
k ∼ U(0, 1) i.i.d. Since the weights sum to one, r

(n)
k will lie in exactly one of the

intervals I
(i∗)
k and we will have u

(n)
k = û

(i∗)
k . We also notice that

N∑

m=1

1

N
δ
u
(m)
k

= SN

N∑

m=1

w
(m)
k δ

û
(m)
k

,

where SN is the sampling operator defined previously.

3.1 The bootstrap particle filter

The bootstrap particle filter (BPF for short) approximates the filtering distribution µk with

an empirical measure

ρNk =

N∑

n=1

1

N
δ
u
(n)
k

. (3.2)

The particle positions {u(n)k }Nn=1 are defined as follows:

û
(n)
k+1 = ψ(u

(n)
k ) + ξ

(n)
k , ξ

(n)
k ∼ N(0,Σ) i.i.d. ,

u
(n)
k+1 =

N∑

m=1

I
I
(m)
k+1

(r
(n)
k+1)û

(m)
k+1 ,

(3.3)

where the second equation uses the resampling operator defined in (3.1) with weights computed

according to

w
(n),∗
k+1 = exp

(
− 1

2
|yk+1 −Hû

(n)
k+1|2Γ

)
, w

(n)
k+1 =

w
(n),∗
k+1

N∑
j=1

w
(j),∗
k+1

. (3.4)

Thus, for each particle in the RDS, we propagate them forward using the dynamical model and

then re-sample from the weighted particles to account for the observation likelihood.

Recall Bayes formula (2.6). The bootstrap particle filter approximates the posterior via a

sequential application of importance sampling, using

P (uk+1 | Yk) =
∫
P (uk+1 | uk)P (uk | Yk)duk
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as the proposal and re-weighting according to the likelihood P (yk+1 | uk+1). Thus the method is

typically described by the following algorithm for updating the particle positions. The particles

are initialized with u
(n)
0 ∼ µ0 and then updated iteratively as follows:

(1) Draw û
(n)
k+1 ∼ P (uk+1 | u(n)k ).

(2) Define the weights w
(n)
k+1 for n = 1, · · · , N by

w
(n),∗
k+1 = P (yk+1 | û(n)k+1), w

(n)
k+1 =

w
(n),∗
k+1

N∑

m=1

w
(m),∗
k+1

. (3.5)

(3) Draw u
(n)
k+1 from {û(n)k+1}Nn=1 with weights {w(n)

k+1}Nn=1.

Under Assumption 2.1, it is clear that the sampling and re-weighting procedures are consis-

tent with (3.3). Note that the normalization factor P (yk+1 | Yk) is not required in the algorithm

and is instead approximated via the normalization procedure in the second step.

In addition to ρNk it is also useful to define the related measure

ρ̂Nk =

N∑

n=1

w
(n)
k δ

û
(n)
k

, (3.6)

with ρ̂N0 = µ0, which is related to the bootstrap particle filter by ρNk = SN ρ̂Nk . As we shall see

in Section 6, the advantage of ρ̂Nk is that it has a recursive definition which allows for elegant

proofs of consistency results in [39].

3.2 Optimal particle filter

The optimal particle filter with resampling can also be formulated as a RDS. We once again

approximate the filtering distribution µk with an empirical distribution

µN
k =

N∑

n=1

1

N
δ
u
(n)
k

. (3.7)

Under Assumption 2.1 the particles in this approximation are defined as follows. The particle

positions are initialized with u
(n)
0 ∼ µ0. Given a collection of particles u

(n)
k the particles are

evolved according to the RDS update step

û
(n)
k+1 = (I −KH)ψ(u

(n)
k ) +Kyk+1 + ζ

(n)
k , ζ

(n)
k ∼ N(0, C) i.i.d. ,

u
(n)
k+1 =

N∑

m=1

I
I
(m)
k+1

(r
(n)
k+1)û

(m)
k+1 .

(3.8)

Here C, S,K are defined in (2.17), (2.18) and as with the BPF, the second equation uses the

resampling operator defined in (3.1) but now using weights computed by

w
(n),∗
k+1 = exp

(
− 1

2
|yk+1 −Hψ(u

(n)
k )|2S

)
, w

(n)
k+1 =

w
(n),∗
k+1

N∑

m=1

w
(m),∗
k+1

. (3.9)
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In light of the formulae given in (2.20), which are derived under Assumption 2.1, we see that the

optimal particle filter is updating the particle positions by sampling from P (uk+1 | u(n)k , yk+1)

and then re-sampling to account for the likelihood factor P (yk+1 | u(n)k ). In particular, with-

out necessarily making Assumption 2.1, the optimal particle filter is a sequential importance

sampling scheme applied to the following decomposition of the filtering distribution

P (uk+1 | Yk+1) =

∫

X

P (uk+1, uk | Yk+1)duk

=

∫

X

P (uk+1 | uk, yk+1)P (uk | Yk+1)duk

=

∫

X

P (yk+1 | uk)
P (yk+1 | Yk)

P (uk+1 | uk, yk+1)P (uk | Yk)duk . (3.10)

In the algorithmic setting, the filter is initialized with u
(n)
0 ∼ µ0, then for k ≥ 0 :

(1) Draw û
(n)
k+1 from P (uk+1 | u(n)k , yk+1);

(2) Define the weights w
(n)
k+1 for n = 1, · · · , N by

w
(n),∗
k+1 = P (yk+1 | u(n)k ), w

(n)
k+1 =

w
(n),∗
k+1

N∑
m=1

w
(m),∗
k+1

; (3.11)

(3) Draw u
(n)
k+1 from {û(m)

k+1}Nm=1 with weights {w(m)
k+1}Nm=1.

It is important to note that, although the OPF is well defined in this general setting for any

choice of dynamics-obsevation model, it is only implementable under stringent assumptions

on the forward and observation model, such as those given in Assumption 2.1; under this

assumption the steps (1) and (2) may be implemented using the formulae given in (2.20) and

exploited in the derivation of (3.8). We emphasize that models satisfying Assumption 2.1 do

arise frequently in practice.

As with the BPF, it is beneficial to consider the related particle filter given by

µ̂N
k =

N∑

n=1

w
(n)
k δ

û
(n)
k

(3.12)

for k ≥ 1 and with µ̂N
0 = µ0. Similarly to the bootstrap particle filter we have that µN

k = SN µ̂N
k .

