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Abstract Nonlinear dynamical stochastic models are ubiquitous in different areas. Their
statistical properties are often of great interest, but are also very challenging to compute.
Many excitable media models belong to such types of complex systems with large state
dimensions and the associated covariance matrices have localized structures. In this ar-
ticle, a mathematical framework to understand the spatial localization for a large class
of stochastically coupled nonlinear systems in high dimensions is developed. Rigorous
mathematical analysis shows that the local effect from the diffusion results in an expo-
nential decay of the components in the covariance matrix as a function of the distance
while the global effect due to the mean field interaction synchronizes different components
and contributes to a global covariance. The analysis is based on a comparison with an
appropriate linear surrogate model, of which the covariance propagation can be computed
explicitly. Two important applications of these theoretical results are discussed. They
are the spatial averaging strategy for efficiently sampling the covariance matrix and the
localization technique in data assimilation. Test examples of a linear model and a stochas-
tically coupled FitzHugh-Nagumo model for excitable media are adopted to validate the
theoretical results. The latter is also used for a systematical study of the spatial averaging
strategy in efficiently sampling the covariance matrix in different dynamical regimes.

Keywords Large state dimensions, Diffusion, Mean field interaction, Spatial averaging
strategy, Efficiently sampling
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1 Introduction

Nonlinear dynamical stochastic models are ubiquitous in different areas (see [35–36, 50,
52]). Key features of these complex systems are multiscale dynamics, high-dimensional phase
space, nonlinear energy transfers, highly non-Gaussian probability density functions (PDFs
for short), intermittent instability, random internal and external forcing as well as extreme
events. Understanding and predicting these complex turbulent dynamical systems have both
scientific and practical significance. Many excitable media models belong to such types of
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nonlinear dynamical stochastic systems (see [23, 33, 45, 56]). These excitable media models are
ubiquitous in nature and can be found in physical, chemical, and biological systems that are
far from thermodynamic equilibrium. One important feature of these excitable medium is that
they are susceptible to finite perturbations, where a variety of wave patterns can be triggered.
Examples of excitable medium include solitary waves, target like patterns, and spiral waves.

For nonlinear dynamical stochastic models, the high dimensionality imposes great challenges
to the understanding of the underlying mechanisms, the design of effective prediction schemes
and various uncertainty quantification problems (see [4, 47]). In particular, the high dimen-
sionality leads to both a large computational cost and an enormous storage even for one single
model simulation. Moreover, it is often of interest to calculate the time evolution of the statis-
tics, especially the covariance matrix that includes the information of the interactions between
different components (see [1, 29]). Since analytical solutions for complex nonlinear systems are
typically unavailable, Monte Carlo methods are often applied. However, the affordable sample
size is very limited due to the computational cost while the size of the covariance matrix, which
is the square of the state variables, can be many magnitudes larger in many real applications
that involve millions or billions of state variables. Furthermore, non-Gaussian features due to
the nonlinear nature of the underlying dynamics such as extreme events can greatly affect the
calculation of the covariance matrix and introduce extra difficulties. Therefore, understanding
the covariance structures in nonlinear dynamical stochastic models and then developing efficient
computing strategies that can exploit these structures become extremely important.

To facilitate the calculation of the covariance matrix, various approximations are applied
in practice. One widely used strategy is to adopt Gaussian approximations for the underlying
dynamics since there are many well-developed analytical and numerical methods for sampling
high-dimensional Gaussian distributions. However, completely ignoring the non-Gaussian infor-
mation in the underlying dynamics often leads to large model errors. One effective strategy is to
decompose the entire phase space into a high dimensional Gaussian part and a low dimensional
non-Gaussian part using the conditional Gaussian framework (see [9–12, 32, 38]). Another
strategy is to exploit the fact that the majority of the problem uncertainty is distributed within
a low dimensional subspace of the Karhuen-Loève expansion, then uncertainty quantification
(UQ for short) can be operated just in this subspace for sampling and computational simplicity
(see [7, 13–15, 19, 46, 51]).

This paper focuses on a different structure-exploiting strategy known as localization, which
is widely used in many areas including the numerical weather prediction (see [22, 25–26]) and
efficiently quantifying the uncertainty in excitable media (see [42, 53][6, 44]). In many appli-
cations, the system state variables represent the information at different spatial locations, and
the dependence of certain information between different grid points decays quickly when their
distance becomes large. In other words, two grid points can be regarded as nearly independent
if they are far from each other. The localization strategy exploits this feature and adopts a band
matrix as the approximation of the covariance (see [2, 48]). Thus, the localization allows the
development of much simpler approaches in analyzing the covariance matrix and thus facilitates
the study of many important UQ problems.

While the localization strategy has a wide range of real-world applications, it remains unclear
about the role of different dynamical components on affecting the covariance localization. In
addition, despite many empirical evidences, there is no rigorous justifiction of the covariance
decay as a function of the spatial distance. Nevertheless, these are crucial topics in practice
for at least two reasons. First, it is known that applying localization by approximating the full
covariance matrix with a band matrix may introduce some biases in quantifying the uncertainty
of the underlying system (see [42, 53]) and the current bias estimates (see [41, 53]) require the
knowledge of the underlying covariance matrix as well as a quantitative description of the decay
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in the covariance. Second, in order to apply localization in practice, one often needs to specify
a localization radius L, which represents the typical distance for two components to be roughly
independent. Unfortunately, in the absence of a rigorous theory to understand the covariance
decay behavior, determining L often relies on exhaustive tuning and data fitting, which can be
expensive and inaccurate.

This paper aims at developing a theoretical framework to understand the covariance behavior
for a large class of stochastically coupled nonlinear systems in high dimensions that include many
excitable media models and other nonlinear complex models. Rigorous mathematical analysis
shows that the local effect from the diffusion results in an exponential decay of the components
in the covariance matrix as a function of the distance while the global effect due to the mean
field interaction synchronizes different components and contributes to a global covariance. To
achieve this, a covariance comparison principle is established. Then by explicitly computing the
covariance propagation in a linear surrogate model, an upper bound on the covariance entries
can be obtained.

Two important applications of these theoretical results are illustrated. First, a spatial
averaging sampling strategy is developed. It makes use of the statistical symmetry to replace
the samples from repeated experiments using ensemble methods by samples at different spatial
grid points (see [8, 49]), which greatly reduces the number of repeated experiments while the
accuracy remains the same. In other words, combining the spatial averaging strategy with
a small number of Monte Carlo simulation of the underlying nonlinear complex systems, the
covariance with a localization structure can be sampled in an efficient and accurate fashion, at
least for a finite time. Secondly, the same structure can be exploited to improve the accuracy
of data assimilation (see [18, 30–31, 37]). The theory developed here provides a practical
guideline to choose the localization radius L in a systematical way that facilitates an effective
data assimilation for large dimensional systems.

The rest of the article is organized as follows. Section 2 states the main theoretical results
for the spatial localization for nonlinear dynamical stochastic models and the two applications.
Section 3 includes the detailed analysis of the covariance matrix with both local and nonlocal
effects. Numerical simulations of a linear model and a stochastically coupled FitzHugh-Nagumo
(FHN for short) model for excitable media in different dynamical regimes are shown in Section
4. The article is concluded in Section 5. Details of proofs are included in Appendix.

2 Problem Setup and Main Results

To describe the behavior of nonlinear dynamical stochastic models for an excitable media,
we consider a general stochastic diffusion reaction model with mean field interaction on a one
dimensional torus [0, 1]:

d

dt
ut = ν∆ut + F (ut) +

∫
h(ut(x))dx + Ẇ (t, x), (2.1)

where W (t, x) is a spatial white noise. We can discretize (2.1) in space, and write down the
dynamics at the i-th grid point ui(t) = ut

(
i
N

)
as

dui(t) =
ν

2
N2(ui+1(t) + ui−1(t)− 2ui(t))dt+ F (ui(t))dt+

1

N

N∑

j=1

h(uj(t)) + dwi(t), (2.2)

where wi(t) are independent standard Wiener processes.

The deterministic forcings in (2.2) can be classified into two groups based on their range of
action. Here ν

2N
2(ui+1(t) + ui−1(t) − 2ui(t)) + F (ui(t)) describes how does a component ui
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force its neighbors and itself while 1
N

N∑
j=1

h(uj(t)) models the McKean Vlasov type of mean field

interaction (see [39]). We will adapt this classification to simplify our notation. Moreover, we
will consider the general setting where ui is not univariate. This will be useful when we discuss
the FHN model, as we need both the membrane voltage and the recovery forcing.

Specifically, we let x(t) = (x1(t), · · · ,xN (t)) be a stochastic process in R
d. For simplicity,

we assume all block share the same dimension, that is xi(t) ∈ R
q and d = qN . Suppose each

block follows an SDE,

dxi = f(t,xi−1,xi,xi+1)dt+
1

N

N∑

j=1

h(t,xj)dt+Σdwi(t), i = 1, · · · , N. (2.3)

In (2.3), wi(t) are independent standard Wiener processes of dimension q, and Σ is symmetric.
The index i should be interpreted in a cyclic fashion, that is x0 = xN ,x1 = xN+1. The natural
distance between indices is given by

d(i, j) = min{|i− j|, |i+N − j|, |j − i+N |}.

For simplicity, we assume {xi(0)}i=1,··· ,N are i.i.d. samples from N (m0,Σ0Σ
T
0 ).

Many high dimensional stochastic models can be formulated as (2.3). Examples include the
Lorenz 96 model (see [34]) and the FHN model (see[33]).

Our main results can be summarized as the follows.

Theorem 2.1 Suppose the following constants are independent of N,

λ0 := sup
i,x,s≤t

{λmax(∇xi
f(s,xi−1,xi,xi+1) +∇xi

f(s,xi−1,xi,xi+1)
T)},

λF := sup
i,x,s≤t

{‖∇xi−1
f(s,xi−1,xi,xi+1)‖, ‖∇xi+1

f(s,xi+1,xi,xi+1)‖},

λH := sup
i,xi,s≤t

‖∇xi
h(s,xi)‖.

