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Abstract Persistence approximation property was introduced by Hervé Oyono-Oyono
and Guoliang Yu. This property provides a geometric obstruction to Baum-Connes con-
jecture. In this paper, the authors mainly discuss the persistence approximation property
for maximal Roe algebras. They show that persistence approximation property of maximal
Roe algebras follows from maximal coarse Baum-Connes conjecture. In particular, let X

be a discrete metric space with bounded geometry, assume that X admits a fibred coarse
embedding into Hilbert space and X is coarsely uniformly contractible, then C

∗

max(X) has
persistence approximation property. The authors also give an application of the quantita-
tive K-theory to the maximal coarse Baum-Connes conjecture.
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1 Introduction

Initially quantitative K-theory was introduced by Yu in [16]. It was applied to compute

higher indices of elliptic operators for noncompact spaces with finite asymptotic dimension. It

is very reflexible to compute the K-theory of filtered C∗-algebras. Not only we can use quan-

titative Mayer-Vietoris sequence to prove coarse Baum-Connes conjecture, but also we can use

quantitative K-theory to construct obstructions for Baum-Connes conjecture by propagations.

The quantitative K-theory of filtered C∗-algebras was introduced by Oyono-Oyono and Yu

in [10]. The quantitative Bott periodicity and quantitative six-term exact sequence were also

proved in the above paper. The quantitative Mayer-Vietoris sequence was introduced in [11],

which is quite important in proving the coarse Baum-Connes conjecture.

Persistence approximation property of filtered C∗-algebras was also defined by Oyono-Oyono

and Yu (see [12]). It has a close relationship with the Baum-Connes conjecture. It has been

proven that: If Γ is a finitely generated group that satisfies the Baum-Connes conjecture with

coefficients and admits a cocompact universal example for proper actions, then for any Γ-

C∗-algebra A, the reduced crossed product A ⋊red Γ satisfies the persistence approximation
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property. In this view, it gives a geometric obstruction to the Baum-Connes conjecture. Clément

Dell’Aiera also characterized this property especially for the crossed products with groupoids

(see [3]).

The notion of fibred coarse embedding into Hilbert spaces, which is a generalized notion of

coarse embedding into Hilbert spaces. It turns out that this property is a sufficient condition

for the maximal Baum-Connes conjecture (see [2]). Some kinds of expanders which do not

embed coarsely into Hilbert spaces are counterexamples to the coarse Baum-Connes conjecture

(see [7, 15]). However, they admit a fibred coarse embedding into Hilbert space and satisfy

the maximal Baum-Connes conjecture (see [1–2, 9, 15]). Fibred coarse embedding can also be

characterized by boundary a-T -menable groupoids (see [4–5]).

This paper is organized as follows. In Section 2, we give a quick review of quantitative K-

theory. Most of the results come from the paper of Oyono-Oyono and Yu in [10]. Then we use the

method of Aiera (see [3]) to construct the quantitative maximal assembly map. We characterize

the relationship between the quantitative maximal coarse Baum-Connes conjecture and the

maximal coarse Baum-Connes conjecture. In Section 3, we introduce persistence approximation

property from Oyono-Oyono and Yu. We show that the persistence approximation property of

maximal Roe algebras comes from the maximal coarse Baum-Connes conjecture, which is our

first main theorem.

Theorem 1.1 Let X be a discrete metric space with bounded geometry and A is a C∗-

algebra. Assume that

(1) X is coarsely uniformly contractible;

(2) µX,l∞(N,A⊗K(H)),max,∗ is onto and µX,A,max,∗ is one to one.

Then there exists a universal constant λPA ≥ 1 such that for any ε ∈
(
0, 1

4λPA

)
and every r > 0,

there exists a r′ > 0 such that r ≤ r′ and PA∗(C
∗
max(X,A), ε, λPAε, r, r

′) holds.