3.3 Gaussianized optimal particle filter

In [22], an alternative implementation of the OPF is investigated and found to have superior

performance on a range of test problems, particularly with respect to the curse of dimensionality.

We refer to this filter as the Gaussianized optimal particle filter (GOPF for short), but note

that it was first derived in [37]. Once again, we approximate the filtering distribution with an

empirical measure

νNk =

N∑

n=1

1

N
δ
v
(n)
k

. (3.13)
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As in the previous subsection, we first describe the filter under Assumption 2.1. The filter is

initialized with v
(n)
0 ∼ µ0, with subsequent iterates generated by the RDS:

ṽ
(n)
k =

N∑

m=1

I
I
(m)
k+1

(r
(n)
k+1)v

(m)
k ,

v
(n)
k+1 = (I −KH)ψ(ṽ

(n)
k ) +Kyk+1 + ζ

(n)
k , ζ

(n)
k ∼ N(0, C) i.i.d.

(3.14)

and the weights appearing in the resampling operator are given by

w
(n),∗
k+1 = exp

(
− 1

2
|yk+1 −Hψ(v

(n)
k )|2S

)
, w

(n)
k+1 =

w
(n),∗
k+1

N∑
m=1

w
(m),∗
k+1

. (3.15)

Thus, the update procedure for GOPF is weight-resample-propagate, as opposed to propagate-

weight-resample for the OPF. Hence the only difference between the OPF and GOPF is the

ordering of the the resampling and propagation steps.

In our analysis it is sometimes useful to consider the equivalent RDS:

v̂
(m,n)
k+1 = (I −KH)ψ(v

(m)
k ) +Kyk+1 + ζ

(m,n)
k , ζ

(m,n)
k ∼ N(0, C) i.i.d. ,

v
(n)
k+1 =

N∑

m=1

I
I
(m)
k+1

(r
(n)
k+1)v̂

(m,n)
k+1 .

(3.16)

The sequences v
(n)
k defined in (3.14) and (3.16) agree because for every n there is exactly one

m = m∗(n) such that v̂
(m∗(n),n)
k+1 survives the resampling step. Writing the algorithm this way

allows certain parts of our subsequent analysis to be performed very similarly for both the OPF

and GOPF; it is not a formulation to be implemented in practice.

For a general dynamics-observation model, the GOPF is described by the following algo-

rithm:

(1) Define the weights w
(n)
k+1 for n = 1, · · · , N by

w
(n),∗
k+1 = P (yk+1 | v(n)k ), w

(n)
k+1 =

w
(n),∗
k+1

N∑
m=1

w
(m),∗
k+1

. (3.17)

(2) Draw ṽ
(n)
k from {v(m)

k }Nm=1 with weights {w(m)
k+1}Nm=1.

(3) Draw v
(n)
k+1 from P (uk+1 | ṽ(n)k , yk+1) .

Unlike for the previous filters, there is no need to define an associated ‘hatted’ measure, as

the GOPF can be shown to satisfy a very natural recursion. This will be discussed in Section

6.

4 Ergodicity for Optimal Particle Filters

In this section we study the conditional ergodicity of the two optimal particle filters. The

proofs are structurally very similar to one another and so we give details only in one case. The

ergodicity results require a metric on probability measures to quantify convergence of differently
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initialized posteriors in the long time limit. To this end, we define the total variation metric on

M(X ) by

dTV (µ, ν) =
1

2
sup
|h|≤1

|µ(h)− ν(h)|, (4.1)

where the supremum is taken over all bounded functions h : X → R with |h| ≤ 1, and where we

define µ(h) :=
∫
X h(x)µ(dx) for any probability measure µ ∈ M(X ) and any real-valued test

function h bounded by 1 on X . This definition is then readily extended to probability measures

on XN .

4.1 Optimal particle filter

Before stating the conditional ergodicity result, we first need some notation. Define uk =

(u
(1)
k , · · · , u(N)

k ) to be particle positions defined by the RDS (3.8) with µ0 = δz0 and similarly

u′k = (u
(1)′

k , · · · , u(N)′

k ) with µ0 = δz′

0
. Then uk is a Markov chain taking values on XN , whose

inhomogeneous Markov kernel we denote by qk(z, ·). The law of uk is given by qk(z0, ·), defined
recursively by composing the qk; and similarly the law of u′k is given by qk(z′0, ·). The conditional
ergodicity result states that if the two filters uk, u

′
k are driven by the same observational data,

then the law of uk will converge to the law of u′k exponentially as k → ∞.

Remark 4.1 We abuse notation in this subsection by using uk ∈ XN to denote the N

particles comprising the optimal particle filter; this differs from the notation uk ∈ X used in

the remainder of the paper to denote the underlying dynamical model. Similarly qk is here

a one-step linear Markov kernel on XN whereas, previously, it denoted a one-step nonlinear

Markov kernel on X . We note also the important distinction between qk and qk: in the former

case qk is a one-step transition kernel, inhomogeneous and depending on k; in the latter case

qk is kernel found by composing over k steps.

Theorem 4.1 Suppose that Assumptions 2.1 hold. Consider the OPF particles uk, u
′
k de-

fined above. Assume moreover that the observational data used to define each filter is the same,

and given by {y†k}k≥1 from Assumption 2.2. Then there exists zN ∈ (0, 1) such that, almost

surely with respect to the randomness generating {y†k}k≥1,

lim sup
k→∞

(dTV(q
k(z0, ·), qk(z′0, ·)))

1
k ≤ zN . (4.2)

Proof Step A Notice that

qk+1(z0, ·) =
∫

X

qk+1(uk, ·)qk(z0, duk), (4.3)

where the transition kernel qk+1(uk, ·) is here viewed as being a measure.

