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Piston Problems of Two-Dimensional Chaplygin Gas∗
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Abstract In this paper, the authors study the piston problem for the unsteady two-

dimensional Euler system for a Chaplygin gas. The angle of the piston is allowed to vary

in a wide range. The piston can be pushed forward into the static gas, or pulled back from

the gas. The global existence of solution to the piston problem with any initial speed is

established, and the structures of the global solutions are clearly described. The authors

find that for the proceeding piston problem the front shock can be detached, attached or

even adhere to the surface of the piston depending on the parameters of the flow and the

piston; while for the receding problem the front rarefaction wave is always detached and

the concentration will never occur.
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ber
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1 Introduction

In this paper we study the two-dimensional piston problem for the Chaplygin gas. The piston

problem is a basic prototype problem in the study of mathematical theory of compressible fluid

dynamics (see [12, 23]). In one-dimensional case the problem is described as follows. Initially,

the static gas with uniform pressure p0 and density ρ0 is assumed to be in an infinitely long

tube enclosed by a piston at one end and open at the other end, then any motion of the piston

will cause the corresponding motion of the gas in the tube. In particular, a shock wave will

appear ahead of the piston if the piston is pushed forward into the gas, while a rarefaction

wave will result in if the piston is pulled backward from the gas. The tube is often called a

shock tube. Determining the state of the gas and the propagation of the nonlinear waves in

the tube is called a piston problem. In [12–13, 23] the authors took the one-dimensional piston

problem as a model to analyze the occurrence and the motion of the basic nonlinear waves in

the compressible fluid, so that the importance of the piston problem is well known to relative

researchers. One can refer to [4–5, 14–15] and the references therein for more related results.

If the shock tube is wide and the profile of the piston takes the shape of a wedge, then

the motion of the gas is no longer one-dimensional. Moreover, the motion of the gas near
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the tip of the piston can be locally described as a motion caused by the pushing or pulling of

an infinite long wedge in the whole plane filled with gas. As in the one-dimensional case the

piston problem in two-dimensional case will offer us much more opportunities to analyze the

occurrence, propagation and interaction of nonlinear waves in two-dimensional space, which has

rich structures and phenomena (see [1]). A good example is the work given by Volker Elling

and Taiping Liu in [16], where the study of the two-dimensional piston problem is naturally

linked with the problem on supersonic flow past a wedge. It is proved there when a sharp

wedge suddenly hits the static gas with a constant speed, the global existence of the flow with

an attached shock outside the wedge can be well determined, provided that the speed of the

piston is supersonic and some restrictions on the flow parameters (see [16, (1.1)] ) are satisfied.

Another related work can be found in [8, 11], where the piston is an expanded disk in two-

dimensional space and the expanding of the disk causes an expanding shock moving into the

static gas.

It is anticipated to establish a general result for the two-dimensional piston problems without

any restriction on the vertex angle of the piston and its speed moving into the static gas as in

the one-dimensional case. In this paper we will give such an analysis for the piston moving in

the Chaplygin gas, which amounts to the polytropic gas with γ = −1. One can refer to [2–3,

22] for more physical background of this kind of gas. Due to the linearly degenerate property

of the Chaplygin gas the wave structure caused by a given motion is often simpler than that

for the general polytropic gas with γ ≥ 1. Hence this model allows us to obtain the global

wave structure of the piston problem with initial data in a wide range. The result in this paper

shows that the attached shock is present in the similar condition as that in [16] (see [6–7, 17,

21, 24–25]) for attached shock in steady case) and, furthermore, detached shock is also obtained

for some kind of initial data as the vertex angle is suitably large. We believe that the result is

helpful to study the similar problems for the general polytropic gas.

Let us describe the problem in more details. We first consider the proceeding piston problem.

Assume that the gas is static initially, and a piston:

{(x, y) ∈ R
2 : x ≥ |y| cot θ0} (1.1)

with θ0 ∈ (0, π2 ) moves from right into the gas on the left with uniform velocity (−u0, 0), where
u0 > 0 (see Figure 1). As we will see that different θ0 may result in the solution with different

structure for the same initial state. We would like to study the existence and the structure of

the solution for a large class of initial data in this paper.

The two-dimensional inviscid adiabatic Euler equations take the form§
∂tρ+ divx(ρu) = 0,
∂t(ρu) + divx(ρu⊗ u) +∇xp = 0

(1.2)

for (t,x) ∈ [0,∞)× R2. Here, ρ,u = (u, v), p are the density, the velocity and the pressure of

the fluid, respectively. For the isentropic Chaplygin gas, the state equation is

p(ρ) = a2
� 1

ρ∗
− 1

ρ

�
, (1.3)
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Figure 1 Two-dimensional piston problem.

where a and ρ∗ are two positive constants. The sound speed of the gas is c = a
ρ
.

The domain under consideration is

Ω = {(x, y, t) : x ≤ |y| cot θ0 − u0t}.

Its boundary is ∂Ω =Wu ∪Wl with

Wu = {(x, y, t) : y ≥ 0, y = (x + u0t) tan θ0}, (1.4)

Wl = {(x, y, t) : y < 0, y = −(x+ u0t) tan θ0}. (1.5)

We assume that the flow satisfies the following slip boundary condition

(u, v) · ν|∂Ω = 0, (1.6)

where ν is the outward unit normal of the boundary: ν|Wu
= (sin θ0, − cos θ0), ν|Wl

=

(sin θ0, cos θ0).

Note that the above equations, the initial data as well as the boundary are invariant under

the scaling

(x, y, t) 7→ (αx, αy, αt) for α 6= 0.

Thus, we can seek self-similar solution with the form

ρ(x, y, t) = ρ(ξ, η), (u, v)(x, y, t) = (u, v)(ξ, η) for (ξ, η) =
�x
t
,
y

t

�
.

By introducing such a transformation the system (1.2) is reduced to§
div(ρv) + 2ρ = 0,
div(ρv ⊗ v) + 3ρv +∇p(ρ) = 0,

(1.7)
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with div = div(ξ,η), ∇ = ∇(ξ,η), v(ξ, η) := u(ξ, η) − (ξ, η) being the pseudovelocity. Corre-

spondingly, the initial state of the gas becomes the far field condition:

(ρ,v)(ξ, η) = (ρ0,−ξ,−η) as ξ2 + η2 is sufficiently large. (1.8)

In the (ξ, η) coordinates, the domain Ω becomeseΩ = {(ξ, η) ∈ R
2 : ξ ≤ |η| cot θ0 − u0}.

Its boundaries are respectivelygWu = {(ξ, η) : η ≥ 0, η = (ξ + u0) tan θ0} and ÝWl = {(ξ, η) : η ≤ 0, η = −(ξ + u0) tan θ0}.

Under the transformation eξ = ξ + u0, eη = η, the equations (1.7) are formally invariant.

Correspondingly, the state of the gas in the far field should satisfy

(eρ, ev)(eξ, eη) = (ρ0, u0 − eξ, − eη).
The domain eΩ becomes

{(eξ, eη) : eξ ≤ |eη| cot θ0}
with boundariesgWu = {(eξ, eη) : eη ≥ 0, eη = eξ tan θ0} and ÝWl = {(eξ, eη) : eη ≤ 0, eη = −eξ tan θ0}.
Hereafter, we will go on in these new coordinates and drop “∼” for simplification without

confusion. This transformation makes the piston be fixed and the gas move to the piston with

initial velocity (u0, 0). Thus we can equivalently consider the dynamical problem caused by

uniformly moving gas hitting a fixed wedge with initial data (ρ0, u0, 0).

Since the problem is symmetric with respect to the η-axis, it is sufficient to consider the

problem in the upper half-plane η > 0 outside the wedge

Λ := {ξ ≤ η cot θ0, η ≥ 0}. (1.9)

Then the piston problem in the (x, y, t)-coordinates can be reduced to the following boundary

value problem in the self-similar coordinates (ξ, η).