If X admits a fibred coarse embedding into Hilbert space, then the maximal coarse Baum-

Connes conjecture holds. So it is natural to consider whether or not the persistence approxima-

tion property holds for C∗
max(X) when X admits a fibred coarse embedding into Hilbert space,

and we prove our second main result.

Theorem 1.2 Let X be a discrete metric space with bounded geometry. Assume that X

admits a fibred coarse embedding into Hilbert space and X is coarsely uniformly contractible.

Then there exists a universal constant λPA ≥ 1 such that: For any ε ∈
(
0, 1

4λPA

)
and any r > 0

there exists r′ > r such that PA∗(C
∗
max(X), ε, λPAε, r, r

′) holds.

One of the very important example which admits a fibred coarse embedding into Hilbert

space comes from the box space of residually finite groups. Let Γ be a finitely generated

residually finite group with respect to a family of finite index normal subgroups Γ0 ⊇ Γ1 ⊇

· · · ⊇ Γn ⊇ · · · . The box space X(Γ) admits a fibred coarse embedding into Hilbert space if

and only if Γ has Haagerup property (see [1]). This type of examples does not require the first

assumption of Theorem 1.1, but satisfies the persistence approximation property for maximal

Roe algebras. This is our third main theorem.

Theorem 1.3 Let Γ be a finitely generated residually finite group with haagerup property

and admits a cocompact universal example for proper actions. Then there exists a univer-
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sal constant λPA ≥ 1 for any ε ∈
(
0, 1

4λPA

)
and any r > 0 there exists r′ > r such that

PA∗(C
∗
max(X(Γ)), ε, λPAε, r, r

′) holds.

Example 1.1 Both F2 and SL2(Z) are finitely generated residually finite group with

haagerup property and admits a cocompact universal example for proper actions. Then the

maximal Roe algebras of the box spaces have persistence approximation property.

In Section 4, we construct the quantitative maximal Baum-Connes assembly map for a

family of metric spaces. We give an application of quantitative K-theory for coarse Baum-

Connes conjecture and show the following theorem.

Theorem 1.4 Let X = (Xi)i∈N be a family of discrete metric space with bounded geometry.

Let Σ =
⊔
i∈N

Xi. Assume that

(1) for any ε ∈
(
0, 14

)
and positive numbers d,r such that αX (ε) · d ≤ r, there exists d′ with

d ≤ d′, such that QIX ,max,∗(d, d
′, ε, r) is holds;

(2) For some λ > 1 and any ε ∈ (0, 1
4λ ), r > 0, there exists d > 0, r′ > r with αX (ε) ·d ≤ r′

such that QSX ,max,∗(d, r, r
′, ε, λε).

Then Σ satisfies the maximal coarse Baum-Connes conjecture.

Through out this paper, denote by H the separable Hilbert space and by K(H) the operator

algebra consist of compact operators on the Hilbert space H .

2 Quantitative K-theory

In this section, let us give a quick review of quantitativeK-theory for filtered C∗-algebras,most

of the results come from Oyono-Oyono and Yu in [10]. Firstly, let us introduce filtered C∗-

algebras, this is the basic objects for quantitative K-theory.

Definition 2.1 (see [10]) A filtered C∗-algebra A is a C∗-algebra equipped with a family

(Ar)r>0 of closed linear subspaces indexed by positive numbers such that:

(1) Ar ⊆ Ar′ if r ≤ r′;

(2) Ar is stable by involution,i.e. for any x ∈ Ar, then x∗ ∈ Ar;

(3) Ar · Ar′ ⊆ Ar+r′ ;

(4) the subalgebra
⋃
r>0

Ar is dense in A.

If A is unital, we suppose that 1 ∈ Ar, for any r > 0. If A is non unital filtered C∗-algebra,

then its unitization Ã is filtered by (Ar + C)r>0. We can define the homomorphism

ρA : Ã → C, a+ z → z

for a ∈ A and z ∈ C.

