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Abstract Real-time crime forecasting is important. However, accurate prediction of when
and where the next crime will happen is difficult. No known physical model provides a
reasonable approximation to such a complex system. Historical crime data are sparse in
both space and time and the signal of interests is weak. In this work, the authors first
present a proper representation of crime data. The authors then adapt the spatial temporal
residual network on the well represented data to predict the distribution of crime in Los
Angeles at the scale of hours in neighborhood-sized parcels. These experiments as well
as comparisons with several existing approaches to prediction demonstrate the superiority
of the proposed model in terms of accuracy. Finally, the authors present a ternarization
technique to address the resource consumption issue for its deployment in real world. This
work is an extension of our short conference proceeding paper [Wang, B., Zhang, D., Zhang,
D. H., et al., Deep learning for real time Crime forecasting, 2017, arXiv: 1707.03340].
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1 Introduction

Forecasting crime at hourly or even finer temporal scales in micro-geographic regions is an

important scientific and practical problem. Anticipating where and when crime is most likely

to occur creates novel opportunities to prevent crime. However, accurate crime forecasting at

fine spatial temporal scales is very challenging. The occurrence of crime depends on complex

factors, many of which cannot be described quantitatively. Statistically, crime is extremely

stochastic and sparse in both space and time (see [21]). Recent efforts have been devoted to the

mathematical and statistical modeling of crime. Short et al. introduced a novel partial differ-

ential equations (PDE for short) model to simulate crime hotspots and analyzed the regime for
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different dynamical patterns (see [25–27]). The PDE model provides a macroscale description

which can be regarded as a continuum limit of the microscopic random walk. Considering crime

as self-exciting, Mohler et al. adapted the epidemic type aftershock sequence (ETAS for short)

model to crime modeling (see [20, 24]). The ETAS model provides a microscopic representation

of the crime events with predictive power. Such point process idea have been extended to study

other crime problems such as crime missing data reconstruction (see [28]). Another class of

crime predictors uses autoregressive integrated moving average (ARIMA for short) or other

simple statistical models (see [1, 8]). The aforementioned models are built only on historical

data. There is also interesting work on crime prediction using social network data, e.g., Twitter

(see [2, 31]).

Deep learning has recently been used for crime modeling and forecasting. In our previous

work, we considered real-time crime forecasting at fine spatial scale (see [30]). Kang et al

studied the crime forecasting problem by transforming it into binary classification problem

(see [14]). The key idea is to have a convolutional neural network (CNN for short) learn the

features for crime forecasting with inputs of historical data, weather, geographical information,

etc. Finally, they apply a support vector machine (SVM for short) to classify the region into

crime or no crime with a posterior probability. This is an interesting idea, but not an optimal

approach. Consider two regions. One region always has one crime happen with certainty. The

other region has many crimes to happen, but only with 90 percent probability. Based on the

classification approach, the first region would be flagged for patrol over the second. This model

does not fully model the fine scale spatial temporal patterns in the crime data.

Recent advances in deep learning techniques has made forecasting of complex spatial tem-

poral crime patterns more tractable (see [10–11, 13, 16, 19, 33]). Some of the most successful

applications include citywide traffic flow forecasting, motion prediction and human object inter-

action modeling. Zhang et al. [33] create an ensemble of residual networks (see [9]) to study the

traffic flow, their network is called ST-ResNet. The key idea is to map the traffic flow at each

time slot to an image and explicit specify the dependencies. Their model gave excellent traffic

flow forecasting in Beijing and New York city. Jain et al. [13] proposed a jointly trainable neural

network structure, called a structural recurrent neural network (SRNN for short), which is a

feed-forward arrangement of RNN units. The SRNN gives state-of-the-art motion forecasting.

Moreover, the SRNN is scalable to massive data sets. For periodic motion forecasting, Holden

et al. [11] proposed a phased-function neural network for character control, their techniques

have been successfully used in the gaming industry.