(2.4)

Here λmax denotes the maximum eigenvalue. Then for any test function g and β > 0, there is

a constant Cβ,t independent on N , such that

cov(g(xi(t)), g(xj(t))) ≤ Cβ,t‖∇g‖2∞
(
e−βd(i,j) +

1

N

)
,

where ‖∇g‖∞:= supx ‖∇g(x)‖. And if h ≡ 0, the bound can be improved to Cβ,t‖∇g‖2∞e−βd(i,j).

The exact value of Cβ,t can be found below in Theorem 3.2. The main conclusion here is that
when the dimension N is large, for components that are far from each other, their covariance
is close to zero. In other words, the covariance between model components is significant only
for nearby components. Following [42], we call such a covariance structure to be local. Below,
we illustrate two important applications that show such a property is crucial for uncertainty
quantification (UQ for short).

2.1 Sampling with spatial averaging

One fundamental UQ question regarding SDEs such as (2.3) is how to efficiently compute
Eg(xi(t)) for a given test function and ensure that the estimation error is small. The standard
Monte Carlo approach involves simulating (2.3) multiple times, and use the sample average

ĝmc = 1
K

K∑
j=1

g(x
(j)
i (t)) as an estimator. However, with the increase of the dimension N , the
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computational costs to generate each independent sample x(j)(t) increases dramatically. There-
fore, only a small number of samples K can be adopted in practice.

One important observation is that (2.3) is invariant under index shifting. Therefore, by
symmetry, xi(t) shares a common distribution for all i. As a consequence, each of them can be
viewed as an individual, despite not independent, sample. Exploiting this perspective, it has
been proposed in [8] the following spatial average as an estimator of Eg(xi(t)),

ĝK,N =
1

K

K∑

j=1

1

N

N∑

i=1

g(x
(j)
i (t)).

Since the samples are independent, the statistical properties of ĝM,N is determined by the ones
of

ĝN =
1

N

N∑

i=1

g(xi(t)). (2.5)

It is straightforward to verify that ĝN and ĝK,N are unbiased:

EĝK,N = EĝN =
1

N

N∑

i=1

Eg(xi(t)) = Eg(x1(t)).

The accuracy of these estimators can be measured by their variance. By independence, we have
varĝK,N = 1

K
ĝN , which is given by

varĝN =
1

N2

N∑

i,j=1

cov(g(xi), g(xj)) =
1

N

N∑

j=1

cov(g(x1), g(xj)). (2.6)

Then plugging in the estimate from Theorem 2.1, the result in (2.6) can be bounded by

varĝN ≤ 1

N

N∑

j=1

Cβ,t‖∇g‖2∞
(
e−βd(1,j) +

1

N

)
≤ 1

N

Cβ,t‖∇g‖2∞
1− e−β

.

Therefore we have

varĝK,N ≤ 1

NK

Cβ,t‖∇g‖2∞
1− e−β

.

In contrast, if we consider the standard estimator ĝmc, its variance is 1
K
var(g(xi(t))), which is

of O(N) multiple of the one of varĝM,N . In other words, the spatial averaging has increase the
effective sample size by a factor of N .

2.2 Localization in data assimilation

In data assimilation (DA for short), sequential partial observations are incorporated to im-
prove predictions of a stochastic dynamical system (see [18, 30–31, 37]). One major application
of DA is numerical weather prediction, where forecasts are obtained by combining simulations
of the dynamical models with satellite data. The associated dimensions of such data assimila-
tion problems are extremely high, often in orders of millions in order to describe variables in
different temporal and spatial scales of the underlying nonlinear complex systems. Moreover,
for these refined models, the current computational power can only provide around one hundred
simulation samples. DA algorithms, for example the ensemble Kalman filter (EnKF for short),
need to use these 100 samples to represent the covariance matrix of model components.
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The classic sample covariance,

Ĉ :=
1

K − 1

K∑

j=1

(x(j)(t)− x) · (x(j)(t)− x(t))T, x(t) =
1

K

K∑

j=1

x
(j)
t

is not accurate in this setting. A classic random matrix results (see [3]) indicates that if x
(i)
t are

i.i.d. samples from N (0, C), the covariance estimation error ‖C− Ĉ‖ = O(
√

N/K). Therefore,
the estimator is very inaccurate in the situations with the small samples and high dimensions,
i.e., K ≪ N . The intuition behind this mathematical phenomenon is that, spurious correlation
may exist between each pair of components with a small probability because of the sampling
effect, but there are O(N2) pairs of components. Thus, the resulting errors are very likely to
be significant.

Nevertheless, if we are aware that covariance is local as described in Theorem 2.1, then the
erroneous estimation can be made accurate. Note that the far-off-diagonal entries are close to
zero. Thus, a natural way is to truncate these entries. In particular, with a given bandwidth L
and covariance matrix C, we define the localization of C as

[CL]i,j = [C]i,j1d(i,j)≤L.

It has been shown in [5] that such a localization technique can significantly improve the sampling
accuracy. A simplified version in [53] shows that if x(t) is Gaussian distributed, then there exists
a uniform constant c, so that for any ǫ > 0,

P(‖ĈL − CL‖ > ǫ) ≤ 8 exp
(
2 logN − cKmin

{ ǫ

2L‖C‖ ,
ǫ2

4L2‖C‖2
})

. (2.7)

In other words, if L is a fixed bandwidth, it requires only L2O(logN) many samples to find an
accurate estimate of CL.

On the other hand, one needs to notice that (2.7) indicates ĈL is a good estimator of CL,
but not necessarily C. In order for it to also be a good estimator of C, one needs ‖C −CL‖ to
be small as well. Theorem 2.1 can guarantee this if there is only local interaction, i.e., h ≡ 0.
Since a covariance matrix’s l2-norm is bounded by its l1-norm, we can plug in the estimate in
Theorem 2.1 with g(x) = x and find

‖C − CL‖ ≤ max
i

∑

d(i,j)>L

|[C]i,j | ≤
2Cβ,te

−βL

1− e−β
. (2.8)

In practice, given an error threshold ǫ > 0, one can combine (2.8) and (2.7) together to find
a bandwidth L and sample size K = O(L2 logN), such that the covariance estimation error
‖ĈL − C‖ is below 2ǫ with high probability.

Since localization involves using very simple numerical operation to significantly improve
the estimation of the covariance matrix, it has been widely applied in all DA algorithms, in
particular, the ensemble Kalman filter (see [17, 21, 24, 27, 40, 54–55, 57]). Moreover, adaptation
of the localization strategy can be applied to Bayesian inverse problems where the associated
covariance matrices follow the description of Theorem 2.1. In particular, it has been shown
in [42] that blocking the high dimensional components, and then applying Gibbs sampler,
the resulting Markov chain Monte Carlo algorithms will converge to the desired distribution
with a rate independent of the dimension. One fundamental assumption of all these practical
computational methods is that the underlying system is spatially localized, yet there has been
no rigorous justification of this assumption. This article closes this gap for systems of type of
(2.3).
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2.3 Preliminaries

To facilitate our discussion, we will use the following notations: ‖v‖ denotes the l2 norm
of v, while 〈u, v〉 = uTv is the inner product; Iq denotes the identity matrix of dimension q.
Given a matrix A, the norm ‖A‖ is the l2 operator norm of A; λmax(A) denotes the maximum
eigenvalue of A and ‖A‖F is its Frobenius norm. We use [A]i,j to denote the (i, j)-entry of A.

When we have a vector x of qN dimension, we often view it as the concatenation of N
sub-blocks of dimension q. The decomposition can be written as x = (x1, · · · ,xN ). Given a
qN × qN matrix A, we write its (i, j)-th q × q sub-block as Ai,j or {A}i,j . The readers should
not confuse these notations with the matrix entries [A]i,j . In particular, we can write down the
entries of Ai,j :

[Ai,j ]m,n = [{A}i,j ]m,n = [A](i−1)q+m,(j−1)q+n, i, j = 1, · · · , N, m, n = 1, · · · , q.

With a function f , ∇f denotes its Jacobian matrix. ∇xi
f(x) denotes the partial derivative

with respect to xi, which is the i-th block-column of ∇f .
For two symmetric matrices A � B indicates that B −A is positive semidefinite.

3 Analysis of Covariance Matrices

We provide the explicit statements of our result in this section. The detailed proofs are
allocated in Appendix.

3.1 Linear covariance propagation

Consider the following multivariate SDE:

dxi(t) = fi(t,xi−1,xi,xi+1)dt+
1

N

N∑

j=1

hi(t,xj)dt+Σdwi(t), i = 1, · · · , N. (3.1)

Our main result is established through a covariance comparison principle between (3.1) and a
linear surrogate.

Theorem 3.1 Suppose the covariance propagation of (3.1) is dominated by (F∗(t), H∗(t)) ∈
(RN×N ,RN×N) in the following sense:

(1) ∇xi
fi(t,xi−1,xi,xi+1) +∇xi

fi(t,xi−1,xi,xi+1)
T � 2[F∗(t)]i,iI.

(2) ‖∇xi−1
fi(t,xi−1,xi,xi+1)‖ ≤ [F∗(t)]i,i−1, ‖∇xi+1

fi(t,xi−1,xi,xi+1)‖ ≤ [F∗(t)]i,i+1.

(3) 1
N
‖∇xj

hi(t,xj)‖ ≤ [H∗(t)]i,j .
Let G∗(s) = F∗(s) +H∗(s), and

Q(s) = exp
(∫ t

t−s

G∗(r)dr
)
exp

( ∫ t

t−s

G∗(r)dr
)T

.