The heart of the argument is Step B, below, in which we prove a minorization condition for

the transition kernel qk+1, as we did for the filtering distribution itself in subsection 2.2. That

is, we seek a measure Q ∈ M(XN ) and a sequence of constants ǫk > 0 satisfying

qk+1(u,A) ≥ ǫkQ(A) (4.4)
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for all u ∈ XN and all measurable sets A ⊂ XN . Given a minorization condition, we obtain

the result via the following standard coupling argument. The minorization condition allows us

to define a new Markov kernel

q̃k+1(x,A) = (1− ǫk)
−1(qk+1(x,A) − ǫkQ(A)) . (4.5)

The Markov chain in which transitions occur with probability 1 − ǫk according to q̃k+1(x, ·)
and with probability ǫk according to Q(·) is equivalent in law to the Markov chain {uk}, and
similarly for {u′k}. Furthermore we may couple the two Markov chains by using the same random

variables to select whether moves are made according to q̃k+1(x, ·) or Q(·). We now complete

the coupling argument, assuming the minorization condition holds. We compare expectations

of the two Markov chains, using the equivalent in law formulation above, and coupled through

the random moves according to Q(·) which occur at each step with probability εk. Let Ak be the

event that the state independent Markov kernel Q(·) is not picked at all times j = 0, · · · , k− 1.

Then we have

dTV(q
k(z0, ·), qk(z′0, ·)) =

1

2
sup

|f |∞≤1

|E(f(uk)− f(u′k))|

=
1

2
sup

|f |∞≤1

|E((f(uk)− f(u′k))IAk
+ (f(uk)− f(u′k))IAc

k
)| .

Note that for this coupling the second term vanishes, as in the event Ac
k, the two chains Markov

kernels qk(z0, ·) and qk(z′0, ·) will have become identical to measure Q at, or before, step k.

Once that happens, they remain identical for all future steps. It follows that

dTV(q
k(z0, ·), qk(z′0, ·)) ≤ E(IAk

) = P(Ak) =

k∏

j=1

(1 − ǫj) .

To obtain the result (4.2), we need to understand the limiting behaviour of the constants ǫj

appearing in the minorization condition (4.4). Hence we turn our attention toward obtaining

the minorization condition.

Step B Before deriving the minorization, we introduce some preliminaries. Using the fact

that

y†k+1 = Hψ(u†k) + γ(rHξ†k + η†k+1)

and defining

ak = ((I −KH)ψ(u
(n)
k ) +KHψ(u†k))

N
n=1, ζk = (ζ

(n)
k )Nn=1,

ρ†k,0 = γ(rHξ†k + η†k+1), ρ†k = (γK(rHξ†k + η†k+1))
N
n=1,

we see that

ûk+1 = ak + ρ†k + ζk .

The next element of the sequence, uk+1, is then defined by the second identity in (3.8). We

are interested in the conditional ergodicity of {uk}∞k=1 with the sequence {ρ†k}∞k=1 fixed. By

Assumption 2.1, ak is bounded uniformly in k. We define the covariance operator C ∈ L(XN ,XN )

to be a block diagonal covariance with each diagonal entry equal to C and then

R = sup
(u,v)

(|(I −KH)ψ(u) +KHψ(v)|2C) ,
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which is finite by Assumption 2.1.

Now, let E0 be the event that, upon resampling, every particle survives the resampling.

There are N ! such permutations. We will do the calculation in the case of a trivial permutation,

that is, where each particle is mapped to itself under the resampling. However the bounds which

follow work for any permutation because we do not use any information about location of the

mean of the particle proposals; we simply use bounds on the drift ψ. If each particle is mapped

to itself, then u
(n)
k+1 = û

(n)
k+1 for all n = 1, · · · , N . It follows that

qk+1(u,A) = P(uk+1 ∈ A|uk = u)

≥ P(uk+1 ∈ A|uk = u,E0)P(E0)

= P(ûk+1 ∈ A|uk = u)P(E0) . (4.6)

We now note that

P(ûk+1 ∈ A|uk = u) =
1√

(2π)dN detC

∫

A

exp
(
− 1

2
|x− ak − ρ†k|2C

)
dx

≥ exp(−|ak + ρ†k|2C)√
(2π)dN detC

∫

A

exp(−|x|2
C
)dx

≥ 2−
dN
2 exp(−2|ak|2C) exp(−2|ρ†k|2C)QC(A)

≥ 2−
dN
2 exp(−2NR2) exp(−2|ρ†k|2C)QC(A),

where QC(A) is the Gaussian measure N(0, 12C). Thus we have shown that

P(ûk+1 ∈ A|uk = u) ≥ δkQC(A), (4.7)

where

δk = 2−
dN
2 exp(−2NR2) exp(−2|ρ†k|2C) .

Moreover, we have that

P(E0) = N !
N∏

n=1

w
(n)
k+1.

Note that we have the bound w
(n)
k+1 ≥ w

(n),∗
k+1

N
for each n = 1, · · · , N because each w

(m),∗
k+1 is

bounded by 1. But we have

w
(n),∗
k+1 = exp

(
− 1

2
|yk+1 −Hψ(u

(n)
k )|2S

)

= exp
(
− 1

2
|Hψ(u†k)−Hψ(u

(n)
k ) + ρ†k,0|2S

)

≥ exp(−r2 − |ρ†k,0|2S),

where

r2 = sup
u,v

|Hψ(u)−Hψ(v)|2S

which is finite by Assumption 2.1. From this we see that

P(E0) ≥ N !
1

NN
exp

(
−Nr2 −N |ρ†k,0|2S

)
.
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Thus we obtain the minorization condition (4.4) where

ǫk = N !
1

NN
exp(−Nr2 −N |ρ†k,0|2S)δk, Q = QC .

Step C By the argument in Step A we have that

dTV(q
k(z0, ·), qk(z′0, ·))

1
k ≤ zk, (4.8)

where zk =
( k∏
j=1

(1 − ǫj)
) 1

k . Since the ǫk are i.i.d. and integrable, by the law of large numbers,

almost surely with respect to the randomness generating the true signal and the data, we have

ln zk =
1

k

k∑

j=1

ln(1− ǫj) → E ln(1− ǫ1) = −E

∞∑

n=1

1

n
ǫn1 . (4.9)

But ǫ1 ≤ exp(−2|ρ†1,0|2Γ). Since ρ†1,0 is Gaussian it follows that the nth moment of ǫ1 is bounded

above by O(n− 1
2 ) so that the limit of ln zk is negative and finite; the result follows.

4.2 Gaussianized optimal filter

As in the last section, we define vk = (v
(1)
k , · · · , v(N)

k ) and similarly for v′k using the RDS

but now for the GOPF (3.14) (or alternatively (3.16)) with distinct initializations µ0 = δz0 and

µ0 = δz′

0
. Similarly to Theorem 4.1, we let qk(z0, ·) denote the law of vk.