Despite CNNs’ superior performance in various real-world applications including crime pre-

diction, their memory and energy consumptions can be a problem, especially when deployed

on mobile devices with limited resources, due to the huge number of floating-point parameters

in the models. Recent efforts have been made to develop quantization techniques (see [5–6, 17,

23, 32, 35]) for training CNNs with low precision parameters. Thus we are able to compress the

model size and speed up computation during inference. For example, in binary weight neural

networks (BNNs for short) (see [5–6, 23]), the weights in the same fully-connected or convolu-

tional layer are restricted to have the same magnitude. For a layer with n binary weights, the

storage of these parameters only requires the memory for one 32-bit floating-point number and
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n 1-bit binary numbers (i.e., ±1) instead of that for n 32-bit weights, resulting in approximately

32× memory savings. Moreover, at inference time, the need for floating-point multiplications

can be eliminated by leveraging the distributive law during forward propagation, which enables

faster deployment and substantial energy savings. More precisely, in BNNs, a weight filter

matrix or a 4 dimensional tensor, can be expressed as

W = αB,

where α > 0 is the layer-wise scaling factor and B has the same size as W but only contains

entries ±1. Given input I, the forward propagation calls for evaluating

W ∗ I = α(B ∗ I),

where ∗ denotes the convolution operation or matrix-vector multiplication. Note that the com-

putation of B ∗ I involves additions and subtractions only. Unfortunately, weight binarization

often leads to nonnegligible loss of prediction accuracy (see [5–6, 17, 23]). TNNs strike a balance

between the accuracy and memory storage. Compared to BNNs, Ternary weight neural net-

works (TNNs for short) (see [17, 32, 35]) own an extra state 0 for the weights and thus enjoy a

larger model capacity. TNNs benefit in the same way as BNNs do from quantization.Thanks to

sparsity, a number of additions/subtractions can be further dropped from forward propagation.

To store ternary numbers, we need 2-bit representation which results in 16× model compression

rate. BNNs or TNNs theoretically achieve up to 32× faster convolutional operations during

forward propagation at inference time. This speedup can be further boosted by specialized

AI chips particularly for low-bit operations. More importantly, compared with full-precision

models, TNNs can achieve nearly lossless accuracy in benchmark tests such as MNIST and

CIFAR10 (see [17]). Other methods for training general low-bit CNNs have also been proposed

(see [32, 34]).

In this paper, we study the crime forecasting at small spatial and hourly temporal scales. We

adapt the ST-ResNet structure for our purposes. Compared to the traffic flow data handled

by ST-ResNet, crime data is more challenging. Crime data has much less spatial temporal

regularity, i.e., the number of events in adjacent time intervals and spatial cells differ hugely.

Crime data are very sparse in both space and time. Crime types are also diverse (see [21]).

Our contribution is four-fold. First, we select the appropriate spatial temporal scales at which

crimes are predictable. We explore the suitable representation for the spatial temporal crime

distribution. Second, we provide different approaches for data regularization in both spatial

and temporal dimensions to further enhance the predictable signals. Third, we adapt the deep

learning architecture for crime forecasting. Fourth, we study the ternarization of our ST-ResNet

model.

We organize the paper as follows: In Section 2, we discuss crime data sets and preprocessing

techniques. In Section 3, we discuss the deep learning algorithms and network structures for

crime forecasting. Forecasting results and comparisons with some other methods are presented

in Sections 4 and 5, respectively. In Section 6, we explore the ternarization of the ST-ResNet

to reduce the model size and speed up forecasting. In Section 7, we summarize this paper’s

contribution and discuss future work.
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2 Data Representation

2.1 Data set description

We consider crime forecasting in Los Angeles (LA for short). In our protocol, historical

crime, weather and historical holiday data are the key ingredients. Since holiday records are

easy to obtain, we only provide brief descriptions of the other two data sets.

Crime Data For a simple yet effective demonstration of our framework, we consider all

the crimes recorded in LA over the last six months of 2015 without distinguishing their types.

In total there were 104,957 crime events. The crime time and location information is used in

our forecasting paradigm. Each crime is associated with two times: Start and end times. To

avoid ambiguity, we regard the start time of each event as the associated time slot. Geographi-

cally, the latitude and longitude intervals spanned by these crimes are [33.3427◦, 34.6837◦] and

[−118.8551◦,−117.7157◦], respectively. The spatial crime distribution is highly heterogeneous;

a large portion of the area contains little or no crime. Therefore, we only consider the crimes

that happened within the region [33.6927◦, 34.3837◦]× [−118.7051◦,−118.1157◦], this selected

region contains more than 95 percent of the total crimes. Nevertheless, there is still spatial re-

dundancy in this data embedding. In our study, we partition this selected region into a 16× 16

lattice. Each grid cell represents approximately 17.8 km2 land area. Figure 1 shows the crime

distribution at 1:00 p.m on Dec 20th, 2015. The left panel is the crime distribution over the

whole LA area. The right panel depicts the crimes in the restricted region.