Let A and B be two C∗-algebras filtered by (Ar)r>0 and (Br)r>0. A *-homomorphism

φ : A → B is said to be filtered if φ(Ar) ⊆ Br for all r > 0.

There are so many kinds of filtered C∗-algebras, such as Roe algebra, group C∗-algebra,

crossed product by étale groupoid G and so on. Through this paper, we mainly study Roe

algebras and maximal Roe algebras.
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Next we are going to define ε-r-projections and ε-r-unitaries, this is the main elements in

quantitative K-theory. Let A be a unital filtered C∗-algebra. for any r > 0 and ε ∈
(
0, 1

4

)
, we

call

(1) an element p in A an ε-r-projection if p belongs to Ar, p = p∗ and ‖p2 − p‖ < ε. The

set of ε-r-projections will be denoted by P ε,r(A).

(2) an element u in A is an ε-r-unitary if u belongs to Ar, ‖u
∗u− 1‖ < ε and ‖uu∗− 1‖ < ε.

The set of ε-r-unitaries in A will be denoted by Uε,r(A).

Notice that for any ε-r-projection, it has a spectrum gap around 1
2 , by the functional

calculus we can construct a projection k0(p) satisfying ‖k0(p)− p‖ < 2ε. For a ε-r-unitary, we

can construct a unitary k1(u), k1(u) = u(u∗u)−
1

2 and ‖k1(u)− u‖ < ε.

For integer n, we set Uε,r
n (A) = Uε,r(Mn(A)) and P ε,r

n (A) = P ε,r(Mn(A)).

Consider the inclusions

P ε,r
n → P ε,r

n+1, p 7→

[
p 0
0 0

]

and

Uε,r
n → Uε,r

n+1, u 7→

[
u 0
0 1

]
,

then we can define P ε,r
∞ (A) =

⋃
n∈N

P ε,r
n (A) and Uε,r

∞ (A) =
⋃
n∈N

Uε,r
n (A).

For a unital filtered C∗ algebra A, we can define the following equivalent relation on

P ε,r
∞ (A) × N and Uε,r

∞ (A).

(1) if p and q are elements of P ε,r
∞ (A), l and l′ are positive integers, (p, l) ∼ (q, l′) if there

exists a positive integer k and an element h of P ε,r
∞ (A[0, 1]) such that h(0) = diag(p, Ik+l′ ) and

h(1) = diag(q, Ik+l).

(2) if u and v are elements of Uε,r
∞ (A), u ∼ v if there exists an element h of U3ε,2r

∞ (A[0, 1])

such that h(0) = u and h(1) = v.

If p is an element of P ε,r
∞ (A) and l is an integer, we denote by [p, l]ε,r the equivalent class

of (p, l) modulo ∼. And if u is an element of Uε,r
∞ (A) we denote by [u]ε,r its equivalent class

modulo ∼.

Definition 2.2 (see [10]) Let r > 0 and ε ∈
(
0, 1

4

)
. We define

(1) Kε,r
0 (A) = P ε,r

∞ (A) × N/ ∼ unital and Kε,r
0 (A) = P ε,r

∞ (Ã) × N/ ∼ such that Rank

k0(ρA(p)) = l for A non unital;

(2) Kε,r
1 (A) = Uε,r

∞ / ∼ (with A = Ã if A is already unital).

Then Kε,r
0 (A) turns to be a n abelian group where

[p, l]ε,r + [p′, l′]ε,r = [diag(p, p′), l + l′]ε,r,

Kε,r
1 (A) is also a abelian group with

[u]ε,r + [u′]ε,r = [diag(u, u′)]ε,r.

Next we introduce some basic properties od quantitative K-theory.

Lemma 2.1 (see [10]) If A is a filtered C∗-algebra, then Kε,r
∗ (A) = Kε,r

0 (A)⊕Kε,r
1 (A) is

a Z2-graded abelian group.