Then for any test function g with bounded gradient,

|cov(g(xi(t)), g(xj(t)))| ≤
√
q‖∇g‖2∞

(
‖Σ2

0‖F [Q(t)]i,j + ‖Σ2‖F
∫ t

0

[Q(s)]i,jds
)
. (3.2)

This theorem shows that if the covariance propagation of (3.1) is dominated by G∗ =
F∗ +H∗, then the spatial covariance of (3.1) is also dominated by the linear surrogate model
associated with G∗:

dxi = [G∗]i,ixidt+ [G∗]i,i−1xi−1dt+ [G∗]i,i+1xi+1dt+Σdwi(t), i = 1, · · · , N. (3.3)
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To see that (3.3) has the spatial covariance structure as in (3.2), we concatenate (3.3) into
one equation for x(t)

dx(t) = DG∗
xdt+DΣdw(t), x(0) ∼ N (0, DΣ0

).

Here, DG∗
,DΣ and DΣ0

are qN × qN dimensional matrices. Their q × q sub-blocks are given
by

{DG∗
}i,j = [G∗]i,jIq, {DΣ}i,j = 1i=jΣ, {DΣ0

}i,j = 1i=jΣ0.

Since this equation is linear, we can apply the Duhamel’s formula and write the solution as

x(t) = q(t)x(0) +

∫ t

0

q(s)DΣdw(s), q(s) := exp
( ∫ t

t−s

DG∗
(r)dr

)
.

By Itô’s isometry,

covx(t) = q(t)DΣ0
DT

Σ0
q(t)T +

∫ t

0

q(s)DΣD
T
Σq(s)

Tds.

In particular, the covariance between xi(t) and xj(t) is given by {covx(t)}i,j . Since DΣ0
and

DΣ are block diagonal, it is not difficult to establish (3.2) for system (3.3).

3.2 A representation of the covariance matrix

One difficulty in reaching Theorem 3.1 is how to compute the covariance matrix for a
multivariate SDE. We will establish a framework for covariance matrix computation, starting
from a simple Stein’s lemma type of formula:

Lemma 3.1 Suppose X,Y are independent standard Gaussian random variables of di-

mension d, f and g are smooth functions with bounded first order derivatives. Let Xθ =
cos θX + sin θ Y , then

cov(f(X), g(X)) = Ef(X)g(X)− f(X)g(Y ) =

∫ π
2

0

sin θE〈∇f(X),∇g(Xθ)〉dθ.

In order to apply Lemma 3.1, we need to represent x(t) as a function of certain Gaussian
random variables. These Gaussian random variables are the increments of the Wiener processes
driving x(t). To setup this connection, recall that one way to simulate (3.1) is to perturb
its ordinary differential equation (ODE for short) version with random noises. In particular,
consider the ODE system:

dxi(t) = fi(t,xi−1,xi,xi+1)dt+
1

N

N∑

j=1

hi(t,xj)dt, i = 1, · · · , N. (3.4)

Let Ψh : RqN 7→ R
qN be the mapping from x(t) to x(t+h). We suppress the dependence of Ψh

on t, for notational simplicity. Then one way to simulate (3.1) is generate the following iterates

X(0) = m0 +Σ0W0, X(n+ 1) = Ψh(X(n)) + ΣhWn, Σh =
√
hDΣ. (3.5)

Then X(T ) is a numerical approximation of x(t) if Th = t when T is large. A standard
verification lemma of this statement is provided in Appendix. We write the i-th block of X(n)
as Xi(n) ∈ R

q. Wn are qN dimensional standard Gaussian noise for n = 0, 1, · · · , T .
The strategy here is to consider X(T ) instead of x(t), because its dependence on the noise

realization Wi is easier to handle using Lemma 3.1. We can show a similar result for X(T ) as
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in Theorem 3.1. Then in the limit h → 0, we have our desired results. The details are shown in
Appendix. As a remark, it might be possible and more elegant to represent the covariance of xt

directly using tools from Malliavin calculus (see [43]), and avoid the procedures of discretization
and taking continuous limit. Yet the current proof strategy can be easier to understand for an
applied math audience.

3.3 Diffusion and mean field interaction

While (3.2) provides a general upper bound, from its formulation is not easy to see the
covariance decay we expect. To make the covariance decay explicit, we try to use instead
a homogenous linear surrogate. We update the constant definition in (2.4) to the spatial
inhomogeneous setting:

λ0 := sup
i,x,s≤t

{λmax(∇xi
fi(s,xi−1,xi,xi+1) +∇xi

fi(s,xi−1,xi,xi+1)
T)},

λF := sup
i,x,s≤t

{‖∇xi−1
fi(s,xi−1,xi,xi+1)‖, ‖∇xi+1

fi(s,xi−1,xi,xi+1)‖}, (3.6)

λH := sup
i,j,x,s≤t

‖∇xj
hi(s,xj)‖.

They are finite under the conditions of Theorem 3.1. We can build a homogeneous linear
surrogate by letting

[F∗]i,i = λ0, [F∗]i,i±1 = λF , [H∗]i,j =
1

N
λH .

Then the linear surrogate (3.3) corresponds

dxi = (λ0 + 2λF )xidt+ λF∆xidt+
λH

N

N∑

j=1

xj +Σdwi(t), i = 1, · · · , N, (3.7)

where the discrete Laplacian is given by

∆xi := xi−1 + xi+1 − 2xi,

which is closely related to the heat equation.
The spatial covariance of x(t) is built up by the diffusion effect of ∆xi and the mixing effect

of mean field interaction 1
N

N∑
j=1

xj . These two effects operate in different ways. The diffusion

propagates the diagonal entries in the covariance matrix to the off-diagonal ones, it contributes
to the exponential decay term e−βd(i,j) in Theorem 2.1. The mean field interaction synchronizes
the components, and contributes to a global covariance of scale 1

N
.

We can establish the following explicit bounds in terms of λG, λF , λH , instead of the matrix
Q(t).

Theorem 3.2 Under the same conditions of Theorem 3.1, for any β > 0, let

λβ = λ0 + λF (e
β + e−β), ηβ = λ0 + λF (e

β + e−β) + λH

with λ0, λF and λH defined by (3.6). Then with any function g,

|cov(g(xi(t)), g(xj(t)))|
≤ 2

√
q‖∇g‖2∞(eλβt‖Σ2

0‖F + (eλβt − 1)‖Σ2‖F /λβ)e
−βd(i,j)

+
2
√
q(1 + e−β)‖∇g‖2∞
(1 − e−β)N

(
(eηβt − eλβt)‖Σ2

0‖F +
(eηβt − 1

ηβ
− eλβt − 1

λβ

)
‖Σ2‖F

)
.
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When there is only mean field interaction, i.e., λF = 0, the result can be simplified by
choosing β → ∞,

|cov(g(xi(t)), g(xj(t)))|

≤ 2
√
q‖∇g‖2∞
N

(
(e(λ0+λH)t − eλ0t)‖Σ2

0‖F +
(e(λ0+λH )t − 1

λ0 + λH

− eλ0t − 1

λ0

)
‖Σ2‖F

)
. (3.8)

When there is only diffusion effect, that is hi ≡ 0, the result can be simplified as

|cov(g(xi(t)), g(xj(t)))| ≤ 2
√
q‖∇g‖2∞(eλβt‖Σ2

0‖F + (eλβt − 1)‖Σ2‖F /λβ)e
−βd(i,j). (3.9)

It is worth noticing the result holds for all β > 0. This indicates the covariance structure
actually decays faster than exponential. In practice, one can try to minimize the right hand
side with respect to β, or directly compute the covariance of (3.7) to find the exact local
covariance structure. While sharper theoretical upper bound maybe obtainable by applying
formulas as in [28], they are complicated and work only asymptotically. Our current upper
bound is simpler, and sufficient for applications discussed in Subsections 2.1 and 2.2.

With Theorem 3.2, it is straightforward to show the spatial averaging estimator is consistent:

Corollary 3.1 Under the same settings of Theorem 3.2, the following bound holds for the

block estimator (2.5):

varĝN ≤ 2‖∇g‖2∞
(1− e−β)N

(2e2λβt‖Σ2
0‖F + (e2λβt − 1)‖Σ2‖F/λβ)

+
2‖∇g‖2∞

(1− e−β)N

(
(eηβt − eλβt)‖Σ2

0‖F +
(eηβt − 1

ηβ
− eλβt − 1

λβ

)
‖Σ2‖F

)
. (3.10)

Proof Since in (2.6),
N∑
j=1

e−βd(1,j) ≤ 2
∞∑
j=0

e−βj = 2
1−e−β .

3.4 Long time stability

In many applications, the long time t → ∞ scenario is of interest. For example, if we want
to find the equilibrium measure of x(t), we often simulate x(t) for a long time, and use its
distribution as an approximate. Likewise, if we are interested in data assimilation with models
as (2.3), the algorithms are usually iterated for an extended period. In order to apply the
spatial averaging strategy in Section 2.1, and the localization strategy in Section 2.2 for these
operations, we need the local covariance structure to be stable in time.

In the view of Theorem 3.2, we can guarantee the local covariance structure is stable if
λ0 + 2λF + λH < 0. In particular we have the following corollary by letting t → ∞ in the
estimate.

Corollary 3.2 If λ0 + λH + 2λF < 0, then there is a β0 > 0, so that if 0 < β < β0,

λβ ≤ ηβ < 0 we have

lim sup
t→∞

|cov(g(xi(t)), g(xj(t)))|

≤ −√
q‖∇g‖2∞‖Σ2‖F

( 2

λβ

e−βd(i,j) − 2(1 + e−β)

(1− e−β)N
(η−1

β − λ−1
β )

)
.

4 Test Examples

In this section, we demonstrate our theoretical findings with several numerical test examples.
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4.1 A linear model

We start with a linear model, where the analytic solutions associated with this linear model
can be written down explicitly (See Appendix B). Therefore, this model is able to provide
insights and validation of the theories developed in the previous sections.