(a) (b)

Figure 1 Crime distribution at 1:00 p.m, Dec 20th, 2015. Chart (a) depicts crime distribu-

tion over the whole LA area; chart (b) depicts crime distribution over the selected region.

The units are described in Section 2.

All crime historical data is provided by Los Angeles Police Department (LAPD for short).

Weather Data We collect the weather data from the Weather Underground database

available at https://www.wunderground.com/ using a simple web crawler. Special attention

should be paid to get extracting the data correctly as the format varies day by day. We select

temperature, wind speed and special events, including fog, rain and thunderstorms, for our
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weather features. Since we study hourly crime forecasting, if more than one weather data are

available, we make use of an average of the features. For the time intervals without weather

data, we use a linear interpolation from neighboring intervals.

2.2 Data preprocessing

Charts (a) and (c) of Figure 2 show crime intensity functions in the whole LA and a randomly
selected grid over the last two weeks of the year 2015. The intensity functions show low
regularity in the temporal dimension. However, the hourly crime time series indicate strongly
predictable signals; obviously, the time series over the whole domain is periodic with a period of
24 hours. For selected grid cells, the periodic patterns still exists, but the time series much more
irregular. Deep learning uses combinations of simple linear and nonlinear continuous functions
to form a dynamical system, thus approximating the complex input signal. Since deep learning
models are essentially continuous, we need to enhance the regularity of the time series data,
especially for the grid-wise crime intensity functions. To address this, we map the original crime
intensity function {X(t)} to {Y (t)} via a diurnal periodic integral mapping:

Y (t) =

∫ t

nT

X(s)ds (2.1)

for t within the time interval (nT, (n+1)T ]. As demonstrated in charts (b) and (d) of Figure 2,
after integration, the regularity of the original time series improves dramatically. The periodic
signal is amplified.

(a) (b)

(c) (d)

Figure 2 Chart (a) depicts the hourly crime intensity of the last two weeks of 2015 over

the whole LA area; chart (b) draws the cumulated crime intensity corresponding to (a).

Charts (c) and (d) plot crime density and diurnal cumulated crime intensity on the grid with

longitude and latitude ranged [33.9519◦ , 33.9951◦]×[−118.2635◦ ,−118.2262◦], respectively.

Units: x-axis: Time; y-axis: Number of crimes.
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To resolve the lack of spatial regularity, we use a super resolution technique at each time

step; e.g., bilinear and cubic spline interpolation. For computational efficiency, we resolve by a

factor of 2 in each dimension of the spatial domain. In Figure 3 we see that the bilinear spline

super resolution significantly improves spatial regularity. A merit of this preprocessing is that

it improves the signal without losing information associated with the crime data.

(a) (b)

(c) (d)

Figure 3 Cumulated crime intensity at 11:00 p.m, Dec 31st, 2015. Chart (a) depicts crime

distribution over the selected area; chart (b) provides the mesh plot of the chart (a); chart

(c) depicts super resolution version of chart (a); and chart (d) is mesh plot of chart (c).

3 Models and Algorithms

3.1 Mathematical problem formulation

For the sake of simplicity, in this work we do not consider the crime type forecasting prob-

lem. In our protocol, we only consider how many crimes will happen in the next time step in

each grid cell. Mathematically, our paradigm can be formulated as: Given the historical data

{(Xt, Et)}t=1,2,··· ,n and future external features {En+1}, predictXn+1, whereX1, X2, · · · , Xn+1

are the tensors representing the crime spatial distributions at times t1, t2, · · · , tn+1. E1, E2, · · · ,

En+1 are the external features that affect the crimes (e.g., holiday, time, weather). The entire

procedures of our crime predictor can be formulated by the pseudo code described in Algorithm

1. In Algorithm 1, S and I denote spatial super-resolution and temporal diurnal integration

operators, respectively.
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Algorithm 1 Real Time Spatial Temporal Deep Learning Crime Predictor

1: procedure Crime Predictor

2: Input: Crime historical spatial distributions: {Xt}
n
t=1, and external features {Et}

n+1
t=1

3: Output: Crime spatial distribution Xn+1 at time slot tn+1.
4: Step 1: Perform spatial super resolution on the input crime distributions to get S(Xt)

for t = 1, 2, · · · , n.
5: Step 2: Perform temporal super resolution on the spatial super resolved data to get

I(S(Xt)) for t = 1, 2, · · · , n.
6: Step 3: Train the ST-ResNet on the concatenation of the super resolved historical

crime data and external features, {(I(S(Xt))), Et}
n
t=1.