For any filtered C∗-algebra A and any positive numbers ε, ε′ and r, r′ with ε < ε′ < 1
4 and

r ≤ r′, there exists natural group homomorphisms:
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(1) ιε,r0 : Kε,r
0 (A) → K0(A), [p, l]ε,r 7→ [k0(p)]− [Il];

(2) ιε,r1 : Kε,r
1 (A) → K1(A), [u]ε,r → [k1(u)];

(3) ιε,r∗ = ιε,r0 ⊕ ιε,r1 ;

(4) ιε,ε
′,r,r′

0 : Kε,r
0 (A) → Kε′,r′

0 (A), [p, l]ε,r 7→ [p, l]ε′,r′;

(5) ιε,ε
′,r,r′

1 : Kε,r
1 (A) → Kε′,r′

1 (A), [u]ε,r → [u]ε′,r′ ;

(6) ιε,ε
′,r,r′

∗ = ιε,ε
′,r,r′

0 ⊕ ιε,ε
′,r,r′

1 .

The next proposition is very useful, it reveals the relationship between K-theory and quan-

titative K-theory. The second property is quite important to the persistence approximation

property that we are going to study in next section.

Proposition 2.1 (see [10]) let B be a filtered C∗-algebra.

(i) For any ε ∈
(
0, 14

)
and y ∈ K∗(B), there exist a positive number r and an element

x ∈ Kε,r
∗ (B) such that ιε,r∗ (x) = y;

(ii) There exists a positive number λ > 1 independent on B such that the following is

satisfies:

Let ε ∈
(
0, 14

)
and r > 0, and let x and x′ be two elements in Kε,r

∗ (B) such that ιε,r(x) = ιε,r(x′)

in K∗(B). Then there exists r′ with r′ > r such that ιε,λε,r,r
′

∗ (x) = ιε,λε,r,r
′

∗ (x′) in Kλε,r′

∗ (B).

Next we are going to review the controlled morphisms between quantitative operator K-

theory. Recall that a control pair is a pair (λ, h), where

(1) λ > 1;

(2) h :
(
0, 1

4λ

)
→ (1,+∞); ε 7→ hε is a map such that exists a non-increasing map g :(

0, 1
4λ

)
→ (1,+∞), with h ≤ g.

The set of control pairs is equipped with a partial order: (λ, h) ≤ (λ′, h′) if λ ≤ λ′ and

hε ≤ h
′

ε for all ε ∈
(
0, 1

4λ′

)
.

For any filtered C∗-algebra A, define the families K0(A) = (Kε,r
0 (A))0<ε< 1

4
,r>0, K1(A) =

(Kε,r
1 (A))0<ε< 1

4
,r>0, K∗(A) = (Kε,r

∗ (A))0<ε< 1

4
,r>0.

Definition 2.3 (see [10]) Let (λ, h) be a control pair, A and B be two filtered C∗-algebras,

and i, j be elements of {0, 1, ∗}. A (λ, h)-controlled morphism

F : Ki(A) → Kj(B)

is a family F = (F ε,r)0<ε< 1

4
,r>0 of group homomorphisms

F ε,r : Kε,r
i (A) → Kλε,hεr

j (B)

such that for any positive numbers ε, ε′ and r, r′ with 0 < ε ≤ ε′ < 1
4λ , r ≤ r′ and hεr ≤ hε′r

′,

we have

F ε′,r′ ◦ ιε,ε
′,r,r′

i = ι
λε,λε′,hεr,hε′r

′

j ◦ F ε,r.

Let A and B be two filtered C∗-algebras. If F : Ki(A) → Kj(B) is a (λ, h)-controlled

morphism, then there is a group homomorphism F : Ki(A) → Kj(B) uniquely defined by

F ◦ ιε,ri = ιλε,hεr
j ◦F ε,r. The homomorphism F is called the (λ, h)-controlled morphism induced

by F .