The linear model is as follows:

dui

dt
= −aui + du(ui+1 − 2ui + ui−1) + w(u − ui) + σuẆui

for i = 1, · · · , N (4.1)

with periodic boundary conditions. Here u is the averaged value of all the state variables,

u =
1

N

N∑

i=1

ui.

In the linear model (4.1), the coefficients of damping a, diffusion du, mean field interaction w
and the stochastic noise σu are all constants. Thus, the flow field is statistically homogeneous.
Below, we fix

a = 1 and σu = 0.5 (4.2)

while the diffusion and mean field interaction coefficients du and w vary in different cases.
In the linear model (4.1), it is easy to write down the constants in (3.6),

λ0 = −a− 2du − w, λF = du, λH = w. (4.3)

In addition, only one-layer model is utilized here and we consider the covariance of different ui

themselves. Therefore

q = 1 and ∇g = 1. (4.4)

Furthermore, ‖Σ2‖F = σ2
u. Below, we study the role of the mean field interaction and the

diffusion. All the results shown in this subsection are computed using the exact solution given in
Appendix B, which allows us to understand Theorem 3.2 without being interfered by numerical
errors.

(1) Linear model with only mean field interaction First, we study the case with only
mean field interaction. In other words, we set the diffusion coefficient du = 0. The constants
in (4.3) reduce to

λ0 = −a− w, λF = 0, λH = w. (4.5)

According to (3.8) in Theorem 3.2, the covariance bound is proportional to 1
N

and the coefficient
is provided by letting β → ∞. Therefore, assuming the initial covariance is zero, we have the
following result

|cov(g(xi(t)), g(xj(t)))| ≤ 2
(e−at − 1

−a
− e−(a+w)t − 1

−a− w

)
σ2
u

1

N
. (4.6)

In Figure 1, we show the covariance between u1 and ui for i = 1, · · · , N at t = 5. Here the
initial conditions are zero everywhere. Different columns show the covariance with different N .
The spatiotemporal simulations are also included to provide intuitions. Without the diffusion
and the initial covariance, the covariance between u1 and all other ui with i 6= 1 has the same
non-zero value due to the global effect from the mean field interaction.
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−

Figure 1 Linear model with only mean field interaction. The covariance between u1 and

ui for i = 1, · · · , N at t = 5. The spatiotemporal simulations are also included.

−

−

−

−
−

×

Figure 2 Linear model with only mean field interaction. The dependence of the covariance

between u1 and u2 as a function of N . The black dashed line in panel (b) (log-log scale)

shows the bound in (4.6), where the constant C1 is given by the coefficient on the right

hand side of (4.6) in front of 1
N
.

In Figure 2, the dependence of the covariance between u1 and u2 as a function of N is
shown. It is clear that the covariance decays as a function of 1

N
, which validates the results in

Theorem 3.2 (and that in (4.6)). The black dashed line in panel (b) (log-log scale) shows the
bound in (4.6), where the constant C1 is given by the coefficient on the right hand side of (4.6)
in front of 1

N
.

(2) Linear model with only diffusion Next, we study the case with only diffusion. In
other words, we set the mean field interaction coefficient w = 0. The constants in (4.3) reduce
to

λ0 = −a− 2du, λF = du, λH = 0. (4.7)

According to (3.9) in Theorem 3.2, the covariance bound is proportional to e−βd(i,j). Again,
assuming the initial covariance is zero, we have the following result

|cov(g(xi(t)), g(xj(t)))| ≤
2(eλβt − 1)σ2

u

λβ

e−βd(i,j), (4.8)
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where

λβ = λ0 + λF (e
β + e−β).

In Figure 3, we show the covariance between u1 and ui for i = 1, · · · , N at t = 5 with N = 64
fixed. Here the initial conditions are zero everywhere. Different columns show the covariance
with different strengths of the diffusion coefficient du. The spatiotemporal simulations are also
included to provide intuitions. Without the mean field interaction and the initial covariance,
the covariance between u1 and ui for ui being far from u1 decays to zero, reflecting the local
contribution due to only the diffusion (without mean field interaction). On the other hand, the
increase of du allows the increase of the covariance between u1 and ui for i far from 1. This is
clearly illustrated in the spatiotemporal patterns and is consistent with our intuition as well.

Figure 4 shows the covariance between u1 and ui for i = 1, · · · , N
2 with du = 20 and N = 64

at t = 5. In panel (b), the logarithm scale is shown, which indicates a linear dependence of the
log covariance on the distance d(1, i). This validates the exponential decay of the covariance
as a function of the distance as shown in (4.8). The black dashed line shows the bound in
(4.8), where the constant C2 is given by the coefficient on the right hand side of (4.8) in front
of e−βd(i,j) by taking β = 1

5 . We have tested other β, with which the bounds all above the
actual covariance. Therefore, we validate the theoretical results with only diffusion, described
by (3.9).

−

Figure 3 Linear model with only diffusion. The covariance between u1 and ui for i =

1, · · · , N at t = 5 with N = 64 fixed.

(3) Linear model with both the mean field interaction and diffusion Finally, we
study the case with both mean field interaction and diffusion. Figure 5 is similar to Figure 3
but with a non-zero mean field interaction w = 5. Therefore, unlike the results in Figure 5, the
covariance between u1 and ui where i is far from 1 is non-zero due to the mean field interaction
that has a global impact. In Figure 6, it is also clear that when i increases the covariance
between ui and u1 first experience an exponential decay and then the covariance remains as
a constant. Thus, the exponential decay is the main contribution to the covariance behavior
for grid points that are close to i = 1 while the mean field interaction plays the dominant role
at the location that is far away. These simulations are consistent with the theoretical results
shown in Theorem 3.2.
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−

 −
−×

Figure 4 Linear model with only diffusion. The covariance between u1 and ui for i =

1, · · · , N
2

with du = 20 and N = 64 at t = 5. The black dashed line in panel (b) (logarithm

scale) shows the bound in (4.8), where the constant C2 is given by the coefficient on the

right hand side of (4.8) in front of e−βd(i,j) by taking β = 1
5
.

4.2 A stochastically coupled FHN model

In this subsection, we explore the covariance structure in a stochastically coupled FitzHugh-
Nagumo (FHN for short) model, which is a nonlinear model that describes activation and
deactivation dynamics of spiking neurons (see [8, 33]). The model reads,

ǫdui =
(
ui −

1

3
u3
i − vi + du(ui+1 − 2ui + ui−1) + w(u − ui)

)
dt+

√
ǫδ1dWui

,

dvi = (ui + a)dt+ δ2dWvi , i = 1, · · · , N,
(4.9)

where ui and vi are activator and inhibitor variables. Periodic boundary conditions are imposed
on ui variables. In (4.9), the timescale ratio ǫ = 0.01 ≪ 1 leads to a slowfast structure of the
model. The parameter a = 1.05 > 1 such that the system has a global attractor in the
absence of noise and diffusion (see [20]). The random noise is able to drive the system above
the threshold level of global stability and triggers limit cycles intermittently. Note that with
N = 1, the model reduces to the classical FHN model with a single neuron and it contains the
model families with both coherence resonance and self-induced stochastic resonance (see [16]).
With different choices of the noise strength δ1, δ2 and the diffusion coefficient du, the system in

(4.9) exhibits rich dynamical behaviors. Finally, in (4.9), the variable u = 1
N

N∑
i=1

ui is the mean

field interaction.
The goal of this subsection is to study the spatial structure of the covariance due to both

the local effect (i.e., diffusion) and the global effect (i.e., mean field interaction).

4.2.1 Basic properties

For the convenience of stating the theoretical results, we slightly change of notation of (4.9)
in this paragraph,

dui =
(1
ǫ
ui −

1

3ǫ
u3
i −

1√
ǫ
vǫi +

du
ǫ
(ui+1 + ui−1 − 2ui) +

w̃

ǫ
(u− ui)

)
dt+

1√
ǫ
δ1dWui

,

dvǫi =
( 1√

ǫ
ui +

a√
ǫ

)
dt+

δ2√
ǫ
dWvi .

(4.10)

To apply the framework we developed, it is natural to let xi = (ui, v
ǫ
i )

T such that q = 2,
and

∇xi
f(t,xi−1,xi,xi+1) =

[
ǫ−1 − ǫ−1u2

i − 2ǫ−1du − ǫ−1w̃ −ǫ−
1
2

ǫ−
1
2 0

]
(4.11)
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−

Figure 5 Linear model with both mean field interaction and diffusion. The covariance

between u1 and ui for i = 1, · · · , N at t = 5 with N = 64 fixed and the mean field

interaction w = 5.

−

−

−

−

Figure 6 Linear model with both mean field interaction and diffusion. The covariance

between u1 and ui for i = 1, · · · , N
2

with du = 20, w = 5 and N = 64 at t = 5. The local

interaction is the main contributor to the covariance behavior at the beginning while the

mean field interaction plays the dominant role at the location that is far away.

and

∇xi±1
f(t,xi−1,xi,xi+1) =

[
ǫ−1du 0

0 0

]
, ∇xi

h =

[
w̃ 0
0 0

]
, Σ =

[
ǫ−

1
2 δ1 0

0 ǫ−
1
2 δ2

]
.

Since the −ǫ−1u2
i is always negative, we can take

λ0 = ǫ−1 max{1− 2du − w̃, 0}, λF = ǫ−1du, λH = ǫ−1w̃.

Therefore, using the spatial averaging sampling strategy for high dimensional systems, we have
the following corollary.
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Corollary 4.1 The block average estimator is consistent for the FHN system (4.10). In

particular, estimate (3.10) holds with ‖Σ2‖F =

√
δ4
1
+δ4

2

ǫ
, and

ηβ = ǫ−1 max{1− 2du, w̃}+ 2ǫ−1du(e
β + e−β), λβ = ηβ − ǫ−1w̃.