Problem 1.1 Seek a solution (ρ, u, v) of system (1.7) in the self-similar domain Λ with the

slip boundary condition on ∂Λ:

(u, v) · ν|∂Λ = 0, (1.10)

and the far field condition at infinity:

(u, v)(ξ, η) → (u0, 0) as ξ2 + η2 → +∞. (1.11)

In this paper, we have the following main result for the two-dimensional piston problem.
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Theorem 1.1 In the piston Problem 1.1, if a piston satisfying (1.1) moves from right into

the static Chaplygin gas on the left with uniform velocity (−u0, 0) and u0 > 0, then there exists

a piecewise smooth flow field satisfying (1.10) and (1.11) for θ0 ∈ (0, π2 ). In particular, if the

Mach number M0 =
u0

c0
< 1, then ahead of the piston there is a bow shock away from its tip; if

1
sin θ0

> M0 ≥ 1, then there is a shock attached to the tip of the piston; and if M0 ≥ 1
sin θ0

, then

a part of gas will concentrates on the surface of the piston (called mass concentration).

One can also discuss the receding case, i.e., the piston recedes away from the gas (u0 < 0).

For this case we have the second conclusion.

Theorem 1.2 If the piston problem satisfying (1.1) recedes away from the gas with uniform

velocity (u0, 0), i.e., u0 < 0, then there exists a piecewise smooth flow field satisfying (1.10) and

(1.11) for θ0 ∈ (0, π2 ). There is always a rarefaction wave in front of the piston. Particularly,

if c0
|u0| < cos θ0 − sin θ0, then there will appear an additional shock issuing from the tip of the

piston and stopping at the sonic circle.

The study of Problem 1.1 will be divided into three steps. First we determine the waves

far away from the tip of the wedge. Due to the finite speed of wave propagation, the tip of the

wedge has no influence on the flow field far away from it. Therefore, when we consider the flow

field far away from the tip, the piston can be assumed as a half plane, i.e., θ0 = π
2 . And it is

equivalent to determine the positions of the wave front and the state of the gas behind the wave

front for a one-dimensional problem. Next, we investigate the interaction of the incoming waves,

and determine the position of all new resulting waves, as well as the states in the corresponding

regions bounded by these new waves up to the sonic circles. Finally, we give the existence of

the solution in the domain bounded by the sonic circle and the surface of the wedge by using

the theory of elliptic equation.

For our discussion later, let us briefly recall some basic properties on the Chaplygin gas.

These results will be extensively employed in this paper, and their proofs can be found in [9,

20, 22]. The basic facts for the self-similar solutions of Euler system for Chaplygin gas are:

(1) The state equation of the Chaplygin gas is

p(ρ) = a2
� 1

ρ∗
− 1

ρ

�
(1.12)

with ρ∗ a given constant. Hence the sonic speed c is inversely proportional to the density ρ.

(2) All characteristics are linearly degenerate. The slope of shock is equal to the slope of

corresponding characteristics. Any particle of the fluid moves across the shock with sonic speed

as relative velocity.

(3) Any rarefaction wave degenerates to a characteristic, so that its width is zero and thus

can be regarded as a shock with negative strength. Both the rarefaction waves and the shocks

are called pressure waves.

(4) On the plane of the self-similar coordinate variables ξ = x
t
, η = y

t
, all pressure waves

are tangential to the sonic circle of the state on both sides of the pressure wave.
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(5) If two states Ul and Ur are connected by a slip line, then both (ul, vl) and (ur, vr) should

be located on the line and ρl= ρr.

The above five properties allow us to be able to construct the self-similar solution of two-

dimensional Euler system for Chaplygin gas in the hyperbolic region of the piston problem in

this paper.

In the sequel, the letter ci denotes the sonic speed corresponding to the state (ρi, ui, vi)

without more explanation.

In the remaining part of this paper, our main effort is to prove Theorems 1.1 and 1.2. The

paper is organized as follows. In Section 2 we study the case when the front of the moving body

is a straight line with an inclined angle, and get the expression of the solution. In Sections 3

and 4 we consider the case when the moving body is a convex wedge. Particularly, in Section

3 we assume that the piston is pushed to the gas with the velocity (u0, 0) and u0 > 0. By

constructing the solution in the supersonic domain and proving the existence of solution in the

subsonic domain, we complete the proof of Theorem 1.1. After that, in Section 4 we study

the case that the piston is pulled away from the gas. We also establish the global existence

of solution in this case and then complete the proof of Theorem 1.2. The proofs of these two

theorems are the main contents of this paper. The conclusions are also summarized in two

tables in Sections 3 and 4, respectively. In Section 5 we give a brief discussion on the case that

the piston is a concave body, the description of which is given there. Finally, an appendix is

given in Section 6 citing Grisvard’s results on the regularity of the solutions of elliptic equations

in a domain with corners.

2 Reduced Case: The Piston Reduces to a Half Plane

Consider the case that the piston is a moving half plane, making an inclination angle β with

the x-axis. The initial data are

(ρ, u, v)(x, y, 0) = (ρ0, u0, 0), x < y cotβ. (2.1)

In this case, the problem is one-dimensional, it can be easily solved by using the method in

[9–10]. Next we only list the corresponding results and omit the corresponding proof.

We should first determine the possible waves in front of the wall. The boundary condition

(1.10) requires that u sinβ − v cosβ = 0 on ∂Λ. The fact point (5) in Section 1 indicates that

the uniform flow connected to the wall by a slip line is impossible. In addition, all possible

waves should locate on the left hand side of the wall requires u0 < c0. Thus only one wave

denoted by L01 would be present in front of the wall. Directive calculation gives the location

of the wave L01:

η =
�
ξ − u0 +

c0

sinβ

�
tanβ (2.2)

as well as the state between the wave and the wall:

(ρ1, u1, v1) =
� a

c0 − u0 sinβ
, u0 cos

2 β, u0 cosβ sinβ
�
. (2.3)
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Figure 2 Normal case.

The shock L01 will terminate at a point T1 of the sonic circle C0, with§
ξT1

= u0 − c0 sinβ,
ηT1

= c0 cosβ.
(2.4)

Another shock L01′ coming from the opposite direction and having the same formula with

L01 terminates at T1, too. The state of the gas on the left hand side of L01 ∪ L01′ is U0 and in

the domain between the waves L01 ∪ L01′ and the wall is ( a
c0−u0 sin β , u0 cos

2 β, u0 cosβ sinβ).

The subsonic domain is bounded by the sonic circle C1 centered at the point

O1(u0 cos
2 β, u0 sinβ cosβ)

with radius c1 and the wall (see Figure 2).

Remark 2.1 (1) Note that the total mass on each segment between the shock wave and

the wall parallel to ξ-axis is a
sin β , which is independent of the initial data ρ0 and u0. It means

that once the piston proceeds to the gas too quickly, say, u0 ≥ c0
sin β , then the shock and all gas

between the shock and the wall adhere the wall and then form a concentration of mass like a

Dirac measure. Such a phenomenon is called concentration (see [3, 22]).

(2) To avoid concentration, or in other words, c1 makes sense if and only if

u0

c0
<

1

sinβ
for β ∈

�
0,
π

2

�
. (2.5)

If the initial Mach number is less than 1, then there exists a solution containing one shock in

front of the piston, no matter what angle the piston makes with the ξ-axis. If the Mach number

is greater than 1, the same conclusion also holds for suitably small β.