If (λ, h) and (λ′, h′) are two control pairs,define

h ∗ h′ :
(
0,

1

4λλ′

)
→ (0,+∞), ε 7→ hλ′εh

′
ε.
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Then (λλ′, h ∗ h′) is a control pair. Let A,B1 and B2 be filtered C∗-algebras, i, j and l in

{0, 1, ∗}. Let F = (F ε,r)0<ε< 1

4αF
,r>0 : Ki(A) → Kj(B1) be a (αF , kF )-controlled morphism,

let G = (Gε,r)0<ε< 1

4αG
,r>0 : Kj(B1) → Kl(B2) be a (αG , kG)-controlled morphism. Then

G ◦ F : Ki(A) → Kl(B2) is the (αGαF , kG ∗ kF )-controlled morphism defined by the family

(GαFε,kF,εr ◦ F ε,r)0<ε< 1

4αFαG
,r>0.

Let A and B be filtered C∗-algebras, and (λ, h) is a control pair. Let F = (F ε,E)0<ε< 1

4αF
,r>0 :

Ki(A) → Kj(B) (resp. G = (Gε,r)0<ε< 1

4αG
,r>0) be a (αF , kF )-controlled morphism (resp. a

(αG , kG)-controlled morphism). Then we write F
(λ,h)
∼ G if

(1) (αF , kF ) ≤ (λ, h) and (αG , kG) ≤ (λ, h);

(2) for any ε ∈
(
0, 1

4λ

)
and r > 0, then

ι
αFε,λε,kF,εr,hεr

j ◦ F ε,r = ι
αGε,λε,kG,εr,hεr

j ◦Gε,r.

Definition 2.4 (see [10]) Let (λ, h) be a control pair and F : Ki(A) → Kj(B) be a (αF , kF )-

controlled morphism with (αF , kF) ≤ (λ, h).

(1) F is called left (λ, h)-invertible if there exists a controlled morphism

G : Kj(B) → Ki(A)

such that G ◦ F
(λ,h)
∼ IdKi(A). and F ◦ G

(λ,h)
∼ IdKj(B).

(2) F is (λ, h)-isomorphism if there exists a controlled morphism

G : Kj(B) → Ki(A),

which is a (λ, h)-inverse for F .

Let (λ, h) be a control pair and let F : Ki(A) → Kj(B) (αF , kF)-controlled morphism.

(1) F is called (λ, h)-injective if (αF , kF ) ≤ (λ, h) and for any 0 < ε < 1
4λ , any r > 0 and any

x ∈ Kε,r
i (A), then F ε,r(x) = 0 in K

αFε,kF,εr

j (B) implies that ιε,λε,r,hεr
i (x) = 0 in Kλε,hεr

i (A);

(2) F is called (λ, h)-surjective, if for any 0 < ε < 1
4λαF

, any r > 0 and y ∈ Kε,r
j (B), there

exists an element x ∈ Kλε,hεr
i (A) such that

Fλε,hλεr(x) = ι
ε,αFλε,r,kF,λεhεr

j (y)

in K
αFλε,r,kF,λεhεr

j (B).

The exact sequence is quite important to K-theory, we also have the controlled exact se-

quence for quantitative K-theory.

Definition 2.5 (see [10]) Let (λ, h) be a control pair. Let F = (F ε,r)0<ε< 1

4αF
,r>0 :

Ki(A) → Kj(B1) be a (αF , kF)-controlled morphism, and let G = (Gε,r)0<ε< 1

4αF
,r>0 : Kj(B1) →

Kl(B2) be a (αG , kG)-controlled morphism, where i, j and l are in {0, 1, ∗} and A,B1, B2 are

filtered C∗-algebras. Then the composition

Ki(A)
F
→ Kj(B1)

G
→ Kl(B2)

is said to be (λ, h)-exact at Kj(B1) if G ◦ F = 0 and if for any 0 < ε < 1
4max{λαF ,αG}

, any

r > 0 and y ∈ Kε,r
j (B1) such that Gε,r(y) = 0 in K

αGε,kG,εr

j (B2), there exists an element x in

Kλε,hεr
i (A) such that

Fλε,hλεr(x) = ι
ε,αFλε,r,kF,λεhεr

j (y)
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in KαFλε,kFλεhεr
j (B1).