7: Step 4: Predict the spatial temporal super resolved crime distribution at time slot
tn+1 by the trained ST-ResNet and external features En+1.

8: Step 5: Temporal recovery: I−1(I(S(Xn+1))) = S(Xn+1).
9: Step 6: Spatial recovery: S−1(S(Xn+1)) = Xn+1.

10: Step 7: Get the prediction

Xp
n+1 =

{
|Xn+1|+, if mod(n, 24) = 0
max{|Xn+1|+, Xn}, if mod(n, 24) 6= 0

where |Xn+1|+ is the positive part of Xn+1, i.e.,

|Xn+1|+ =

{
0, if Xn+1 < 0
Xn+1, if Xn+1 ≥ 0

3.2 ST-ResNet structure

We test two different deep neural network structures. The first structure is adapted from

[33]. The second structure, which excludes convolution, is equivalent to an ensemble of residual

networks to learn the time series on each grid, without considering the transition of crimes

between different grids. The first model is more realistic. Through convolutional layers, crime

dynamics and influences among different grids can be captured. In both networks, all features

are fused with the crime data via a parametric-matrix based fusion technique used in [33]. The

detailed description of the network structure can be found in [33]. We implement our method

using Keras (see [4]) on top of Theano (see [29]) software.

Our models incorporate external features such as weather and holidays. Due to the periodic

pattern and self-exciting property of crimes (see [20]), we adopt nearby, periodic and trend

features. The time spacing of these features are at hourly, daily and weekly levels, respectively.

For each category of these dependencies, we employ the three nearest previous spatial distri-

butions of crimes. For instance, suppose we wish to predict the crime distribution at tn+1, the

past crime distributions: Xn, Xn−1, Xn−2, Xn−24, Xn−48, Xn−72, Xn−168, Xn−336, Xn−504

are utilized as features. We believe that longer dependencies produce better results. We let the

algorithm learn the dependencies automatically in a RNN fashion.

4 Results on Crime Forecasting

We ran experiments on the last six months crime data of 2015 over LA. The last two weeks

data is used to test the model. The remaining data is used for training and validating the models,
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Figure 4 Structure of the deep neural network model with convolution.

where the validation ratio is 20 percent. We use 6 layers of residual units, the number selected

by trial-and-error, to assemble the ST-ResNet, which is a good compromise between model

complexity and accuracy. In the training period, we first run 200 epochs to train the network

with a separated validation set to ensure our models do not over-fit. Subsequently, we schedule

another 50 epochs on the combination of the training and validation sets to fine tune the model.

All the experiments are carried out with a single Nvidia Quadro-K4000 graphics card. To speed

up the training process, we make use of the deep neural network library cuDNN (see [3]). The

size of the convolution filters are fixed to 3 × 3. The learning rate is chosen to be 0.0005. The

ADAM optimizer is used to optimize the loss function.

We use the root mean square error (RMSE for short) between prediction and ground truth

as our measure of accuracy of the predictions. RMSE is defined as:

RMSE =

√
1

N ∗ T

∑

i,t

(Iit − Ipit)
2, (4.1)

where N is the total number of grids that we partition the restricted area into, T is the number

of time slots considered, Iit and Ipit are the exact and predicted crime intensity in grid i at time

t, respectively. When considering the accuracy of the prediction in a single grid cell, we do

not need to sum over the index N . Table 1 lists the RMSEs between the predictions and the

ground truth cumulative intensity functions with different setups of the network and different

treatments of the input data.

We consider different experimental setups to validate the importance of the signal enhance-

ment treatments. For super resolution comparisons, we consider three cases, namely super

resolution in space and time, super resolution in space only, and no super resolution. Bilinear

interpolation is employed for all signal enhancements. As demonstrated in Table 1, the best

results come from using both spatial and temporal super resolutions. In general, these signal

enhancement techniques improve model performance. To test the influence of model complex-
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Table 1 Performance of ST-Resnet on the crime forecasting under different settings. Units
for Training and Test Error columns: Number of crimes.