In particular, from the bound (3.10), we learn that the estimator consistency deteriorates
with larger t, du and w̃, which correspond to longer simulation time, stronger local interaction,
and stronger mean field interaction regimes.

4.2.2 The FHN model with different diffusion and mean field interaction
coefficients

(1) FHN model with only diffusion First, we focus on the situation in the FHN model
where the mean field interaction is zero (w = 0). Therefore, the covariance comes purely from
the local effect, namely the diffusion. We set δ1 = δ2 = 0.4 but choose different values of the
diffusion parameter du which provides different dynamical behavior:

(a) Strongly mixed regime: du = 0.02;

(b) Weakly coherent regime: du = 0.5;

(c) Strongly coherent regime: du = 10.

(4.12)

The simulation of the model in these three dynamical regimes is shown in Figure 7. Figure 8
shows the covariance between u1 and ui for i = 1, · · · , N at t = 5. Here we use a Monte Carlo
simulation with M = 8192 samples at each grid points (namely, running the Monte Carlo for
M times). With the increase of du from Regime (a) to Regime (c), the spatial covariance of u
increases. In particular, in Regime (c) with a strong diffusion, the covariance between u1 and
all other ui for i = 1, · · · , N remains significant, and is above 0.5. Note that there is almost
no mixing of the underlying stochastic system with such a large diffusion coefficient in Regime
(c) (See Figure 7), which may cause some issues of the controllability of the system. In fact,
with a large diffusion coefficient, the role of the stochastic forcing becomes relatively weaker
and the control of the system via the external stochastic forcing becomes more difficult. This
also leads to some potential issues in applying the spatial averaging strategy for computing
the covariance, especially for long time. Note that although Corollary 4.1 is always valid, the
constant ηβ becomes very large with a large diffusion coefficient (due to the second term) and
thus the consistency becomes nearly degenerated very quickly. See the remarks below Corollary
4.1 and the statement of the bound in (3.10). The numerical results using the spatial averaging
strategy will be illustrated in the next subsection. On the other hand, the spatial covariance of
v changes in the same fashion as u but is weaker. This is because the diffusion appears in the u
equations and it only has an indirect impact on v. In all three regimes, the spatial covariance
decays in an exponential rate (see the subpanels). All these are consistent with the result in
(3.9) of Theorem 3.2.

(2) FHN model with only mean field interaction Now we study the situation in the
FHN model where the diffusion is zero (du = 0). Therefore, the covariance comes purely from
the global effect (i.e., the mean field interaction). We set again δ1 = δ2 = 0.4 but choose
different values of the mean field interaction parameter w which provides different dynamical
behavior:

(a) Weak mean field interaction regime: w = 0.1;

(b) Moderate mean field interaction regime: w = 0.3;

(c) Strong mean field interaction regime: w = 0.5.

(4.13)
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Figure 7 Simulations of the FHN model (4.9) with only diffusion but no mean field inter-

action (w = 0) in (a) Strongly mixed regime, (b) Weakly coherent regime, and (c) Strongly

coherent regime. The first row is the simulation of ui and the second is vi. Here N = 512.

−

−

−

− −

−

Figure 8 Covariance between u1 and ui for i = 1, · · · , N in the FHN model (4.9) with only

diffusion but no mean field interaction (w = 0) in the three regimes described in Figure 7

at time t = 5. The first row is the simulation of ui and the second is vi. The subpanels

show the covariance in a logarithm scale.

The simulations of the three regimes are shown between Figure 9. Again, these results are
computed using a Monte Carlo simulation with M = 8192 samples at each grid points. In
the moderate mean field interaction regime (Regime (b)), some global effects can already been
seen. In the strong mean field interaction regime (Regime (c)), it is clear that the variables
at different grid points are highly synchronized with each other, which is consistent with the
theoretic analysis described in the previous section.

Note the difference in Figures 7 and 9. In Figure 7 the diffusion leads to the development



908 N. Chen, A. J. Majda and X. T. Tong

of local interaction and extends it to the global scale. In Figure 9 the mean field interaction
starts directly with a change in the global scale and such a change becomes significant with the
increase of the mean field interaction strength w. Again, the constant ηβ in Corollary 4.1 with
a large mean field interaction coefficient can become very large (due to the first term) and thus
the consistency becomes nearly degenerated.

Figure 10 shows the covariance Cov(u1, u2) and Cov(v1, v2) as a function ofN in two different
regimes with either moderate or strong mean field interactions. With the increase of N , the
covariance decreases and the decrease rate is proportion to 1

N
(see the log-log plot), which is

consistent with the theoretical conclusion in (3.8) of Theorem 3.2.

Figure 9 Simulations of the FHN model (4.9) with only mean field interaction but no

diffusion du = 0 in (a) Weak mean field interaction regime, (b) Moderate mean field

interaction regime, and (c) Strong mean field interaction regime. The first row is the

simulation of ui and the second is vi. Here N = 512.

4.2.3 Recovery of the covariance using the spatial averaging strategy

In this subsection, we compare the covariance computed from the spatial averaging strategy

with the truth in order to study the consistency of the spatial averaging strategy. Here the

truth is formed by using direct Monte Carlo simulations.

Recall in Subsection 2.1, the spatial averaging strategy makes use of the statistical symmetry

of the system. Comparing with the covariance computed by using the direct Monte Carlo

simulations with a large sample size, the spatial averaging strategy requires only a small number

of repeated experiments to reach the same accuracy (providing that the consistency is valid).

In fact, due to the spatial homogeneity, the covariance between u1 and u2 is the same as that

between ui and ui+1 for all i = 1, · · · , N . Therefore, regarding u1, u2, · · · , uN as a sample

set, the covariance between u1 and u2 can be computed by taking the covariance between

u1, u2, · · · , uN and its shifted sample set u2, u3, · · · , uN , u1. Note that if M repeat experiments
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−
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Figure 10 Covariance between u1 and u2 (panel (a)) and between u1 and u2 (panel (c)) as

a function of N in the regime with moderate mean field interaction w = 0.3 and du = 0.

Panels (b) and (d) show the same results but are plotted in the log-log scale in order to

illustrate the decay rate 1
N

(in log-log scale, this corresponds to a linear decay rate). Panels

(e)–(h) are similar but are for the regime with strong mean field interaction w = 0.5 and

du = 0.

Figure 11 Spatiotemporal patterns of different dynamical regimes: (a) Strong diffusion

du = 10 and no mean field interaction w = 0; (b) Strong mean field interaction w = 0.5

and no diffusion du = 0; and (c) Moderate diffusion du = 0.5 and moderate mean field

interaction w = 0.3.

are combined (namely, M Monte Carlo simulations) with the spatial averaging strategy, then

the effective sample size is Meff = MN . One potential issue of the spatial averaging strategy

is that the samples u1, u2, · · · , uN are not independent with each other. Therefore, when these

samples are strongly correlated, then the spatial averaging strategy in computing the covariance
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Figure 12 Spatiotemporal patterns of different dynamical regimes (continued): (d) Mod-

erate diffusion du = 0.5 and weak mean field interaction w = 0.1; (e) Moderate mean field

interaction w = 0.3 and no diffusion du = 0; and (f) Moderate diffusion du = 0.5 and no

mean field interaction w = 0.

may lead to biases. In this subsection, we compare the covariance computed from the spatial

averaging strategy with the truth that is generated from the Monte Carlo simulations in different

dynamical regimes. The goal is to explore the consistency of this spatial averaging strategy in

computing the covariance in different dynamical regimes.

Below, we always take N = 512 spatial grid points. For a fair comparison, we generate the

truth using the direct Monte Carlo simulation with MMC = N = 512 samples, which equals to

the effective sample number using the spatial averaging strategy with simply one simulation. In

all the tests shown below, we compare the covariance computed using the above two strategies

at time t = 0.5, t = 1, t = 2 and t = 5. The regimes to be tested contain both local and

non-local effects with various strengths. See Figures 11–12 for the spatiotemporal simulations

of different dynamical regimes.

In Figure 11, strong spatial correlations are seen in all three dynamical regimes and the

underlying stochastic processes is not mixing. Yet, there are some fundamental difference in

these dynamical regimes. In Regime (a), there is a strong diffusion but there is no mean field

interaction. Thus, the correlation comes from only the local effect but the diffusion is so strong

that each grid point affects the other points that are far from itself. In Regime (b), only the mean

field interaction plays an role since the diffusion is zero but the mean field interaction coefficient

is quite large. Thus, a strong synchronization is seen in the spatiotemporal patterns. Regime (c)

involves both a moderate diffusion and a moderate mean field interaction. The combined local

and non-local effects also contribute to the strong correlation in the spatiotemporal patterns.

Figure 13 shows the calculated covariance based on the spatial averaging strategy (red) and the

truth generated from the direct Monte Carlo simulation (green). For a short time up to t = 1,

the consistency is found in Regimes (a) and (b). But the covariance computed from the spatial

averaging strategy becomes significantly different from the truth after t = 2, which indicates the
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loss of the long-term consistency using the spatial averaging strategy. These results are related

to the loss of practical controllability as was discussed in the previous subsection. In fact, the

constant ηβ in Corollary 4.1 becomes very large in both regimes due to the strong diffusion

and/or the strong mean field interaction and thus the consistency of the spatial averaging

strategy becomes nearly degenerated very quickly, which has been pointed out in the remarks

below Corollary 4.1. For Regime (b), due to the strong global effect (via mean field interaction),

the consistency is again lost very quickly at t = 1. Note in all these three regimes the covariance

is not localized after a certain time due to either strong diffusion or strong mean field interaction

(or both). Thus, the spatial averaging strategy does not work well for long time.

− − −−

− − − −

Figure 13 Comparison of the Monte Carlo and spatial average strategies in computing

the covariance of the FHN model in the regimes with (a) Strong diffusion du = 10 and no

mean field interaction w = 0; (b) Strong mean field interaction w = 0.5 and no diffusion

du = 0; (c) Moderate diffusion du = 0.5 and moderate mean field interaction w = 0.3.