Theorem 4.2 Suppose that Assumptions 2.1 hold. Consider the GOPF particles vk, v
′
k

defined above. Assume moreover that the observational data used to define each filter is the

same, and given by {y†k}k≥1 from Assumption 2.2. Then there exists zN ∈ (0, 1) such that,

almost surely with respect to the randomness generating {y†k}k≥1,

lim sup
k→∞

(dTV(q
k(z0, ·), qk(z′0, ·)))

1
k ≤ zN . (4.10)

Proof The proof follows similarly to that of Theorem 4.1, in particular it suffices to obtain

a minorization condition for qk+1(v, ·). We will use the RDS representation (3.16), which we

now recall

v̂
(m,n)
k+1 = (I −KH)ψ(v

(m)
k ) +Kyk+1 + ζ

(m,n)
k , ζ

(m,n)
k ∼ N(0, C) i.i.d. ,

v
(n)
k+1 =

N∑

m=1

I
I
(m)
k+1

(r
(n)
k+1)v̂

(m,n)
k+1 .

(4.11)

In this formulation, note that for each n there is one and only one m = m∗(n) such that

I
I
(m)
k

(r
(n)
k ) = 1. We see that

vk := (v
(n)
k )Nn=1 = (v̂

(m∗(n),n)
k )Nn=1 .

Using the fact that

y†k+1 = Hψ(u†k) + γ(rHξ†k + η†k+1)
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and defining

ak = ((I −KH)ψ(v
(m∗(n))
k ) +KHψ(u†k))

N
n=1, ζk = (ζ

(m∗(n),n)
k )Nn=1, (4.12)

ρ†k,0 = γ(rHξ†k + η†k+1), ρ†k = (γK(rHξ†k + η†k+1))
N
n=1, (4.13)

we see that

vk+1 = ak + ρ†k + ζk .

Now notice that

qk+1(v,A) = P(vk+1 ∈ A|vk = v) = P((v̂
(m∗(n),n)
k+1 )Nn=1 ∈ A|vk = v)

=
1√

(2π)dN detC

∫

A

exp
(
− 1

2
|x− ak − ρ†k|2C

)
dx

≥ exp(−|ak + ρ†k|2C)√
(2π)d detC

∫

A

exp(−|x|2C)dx

≥ 2−
dN
2 exp(−2|ak|2C) exp(−2|ρ†k|2C)QC(A)

≥ 2−
dN
2 exp(−2NR2) exp(−2|ρ†k|2C)QC(A), (4.14)

where QC is the Gaussian measure N(0, 12C). Thus we have shown that

qk+1(v,A) ≥ δkQC(A), (4.15)

where

δk = 2−
dN
2 exp(−2NR2) exp(−2|ρ†k|2C) .

The remainder of the proof (step C) follows identically to Theorem 4.1.

Remark 4.2 We can compare our (upper bounds on the) rates of convergence for the two

optimal filters, using the minorization constants. For the OPF we have

ǫ1 = N !
1

NN
exp

(
−Nr2 −N |ρ†1,0|2S

)
δ1 ,

where

δ1 = 2−
dN
2 exp(−2NR2) exp(−2|ρ†1|2C) ,

for the GOPF we simply have ǫ1 = δ1. The extra N dependence in the OPF clearly leads to a

slower (upper bound on the) rate of convergence for the OPF. Thus, by this simple argument, we

obtain a better convergence rate for the GOPF than for the OPF. This suggests that the GOPF

may have a better rate of convergence for fixed ensemble sizes; further analysis or experimental

study of this point would be of interest.

5 Accuracy for Optimal Particle Filters

In this section we study the accuracy of the optimal particle filters, in the small noise limit

γ → 0. The expectation appearing in the theorem statements is with respect to the noise

generating the data, and with respect to the randomness within the particle filter itself. Note

that this situation differs from that in the accuracy result for the filter itself which uses data

generated by the statistical model. Assumption 2.2 relaxes this assumption.
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5.1 Optimal particle filter

Theorem 5.1 Suppose that Assumptions 2.1, 2.3 hold and consider the OPF with particles

{u(n)k }Nn=1 defined by (3.8) with data {y†k} given by Assumption 2.2. It follows that there is

constant c such that

lim sup
k→∞

E
(
max
n

‖u(n)k − u†k‖2
)
≤ cγ2.

Proof First recall the notation Σ = σΣ0, Γ = γΓ0 and r = σ
γ
. Now define

S0 = r2HΣ0H
∗ + Γ0,

C0 = r2(I −KH)Σ0

and note that

S = γ2S0, C = γ2C0, K = r2Σ0H
∗S−1

0 .

We will use the RDS representation

û
(n)
k+1 = (I −KH)ψ(u

(n)
k ) +Ky†k+1 + γζ

(n)
0,k , ζ

(n)
k ∼ N(0, C) i.i.d. ,

u
(n)
k+1 =

N∑

m=1

I
I
(m)
k+1

(r
(n)
k+1)û

(n)
k+1 ,

(5.1)

where ζ
(n)
0,k ∼ N(0, C0) i.i.d. Hence we have

u†k+1 = (I −KH)ψ(u†k) +KHψ(u†k) + rγξ†k, (5.2)

û
(n)
k+1 = (I −KH)ψ(u

(n)
k ) +K(Hψ(u†k) + γη†k+1) + γζ

(n)
0,k , (5.3)

where ζ
(n)
0,k ∼ N(0, C0) i.i.d. Subtracting, we obtain

û
(n)
k+1 − u†k+1 = (I −KH)

(
ψ(u

(n)
k )− ψ(u†k)

)
+ γι

(n)
k , (5.4)

where ι
(n)
k := (Kη†k+1 + ζ

(n)
0,k − rξ†k). Moreover we have the identity

u†k+1 =

N∑

m=1

I
I
(m)
k+1

(r
(n)
k+1)u

†
k+1 . (5.5)

Thus, defining

e
(n)
k = u

(n)
k − u†k, ê

(n)
k = û

(n)
k − u†k,

we have from (5.1) and (5.5)

e
(n)
k+1 =

N∑

m=1

I
I
(m)
k+1

(r
(n)
k+1)ê

(m)
k+1 .