The six-term exact sequence in K-theory for short exact sequence of C∗-algebras is very

important. But for the quantitativeK-theory, we need the short exact sequence to be completely

filtered. Here we give the definition below.

Definition 2.6 (see [10]) Let A be a filtered C∗-algebra. let J be an ideal of A and set

Jr = J ∩Ar. The extension of C∗-algebras

0 → J → A → A/J → 0

is called a completely filtered extension of C∗-algebras if the bijection continuous linear map

Ar/Jr → (Ar + J)/J

induced by the inclusion Ar →֒ A is a complete isometry, i.e., for any integer n, any r > 0 and

x ∈ Mn(Ar), then

inf
y∈Mn(Jr)

‖x+ y‖ = inf
y∈Mn(J)

‖x+ y‖.

Lemma 2.2 (see [10]) Any semi-split extension of filtered C∗-algebra is completely filtered.

Theorem 2.1 (see [10]) There exists a control pair (λ, h) such that for any completely

filtered extensions of C∗-algebras

0 → J
j
→ A

q
→ A/J → 0,

the following six-term sequence is (λ, h)-exact

K0(J)
j∗ // K0(A)

q∗ // K0(A/J)

DJ,A

��
K1(A/J)

DJ,A

OO

K1(A)
q∗oo K1(J)

j∗oo

Quantitative coarse assembly map was constructed in Clément Dell’Aiera’s thesis (see [3]).

Let us briefly introduced the quantitative coarse assembly map. We call that a discrete metric

space has bounded geometry, if for any r > 0, there exists an integerNr such that #B(x, r) ≤ Nr

for any x ∈ X , where #B(x, r) means the number of the elements in B(x, r).

Let X be a discrete metric space with bounded geometry. Let A be a C∗-algebra, the Roe

algebra with coefficient A is denoted by C∗(X,A) is defined in the following. Let Cr[X,A] is

the subspace of LA(l
2(X)⊗H ⊗A):

Cr[X,A] = {T ∈ LA(l
2(X)⊗H ⊗A) locally compact s.t. suppT ⊆ ∆r},

where ∆r = {(x, y); d(x, y) ≤ r} and an operator T ∈ LA(l
2(X) ⊗ H ⊗ A) is called locally

compact if Tx,y ∈ K(H)⊗A.

It is easy to see that

C[X,A] =
⋃

r>0

Cr[X,A]

is ∗-subalgebra of LA((l
2(X) ⊗H ⊗ A). The Roe algebra with coefficient A is the completion

of C[X,A] under the operator norm LA(l
2(X)⊗H ⊗A).
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Next we are going to define the maximal Roe algebra with coefficient A. We need a lemma

first.

Lemma 2.3 Let X be a discrete metric space with bounded geometry. For any positive

number r, there exists a positive number cr, such that for any ∗-representation φ of C[X,A] on

a Hilbert A module EA and any T ∈ Cr[X,A], then

‖φ(T )‖ ≤ cr sup
x,y∈X

‖T (x, y)‖.

Proof For any r > 0, there exists cr partial isometries v1, · · ·, vcr ∈ M(C[X,A]), where

M(C[X,A]) is the multiplier of C[X,A], such that any T ∈ Cr[X,A] can be written as

T =

cr∑

i=1

fivi,

where each fi is an element of l∞(X,K(H)⊗A), then we have

‖φ(T )‖ ≤ cr sup
x,y∈X

‖T (x, y)‖.