With Convolution Layers

#of neurons #of parameters Training Time (s) Training RMSE Test RMSE

Spatial Temporal Super-resolution

64 × 64 1,350,911 104157.02 0.143 0.207
32 × 32 350,879 30506.27 0.189 0.231
16 × 16 99,695 15917.58 0.255 0.298

Spatial Super-resolution Only

64 × 64 1,350,911 49056.339 0.313 0.323
32 × 32 350,879 14390.37 0.293 0.361
16 × 16 99,695 7554.76 0.364 0.417

No Super-resolution

64 × 64 1,350,911 11053.91 1.92 1.83
32 × 32 350,879 3428.59 1.92 1.83
16 × 16 99,695 1910.16 1.92 1.83

Without Convolution Layers

Spatial Temporal Super-resolution

64 × 64 165,119 23137.48 0.363 0.379
32 × 32 52,895 8774.47 0.366 0.385
16 × 16 24,431 5801.79 0.376 0.391

Spatial Super-resolution Only

64 × 64 165,119 10905.29 0.379 0.397
32 × 32 52,895 4162.88 0.413 0.426
16 × 16 24,431 2743.15 0.399 0.401

No Super-resolution

64 × 64 165,119 3009.18 0.378 0.397
32 × 32 52,895 1178.22 0.413 0.425
16 × 16 24,431 797.32 0.396 0.399

ity, we considered different number of filters in the convolutional layers. We list the results

for different number of neurons in Table 1. In general, performance increases with the more

neurons involved. These filters capture different scales of the spatial temporal features of the

training data set. Currently, the maximum number of filters (64×64) is set by the capacity of

our graphics card. We believe the model can give even better results with more filters, since

they can capture more detailed information about the spatial temporal distribution of crime.

The optimal results obtained when we use convolutional layers on the super resolved signals

on both space and time, which gives RMSE 0.207 in the prediction. The performance shows

that convolutional layers captures the spatial influence of crimes, as it is known that crime

is self-exciting in both space and time (see [20]). Without convolutional layers, each grid is

basically treated independently, which leads to an inefficient model.
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In Figure 5 we show sample snapshots in time. It is easy to see all crime hot spots are

captured. The ST-ResNet gives satisfactory results in the cases with or without convolutional

layers.

For a given grid, the crime intensity over a given time interval is also accurately predict-

ed. We randomly select two grids with longitude and latitude ranges [33.9519◦, 33.9951◦] ×

[−118.2635◦,−118.2262◦] and [34.0382◦, 34.0814◦] × [−118.4472◦,−118.4104◦], respectively. As

shown in Figure 6, the maximum difference between the ground truth and the prediction in

crime intensity is 3 crimes in absolute value. These results quantitatively confirm our predic-

tions are accurate. The RMSE of the prediction over crime intensity functions are 0.665 and

0.551, respectively; 0.750, 0.443 over the cumulated intensity functions. For the first grid, there

are 131 hourly time slots with crimes over the last two weeks of 2015. Our predictor gives 148

candidates, the intersection with the ground truth is 106. For the second grid, there are 99

hourly time slots with crimes. The prediction gives 104 slots, 69 of them lie in the ground truth

set.

(a) (b)

(c) (d)

(e) (f)

Figure 5 Predicted vs. exact crime spatial distribution. Panels (a), (b) plot the crime

spatial distribution at 1 p.m. of Dec 19, 27, 2015, respectively. Panels (c), (d) are the pre-

dicted results without convolution layers. (e), (f) are the predicted results with convolution

layers.
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(a) (b)

(a) (b)

Figure 6 Predicted vs. exact crime intensity in two randomly selected grid cells area over

the last two weeks of 2015. Charts (a) and (b) are prediction on the crime intensity and

cumulated intensity functions on the grid [34.0382◦ , 34.0814◦]× [−118.2635◦ ,−118.2262◦ ],

respectively. Charts (c) and (d) are the corresponding intensity and cumulated intensity

prediction over the grid [34.0382◦ , 34.0814◦ ] × [−118.4472◦ ,−118.4104◦ ]. Units: x-axis:

Time; y-axis: Number of crimes.