(3) For given static uniform gas, the faster the piston moves to the gas, the larger the

strength of the shock wave is, as well as the density after the wave. In addition, if the piston

moves to the gas with a fixed velocity, then the strength of the waves increases as the angle β,

made by the velocity and the profile of the piston, increases. Furthermore, from (2.3) we know

that as β increases from 0 to π
2 , ρ1 increases from ρ0 to a

c0−u0
, while v1 increases from 0 to u0

2

if β ∈ (0, π4 ), and decreases from u0

2 to 0 if β ∈ (π4 ,
π
2 ).
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(4) The sonic circle C0 intersects with the ξ-axis at the point P0, which is the origin if
u0

c0
= 1, and is on the right hand side of Wu if u0

c0
∈ (1, 1

sin β ). It indicates that the origin may

locate in the supersonic domain or the subsonic domain for different initial Mach number.

Remark 2.2 For the potential flow with state equation p = ργ , γ > 1, it is sufficient to

consider the case β = π
2 . The location of the shock wave is

ξ0 = − ρ0u0

ρ1 − ρ0
. (2.6)

From the Bernoulli’s law we can get

u20

ρ
γ−1
0

=
2γ

γ − 1

t− 1

t+ 1
(tγ−1 − 1) (2.7)

with t = ρ1
ρ0

≥ 1.

Let f(t) = t−1
t+1 (t

γ−1 − 1), then for t > 1,

f ′(t) =
2(tγ−1 − 1) + (γ − 1)(t+ 1)tγ−2(t− 1)

(t+ 1)2
> 0. (2.8)

Hence the inverse of f(t) is well defined in (1,+∞). It means that for fixed ρ0 any initial

velocity u0 corresponds to unique density ρ1 behind a shock. In accordance, (2.6) gives the

value of |ξ0| > 0. Therefore, the concentration phenomena could not occur for the polytropic

gas.

3 Proceeding Piston Problem: u0 > 0

In this case, the condition u0

c0
< 1

sin θ0
is required in advance due to (1) and (2) of Remark

2.1.

By symmetry we only need to construct the solution on the upper half plane. As mentioned

in Section 1, the waves far away from the origin are obtained by the normal case in Section 2

with β = θ0 directively. And there is one wave parallel to the upper wall Wu denoted still by

L01 satisfying (2.2) (see Figure 3). The wave terminates at T1(u0−c0 sin θ0, c0 cos θ0), the sonic
point of both states U0 and U1. The state of the gas far away from the origin between Wu and

L01 is

(ρ1, u1, v1) =
� a

c0 − u0 sin θ0
, u0 cos

2 θ0, u0 cos θ0 sin θ0

�
. (3.1)

It is possible that the tip of the wedge may locates in the supersonic region (outside the

circle C0). In this case, the uniform incoming flow does not satisfy the boundary condition,

then new waves result in. According to this possibility, we consider the next three different

cases specified by the initial data: (1) 0 < u0

c0
< 1; (2) u0

c0
= 1; (3) u0

c0
∈ (1, 1

sin θ0
).

(1) If 0 < u0

c0
< 1, the left intersection point P0(u0 − c0, 0) of C0 and the ξ-axis locates

on the left hand side of Wu. The state of gas on the left hand side of the wave L01 can be

kept unchanged up to its sonic circle C0, i.e.,ùP0T1 in Figure 3, due to the finite speed of wave
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propagation. The coordinates of T1 is given by (2.4). The sonic circles C0, C1, the ξ-axis and

the wall Wu bound a domain denoted by Ωsub (see Figure 3). The point P1(u0 cos
2 θ0 + (c0 −

u0 sin θ0) cos θ0, u0 cos θ0 sin θ0 + (c0 − u0 sin θ0) sin θ0) is the intersection point of C1 and Wu.

O

T1

P1

P0
ξO0

O1

(0)

(1)

Ωsub

L01

Wu

θ0

Figure 3 The piston proceeds to the gas with M0 < 1.

Denote by Ω0 the domain bounded by the part of the ξ-axis left of P0, the arcùP0T1 of the

sonic circle C0 and the wave L01, then the state of the gas in Ω0 is (ρ0, u0, 0). Denote by Ω1

the domain bounded by the wave L01, the arcùP1T1 of the sonic circle C1 and the wallWu, then

the state of the gas in Ω1 is (ρ1, u1, v1) given by (3.1).

So far, we have determined the supersonic domain composed of Ωi and the state inside it

for i = 0, 1 respectively. The subsonic domain Ωsub is bounded by the sonic circles C0, C1, the

ξ-axis and the wall Wu. Hereafter, we denote the sonic part of the boundary of Ωsub by ∂1Ωsub

and the other part by ∂2Ωsub. We have here ∂1Ωsub =ùP1T1 ∪ùT1P0 and ∂2Ωsub = OP1 ∪ P0O.

To get the global existence of solution to Problem 1.1, the state of the gas in Ωsub needs to

be determined. We now focus on it. On the one hand, we know that the irrotational property

could be kept forever for both steady and pseudosteady piecewise smooth flow of Chaplygin

gas (see [22]). On the other hand, by the analysis in normal case, there is no slip line in front

of the wall. Thus a velocity potential Φ can be introduced, such that the velocity u = ∇Φ.

For isentropic irrotational flow, the Bernoulli’s law reads in [12],

Φt +
1

2
|∇(x,y)Φ|2 + i = const, (3.2)

where i is the enthalpy satisfying di = 1
ρ
dp. Then we have by (1.3)

Φt +
1

2
|∇xΦ| −

a2

2ρ2
= const. (3.3)

In addition, we have Φ(t, x, y) = t(φ(ξ, η)+ 1
2 (ξ

2+η2)) for some φ satisfying∇(ξ,η)φ = v(ξ, η),

and (3.3) is reduced to

1

2
|∇φ|2 + φ− a2

2ρ2
= const. (3.4)
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Looking for self-similar solution, we have |v|2 = a2

ρ2
on the sonic part of the boundary of

Ωsub, which means that along this part the potential φ is constant, chosen as zero without loss

of generality. Then (3.4) gives

ρ =
aÈ

2φ+ |∇φ|2
. (3.5)

It together with the first equation of (1.2) gives

div
∇φÈ

2φ+ |∇φ|2
+

2È
2φ+ |∇φ|2

= 0. (3.6)

The boundary condition on ∂1Ωsub is φ = 0, and on ∂2Ωsub is ∂φ
∂ν

= 0, where ν is the outward

unit normal. Therefore, it holds the following boundary value problem in the subsonic domain.8>>>><>>>>:div
∇φÈ

2φ+ |∇φ|2
+

2È
2φ+ |∇φ|2

= 0 in Ωsub,

φ = 0 on ∂1Ωsub,

∂φ

∂ν
= 0 on ∂2Ωsub.

(3.7)

Set ψ =
√
2φ, then (3.6) becomes

div
∇ψÈ

1 + |∇ψ|2
+

2

ψ
È
1 + |∇ψ|2

= 0, (3.8)

and the boundary value problem (3.7) is reduced to8>>>><>>>>:div
∇ψÈ

1 + |∇ψ|2
+

2

ψ
È
1 + |∇ψ|2

= 0 in Ωsub,

ψ = 0 on ∂1Ωsub,

∂ψ

∂ν
= 0 on ∂2Ωsub.

(3.9)

For this problem we have the following result.

Lemma 3.1 There exists a unique positive solution to (3.9). This solution belongs to

C1,α(Ωsub \ ∂1Ωsub) ∩ C(Ωsub) with α = θ0
π−θ0 , and is C∞ smooth both in Ωsub and at the

interior points of ∂2Ωsub except O.

The basic idea of the proof of this lemma is referred to [22], but the appearance of the corner

of the domain and the Neumann boundary condition requires some modification. For reader’s

convenience we write the detailed proof here.