Thus

max
n

‖e(n)k+1‖2 ≤ max
m

‖ê(m)
k+1‖2 ,

where the norm is the one in which we have a contraction. Using (5.4), the Lipschitz property

of (I −KH)ψ(·), taking expectations and using independence, yields

E
(
max
n

‖u(n)k+1 − u†k+1‖2
)
≤ α2E

(
max
n

‖u(n)k − u†k‖2
)
+O(γ2)

and the result follows by Gronwall.
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5.2 Gaussianized optimal filter

Theorem 5.2 Let Assumptions 2.1, 2.3 hold and consider the GOPF with particles {v(n)k }Nn=1

defined by (3.14) (or (3.16)) with data {y†k} given by Assumption 2.2. It follows that there is

constant c such that

lim sup
k→∞

E
(
max
n

‖v(n)k − u†k‖2
)
≤ cγ2.

Proof Recall the notation defined at the beginning of the proof of Theorem 5.1. Recall

also the RDS representation of the GOPF (3.16)

v̂
(m,n)
k+1 = (I −KH)ψ(v

(m)
k ) +Kyk+1 + γζ

(m,n)
0,k ,

v
(n)
k+1 =

N∑

m=1

I
I
(m)
k+1

(r
(n)
k+1)v̂

(m,n)
k+1 ,

(5.6)

where we now have ζ
(m,n)
0,k ∼ N(0, C0) i.i.d. , recalling that C = γ2C0. We also have the identity

u†k+1 = (I −KH)ψ(u†k) +KHψ(u†k) + rγξ†k , (5.7)

where ζ
(n)
0,k ∼ N(0, C0) i.i.d. Subtracting, we obtain

v̂
(m,n)
k+1 − u†k+1 = (I −KH)

(
ψ(v

(m)
k )− ψ(u†k)

)
+ γι

(n)
k , (5.8)

where ι
(n)
k := (Kη†k+1 + ζ

(n)
0,k − rξ†k). Note that

u†k+1 =

N∑

m=1

I
I
(m)
k+1

(r
(n)
k+1)u

†
k+1, (5.9)

so that, defining

e
(n)
k = v

(n)
k − u†k, ê

(m,n)
k = v̂

(m,n)
k − u†k,

we have from (5.6), (5.8) and (5.9)

e
(n)
k+1 =

N∑

m=1

I
I
(m)
k+1

(r
(n)
k+1)ê

(m,n)
k+1 .

Thus

max
n

‖e(n)k+1‖2 ≤ max
m

‖ê(m,n)
k+1 ‖2 ,

where the norm is the one in which we have a contraction. Using (5.8), using the Lipschitz

property of (I −KH)ψ(·), taking expectations and using independence, gives

E
(
max
n

‖v(n)k+1 − u†k+1‖2
)
≤ α2E

(
max
n

‖v(n)k − u†k‖2
)
+O(γ2) .

The result follows by Gronwall.



832 D. Kelly and A. M. Stuart

6 Consistency in the Large Particle Limit

In this section we state and prove consistency results for the BPF, OPF and GOPF intro-

duced in Section 3, in a simple unified framework. For the BPF the result is well known but we

reproduce it here as the prove serves as an ideological template for the more complicated proofs

to follow; furthermore we present the clean proof given in [39] (see also [26, Chapter 4]) as this

particular approach to the result generalizes naturally to the OPF and GOPF. We also note

that the more general analysis of the consistency of the auxiliary particle filter in [20] implies

the result that we prove here about the GOPF.

6.1 Bootstrap particle filter

In the following, we let fk+1 : X → R be any function with fk+1(uk+1) ∝ P (yk+1 | uk+1);

any proportionality constant will suffice, but the normalization constant is of course natural.

As in previous sections, we let µk denote the filtering distribution. The following theorem is

stated and then proved through a sequence of lemmas in the remainder of the subsection.

Theorem 6.1 Let ρ̂Nk , ρ
N
k be the BPFs defined by (3.6), (3.2) respectively, and suppose that

there exists a constant κ ∈ (0, 1] such that

κ ≤ fk+1(uk+1) ≤ κ−1 (6.1)

for all uk+1 ∈ X , yk+1 ∈ Y and k ∈ {0, · · · ,K − 1}. Then we have

d(ρ̂NK , µK) ≤
K∑

k=1

(2κ−2)kN− 1
2 (6.2)

and

d(ρNK , µK) ≤
K∑

k=0

(2κ−2)kN− 1
2 (6.3)

for all K,N ≥ 1.

Remark 6.1 Note that the constant κ−2 appearing in the estimates above arises as the

ratio of the upper and lower bounds in (6.1). In particular, we cannot optimize κ by choosing

a different proportionality constant for fk+1.

Recall formulation (2.4) of the iteration for the filtering distribution. In terms of under-

standing the approximation properties of the BPF, the key observation is that the measures

{ρ̂Nk }k≥0 satisfy the recursion

ρ̂Nk+1 = Lk+1S
NP ρ̂Nk , ρ̂N0 = µ0, (6.4)

where P : M(X ) → M(X ) is the Markov semigroup and, as defined in subsection 1.3, SN :

M(X ) → M(X ) is the sampling operator. The convergence of the measures is quantified by

the metric on random elements of M(X ) defined by

d(µ, ν) = sup
|f |∞≤1

√
Eω|µ(f)− ν(f)|2 ,
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where, in our setting, Eω will always denote expectation with respect to the randomness in the

sampling operator SN . This metric reduces to twice the total variation metric, used in studying

ergodicity, when the measures are not random. The main ingredients for the proof are the

following three estimates for the operators P, SN and Lk+1 with respect to the metric d.

Lemma 6.1 We have the following:

(1) sup
ν∈M(X )

d(SNν, ν) ≤ N− 1
2 .

(2) d(Pµ, Pν) ≤ d(µ, ν) for all µ, ν ∈ M(X ).

Proof See [26, Lemma 4.7, Lemma 4.8].

We state the following lemma in a slightly more general form than necessary for the BPF,

as it will be applied in different contexts for the optimal particle filters.