One key feature of the convolutional neural network is weight sharing, i.e., for a given

neuron, it shares the common filter over the whole image domain. This simplifies the neural

network model and the training procedure. However, for extremely sparse spatial data, like the

crime data we study, this weight sharing may lead to the filter with all weights being zeros.

As shown in Table 1, without super resolution, the network with convolutional layers offers

worst forecasting (all the predictions are zero). We conclude that, for sparse spatial data,

applying convolutional network to the super resolved data can give excellent forecasting. On

the one hand, it solves weight sharing problem. On the other hand, it captures complex spatial

distributions.

5 Comparison Between Different Methods

In this section, we compare our approach with several existing methods for crime forecasting.

In total, we compare our deep learning approach to ARIMA (see [1]), k nearest neighbor (KNN

for short) and historical average (HA for short). We brief summarize these methods in the

following:
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• HA: In this simple empirical model, at each time slot, we regard the historical average at

that specific hour as the prediction. This is a parameter free model. However, the daily crime

volatility cannot be captured by this model.

• KNN: In this model, we use the average number of crimes in the closest previous time

steps to forecast the number of events at the next time step. The only parameter is k, which

represents the number of nearest previous steps involved in the prediction. The parameter

k can be determined by simple cross validation. Here we adopt five-fold cross validation to

determine this parameter. It is found that when k equal to one, KNN provides the best results.

Lag forecasting is the main drawback of this model.

• ARIMA: The general model ARIMA(p, d, q) has three parameters, where p is the order of

autoregressive model, d is the order of difference needed to make the signal to be stationary,

q is the order of the moving average. The parameter d is determined by the ADF stationarity

test, p and q are determined by the autocorrelation function (ACF for short) and partial auto-

correlation function (PACF for short), respectively. Based on our testing, the cumulative crime

intensity function itself is stationary. The optimal order for autoregression and moving average

are 25 and 26, respectively. These two parameters reflect a roughly one day dependence. Due

the simplicity of training the model, we implement the ARIMA model in a rolling fashion and

update the model on the fly as new data is presented. The major deficiency of this model is

that it cannot included features other than the time series itself. It is also too simple to capture

all the features carried by the signal. In general, ARIMA is only suitable for simple time series

that carry all the predictable information.

(a) (b)

Figure 7 Comparison of different methods’ forecasting on the c.d.f and p.d.f over the last

two weeks of 2015 on the region [33.9519◦ , 33.9951◦ ] × [−118.2635◦ ,−118.2262◦ ]. Charts

(a) and (b) are the forecasting results of c.d.f and p.d.f, respectively. We have also provide

a zoom in plot the crimes of the first day over this period.

We randomly select a grid cell with the longitude and latitude range [33.9519◦, 33.9951◦]×

[−118.2635◦,−118.2262◦] for comparison. The comparison of exact and predicted cumulative
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densities of crime is depicted in panel (a) of Figure 7. Panel (b) of Figure 7 is a comparison

of the crime intensity functions. The crime distribution function itself is highly irregular over

the time span. The regularity of the signal is enhanced by integration. The cumulative density

function is periodic with some fluctuation.

Table 2 Performance comparison between different methods over the last two weeks of
2015 on the region [33.9519◦ , 33.9951◦] × [−118.2635◦ ,−118.2262◦ ]. Units for the Error
columns: Number of crimes.

Method Error in cumulated crime density Error in crime density

ST-Resnet 0.750 0.659
fully-ternary ST-Resnet 0.612 0.705

ARIMA(25, 0, 26) 1.115 1.213
KNN(1) 1.168 1.236

HA 2.618 1.568

The deep learning model provides the optimal prediction, followed by ARIMA, KNN and

HA (Table 2). ARIMA, KNN, HA are not on par with one another. The optimal RMSEs in

cumulative density and original crime signal are 0.750 and 0.659, respectively. For ARIMA and

KNN, the errors in the original signal are more than the cumulative one. Visually, ARIMA

and KNN seem to provide excellent predictions. However, this is a misperception due to lagged

forecasting. According to our tests, ST-ResNet shows even stronger performance relative to the

other predictors when the data become more sparse.