On the other hand, no strong spatial synchronization is observed in the three dynamical

regimes shown in Figure 12. Some weak spatial synchronization is observed in Regimes (d) and

(e), where the former involves a moderate diffusion and a weak mean field interaction while

the latter is given by a moderate mean field interaction but no diffusion. Regarding the spatial

covariance, Figure 14 shows that the spatial averaging strategy is able to provide accurate

solutions up to t = 2. At t = 5, a slight inconsistency in the solution computed from the spatial

averaging strategy is found, which is due to the degeneration of the consistency for long time as

indicated in Corollary 4.1. Thus, the spatial averaging strategy is skillful at short and moderate

times but the long-term consistency cannot be guaranteed in these regimes.

Finally, in Regime (f), which involves only a moderate diffusion but no mean field interaction,

the consistency of the solution using the spatial averaging strategy lasts longer and is at least

up to t = 5 (see Figure 15).

To summarize, both a strong global effect (mean field interaction) and a strong local effect

(diffusion) will lead to the loss of the long-term consistency in the solutions using the spatial
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− − − −

Figure 14 Comparison of the Monte Carlo and spatial average strategies in computing

the covariance of the FHN model in the regimes with (d) Moderate diffusion du = 0.5 and

weak mean field interaction w = 0.1; and (e) Moderate mean field interaction w = 0.3 and

no diffusion du = 0.

Figure 15 Comparison of the Monte Carlo and spatial average strategies in computing the

covariance of the FHN model in the regimes with (f) Moderate diffusion du = 0.5 and no

mean field interaction w = 0.

averaging strategy, which has been clearly indicated in Corollary 4.1 and the remarks below it.

The spatial averaging strategy is skillful and can be applied for a relatively long time when the

FHN model has a weak global or a moderate local effect.

5 Conclusions

In this article, a theoretical framework to understand the spatial localization for a large class

of stochastically coupled nonlinear systems in high dimensions is developed and is applied to

nonlinear complex models for excitable media. Rigorous mathematical theories (Theorem 3.2)

show covariance decay behavior due to both local and nonlocal effects, which result from the

diffusion and the mean field interaction, respectively. The analysis is based on a comparison with

an appropriate linear surrogate model, of which the covariance propagation can be computed

explicitly. Two important applications of these theoretical results are illustrated. They are

the spatial averaging strategy for efficiently sampling the state variables and the localization

technique in data assimilation. Test examples of a linear model and a stochastically coupled

FitzHugh-Nagumo model for excitable media are adopted to validate the theoretical results.
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The later is also used for a systematical study of the spatial averaging strategy in efficiently

sampling the covariance matrix in different dynamical regimes. The spatial averaging strategy

is always skillful for short time. The long-term consistency of the spatial averaging strategy

requires that the mean field interaction and the diffusion cannot be too strong and the covariance

matrix has localized structures.

A Proof

We provide the proofs of the theoretical results in this appendix. In particular for Theorem

3.1, its arguments are broken into subsections.

A.1 Consistency of the numerical formulation

Lemma A.1 Under the conditions of Theorem 3.2, let X(0) = x(0), and Wn = whn −
wh(n−1), and consider the corresponding X(n) given by (3.5). Then if we write ∆(t) = X(T )−
x(t), there is a constant Dt such that for any sufficiently small h,

E‖∆(s)‖2 ≤ exp(2(λ0 + 2λH)t)h‖DΣ‖2F , s ≤ t.

Proof Let z(nh) = X(n), and z((n+s)h) = Ψsh(X(n)) for 0 ≤ s < 1. Clearly z(0) = x(0).

Note that

d∆(t) = (F (x(t)) − F (z(t)))dt +DΣdw(t), t ∈ (nh, (n+ 1)h).

So

d‖∆(t)‖2 = 2〈F (x(t)) − F (z(t)),x(t) − z(t)〉dt+ ‖DΣ‖2Fdt+ 2〈x(t) − z(t), DΣdw(t)〉.

Note that under our conditions

〈F (x(t)) − F (z(t)),x(t) − z(t)〉 =
∫ 1

0

ds〈∇F (z(t) + s∆(t))∆(t),∆(t)〉.

But

〈∇F (z(t) + s∆(t))∆(t),∆(t)〉
=

∑

i

∆i(t)
T{∇F (z(t) + s∆(t))}i,i∆i(t) +

∑

i,m=±1

∆i+m(t)T{∇F (z(t) + s∆(t))}i,i+m∆i(t)

≤
∑

i

λ0‖∆i(t)‖2 +
∑

i,m=±1

λH‖∆i+m(t)‖‖∆i(t)‖ ≤ (λ0 + 2λH)‖∆(t)‖2.

Therefore

〈F (x(t)) − F (z(t)),x(t) − z(t)〉 ≤ (λ0 + 2λH)‖∆(t)‖2.
So by Gronwall’s inequality

E‖∆(nh+ h−)‖2 ≤ exp(2(λ0 + 2λH)h)E‖∆(nh)‖2 + exp(2(λ0 + 2λH)h)− 1

2λ0 + 4λH

‖DΣ‖2F .

Next notice that

∆((n+1)h) = ∆(nh)+

∫ h

0

(F (x(nh+ s))− F (z(nh+ s))) ds = ∆((n+1)h−)−
∫ h

0

DΣdwnh+s.
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By Itô’s isometry

d
〈
∆(nh+ s),

∫ s

0

DΣdwnh+s

〉
= 〈F (x(nh + s))− F (z(nh+ s)), DΣdwnh+s〉ds+ ‖DΣ‖2Fds.

Therefore

E

〈
∆(nh+ s),

∫ s

0

DΣdwnh+s

〉
= ‖DΣ‖2F s.

Therefore, when h is small enough, by Taylor expansion,

E‖∆((n+ 1)h)‖2

= E‖∆((n+ 1)h−)‖2 − ‖DΣ‖2Fh

≤ exp(2(λ0 + 2λH)h)E‖∆(nh)‖2 +
(exp(2(λ0 + 2λH)h)− 1

2λ0 + 4λH

− h
)
‖DΣ‖2F

≤ exp(2(λ0 + 2λH)h)E‖∆(nh)‖2 + 4(λ0 + 2λH)h2‖DΣ‖2F .

Then by the discrete Gronwall’s inequality, if λ0 + 2λH > 0, at Th = t, since exp(a) − 1 > a

for all a > 0,

E‖∆(t)‖2 ≤ 2(λ0 + 2λH)
exp(2(λ0 + 2λH)t)− 1

exp(2(λ0 + 2λH)h)− 1
h2‖DΣ‖2F ≤ exp(2(λ0 + 2λH)t)h‖DΣ‖2F .

A.2 Decomposition of covariance

Clearly, we can view X(T ) as a function of the realization of Wi,

X(T ) = Φ(W0,W1,W2, · · · ,WT ) = Ψh(· · · (Ψh(Ψh(X0) + ΣhW1) + ΣhW2) · · · ) + ΣhWT .

For the simplicity of notation, we write W0,W1,W2, · · · ,WT as W0:T in below. And the i-th

block of Φ ∈ R
qN as Φi ∈ R

q. Then we can write Xi(T ) = Φi(W0:T ).

We can study the dependence of X(T ) on the Wi through the gradients, written as ∇iΦ :=

∇Wi
Φ. By the chain rule, it has this back propagation formulation,

∇TΦ = Σh, ∇T−1Φ = ∇Ψh(XT−1)Σh,

∇T−2Φ = ∇Ψh(XT−1)∇Ψh(XT−2)Σh,

∇kΦ = ∇Ψh(XT−1) · · · ∇Ψh(Xk)Σh,

∇0Φ = ∇Ψh(XT−1) · · · ∇Ψh(X0)Σ0.

(A.1)

To investigate the covariance, we consider another independent sample

X′(T ) = Φ(W′
0:T ) = Φ(W′

0,W
′
1,W

′
2, · · · ,W′

T ).

Then clearly the covariance can be written as

cov(g(Xi(T )), g(Xj(T ))) = Eg(Xi(T ))g(Xj(T ))− Eg(Xi(T ))g(X
′
j(T )).

We can decompose it by considering

∆k := g(Φi(W0:T ))g(Φj(W0:k,W
′
k+1:T ))− g(Φi(W0:T ))g(Φj(W0:k−1,W

′
k:T ))

= g(Φi(W0:T ))g(Φj(W0:k−1,Wk,W
′
k+1:T ))

− g(Φi(W0:T ))g(Φj(W0:k−1,W
′
k,W

′
k+1:T )). (A.2)
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Because X(T ) = Φ(W0:T ),X
′(T ) = Φ(W′

0:T ), so

g(Xi(T ))g(Xj(T ))− g(Xi(T ))g(X
′
j(T )) =

T∑

k=0

∆k.

We will bound E∆k using a Stein’s lemma type of formula, Lemma 3.1. Its proof is given below.

A.3 Stein’s lemma

Proof of Lemma 3.1 The first part comes simply by

cov(f(X), g(X)) = Ef(X)g(X)− Ef(X)Eg(Y ) = Ef(X)g(X)− Ef(X)g(Y ).

The note that

f(X)g(Y )− f(X)g(X) = f(X)g(Xθ)

∣∣∣∣
θ=π

2

θ=0

=

∫ π
2

0

f(X)
d

dθ
g(Xθ)dθ

=

∫ π
2

0

f(X)〈∇g(Xθ),− sin θX + cos θ Y 〉dθ.