Lemma 6.2 Let Z be a finite dimensional Euclidean space. Suppose that gk+1 : Z → [0,∞)

is bounded and that there exists κ ∈ (0, 1] such that

κ ≤ gk+1(u) ≤ κ−1 (6.5)

for all u ∈ Z and define Gk+1 : M(Z) → M(Z) by Gk+1(ν)(ϕ) = ν(gk+1ϕ)/ν(gk+1). Then

d(Gk+1µ,Gk+1ν) ≤ (2κ−2)d(µ, ν)

for all µ, ν ∈ M(Z).

Proof See [26, Lemma 4.9].

We can now prove the consistency result.

Proof of Theorem 6.1 First note that, taking Z = X and gk+1 = fk+1 in Lemma 6.2, we

obtain Gk+1ν = Lk+1ν. Thus, by (6.1), it follows that d(Lk+1µ, Lk+1ν) ≤ (2κ−2)d(µ, ν) for all

µ, ν ∈ M(X ). Combining this fact with the recursions given in (6.4), (2.4) and the estimates

given in Lemmas 6.1 we have

d(ρ̂Nk+1, µk+1) = d(Lk+1S
NP ρ̂Nk , Lk+1Pµk)

≤ 2κ−2d(SNP ρ̂Nk , Pµk)

≤ 2κ−2(d(SNP ρ̂Nk , P ρ̂
N
k ) + d(P ρ̂Nk , Pµk))

≤ 2κ−2N− 1
2 + 2κ−2d(ρ̂Nk , µk) . (6.6)

And since ρ̂N0 = µ0, we obtain (6.2) by induction. Moreover, since ρk = SN ρ̂Nk

d(ρk, µk) = d(SN ρ̂Nk , µk) ≤ d(SN ρ̂Nk , ρ̂
N
k ) + d(ρ̂Nk , µk) (6.7)

and (6.3) follows.

6.2 Sequential importance resampler

In this section we will apply the above strategy to prove the corresponding consistency

result for the OPF. Instead of restricting to the OPF, we will obtain results for the sequential
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importance resampler (SIR for short), for which the OPF is a special case. See [13, sections II,

III] for background in sequential importance sampling, and on the use of resampling. As with

the OPF, the SIR is an empirical measure

µN
k =

N∑

n=1

1

N
δ
u
(n)
k

. (6.8)

We will abuse notation slightly by keeping the same notation for the OPF and the SIR. The

particle positions are drawn from a proposal distribution π(uk+1|uk, yk+1) and re-weighted

accordingly. As usual, the positions are initialized with u
(n)
0 ∼ µ0 and updated by

(1) Draw û
(n)
k+1 from π(uk+1 | u(n)k , yk+1).

(2) Define the weights w
(n)
k+1 for n = 1, · · · , N by

w
(n),∗
k+1 =

P (yk+1|û(n)k+1)P (û
(n)
k+1|u

(n)
k )

π(û
(n)
k+1|u

(n)
k , yk+1)

, w
(n)
k+1 =

w
(n),∗
k+1

N∑
m=1

w
(m),∗
k+1

. (6.9)

(3) Draw u
(n)
k+1 from {û(m)

k+1}Nm=1 with weights {w(m)
k+1}Nm=1.

Thus, if we take the proposal to be π(uk+1 | uk, yk+1) = P (uk+1 | uk, yk+1) then we obtain the

OPF (3.7). Without being more specific about the proposal π, it is not possible to represent

the SIR as a random dynamical system in general.

Precisely as with the OPF, for the SIR we define the related filter

µ̂N
k =

N∑

n=1

w
(n)
k δ

û
(n)
k

(6.10)

with µ̂N
0 = µ0 and note the important identity µN

k = SN µ̂N
k . The following theorem, and

corollary, are proved in the remainder of the subsection, through a sequence of lemmas.

Theorem 6.2 Let µ̂N , µN be the SIR filters defined by (6.10), (6.8) respectively, with pro-

posal distribution π. Suppose that there exists fk+1 : X × X → R with

fk+1(uk+1, uk) ∝
P (yk+1 | uk+1)P (uk+1 | uk)

π(uk+1 | uk, yk+1)
(6.11)

and satisfying

κ ≤ fk+1(uk+1, uk) ≤ κ−1 (6.12)

for all uk+1, uk ∈ X , k ∈ {0, · · · ,K − 1} and some κ ∈ (0, 1]. Then we have

d(µ̂N
K , µK) ≤

K∑

k=1

(2κ−2)kN− 1
2 (6.13)

and

d(µN
K , µK) ≤

K∑

k=0

(2κ−2)kN− 1
2 (6.14)

for all K,N ≥ 1.
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Remark 6.2 As for the boostrap particle filter, the appearance of κ−2 reflects the ratio of

the upper and lower bounds in (6.11); hence there is nothing to be gained from optimizing over

the constant of proportionality. If we let

fk+1(uk+1, uk) =
P (yk+1 | uk+1)P (uk+1 | uk)

π(uk+1 | uk, yk+1)
,

then the estimate (6.12) is equivalent to

κπ(uk+1 | uk, yk+1) ≤ P (yk+1 | uk+1)P (uk+1 | uk) ≤ κ−1π(uk+1 | uk, yk+1) .

This can thus be interpreted as a quantification of equivalence between measures π and the

optimal proposal P (yk+1 | uk+1)P (uk+1 | uk).

Remark 6.3 It is important to note that Assumption 2.1 on the dynamics-observation

model is not required by Theorem 6.2. However Assumption 2.1 can be used to ensure that

(6.12) holds. This observation leads to the following corollary.

Corollary 6.1 Let µ̂N , µN be the OPFs defined in (3.12), (3.7) respectively and satisfying

Assumption 2.1. Then there is κ = κ(YK) such that we have

d(µ̂N
K , µK) ≤

K∑

k=1

(2κ−2)kN− 1
2 (6.15)

and

d(µN
K , µK) ≤

K∑

k=0

(2κ−2)kN− 1
2 (6.16)

for all K,N ≥ 1 and where κ−1 = exp
(

max
0≤j≤K−1

|yj+1|2 + supv |Hψ(v)|2S
)
.

Although similar to the argument for the BPF, the recursion argument for the SIR is

necessarily more complicated than that for the BPF, as the weights w
(n)
k+1 can potentially depend

on both u
(n)
k+1 and u

(n)
k . This suggests that we must build a recursion which updates measures

on a joint space (uk+1, uk) ∈ X ×X . This would also be necessary if we restricted our attention

to the OPF, as the weights are defined using u
(n)
k and not the particle positions û

(n)
k+1 after the

proposal.