6 Ternarization of ST-ResNet

In this section, we consider the ternarization of ST-ResNet. Suppose there are in total l

fully-connected and convolutional layers with the respective weight filters Wi, i = 1, · · · , l. For

a fully-connected layer, Wi is a matrix, and for a convolutional layer, it is a high dimensional

tensor. Without loss of generality, let us view Wi as a vector of dimension ni. Then the vector

Wi ∈ R
ni is ternary-valued and takes the form

Wi = αiTi,

where Ti ∈ {−1, 0, 1}ni has the same size as Wi, and αi > 0 is a shared scaling factor. Training

TNNs calls for solving the following constrained minimization problem

min
W,b

f(W, b) subject to Wi ∈ Ti, i = 1, · · · , l, (6.1)

where f denotes the overall energy function determined by the network architecture, W =

{W1, · · · ,Wl} the weight parameters, b the other trainable parameters, and

Ti := {Wi ∈ R
ni : ∃ αi > 0 and Ti ∈ {−1, 0, 1}ni such that Wi = αiTi}

the set of ternary weights for the i-th layer.
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The key step for solving (6.1) lies in the ternarization of some given floating-point vector

W̃i. To this end, we seek to minimize the Euclidean distance between W̃i and Wi:

projTi
(W̃i) := argmin

Wi

‖Wi − W̃i‖
2 subject to Wi ∈ Ti.

The solution projTi
(W̃i) to the above problem is simply the projection of W̃i onto the set Ti.

For now let us ignore the subscript i for notational simplicity. In an alternative form, the above

problem can be formulated as

(α∗, T ∗) = argmin
α,T

‖αT − W̃‖2 subject to α > 0, T ∈ {−1, 0, 1}n. (6.2)

After obtaining (α∗, T ∗), the ternarization of W̃ is then given by projT (W̃ ) = α∗T ∗. The

solution to (6.2) was first approximated by Li et al. [17] under unrealistic statistical assumptions

on the components of W̃ , albeit with satisfactory empirical performance. The exact expression

for projT was later derived by Yin et al. [32]. We summarize the result in the theorem below.

Theorem 6.1 Suppose W̃[k] keeps the k largest entries in magnitude of W̃ and zeros out

the others. Then the solution to problem (6.2) is given by

α∗ =
‖W̃[k∗]‖1

k∗
, T ∗ = sign(W̃[k∗]),

where k∗ = argmax
k

‖W̃[k]‖
2
1

k
is the sparsity of the optimal ternary weight vector.

For readers’ convenience, we provide a proof here.

Proof Suppose the sparsity of T is k. Since T ∈ {−1, 0, 1}n, then

‖T ‖2 = k and |〈T, W̃ 〉| ≤ ‖W̃[k]‖1,

and thus

‖αT − W̃‖2 = kα2 − 2〈T, W̃ 〉α+ ‖W̃‖2 = k
(
α−

〈T, W̃ 〉

k

)2

−
〈T, W̃ 〉2

k
+ ‖W̃‖2

≥ −
〈T, W̃ 〉2

k
+ ‖W̃‖2 ≥ −

‖W̃[k]‖
2
1

k
+ ‖W̃‖2. (6.3)

Since ‖W̃‖2 is a constant, the optimal sparsity k∗ maximizes the term
‖W̃[k]‖

2
1

k
in (6.3), i.e.,

k∗ = argmax
k

‖W̃[k]‖
2
1

k
.

To achieve the lower-bound in (6.3), we must have

T ∗ = sign(W̃[k∗]), α∗ =
〈T ∗, W̃ 〉

k∗
=

‖W̃[k∗]‖1

k∗
.
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According to Theorem 6.1, the ternarization of W̃ can be performed in a manner of direct

enumeration. This involves sorting the magnitudes of elements of W̃ and computing accumu-

lative sum of the sorted sequence, which require computational complexity of O(n log(n)). Our

training of ternary ST-ResNet is carried out by a projected SGD-like algorithm (see [5, 23]).

We keep updating the floating-point weights using the minibatch (sub)gradient of f evaluated

at ternary weights. This is different from the standard projected SGD in which the ternary

weights are updated in the descent step. The mean convergence of this pseudo projected SGD

has been proved under smoothness and convexity assumptions on f (see [18]). In fact, it has

demonstrated much stronger empirical performance than the standard version in training quan-

tized neural networks (see [18]). In addition, we adopt popular techniques in deep learning such

as ℓ2 regularization, batch normalization (see [12]) and ADAM (see [15]) to improve training

efficiency. Our method for training ternary ST-ResNet is summarized in Algorithm 2.