Note that when X ∼ N (0, Id), and smooth vector field h : Rd → R
d, let c = (2π)−

d
2 , by the

divergence theorem of calculus,
∫
∇ · (h(x)e− 1

2
|x|2)dx = 0, therefore

E〈h(X), X〉 = c

∫
〈h(x),x〉e− 1

2
|x|2dx = −c

∫
〈h(x),∇e−

1
2
|x|2〉dx

= c

∫
∇ · h(x)e− 1

2
|x|2dx = E∇ · h(X). (A.3)

Here, ∇· denotes the divergence operator. Therefore, if we condition on the value of Y and use

law of total expectation

E〈f(X)∇g(Xθ), X〉 = EEY 〈f(X)∇g(cos θX + sin θ Y ), X〉
= EEY ∇ · (f(X)∇g(cos θX + sin θ Y ))

= EEY 〈∇f(X),∇g(Xθ)〉+ cos θEEY f(X)∇ · ∇g(Xθ)

= E〈∇f(X),∇g(Xθ)〉 + cos θEf(X)∇ · ∇g(Xθ).

Likewise, we have the following

E〈f(X)∇g(Xθ), Y 〉 = EEX〈f(X)∇g(cos θX + sin θ Y ), Y 〉
= sin θEEXf(X)∇ · ∇g(cos θX + sin θ Y )

= sin θEf(X)∇ · ∇g(cos θ X + sin θ Y ).

Therefore, we have

Ef(X)〈∇g(Xθ),− sin θ X + cos θ Y 〉 = − sin θE〈∇f(X),∇g(Xθ)〉,

and this finishes our proof.
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To apply Lemma 3.1, we view Wk as X , and W′
k as Y in (A.2). Let

Wθ,k := [W1:k−1, cos θWk + sin θW′
k,W

′
k+1:T ].

Then

∆k = g(Φi(W0:T ))g(Φj(W
0,k))− g(Φi(W0:T ))g(Φj(W

π
2
,k)).

Note that by the chain rule,

∇kg(Φj(W0:T )) = ∇g(Φj(W0:T ))∇kΦj(W0:T ).

So by Lemma 3.1, we have

E∆k =

∫ π
2

0

sin θE〈∇g(Φi(W0:T ))∇kΦi(W0:T ),∇g(Φj(W
θ,k))∇kΦj(W

θ,k)〉dθ

=

∫ π
2

0

sin θEtr
(
∇g(Φj(W

θ,k))T∇g(Φi(W0:T ))∇kΦi(W0:T )∇kΦj(W
θ,k)T

)
dθ

≤ ‖∇g‖2∞
∫ π

2

0

sin θE
∣∣tr

(
∇kΦi(W0:T )∇kΦj(W

θ,k)T
)∣∣dθ. (A.4)

Note that ∇kΦi(W0:T )∇kΦj(W
θ,k)T ∈ R

q×q is the (i, j)-th sub-block of

Rk := ∇kΦ(W0:T )∇kΦ(W
θ,k)T ∈ R

qN×qN . (A.5)

So essentially we want bound (A.5) in each of its block. To do that, we need to consider the

derivative of the flow Ψt.

A.4 Derivative flow

Lemma A.2 Fix any realization of W0:T and W′
0:T . Let Qh(s) = exp(hG∗s) exp(hG∗s)

T.

The (i, j)-th sub-block of Rk is bounded by

‖Rk
i,j‖F ≤ ‖hΣ2‖F [Q(T − k)]i,j , k ≥ 1, ‖R0

i,j‖F ≤ ‖Σ2
0‖F [Q(T )]i,j.

Proof We will discuss only the k ≥ 1 case, the analysis k = 0 case is identical. For any

s ≤ T − k, we can extend the definition of X(t) to noninteger t, by letting

X(k + s) = Ψsh(X(k + ⌊s⌋)) if s 6= ⌊s⌋.

Here ⌊s⌋ denotes the largest integer that is less than s. The derivative flow of Ψt can also be

extended. We define the following R
qN×qN matrix:

P (s) = ∇Ψ(s−⌊s⌋)h(X(k + ⌊s⌋)) · · · ∇Ψh(X(k))Σh.

Then following the back propagation formula (A.1), ∇kΦ = P (T − k). P (s) also follows the

following differential equation with initial condition P (0) = Σh,

Ṗ (s) = hG(k + s,X(k + s))P (s).

G(s,x) ∈ R
qN×qN is the Jacobian created by the ODE flow (3.4). So its (i, j)-th sub-block is

given by

Gi,j(s,x) = ∇xj
fi(s,xi−1,xi,xi+1) +

1

N
∇xj

hi(s,xj).



Spatial Localization for Nonlinear Dynamical Stochastic Models for Excitable Media 917

Clearly, it is a block-tridiagonal matrix.

Because of (A.5), we are also interested in ∇kΦ(W
θ,k). We consider a numerical sequence

generated by (3.5), but the driving noise is Wθ,k. Fix a θ ∈
[
0, π

2

]
. Let Y(n) = X(n) for

n = 0, · · · , k,
Y(k + 1) = Ψh(X(k)) + Σh cos θWk +Σh sin θW

′
k,

and Y(n+1) = Ψh(Y(n)) +ΣhW
′
n for n ≥ k+1. We also define Y(k+ s) = Ψsh(Y(k + ⌊s⌋))

for noninteger time s 6= ⌊s⌋. Define also the following matrix

P ′(s) = ∇Ψ(s−⌊s⌋)h(Yk+⌊s⌋) · · · ∇Ψh(Yk)Σh.

It follows the ODE:

Ṗ ′(s) = hG(k + s,Y(k + s))Ṗ ′(s).

By the back propagation formula (A.1), P ′(T − k) = ∇kΦ(W
θ,k).

Let R(s) = P (s)(P ′(s))T. The quantity we are interested is Rk = R(T − k). R(s) follows

the following ODE:

Ṙ(s) = hG(Xk+s)R(s) + hR(s)G(Yk+s)
T, R(0) = ΣhΣ

T
h = Σ2

h.

Here and below, we write G(k + s,Xk+s) as G(Xk+s) for simplicity. Consider the (i, j)-th

sub block of Ri,j(s). In below, we use {AB}i,j to denote the (i, j)-th sub block of matrix

AB. We also define the inner product of matrices as 〈A,B〉 = tr(ATB). Then ‖Ri,j(s)‖2F =

〈Ri,j(s), Ri,j(s)〉. We take time derivative, and recall that G is block tridiagonal, so

d

ds
〈Ri,j(s), Ri,j(s)〉 = 2h〈{G(Xk+s)R(s)}i,j , Ri,j(s)〉+ 2h〈{R(s)G(Yk+s)

T}i,j , Ri,j(s)〉

= 2h〈Gi,i(Xk+s)Ri,j(s), Ri,j(s)〉 + 2h〈Ri,j(s)Gj,j(Yk+s)
T, Ri,j(s)〉

+ 2h
∑

m=±1

〈Gi,i+m(Xk+s)Ri+m,j(s), Ri,j(s)〉

+ 2h
∑

m=±1

〈Ri,j+m(s)Gj,j+m(Yk+s)
T, Ri,j(s)〉.

Because of the covariance propagation assumption in Theorem 3.1, and an elementary A.3 for

matrix inner product, we can bound each term as below

〈Gi,i(Xk+s)Ri,j(s), Ri,j(s)〉 ≤ [G∗(s+ k)]i,i‖Ri,j(s)‖2F ,
〈Ri,j(s)Gj,j(Yk+s)

T, Ri,j(s)〉 ≤ [G∗(s+ k)]j,j‖Ri,j(s)‖2F ,
〈Gi,i+m(Xk+s)Ri+m,j(s), Ri,j(s)〉 ≤ [G∗(s+ k)]i,i+m‖Ri,j(s)‖F ‖Ri+m,j(s)‖F ,
〈Ri,j+m(s)Gj,j+m(Yk+s)

T, Ri,j(s)〉 ≤ [G∗(s+ k)]j,j+m‖Ri,j(s)‖F ‖Ri,j+m(s)‖F .

In conclusion, we have the following with the dependence of G∗ on s+ k suppressed,

d

ds
‖Ri,j(s)‖2F ≤ 2([G∗]i,i + [G∗]j,j)h‖Ri,j(s)‖2F + 2

∑

m=±1

[G∗]i,i+mh‖Ri,j(s)‖F ‖Ri+m,j(s)‖F

+ 2
∑

m=±1

[G∗]j+m,jh‖Ri,j(s)‖F ‖Ri,j+m(s)‖F .
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Since d
ds‖Ri,j(s)‖2F = 2‖Ri,j(s)‖F d

ds‖Ri,j(s)‖F , we have

d

ds
‖Ri,j(s)‖F

≤ h([G∗]i,i + [G∗]j,j)‖Ri,j(s)‖F + h
∑

m=±1

[G∗]i,i+m‖Ri+m,j(s)‖F + [G∗]j+m,j‖Ri,j+m(s)‖F .

Next we consider Qh(s). Note that ‖hΣ2‖F [Qh(0)]i,j = ‖Ri,j(0)‖F . Moreover, Qh follows the

ODE
d

ds
Qh(s) = hG∗Qh(s) + hQh(s)G

T
∗ .

Use the fact that G∗ is tridiagonal,

d

ds
[Qh(s)]i,j = h[G∗Qh(s)]i,j + h[Qh(s)G

T
∗ ]i,j

= h([G∗]i,i + [G∗]j,j)[Qh(s)]i,j

+ h
∑

m=±1

[G∗]i,i+m[Qh(s)]i+m,j + [G∗]j,j+m[Qh(s)]i,j+m.

If we view [Qh(s)]i,j as a linear ODE, the non diagonal term of this ODE system , [G∗]i,i+m

and [G∗]j,j+m, are all nonnegative. So by Lemma A.4, we have that

‖Ri,j(s)‖F ≤ [Q(s)]i,j‖hΣ2‖F .

This leads to our claims.

Lemma A.3 Suppose A + AT � 2λAI, then 〈AX,X〉 ≤ λA〈X,X〉, and 〈XA,X〉 ≤
λA〈X,X〉.