By introducing parameters µ and with 0 ≤ µ ≤ 2, ε > 0, we consider the boundary value
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problem: 8>>>><>>>>:div
∇ψÈ

1 + |∇ψ|2
+

µ

ψ
È
1 + |∇ψ|2

= 0 in Ωsub,

ψ = ε on ∂1Ωsub,

∂ψ

∂ν
= 0 on ∂2Ωsub.

(3.10)

The problem (3.9) is the case µ = 2 and ε = 0 for the problem (3.10). Denote by ψµ,ε the

solution to (3.10), we will prove the existence of ψµ,ε for all 0 ≤ µ ≤ 2 and ε > 0, and then

prove the existence of the limit of ψµ,ε as ε→ 0.

To simplify the notations we often denote Ωsub by Ω in the sequel.

For the case ε > 0, ψ0,ε = ε is the solution of (3.10) with µ = 0. Let Jε be the set of

µ ∈ [0, 2], such that the solution ψµ,ε exists and satisfies

ε ≤ ψµ,ε< Cε, |∇ψµ,ε|< Cε, (3.11)

where Cε is a positive constant depending on ε only. We are going to prove Jε ≡ [0, 2]. It can

be derived by using the fact that Jε is closed and open, because of 0 ∈ Jε.

Before studying the property of the set Jε, let us first derive the linearized problem of (3.10).

By a direct computation we have the linearized problem for unknown function v as8>>><>>>:Lv +Σci
∂v

∂xi
+ dv = f in Ω,

v = 0 on ∂1Ωsub,

∂v

∂ν
= 0 on ∂2Ωsub,

(3.12)

where

Lv = (1 + ψ2
x2
)vx1x1

− 2ψx1
ψx2

vx1x2
+ (1 + ψ2

x1
)vx2x2

,

ci = −µ

ψ
ψxi

,

d = − µ

ψ2
(1 + |∇ψ|2).

Obviously, the operator L is uniformly elliptic under the assumption (3.11) and d < 0. Notice

that the boundary ∂1Ωsub is of C1,1 and piecewise C2, while the boundary ∂2Ωsub consists of

OP0 and OP1 forming an angle π − θ. Besides, ∂1Ωsub perpendicularly intersects ∂2Ωsub at P0

and P1, so that by using reflection the corners P0 and P1 can be eliminated. The point O is

the corner of the domain Ω, which has to be considered more carefully.

Return to consider the property of the set Jε. To prove the openness of Jε we assume that

µ0 ∈ Jε and the corresponding solution to (3.10) is ψµ0,ε. Taking the linearized problem at

ψµ0,ε as in (3.12), it is shown in Appendix that such a linearized problem gives a one-to-one

mapping from f ∈ C−1+α(Ω) to v ∈ C1+α(Ω), and the solution v satisfies the estimate

‖v‖C1+α(Ω) ≤ C‖f‖C−1+α(Ω), (3.13)
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where C−1+α(Ω) is defined as a set of functions f , which can be decomposed as

f =
X
i=1,2

∂fi

∂xi
+ f0, fi ∈ Cα(Ω) for 0 ≤ i ≤ 2,

while the C−1+α(Ω) norm is defined by

‖f‖−1+σ,Ω = inf
2X
i=0

‖fi‖σ,Ω.

The above argument means that the mapping defined by the linearized operator is invertible

at (µ0, ψµ0,ε). Thus by the implicit function theorem there exists a neighborhood of µ0, such

that the mapping µ 7→ ψµ,ε is well defined there. This fact implies the openness of Jε at µ0.

To prove the closeness of Jε we take a sequence {µm} ⊂ Jε with µm → µ. We notice that

the operator in (3.10) ( multiplied by a factor (1 + |∇ψ|2) 3
2 ) is uniformly elliptic and satisfies

the maximum principle. Then the C1+α estimate as shown in Appendix implies the bounds

of ψµm,ε in C1+α(Ω), which is independent of m. Hence we can choose a subsequence {µmk
},

such that the corresponding {ψµmk
,ε} is convergent in C1,α′

with α′ < α, and the limit ψµ,ε is

in C1,α. It implies µ ∈ Jε.

Hence Jε ≡ [0, 2], which gives the existence of ψ2,ε.

Now let us study the limit of ψ2,ε as ε→ 0. Since ψ can neither reach its maximum inside

Ω nor on ∂2Ωsub\{O}, then by the maximum principle we have ψ2,ε ≥ ε.

Take a family of functions φr,m(x) = 1
2 (r

2 − |x −m|2). Obviously, φr,m(x) is a solution of

(3.7) for any m ∈ R2, r > 0. Correspondingly, the function ψr,m =
√
2φr,m satisfies (3.8), if

φr,m(x) > 0. Moreover, ψr,m satisfies ψ ≥ ε on ∂1Ωsub if Ω ⊂ B√
r2−ε2(m), and satisfies ψ ≤ ε

on ∂2Ωsub if B√
r2−ε2(m) ⊂ Ω.

Consider the normal derivatives ∂ψ
r,m

∂ν
. On the line θ = θ0, the outward unit normal direction

is (sin θ0,− cos θ0). Then

∂φr,m

∂ν
= (m1 − x1) sin θ0 − (m2 − x2) cos θ0 = m1 sin θ0 −m2 cos θ0. (3.14)

Obviously, ∂φr,m

∂ν

��
θ=θ0

> 0, if m ∈ Σ′ = {θ0 + π < θ < 2π}. Similarly, ∂φr,m

∂ν

��
θ=π

> 0.

Therefore, ∂ψ
r,m

∂ν
satisfies the same inequalities on θ = θ0 and θ = π. It implies that ψr,m is a

supersolution to (3.9), as m ∈ Σ′ and Ω ⊂ B√
r2−ε2(m). Taking ψ+

ε as the infimum of all these

ψr,m, we have ε ≤ ψ2,ε ≤ ψ+
ε .

On the other hand, if m locates in Σ = {θ0 < θ < π} and B√
r2−ε2(m) ⊂ Ω, then ψr,m

satisfies the equation (3.8) in Ω, ψ ≤ ε on ∂1Ωsub and ∂ψ
∂ν

< 0 on ∂2Ωsub. Hence ψr,m is a

subsolution to (3.9), so that ψε ≥ ψr,m. Denoting by ψ−
ε the supremum of all these ψr,m, we

have ψ2,ε ≥ ψ−
ε ≥ 0.

In view of the fact that ψ2,ε monotonically decreases as ε→ 0, and is bounded below, then

ψ(x) = lim
ε→0

ψ2,ε(x) are well defined. To prove that φ(x) = 1
2ψ(x)

2 is actually the solution to

(3.7), we have to establish the uniform boundedness of ‖∇φ2,ε‖L∞ .
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First, the normal vector of the boundaries θ = θ0 and θ = π are different, and
∂φ2,ε

∂ν

��
∂2Ωsub

=

0, then ∇φ2,ε = 0 at 0.

To derive the uniform boundedness of∇φ2,ε inside Ω, we define zε = 1
2 |∇φ2,ε|2 and establish

the boundedness of it. To simplify notations we will simply denote φ2,ε and zε by φ and z in

the sequel. Expanding (3.7) we have

Lφ+ 2z + 4φ = 0, (3.15)

where L = (2φ+ 2z)∆−∇φ⊗∇φ : D2. Acting the operator ∇ to (3.15) and then multiplying

by ∇φ, we have

∇φ · ∇Lφ+ 2∇φ · ∇z + 8z = 0.

Direct calculation gives

∇Lφ = (2∇φ+ 2∇z)∆φ+ (2φ+ 2z)∇∆φ

− (∇φ2xφxx + 2∇(φxφy)φxy +∇φ2yφyy)−∇φ⊗∇φ : D2∇φ.