The recursion is defined using the following three operators.

(1) First P π
k+1 maps probability measures on X to probability measures on X × X by

P π
k+1µ(A) =

∫ ∫

A

π(uk+1|uk, yk+1)µ(duk)duk+1, (6.17)

where A is a measurable subset of X × X .

(2) The reweighting operator Lπ
k+1 maps probability measures on X × X to probability

measures on X × X and is defined by

Lπ
k+1Q(A) = Z−1

∫ ∫

A

wk+1(uk+1, uk)Q(duk+1, duk), (6.18)
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where Z is the normalization constant of the resulting measure. The weight function is given

by

wk+1(uk+1, uk) =
P (yk+1|uk+1)P (uk+1|uk)

π(uk+1|uk, yk+1)
. (6.19)

(3) Finally, M maps probability measures on X × X into probability measures on X via

marginalization onto the first component:

MQ(B) =

∫ ∫

B×X

Q(duk+1, duk).

It is easy to see that the posterior µk satisfies a natural recursion in terms of these operators.

Lemma 6.3 µk+1 =MLπ
k+1P

π
k+1µk.

Proof Let P (uk | Yk) denote the density of µk, then P
π
k+1µk is a measure on X × X with

density

π(uk+1 | uk, yk+1)P (uk | Yk) . (6.20)

And Lπ
k+1P

π
k+1µk is a measure on X × X with density

Z−1wk+1(uk+1, uk)π(uk+1 | uk, yk+1)P (uk | Yk)
= Z−1P (yk+1 | uk+1)P (uk+1 | uk)P (uk | Yk) . (6.21)

Finally, MLπ
k+1P

π
k+1µk is a measure on X with density

∫

X

Z−1P (yk+1 | uk+1)P (uk+1 | uk)P (uk | Yk)duk = Z−1P (yk+1 | uk+1)P (uk+1 | Yk) . (6.22)

Similarly, for the normalization factor, we have

Z =

∫ ∫

X×X

P (yk+1 | uk+1)P (uk+1 | uk)P (uk | Yk)dukduk+1

=

∫

X

P (yk+1 | uk+1)P (uk+1 | Yk)duk (6.23)

and thus by Bayes’ formula (6.22) is equal to P (uk+1 | Yk+1) as required.

We now show that an associated recursion is satisfied by the SIR filter µ̂N .

Lemma 6.4 Let µ̂N be the SIR filter given by (6.10), then

µ̂N
k+1 =MLπ

k+1S
NP π

k+1µ̂
N
k (6.24)

for all k ≥ 0 and N ≥ 1, where SN denotes the sampling operator acting on M(X × X ).

Proof By definition, µ̂N
k =

N∑
n=1

w
(n)
k δ

û
(n)
k

so that P π
k+1µ̂

N
k ∈ M(X × X ) with density

N∑

n=1

w
(n)
k π(uk+1 | û(n)k , yk+1)δ(uk − û

(n)
k ) . (6.25)
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Note that a sample U ∼ P π
k+1µ̂

N
k is a pair (û

(n)
k+1, u

(n)
k ) obtained as follows: first draw a sam-

ple u
(n)
k from {û(n)k }Nn=1 with weights {w(n)

k }Nn=1 and then draw sample û
(n)
k+1 from π(uk+1 |

u
(n)
k , yk+1). Thus, by definition of the û

(n)
k+1 sequence we see that SNP π

k+1µ̂
N
k has density

1

N

N∑

n=1

δ(uk+1 − û
(n)
k+1)δ(uk − u

(n)
k ) . (6.26)

It follows that Lπ
k+1S

NP π
k+1µ

N
k has density

N∑

n=1

Z−1wk+1(û
(n)
k+1, u

(n)
k )δ(uk+1 − û

(n)
k+1)δ(uk − u

(n)
k ) (6.27)

and MLπ
k+1S

NP π
k+1µ

N
k has density

N∑

n=1

Z−1wk+1(û
(n)
k+1, u

(n)
k )δ(uk+1 − û

(n)
k+1) . (6.28)

Lastly, the normalization factor is given by

Z =

∫ ∫

X×X

N∑

n=1

wk+1(û
(n)
k+1, u

(n)
k )δ(uk+1 − û

(n)
k+1)δ(uk − u

(n)
k )dukduk+1

=

N∑

n=1

wk+1(û
(n)
k+1, u

(n)
k ) , (6.29)

so that Z−1wk+1(û
(n)
k+1, u

(n)
k ) = w

(n)
k+1 and we obtain the result.

In the final step before proving Theorem 6.2, we state some simple properties for the opera-

tors appearing in the recursions. Note that these are similar but not (all) immediately implied

by the corresponding results for the BPF, Lemma 6.1.

Lemma 6.5 We have the following simple estimates:

(1) d(Mν,Mµ) ≤ d(ν, µ),

(2) d(P π
k+1ν, P

π
k+1µ) ≤ d(ν, µ),

(3) sup
ν∈M(X×X )

d(SNν, ν) ≤ N− 1
2 .

Proof Let f̃(x, y) = f(x) and let g(x, y) denote an arbitrary function. Then

Mν(f)−Mµ(f) = ν(f̃)− µ(f̃). (6.30)

The first inequality follows immediately from taking supremum over all |f | ≤ 1, which is

necessarily smaller than the supremum of ν(g)− µ(g) over all |g| ≤ 1.

We also have

P π
k+1ν(g)− P π

k+1µ(g) = ν(gπ)− µ(gπ), (6.31)

where gπ(uk) =
∫
g(uk+1, uk)π(uk+1 | uk, Yk+1)duk+1. And since |gπ|∞ ≤ 1, the second

inequality follows. The third inequality is proven in [26, Lemma 4.7], simply replacing X with

X × X .
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We can now proceed with the main result.

Proof of Theorem 6.2 In the context of Lemma 6.2, take Z = X × X and gk+1 = fk+1,

it follows that Gk+1ν = Lπ
k+1ν. Indeed, for any ϕ : X × X → R and with gk+1 = Z−1wk+1 we

have

Gk+1ν(ϕ) =
ν(gk+1ϕ)

ν(gk+1)
=
ν(wk+1ϕ)

ν(wk+1)
= Lπ

k+1ν(ϕ) .