Proof Let vi be the right eigenvectors of X , so Xvi = λivi, then

〈AX,X〉 = tr(AXXT) = tr(XTAX) =
∑

i

v∗iX
TAXvi

=
∑

i

|λi|2v∗i Avi ≤ λA

∑

i

|λi|2 = λA〈X,X〉.

For the second claim, let vi be the right eigenvectors of XT, so XTvi = λivi,

〈XA,X〉 = tr(XAXT) =
∑

i

v∗i X
TAXvi =

∑

i

|λi|2v∗iAvi ≤ λA

∑

i

|λi|2 = λA〈X,X〉.

Lemma A.4 If A ∈ R
d×d has all non-diagonal entries being nonnegative, then exp(sA) has

all entries being nonnegative for any s. In particular, if X(s) ∈ R
d and Y (s) ∈ R

d satisfies

d

ds
X(s) ≤ AX(s),

d

ds
Y (s) = AY (s),

where ≤ is interpreted entry-wise. Then X(0) ≤ Y (0) leads to X(s) ≤ Y (s) entry-wise.

Proof The statement is elementary if all of A diagonal entries are also nonnegative, since

exp(sA) = I + sA+
1

2!
s2a2 +

1

3!
s3A3 + · · · .
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On the other hand, we can always find a λ so that λI + sA has all diagonal entries being

nonnegative. Because I commute with sA, so

exp(sA) = exp(−λI) exp(λI + sA) = e−λ exp(λI+ sA),

and all entries of exp(sA) are nonnegative.

For the ODE system, we first consider the case when all entries of A are positive. Define

∆(s) = Y (s)−X(s). ∆(0) ≥ 0 entry-wise. Also when ∆(s) ≥ 0,

d

ds
∆(s) ≥ A∆(s) ≥ 0,

meaning ∆(s) is increasing entry-wise. Therefore ∆(s) ≥ 0 entry-wise for s ≥ 0.

If the diagonal terms of A are negative, we can consider Xλ(t) = eλtX(t) and Yλ(t) =

eλtY (t), then
d

ds
Xλ(s) ≤ (A+ λI)X(s),

d

ds
Y (s) = (A+ λI)Y (s).

By our previous analysis, Xλ(t) ≤ Yλ(t) entry-wise, which leads to X(t) ≤ Y (t) entry-wise.

A.5 Summarizing argument

Proof of Theorem 3.1 Recall in (A.4), we have

|E∆k| ≤ ‖∇f‖2∞
∫ π

2

0

sin θ|Etr(Rk
i,j)|dθ.

Note that Rk
i,j is q × q dimensional, so by Cauchy-Schwartz, |tr(Rk

i,j)| ≤
√
q‖Rk

i,j‖F . Lemma

A.2 shows that

‖Rk
i,j‖F ≤ h‖Σ2‖F [Qh(T − k)]i,j , k ≥ 1, ‖R0

i,j‖F ≤ ‖Σ2
0‖F [Qh(T )]i,j .

Therefore for k ≥ 1,

|E∆k| ≤ h
√
q‖∇g‖2∞‖Σ2‖F [Qh(T − k)]i,j

∫ π
2

0

sin θdθ =
√
qh‖∇g‖2∞‖Σ2‖F [Qh(T − k)]i,j ,

and likewise |E∆0| ≤ √
q‖∇g‖2∞‖Σ2

0‖F [Qh(T )]i,j . Consequentially, we have

|cov(g(Xi(T )), g(Xj(T )))|

≤ √
q‖∇g‖2∞

(
‖Σ2

0‖FQh(T ) + h‖Σ2‖F
T∑

k=1

E[Qh(T − k)]i,j

)
. (A.6)

When we let h → 0, X(T ) → x(t) by Lemma A.1. Then

|Eg(Xi(T ))g(Xj(T ))− Eg(xi(t))g(xj(t))|
≤ E|g(xi(t))(g(Xj(T ))− g(xj(t)))|+ E|g(xj(t))(g(Xi(T ))− g(xi(t)))|
+ E|(g(Xi(T ))− g(xi(T )))(g(Xj(T ))− g(xj(t)))|

≤
√
E|g(xi(T ))|2E|g(Xj(T ))− g(xj(t))|2 +

√
E|g(xj(t))|2E|g(Xi(T ))− g(xi(t))|2

+
√
E|g(Xi(T ))− g(xi(t))|2E|g(Xj(T ))− g(xj(t))|2.
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By the Lipschitzness of SDE coefficient, it is standard to show that E|g(xi(t))|2 ≤ ‖∇g‖2∞E‖xi(t)‖2
is bounded. By Lemma A.1 we know

E|g(Xj(T ))− g(xj(t))|2 ≤ E‖∇g‖2∞‖Xj(T )− xj(t)‖2 = O(h).

Also note that Qh(n) = Q(hn), by letting h → 0, we have our claim.

A.6 Continuous time random walk

Lemma A.5 The Q(s) in Theorem 3.2 has the following upper bound

[Q(s)]i,j ≤ 2 exp(λβs)
(
exp(−βd(i, j)) +

(1 + e−β)(eλHs − 1)

(1− e−β)N

)
,

and
∫ t

0

[Q(s)]i,jds ≤
2 exp (λβt)− 2

λβ

(
e−βd(i,j) − 2

(1− e−β)N

)
+

2(exp (ηβt)− 1)(1 + e−β)

ηβ(1− e−β)N
.

Proof Let FH = F∗ − λGIN , then its entries are

[FH ]i,i = −2λF , [FH ]i,i±1 = λF .

Then exp(FHs) = esλG exp(F∗s). Moreover, because H∗FH = FHH∗ = 0, so exp(GHs) =

exp(FHs) exp(H∗s). We first study the behavior of exp(FHs).

Let Zt be a continuous time random walk on Z, with rate λz,z±1 = λH . Denote its projection

on the modular space Z/NZ as Yt, which becomes a continuous time random walk on Z/NZ.

Clearly FH is the transition rate matrix of Yt. Therefore,

[exp(FHs)]i,j = P(Ys = j | Y0 = i).

Then by the Markov property and the translation invariance of random walk,

[exp(FHs)]i,j =

∞∑

n=−∞

P(Zs = j − i+ nN |Z0 = 0)

≤ P(|Zs| ≥ d(i, j)|Z0 = 0) = 2P(Zs > d(i, j)|Z0 = 0).

Next we investigate the Laplace transform eβz. Applying the generator of Zt,

Aeβz = λF e
β(z+1) + λF e

β(z−1) − 2λF e
βz = λF (e

β + e−β − 2)eβz.

By Dynkin’s formula,
d

dt
EeβZt = λF (e

β + e−β − 2)EeβZt ,

therefore, E(eβZt | Z0 = 0) = exp(λF t(e
β + e−β − 2)). By Markov inequality,

P(Zs > d(i, j) | Z0 = 0) ≤ 2 exp(λF s(e
β + e−β − 2)− βd(i, j)).

This leads to our first claim on [exp(FHs)]i,j ≤ 2 exp(sλG + λF s(e
β + e−β − 2)− βd(i, j)).

Next we try to compute exp(H∗s). Because (H∗/λH)n = H∗/λH = 1
N
1 · 1T for any n ≥ 0,

so

exp(H∗s) =

∞∑

n=0

snλn
H

n!

(H∗

λH

)n

=
eλHs − 1

λH

H∗ + IN .
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Then

[Q(s)]i,j ≤
∑

k

[exp(FHs)]i,k[exp(H∗s)]k,j

= [exp(FHs)]i,j +
1

N
(eλHs − 1)

N∑

k=1

[exp(FHs)]i,k

≤ 2 exp(λGs+ λF s(e
β + e−β − 2))

(
exp(−βd(i, j)) +

eλHs − 1

N

N∑

k=1

exp(−βd(i, k))
)

≤ 2 exp(λβs)
(
exp(−βd(i, j)) +

(1 + e−β)(eλHs − 1)

(1 − e−β)N

)
.

Its integral can be further bounded by
∫ t

0

[Q(s)]i,jds ≤ 2

∫ t

0

exp(λβs)
(
exp(−βd(i, j)) +

(1 + e−β)(eλHs − 1)

(1− e−β)N

)
ds

=
2 exp(λβt)− 2

λβ

(
e−βd(i,j) − 1 + e−β

(1− e−β)N

)
+

2(exp(ηβt)− 1)(1 + e−β)

ηβ(1 − e−β)N
.

B Analytic Solution of the Linear Model

For the linear model (4.1), collecting all the state variables u = (u1, u2, · · · , uN), the abstract

form the the system is given by

du

dt
= Au+ΣẆu. (B.1)

According to (4.1), the coefficient matrices A and Σ are given by

A =




−a
−a

−a
. . .

−a
−a




+ du




−2 1 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 1 −2




+
w

N




1 1 · · · · · · 1 1
1 1 · · · · · · 1 1
...

...
. . .

. . .
...

...
...

...
. . .

. . .
...

...
1 1 · · · · · · 1 1
1 1 · · · · · · 1 1




− w




1
1

1
1

1
1




,

Σ =σu




1
1

. . .

1


 .

It is easy to verify that A is a negative definite matrix. Therefore, eigenvalue decomposition

allows the following

A = QΛQT,
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where Λ is a diagonal matrix with all diagonal entries λ1, · · · , λN being negative.

The solution of u is given by

u(t) = u(0)eAt + eAt

∫ t

0

e−AtΣdWu. (B.2)

The time evolution of the covariance matrix is given by

〈u′2
t 〉 = 〈u′2

0 〉e2At + σ2
u

∫ t

0

e2A(t−s)ds

= 〈u′2
0 〉Qe2ΛtQT + σ2

u

∫ t

0

Qe2Λ(t−s)QTds

= 〈u′2
0 〉Qe2ΛtQT + σ2

uQ
{e2λit − 1

2λi

}
QT, (B.3)

where

{e2λit − 1

2λi

}
=




e2λ1t − 1

2λ1

. . .

e2λN t − 1

2λN




.
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