∇z · ∇Lz = 4z∆z + 2∆φ∇φ · ∇z + Lz − (2φ+ 2z)Tr(D2φ)2 − |∇z|2.

Then z satisfies

Lz + (2∆φ∇φ−∇z + 2∇φ) · ∇z + (4∆φ− 2Tr(D2φ)2 + 8)z = 2φTr(D2φ)2, (3.16)

and the right hand side is obviously nonnegative. (3.16) shows that if the coefficient of z is

negative, we can use the maximum principle to estimate z. However, we do not know the sign

of 4Tr(D2φ) − 2Tr(D2φ)2 + 8. To make remedy we use (3.15) and replace the variable z by

z + αφ. By adding (3.16) with (3.15) multiplied by α, we obtain

L(z + αφ) + (2∆φ∇φ+ 2∇φ) · ∇z + (4∆φ− 2Tr(D2φ)2 + 8 + 2α)z + 4αφ ≥ 0. (3.17)

That is

L(z + αφ) + (2∆φ∇φ + 2∇φ) · ∇(z + αφ) + 2Mz + 4αφ ≥ 0, (3.18)

where M = −Tr(D2φ)2 + 2(1− α)∆φ − α2 − α− 4.

Note that by reflection any point on ∂2Ωsub except the corner O can be treated as the

inner point of the domain Ω, since the boundary condition on ∂2Ωsub is homogeneous Neumann

type condition, and the equation satisfied by φ is reflection symmetry with respect to the two

straight sides of ∂2Ωsub (see [18, Lemma 6.18]). Similarly, the points ∂1Ωsub ∩ ∂2Ωsub can be

treated as the inner points of ∂1Ωsub. Now if z +αφ arrive at local maximum at some point y0

inside Ω or on ∂2Ωsub \ {O}, then ∇(z + αφ) = 0 and L(z + αφ) ≤ 0. Hence

Mz ≥ −2αφ (3.19)
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there. Due to ∆φ = Tr(D2φ), we can obtain M ≤ − 1
4 by choosing α = 5

2 . Furthermore,

∇φ = 0 due to the boundary condition on ∂2Ωsub, then we have

sup
Ω

�
z +

5

2
φ
�
≤ max

h
sup

∂1Ωsub∪O

�
z +

5

2
φ
�
,
45

2
sup
Ω
φ+

i
≤ max

h
sup
∂1Ωsub

�
z +

5

2
φ
�
,
45

2
sup
Ω
φ+

i
. (3.20)

Therefore, ∇φ (a simplified notation of ∇φ2,ε) is bounded on the whole Ω.

Summing up, φ2,ε and ψ2,ε are convergent as ε→ 0+, and the limit of them are the solutions

of (3.7) and (3.10), respectively. Furthermore, by using classical elliptic theory (see [18]) the

solution is C∞ inside of Ω. Moreover, at any point Q on ∂2Ωsub \ O we can use reflection to

reduce the case to that for an interior point of domain, because the boundary condition is

simply the Neumann condition. Hence ψ is also C∞ at the point Q.

If θ0 → π
2 , then we have

ξT1
= u0 − c0 sin θ0 → u0 − c0, ηT1

= c0 cos θ0 → 0. (3.21)

In other words, T1 will coincide with P0, and L01 will be vertical to the ξ-axis. The limit case

is nothing but the solution of the normal symmetric case.

(2) If u0

c0
= 1, then the intersection point P0 of C0 and the ξ-axis coincides with the origin

(see Figure 4). The domain Ω0 with state of gas (ρ0, u0, 0) is bounded by the negative ξ-axis,øOT1 and the wave L01. The domain Ω1 with state of gas (ρ1, u1, v1) is just the same as above.

The difference from the case u0

c0
< 1 is that P0 here coincides with the origin O. Hence the

boundary of the domain Ωsub is ∂1Ωsub =ùP1T1∪øT1O and ∂2Ωsub = P1O. The angle formed by

the arc øOT1 and the straight line OP1 is θ1 = π
2 − θ0. Since the boundary conditions assigned

there are of Dirichlet type on øOT1 and of Neumann type on OP1, then the local regularity of

the solutions of Laplacian there should be C1+α with α = π
2θ1

= θ0
π−θ0 (see [19]). Therefore, by

using the same argument we know that Lemma 2.1 also holds in the recent case.

O

T1

P1

ξO0

L01

O1

(0)

(1)

Wu

θ0

Figure 4 The piston proceeds to the gas with M0 = 1.

If θ0 → π
2 , then ξT1

= u0 − c0 sin θ0 → u0 − c0 = 0, ηT1
= c0 cos θ0 → 0. In this case, the gas
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will ultimately form a concentration on the surface of the wall. The state away from the wall

is constant (ρ0, u0, 0).

(3) If u0

c0
∈ (1, 1

sin θ0
), then c0 − u0 < 0, the point P0 locates on the right hand side of Wu.

The origin is not enclosed by the sonic circle C0. Note that the initial data and boundary

condition do not satisfy the compatibility condition near the origin. Thus a new wave L02 will

result in from the origin (see Figure 5). It will terminate at a point T2 of C0. Then we have

OT2 ⊥ O0T2. Denote by U2 the state near the origin and lies between L02 and Wu, and denote

by O2 the intersection point of Wu and O0T2. Here we indicate that (ξO2
, ηO2

) is nothing but

(u2, v2). Based on this analysis, we can determine the location of the wave L02, the domain

bounded by L02,Wu and the circle C2, as well as the state U2 inside the domain as follows.

L01

Wu

L02

T2

O

T1

ξO0

O1
(0)

(1)

(2)

O2

P1

P0

P2

θ0

Figure 5 The piston proceeds to the gas with M0 ∈

�
1, 1

sin θ0

�
.

The angle made by O0T2 and the ξ-axis is arccos c0
u0
. Then

|OO2| =
u0 sin

�
arccos

c0

u0

�
cos
�π
2
− θ0 − arccos

c0

u0

� =
u0

È
u20 − c20

c0 sin θ0 +
È
u20 − c20 cos θ0

.

The coordinates of O2 are8>>><>>>:ξO2
= |OO2| cos θ0 =

u0

È
u20 − c20 cos θ0

c0 sin θ0 +
È
u20 − c20 cos θ0

,

ηO2
= |OO2| sin θ0 =

u0

È
u20 − c20 sin θ0

c0 sin θ0 +
È
u20 − c20 cos θ0

.

(3.22)

Thus, we have

(u2, v2) =
� u0

È
u20 − c20 cos θ0

c0 sin θ0 +
È
u20 − c20 cos θ0

,
u0

È
u20 − c20 sin θ0

c0 sin θ0 +
È
u20 − c20 cos θ0

�
. (3.23)

In addition,

|OT2| =
È
u20 − c20.
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The coordinates of the terminal point T2 of wave L02 are8>><>>:ξT2
= |OT2| sin

�
arccos

c0

u0

�
=
u20 − c20
u0

,

ηT2
= |OT2| cos

�
arccos

c0

u0

�
=
c0

È
u20 − c20

u0
.

(3.24)

Meanwhile, the sonic speed of the gas with state U2 is

c2 = |OT2| tan∠T2OO2

= |OT2| tan
�π
2
− θ0 − arccos

c0

u0

�
=

È
u20 − c20(c0 cos θ0 − sin θ0

È
u20 − c20)

c0 sin θ0 + cos θ0
È
u20 − c20

. (3.25)

The sonic circle of state U2 is C2 : (ξ − u2)
2 + (η − v2)

2 = c22. It intersects with Wu at a point

P2, with §
ξP2

= ξO2
− c2 cos θ0,

ηP2
= ηO2

− c2 sin θ0.
(3.26)

The boundary of the domain Ωsub in this case is

∂1Ωsub =ùP2T2 ∪ øT2T1 ∪ùT1P1, (3.27)

corresponding to the arcs of sonic circles C2, C0 and C1 respectively, and

∂2Ωsub = P1P2. (3.28)

The domain Ω0 with state (ρ0, u0, 0) is bounded by the negative ξ-axis, the wave L02, the arcøT2T1 and the wave L01. The domain Ω1 with state (ρ1, u1, v1) given by (3.1) is bounded by the

wave L01, ùT1P1 and Wu. The domain Ω2 with state (ρ2, u2, v2) is bounded by the wave L02,

the wall Wu and ùP2T2. Here ρ2 = 1
c2

and (u2, v2) are given by (3.25) and (3.23), respectively.