We coded and tested the optimizer on Lasagne/Theano (see [7, 29]) platform in Python on

a machine with Nvidia GeForce GTX Titan X GPU. We trained fully-ternary ST-ResNet with

spatial and temporal super-resolution preprocessing, where all the weight filters are ternary.

The training RMSE and testing RMSE with 64×64 neurons are 0.234 and 0.242, respectively.

As shown in Table 3, compared to the full-precision model, there is only a small accuracy loss.

Algorithm 2 Training one epoch of ternary weight ST-ResNet.

Input: Energy function f(W, b), the number of mini-batches d, adaptive learning rate ηt,

t = 1, · · · , d, parameters W 0, b0 and W̃ 0 output from the last epoch.
Output: floating-point weights W̃ d, ternary weights W d and other parameters bd.
Initialization: Randomly shuffle the samples in training dataset.
for t = 1, · · · , d do

f(W t−1, bt−1) =EvalGrad(f,W t−1, bt−1) // Evaluate the (sub)gradient of f at
(W t−1, bt−1) using the t-th mini-batch by back propagation.

W̃ t = ADAM(W̃ t−1,∇t−1f(W
t−1, bt−1), ηt−1) // Update the floating-point weights W̃

using ADAM.
for i = 1, · · · , l do

W t
i = projTi

(W̃ t
i ) // Ternarize the weights W̃i in the i-th layer by solving (6.2) .

f(W t, bt−1) =EvalGrad(f,W t, bt−1) // Evaluate the (sub)gradient of f at (W t, bt−1)
using the t-th mini-batch by back propagation.

bt = ADAM(bt−1,∇t−1f(W
t, bt−1), ηt−1) // Update other trainable parameters b using

ADAM.

Table 3 Performance comparison between ST-ResNet and its ternarization. Units for
Training and Test Error columns: Number of crimes.

Model #of neurons #of parameters Training Error Test Error

ST-ResNet 64 × 64 1,350,911 0.143 0.207

Fully-ternary ST-Resnet 64 × 64 1,365,031 0.234 0.242
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7 Concluding Remarks

In this paper, we present a real-time spatial temporal predictor for end-to-end crime intensity

prediction. The key idea of our predictor can be summarized as follows:

• We chose appropriate spatial temporal scales at which crime historical time series carry

sufficient predictable signals. For a given time step, we map the number of events into an image,

each pixel value represents the number of crime in a grid at a specific time.

• We developed effective spatial temporal signal enhancement techniques to boost the crime

forecasting accuracy. These techniques also solve the deficiency of the CNNs for sparse data

dues to the weight sharing. More specifically, in the temporal dimension, we compute the

diurnal cumulative crime per grid spatial region. In the spatial dimension, we use bilinear

interpolation super resolution.

• We adapted the ST-ResNet for crime prediction.

Our methods provide crime forecasting for each grid cell at hourly temporal scale. The pre-

dictions are extremely accurate, which provides reliable guidance for crime control. Our model

can be categorized as a deep learning regression method, which provides a better description

of crime forecasting than the classification type of methods, since crime prediction is not just a

simple yes-or-no problem.

Nevertheless, there are many aspects to improve. On the one hand, the ad hoc grid parti-

tioning of the spatial domain ignores demographic and geographic information. Furthermore,

embedding the irregular geometry of the city into a rectangular domain leads to a huge amount

of redundant computation. On the other hand, in the ST-ResNet framework, the historical

dependencies need to be set explicitly and longer explicit dependencies cause the network to be

extremely complex and difficult to train. Adaptive dependence is hard to incorporate into the

ST-ResNet framework.

There are a few lines of research worth exploring in the future. First, a better graphical

representation of spatial temporal data representation will benefit both the capturing of infor-

mation from historical data and efficient computation. Second, instead of explicitly pointing

out the dependencies, an alternative is to use RNN to learn the dependencies automatically.

Third, forecasting crime types is feasible in our framework, although challenging, since the

data will be much more sparse compared to the present representation. Fourth, applying the

recently proposed Laplacian smoothing gradient descent (see [22]) to train the model to boost

the prediction accuracy.
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