We therefore obtain from Lemma 6.2 that

d(Lπ
k+1µ, L

π
k+1ν) ≤ (2κ−2)d(µ, ν)

for all µ, ν ∈ M(X × X ).

Thus, using the recursions given in Lemmas 6.3, 6.4 and the estimates given in Lemma 6.5,

we obtain

d(µ̂N
k+1, µk+1) = d(MLπ

k+1S
NP π

k+1µ̂
N
k ,MLπ

k+1P
π
k+1µk)

≤ d(Lπ
k+1S

NP π
k+1µ̂

N
k , L

π
k+1P

π
k+1µk)

≤ 2κ−2d(SNP π
k+1µ̂

N
k , P

π
k+1µk)

≤ 2κ−2
(
d(SNP π

k+1µ̂
N
k , P

π
k+1µ̂

N
k ) + d(P π

k+1µ̂
N
k , P

π
k+1µk)

)

≤ 2κ−2N− 1
2 + 2κ−2d(µ̂N

k , µk) , (6.32)

and since µ̂N
0 = µ0, we obtain (6.15) by induction. Moreover, since µN

k = SN µ̂N
k ,

d(µN
k , µk) = d(SN µ̂N

k , µk) ≤ d(SN µ̂N
k , µ̂

N
k ) + d(µ̂N

k , µk) (6.33)

and (6.16) follows.

The corollary follows immediately.

Proof of Corollary 6.1 For the OPF we have

π(uk+1 | uk, yk+1) = P (uk+1 | uk, yk+1) =
P (yk+1 | uk+1)P (uk+1 | uk)

P (yk+1 | uk)
, (6.34)

where we have applied Bayes formula in the final equality. But under Assumption 2.1 we have

that

P (yk+1 | uk) = Z−1
S exp

(
− 1

2
|yk+1 −Hψ(uk)|2S

)
. (6.35)

Thus we define fk+1 by

fk+1(uk+1, uk) = ZS

P (yk+1 | uk+1)P (uk+1 | uk)
π(uk+1 | uk, yk+1)

= exp
(
− 1

2
|yk+1 −Hψ(uk)|2S

)
(6.36)

and hence (6.12) holds with κ−1 = exp
(

max
0≤j≤K−1

|yj+1|2+supv |Hψ(v)|2S
)
, which, for each Yk,

is finite by Assumption 2.1. The result follows from Theorem 6.2.
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6.3 Gaussianized optimal particle filter

In this section we derive the consistency result for the GOPF.

Theorem 6.3 Let νN be the GOPF defined by (3.13) and let Assumption 2.1 hold. Then

there is κ = κ(YK) such that

d(νNK , µK) ≤
K∑

k=0

(2κ−2)kN− 1
2 (6.37)

for all K,N ≥ 1, where κ−1 = exp
(

max
0≤j≤K−1

|yj+1|2 + supv |Hψ(v)|2S
)
.

For the GOPF, the consistency proof uses the same strategy, but turns out to be much more

straightforward. First note that the decomposition of the filtering distribution given in (3.10)

gives the recursion formula

µk+1 = Qk+1Kk+1µk, (6.38)

where Kk+1 : M(X ) → M(X ) is defined by

Kk+1µ(A) = Z−1

∫

A

P (yk+1 | uk)µ(duk) (6.39)

for all measurable A ⊂ X where Z is the normalization constant, and Qk+1 : M(X ) → M(X )

is the Markov semigroup with kernel P (uk+1 | uk, yk+1).

Moreover, we have the following recursion for the GOPF. Let νNk = 1
N

N∑
n=1

δ
v
(n)
k

.

Lemma 6.6 The GOPF νNk satisfies the recursion

νNk+1 = SNQk+1Kk+1ν
N
k (6.40)

with νN0 = SNµ0 .

Proof Note that Kk+1 ∈ M(X ) with density

N∑

n=1

Z−1P (yk+1 | v(n)k )δ(vk − v
(n)
k ) . (6.41)

The normalization constant is given by

Z =

∫

X

N∑

n=1

P (yk+1 | v(n)k )δ(vk − v
(n)
k )dvk =

N∑

n=1

P (yk+1 | v(n)k ) (6.42)

and thus Z−1P (yk+1 | v(n)k ) = w
(n)
k+1. We then have Qk+1Kk+1ν

N
k ∈ M(X ) with density

N∑

n=1

w
(n)
k+1P (vk+1 | v(n)k , yk+1) . (6.43)

To draw a sample v
(n)
k+1 from this mixture model, we draw ṽ

(n)
k from {v(m)

k }Nm=1 with weights

{w(m)
k+1}Nm=1 and then draw v

(n)
k+1 from P (vk+1 | ṽ(n)k , yk+1). It follows that SNQk+1Kk+1ν

N
k =

νNk+1.
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Proof of Theorem 6.3 If we let

gk+1(vk) := ZSP (yk+1|vk) = exp
(
− 1

2
|yk+1 −Hψ(vk)|2S

)
,

then gk+1 satisfies the assumptions of Lemma 6.2 with

κ−1 = exp
(

max
0≤j≤K−1

|yj+1|2 + sup
v

|Hψ(v)|2S
)
.

In particular, since Gk+1ν = Kk+1ν, it follows from Lemma 6.2 that

d(Kk+1µ,Kk+1ν) ≤ (2κ−2)d(µ, ν)

for all µ, ν ∈ M(X ).

Using the recursions (6.38), (6.40) and the estimates from Lemma 6.1, we see that

d(νNk+1, µk+1) = d(SNQk+1Kk+1ν
N
k , Qk+1Kk+1µk)

≤ d(SNQk+1Kk+1ν
N
k , Qk+1Kk+1ν

N
k ) + d(Qk+1Kk+1ν

N
k , Qk+1Kk+1µk)

≤ N− 1
2 + d(Kk+1ν

N
k ,Kk+1µk)

≤ N− 1
2 + 2κ−2d(νNk , µ

N
k ) (6.44)

by induction, we obtain

d(νNk+1, µ
N
k+1) ≤

k∑

j=0

(2κ−2)jN− 1
2 + (2κ−2)k+1d(νN0 , µ0) . (6.45)

And the result follows from the fact d(νN0 , µ0) = d(SNµ0, µ0) ≤ N− 1
2 .
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