The points T1, T2 and P2 are given by (2.4), (3.24) and (3.26), respectively.

The remaining work is to solve the corresponding boundary value problems in the subsonic

domain Ωsub. It can be reduced to8>>>><>>>>:div
∇ψÈ

1 + |∇ψ|2
+

2

ψ
È

1 + |∇ψ|2
= 0 in Ωsub,

ψ = 0 onùP2T2 ∪ øT2T1 ∪ùT1P1,

∂ψ

∂ν
= 0 on P1P2.

(3.29)

Since the corners of the elliptic domain are P1 and P2, which can be eliminated by reflection.

Therefore, as did in the case (1) we can solve the problem (3.29), so that have the following

conclusion.
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Lemma 3.2 There exists a unique positive solution to (3.29). This solution belongs to

C1,α(Ωsub \∂1Ωsub)∩C(Ωsub) for any α < 1 and is C∞ smooth both in Ωsub and at the interior

points of ∂2Ωsub.

We also notice that there will appear concentration due to Remark 2.1 (1), if u0

c0
≥ 1

sin θ0
.

In summary, if the initial Mach number is less than 1, there is a shock present in front of

the upper wall of the wedge. The shock is detached in which case the flow near the tip of the

wedge is subsonic. As θ0 → π
2 , it coincides with the normal symmetric case. If the initial Mach

number is greater than or equal to 1, then the shock in front of the piston is attached. More

precisely, the shock has a straight part near the tip as u0

c0
∈ (1, 1

sin θ0
). Finally, the shock simply

adheres to the surface of the piston, if u0

c0
≥ 1

sin θ0
. Hence Theorem 1.1 is established. The

conclusion can also be illustrated by the following Table 1. The concentration here is in the

same sense as that in [3].

Table 1 The wave picture for the proceeding piston problem.

Mach number wave structure

u0

c0
< 1 detached shock (Figure 3)

u0

c0
= 1 attached shock curved at the tip (Figure 4)

u0

c0
∈
�
1,

1

sin θ0

�
attached shock with straight part at the tip (Figure 5)

u0

c0
≥ 1

sin θ0
concentration

4 Receding Piston Problem: u0 < 0

Consider the case that the piston is pulled back from the gas, i.e., u0 < 0. We also only

need to analyze the motion of the gas on the upper half plane. The analysis on the normal case

in Section 2 for u0 > 0 is also available for u0 < 0. Since the condition (2.5) is satisfied for all

u0 < 0, then the only assumption in this part is

u0 < 0, θ0 ∈
�
0,
π

2

�
. (4.1)

As before, we start with determining the waves far away from the origin. It also can be

treated as the normal case in Section 2 with β = θ0. There is one wave denoted by L01 parallel

to the upper wall Wu (see Figure 6). Its location is given by (2.2). It terminates at the point

T1 given by (2.4). Denote by U1 the state of the gas far away from the origin between Wu
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O

T1

P0 ξ

O0

(0)

(1)

O1

P1

L01
Wu

θ0

Figure 6 The piston is pulled back with −
c0

u0
> cos θ0 − sin θ0.

and L01. Then the solution U1 is given by (3.1). Correspondingly, the sonic speed there is

c1 = c0 − u0 sin θ0.

Remark 4.1 Noting that u0 < 0, we have ρ1 < ρ0, which means that the wave L01 is a

rarefaction wave. The faster the piston recedes from the gas, the smaller the density ρ1 is, and

the stronger the rarefaction wave is. However, the density ρ1 is always positive, no matter how

large the value |u0| is. It means that vacuum (ρ = 0) will never appear here for the Chaplygin

gas.

The center of the sonic circle C1, denoted by O1(u0 cos
2 θ0, u0 cos θ0 sin θ0), locates below

the ξ-axis, the radius of C1 is |O1P1| = c1 = c0 − u0 sin θ0. The comparison of the length

of O1P1 and OO1 determines the wave structure of the receding piston problem. Obviously,

|O1P1| ≤ |OO1| gives c0 − u0 sin θ0 ≤ −u0 cos θ0, i.e.,

− c0

u0
≤ cos θ0 − sin θ0. (4.2)

Since u0 < 0, (4.2) is impossible for θ0 >
π
4 . The above analysis tell us that the tip of the wedge

may locates in the supersonic domain (outside C1). In this case the uniform state U1 does not

satisfy the boundary condition, so that a new wave may take place due to the influence of the

tip of the wedge. Hence we consider the following three different cases specified by the initial

data: (1) − c0
u0
> cos θ0 − sin θ0; (2) − c0

u0
= cos θ0 − sin θ0; (3) − c0

u0
< cos θ0 − sin θ0.

(1) If − c0
u0

> cos θ0 − sin θ0, the sonic circle C1 will intersect with Wu at a point P1 (see

Figure 6). Then

|OP1| = c0 − u0 sin θ0 + u0 cos θ0 = c0 + u0(cos θ0 − sin θ0), (4.3)

and the coordinates of the point P1 are§
ξP1

= (c0 + u0(cos θ0 − sin θ0)) cos θ0,
ηP1

= (c0 + u0(cos θ0 − sin θ0)) sin θ0.
(4.4)

We can construct the solution in the same way as that for u0 > 0, u0

c0
< 1. Far away from

the origin point, there is a wave denoted by L01 parallel to the wall. The equation of the wave
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is given by (2.2). The state of gas on the left hand side of L01 will be constant until its sonic

circle C0, i.e., ùP0T1 in Figure 6 because of the finite speed of wave propagation. Here, P0 is

(u0− c0, 0), T1 is given by (2.4) and P1 is given by (4.4). The state of gas between L01 and Wu

is constant U1 given by (3.1) until the sonic circle C1, i.e.,ùT1P1. The structure of the solution

is depicted in Figure 6. In this case, the boundary of the domain Ωsub is ∂1Ωsub =ùP0T1 ∪ùT1P1

and ∂2Ωsub = P0O ∪OP1. Lemma 2.1 is available to this case.

Obviously, for θ0 <
π
4 , the condition − c0

u0
> cos θ0 − sin θ0 always holds. Besides, if θ0 → π

2 ,

T1 will coincides with P0 and L01 will be vertical to the ξ-axis, which is just the solution of the

normal symmetric case.

(2) If − c0
u0

= cos θ0− sin θ0, then the sonic circle C1 intersects with Wu at the tip O because

of ξP1
= 0. The domain Ω0 with state (ρ0, u0, 0) is the same as above. It differs from case (1)

in that the point P1 coincides with O, and Ω1 is bounded by L01, øT1O and Wu; the boundary

of the subsonic domain Ωsub is ∂1Ωsub = ùP0T1 ∪ øT1O, and ∂2Ωsub = P0O. By Lemma 3.1

we get the existence of solution in the subsonic domain Ωsub. The structure of the solution is

depicted in Figure 7. (3) If − c0
u0

< cos θ0 − sin θ0, then there is no intersection point of C1

P0

O1

P2

L01

O

T1

ξ

O0

(0)
(1)

Wu

θ0

Figure 7 The piston is pulled back with −
c0

u0
= cos θ0 − sin θ0.

P0

O1

P2

O2

L01

O

T1

ξ

O0

T2

(0)
(1)

(2)
L12

Wu

θ0

Figure 8 The piston is pulled back with −
c0

u0
< cos θ0 − sin θ0.

and Wu because the point P1 given by (4.4) locates below the ξ-axis. In accordance, the tip of
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the wedge is not enclosed by the sonic circle C1. The state U1 inside Ω1 is still given by (3.1).

Since the state U1 does not satisfy the boundary condition on the ξ-axis, then a new wave L12

arises from the origin (see Figure 8). The wave L12 is tangent to C1 at a point T2. We have

|OT2| =
È
u20 cos

2 θ0 − c21

=
È
u20 cos

2 θ0 − c20 − u20 sin
2 θ0 + 2c0u0 sin θ0

=
È
u20 cos 2θ0 − c20 + 2c0u0 sin θ0. (4.5)

Denote by O2 the intersection of O1T2 with the ξ-axis. The angle made by OO2 and OT2 is

∠O2OT2 = arcsin
c1

|u0| cos θ0
− θ0 = − arcsin

c1

u0 cos θ0
− θ0, (4.6)

and the coordinates of the point T2 are�
ξT2

= −|OT2| cos∠O2OT2,

ηT2
= |OT2| sin∠O2OT2.

(4.7)

Also, we have the coordinates of the point O2,8<:ξO2
= − |OT2|

cos∠O2OT2
,

ηO2
= 0.

(4.8)

The domain Ω0 with state U0 is the same as above. The domain Ω1 now is bounded by the

wave L01, the arc øT1T2 of the sonic circle C1, the wave L12 (i.e., OT2) and the wallWu. Denote

by Ω2 the domain bounded by the wave L12, the arcùT2P2 and the ξ-axis. The state of gas in

Ω2 is (ρ2, u2, v2) with8>>>>>><>>>>>>:
u2 = ξO2

= −
È
u20 cos 2θ0 − c20 + 2c0u0 sin θ0

cos
�
arcsin

c1

u0 cos θ0
+ θ0

� ,

v2 = 0,

c2 = |OT2| tan∠O2OT2

= −
È
u20 cos 2θ0 − c20 + 2c0u0 sin θ0 tan

�
arcsin

c1

u0 cos θ0
+ θ0

�
.

(4.9)

Here, the point T1 is given by (2.4), T2 is given by (4.7), the coordinates of P2 is (u2 + c2, 0).

Since c2 < c1, then ρ2 > ρ1. Notice that near the wave L12 the particles of the fluid move from

Ω1 to Ω2, i.e., from a domain with lower density to a domain with higher density. It shows that

the wave L12 is a shock.

The boundary of the subsonic domain Ωsub is ∂1Ωsub =ùP0T1 ∪ øT1T2 ∪ùT2P2 and ∂2Ωsub =

P2P0. This case corresponds to that the tip of the piston is sharp and the initial Mach number

of the gas relative to the piston is large. By Lemma 3.2 we can obtain the existence of solution

in the domain Ωsub and then get the global existence of solution for the Problem 1.1 in the case

u0 < 0.
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Table 2 The wave structure for the receding piston problem.

Initial data wave structure

− c0

u0
> cos θ0 − sin θ0

detachedrarefactionwave, thetiplocatesinthesubsonic
domain(Figure6)

− c0

u0
= cos θ0 − sin θ0

detachedrarefactionwave, thetiplocatesonthesonic
circle(Figure7)

− c0

u0
< cos θ0 − sin θ0

detachedmainrarefactionwavewithashockissuingfrom
thetip(Figure8)

We can rewrite the condition − c0
u0
< cos θ0 − sin θ0 as − c0

u0
< sin(π2 − θ0)− sin θ0, the right

hand side of which equals 2 sin(π4 − θ0) cos
π
4 =

√
2 sin(π4 − θ0). Hence the condition in the case

(3) can be replaced by θ0 <
π
4 − arcsin c0√

2|u0|
.

In summary, for the receding piston problem the concentration will never appear. The main

pressure wave is a rarefaction wave, which is always detached. Meanwhile, when the vertex

angle of the piston is small (less than π
4 − arcsin c0√

2|u0|
), a shock will arise at the tip, and it

terminates at the sonic circle. The conclusion can also be represented by the following Table 2.

5 Concave Piston Problem

In this final part, we briefly discuss another possibility of the piston problem, i.e., the head

of the piston forms an superior angle. Locally, the piston can be replaced by a body having

a superior angle with two infinitely long sides. It is a domain outside an ordinary wedge (see

Figure 9). This problem is called a concave piston problem, while the problems discussed in

Sections 3 and 4 are called convex piston problems correspondingly.

Consider the symmetric case, then we only need to study the motion of the gas on the upper

half plane. In the upper half plane the boundary of the piston is y = x tan θ0 with θ0 ∈ (π2 , π).

Under the self-similar scaling and a shift transformation as stated in Section 1, we could fix the

piston and consider the problem in the domain

Λ = {ξ ≤ η cot θ0, η ≥ 0}, π

2
< θ0 < π. (5.1)

For the concave piston problem, due to the property of the finite speed of wave propagation,

the state of the gas far away from the origin can also be treated as a one-dimensional problem.

There is a wave L01, parallel to the surface Wu of the piston, coming from infinity. For the

preceding case the wave is a shock, and for the receding case the wave is a rarefaction wave.

The equation of L10 is given by (2.2) with β = θ0.

Different from the convex piston problems discussed in Sections 3 and 4, the wave L10 will

be reflected by the ξ-axis (in the whole (ξ, η) plane, the reflection of L01 by the ξ-axis amounts

to the interaction of L01 with its symmetric image L01′). Meanwhile, the vertex O generally

locates in the subsonic region of the gas, so that no wave will issue from it.

Furthermore, due to the different combination of the flow parameters (c0, u0) and the angle

θ0 of the piston, there will appear quite different wave structures. The related wave may stop
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x

y

piston

static gas

(0)

Wu

θ0

Figure 9 Concave piston with θ0 ∈

�
π

2
, π
�
.

ξ

L01

L12

P0

P1

O

T1

L23

P2

P3

(0)

(1)

(2)

(3)

Wu

θ0

Figure 10 A typical case for concave piston problem.

at somewhere on the sonic circle, or it may be reflected by the surface of the piston again and

then continue its propagation. Figure 10 shows a typical case of the wave structure for the

parameters satisfying

θ0 ∈
�2π

3
,
3π

4

�
,

u0

c0
∈
�1 + cot θ0

sin θ0
,
1− cot θ02
sin θ0

�
. (5.2)

The wave structure in this typical case is shown in the following. Here we only give the result

and omit the related calculations.

The wave L01 reflects on the ξ-axis at P0(u0 − c0
sin θ0

, 0), and the reflected wave L12 is

η =
�
ξ − u0 +

c0

sin θ0

�
tanα1 (5.3)

with α1 = 2 arctan(− tan θ0 +
u0

c0
sin θ0 tan θ0) − π + θ0. The resulting wave L12 reflects again

on Wu at P1(ξP1
, ηP1

) with

ξP1
=

�
u0 −

c0

sin θ0

�
tanα1

tanα1 − tan θ0
, ηP1

=

�
u0 −

c0

sin θ0

�
tanα1 tan θ0

tanαi − tan θ0
,
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and forms a new wave L23 : η = (ξ − ξP1) tan(α1 − 2α2) + ηP1
, where

α2 = arctan
c2

ℓ1
, ℓ1 = c2 cotα1 −

ηP1

sinα1
.

L23 terminates at a sonic point T1(ξT1
, ηT1

) with

ξT1
= u2 − c2cos θ∗, ηT1

= c2sin θ∗,

where θ∗ = 2α2 − α1 − π
2 . The domain Λ is divided into supersonic part and subsonic part by

the sonic arcsùP2T1 ∪ùT1P3. The flow on the left hand side of these sonic arcs is supersonic, and

the flow on the right hand side is subsonic. Then the global solution can be obtained like the

discussion for the convex piston.

For the cases corresponding to other combination of parameters, the wave structure is

different, while the analysis is similar. Hence we will not give all details and leave it to readers.

6 Appendix: Hölder Estimate for Elliptic Operators in Curvilinear

Polygon

For the elliptic equations defined in a domain with corners, the regularity of their solutions

at corners are generally worse than that near other points on the boundary. There are many

studies on the regularity of these solutions near corners. Here we refer some results in [19] for

our required applications.

As a typical case Grisvard in [19, p. 182] first studied the solutions of boundary value prob-

lems for Laplace equation in a polygon Ω surrounded by straight lines Γj (j = 1, · · · , N),8><>:∆u = f in Ω,
u = 0 on Γj with j ∈ D,
∂u

∂νj
+ βj

∂u

∂τj
= 0 on Γj with j ∈ N,

(6.1)

where νj is the normal direction of Γj , τj is the tangential direction of Γj, µj = νj+ βjτj, and

we use the notation Γj = Γj−N .

Define

φj =

8<:arctanβj , if j ∈ N,

π

2
, if j ∈ D.

Let ωj be the angle formed by Γj and Γj+1 and define

λj,m =
φj − φj+1 +mπ

ωj
.

Let rj , θj (j = 1, · · · , N) be the local coordinates near Sj = Γj ∩ Γj+1, and let ηj be the

cut-off function in the neighborhood of Sj , and define

Sj,m(rje
iθj) = r

−λj,m

j cos(λj,mθj + φj+1)ηj(rje
iθj),

if λj,m is not integer; and

Sj,m(rje
iθj) = r

−λj,m

j [log rj cos(λj,mθj + φj+1) + θj sin(λj,mθj + φj+1)]ηj(rje
iθj ),
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if λj,m is an integer.

Then the following conclusions hold.

Theorem A.1 (see [19, Theorem 6.4.2.4]) Assume that 0 < σ < 1 and that 1
π
(φj+1 − φj −

(2+σ)ωi) is not an integer for any j. Then there exists a constant C such that for any C2+σ(Ω)

solution of the problem (6.1), the following estimate holds

‖u‖
C2+σ(Ω) ≤ C(‖∆u‖

Cσ(Ω) + ‖u‖
C1+σ(Ω)). (6.2)

Theorem A.2 (see [19, Theorem 6.4.2.5]) Assume that D is not empty and that at least two

of the vectors µj are linearly independent. Assume that 0 < σ < 1 and 1
π
(φj+1−φj−(2+σ)ωj) is

not an integer for any j. Then for each f ∈ Cσ(Ω) with 0 < σ < 1, there exists a solution u of

(6.1) and numbers cj,m such that

u−
X

−(σ+2)<λj,m<0

cj,mSj,m ∈ C2,σ(Ω) (6.3)

and u is the solution of (6.1).

These two propositions can be extended to their C1+α version. That is the following two

results.

Theorem A
′
.1 Assume that 0 < σ < 1 and that 1

π
(φj+1 −φj − (1+ σ)ωi) is not an integer

for any j. Then there exists a constant C such that for any C1+σ(Ω) solution of the problem

(6.1), the following estimate holds

‖u‖
C1+σ(Ω) ≤ C(‖∆u‖

C−1+σ(Ω) + ‖u‖
Cσ(Ω)), (6.4)

where ‖ · ‖C−1+α is defined in §3.

Theorem A
′
.2 Assume that D is not empty and that at least two of the vectors µj are

linearly independent. Assume that 0 < σ < 1 and 1
π
(φj+1 − φj − (1 + σ)ωj) is not an integer

for any j. Then for each f ∈ Cσ(Ω), there exists a solution u of (6.1) and numbers cj,m such

that

u−
X

−(σ+1)<λj,m<0

cj,mSj,m ∈ C1,σ(Ω), (6.5)

and u is the solution of (6.1).

The proof of Theorem A′.1 is similar to the proof of Theorem A.1 given in [19]. It consists

of three main steps: Localizing the discussing to each corner, mapping each angular domain

to a band by a coordinate transformation and applying the known results on the estimates for

elliptic equation. The main difference of the proof for Theorem A′.1 to that for Theorem A.1

is that one should apply the weak solution theory for elliptic equations rather than classical

Schauder theory. Therefore, next we only present the main point on the difference. Meanwhile,

since the proof of Theorem A′.2 is quite similar to that for Theorem A.2, then we omit it here.

Let us keep notations given in the beginning of the Appendix. As defined in [19], Pm,σ(Ω)

is the subspace of Cm+σ(Ω) for all u ∈ Cm+σ satisfying

Dαu(Si) = 0 for |α| ≤ m, 1 ≤ j ≤ N.
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The norm of Pm,σ(Ω) is defined as

‖u‖
Pm,σ(Ω) =

X
|α|≤m

inf ρ|α|−m−σ|Dαu|+
X

|α|=m
inf

|Dαu(x)−Dαu(y)|
|x− y|σ , (6.6)

where ρ is the distance of a given point to the corners. Then the estimate (6.4) can be derived

from

‖u‖P 1,σ ≤ C(‖f‖C−1+σ + ‖u‖Cσ). (6.7)

In order to prove (6.7) we introduce a partition of unity 1 =
NP
j=0

ηj , where η0 is supported

in a domain away from boundary, while each ηj (j 6= 0) equals 1 near the vertex Sj and equals

0 near Sℓ (ℓ 6= j). Now if we can prove

‖ηju‖P 1,σ ≤ C‖∆(ηju)‖C−1+σ (6.8)

for each j, then the estimate (6.7) holds. In fact, by using (6.8) we have

‖u‖P 1,σ = ‖
X

ηju‖P 1,σ ≤
X

‖ηju‖P 1,σ

≤ C
X

‖∆(ηju)‖C−1+σ ≤ C
X

(‖ηj∆u‖C−1+σ + ‖u‖Cσ)

≤ C(‖f‖C−1+σ + ‖u‖Cσ).

Replacing ηju by v we need to prove

‖v‖P 1,σ ≤ C‖∆v‖C−1+σ , (6.9)

where v ∈ P 1,σ is defined in a singular domain with vertex angle ωj and compactly supported,

v also satisfies the boundary conditions as shown in (6.1).

According to the definition of C−1+α norm, if ∆v can be rewritten as
P
ℓ

∂gℓ
∂xℓ

, then (6.9)

means

‖v‖P 1,σ ≤ C
X
ℓ

‖gℓ‖Cσ(Ω). (6.10)

As did in [19] one can use coordinates transformation

x = et cos θ, y = et sin θ (6.11)

to transform the angular domain with vertex Sj and vertex angle ωj to a band B : {−∞ < t <

∞, 0 < θ < ωj}. Accordingly, let w = e−(σ+1)tv(et+iθ), it will satisfy

D2
tw +D2

θw + 2(σ + 1)Dtw + (σ + 1)2w = e−(σ+1)t(vtt + vθθ) (, k). (6.12)

Then (6.10) is reduced to

‖w‖C1+σ(B) ≤ C‖k‖C−1+σ(B). (6.13)

Since B does not contain any singular point on its boundary yet, then (6.13) can be obtained

by using the boundedness of Fourier multiplier (or the estimates of weak solutions of elliptic

equation (see [18])). Returning to the original coordinates we obtain (6.9).

Finally, since P 1,σ contains a subspace of C1,σ(Ω) with finite codimension, then (6.9) implies

(6.4) immediately.
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