Definition 2.7 The maximal Roe algebra with coefficient A is denoted by C∗
max(X,A), is

the completion of C[X,A] in the norm

‖T ‖ = sup{‖π(T )‖LA(EA);π : C[X,A] → LA(EA) a ∗ -representation}.

There are basic functor properties for C∗(X, ·) and C∗
max(X, ·).

Theorem 2.2 Let X be a discrete space with bounded geometry, A and B be two C∗-

algebras.

(1) If φ : A → B is a ∗-homomorphism, then there exists ∗-homomorphism φX : C∗(X,A) →

C∗(X,B) and φX,max : C∗
max(X,A) → C∗

max(X,B).

(2) If φ : A → B is a completely positive map, then there exists completely positive map

φX : C∗(X,A) → C∗(X,B) and φX,max : C∗
max(X,A) → C∗

max(X,B).

Next to define the quantitative maximal assembly map. The method is similar in Clément

Dell’Aiera’s thesis (see [3]). The construction of quantitative maximal assembly map is divided

into two steps. The first step: Controlled Roe transformation.

For any z ∈ KK1(A,B), then z can be represent by a triple (HA, π, T ), where

(1) π : A → LB(HB) is a ∗-representation of A on HB;

(2) T ∈ LB(HB) is a self-adjoint operator;

(3) [T, π(a)], π(a)[T 2 − IdHB
] are compact operators in K(HB) ∼= K(H)⊗B.

Let P =
(
1+T
2

)
∈ LB(HB) and

E(π,T ) = {(a, Pπ(a)P + y) : a ∈ A, y ∈ B ⊗K(H)}.

Then we have a semi-split exact extension:

0 → B ⊗K(H) → E(π,T ) → A → 0,
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where the completely positive section is s : A → Eπ,T ; a 7→ (a, Pπ(a)P ). By the functor

property of C∗
max(X, ·), then we have a semi-split exact extension:

0 → C∗
max(X,B) → Eπ,T

X,max → C∗
max(X,A) → 0,

where Eπ,T
X,max = C∗

max(X,Eπ,T ).

Proposition 2.2 The controlled boundary map Dπ,T = D
C∗

max
(X,B),Eπ,T

X,max

of the extension

0 → C∗
max(X,B) → Eπ,T

X,max → C∗
max(X,A) → 0

only depends on the class z.

Then we can define the controlled Roe transformation.

Definition 2.8 For any z = [HB, π, T ] ∈ KK1(A,B), the controlled maximal Roe transfor-

mation σ̂X,max(z) = D
C∗

max
(X,B),Eπ,T

X,max

. It is an (αX , kX)-controlled morphism K∗(C
∗
max(X,A)) →

K∗+1(C
∗
max(X,B)).

Proposition 2.3 Let A and B be two C∗-algebra. then there exists a control pair (αX , kX)

such that for any z ∈ KK1(A,B), there exists a (αX , kX)-controlled morphism

σ̂X,max(z) : K∗(C
∗
max(X,A)) → K∗+1(C

∗
max(X,B))

such that

(i) σ̂X,max(z) induces right multiplication by σX,max(z) in K-theory.

(ii) σ̂X,max(z) is additive, i.e.,

σ̂X,max(z + z′) = σ̂X,max(z) + σ̂X,max(z
′).

(iii) For any ∗-homomorphism f : A1 → A2, we have

σ̂X,max(f
∗(z)) = σ̂X,max(z) ◦ fX,∗

for any z ∈ KK1(A,B).

(iv) For any ∗-homomorphism g : B1 → B2, we have

σ̂X,max(g∗(z)) = gX,∗ ◦ σ̂X,max(z)

for any z ∈ KK1(A,B).

(v) Let 0 → J → A → A/J → 0 be a semi-split exact extension and [∂J,A] ∈ KK1(A/J, J)

is its boundary element. Then

σ̂X,max([∂J,A]) = DC∗
max

(X,J),C∗
max

(X,A).

For the even case, we need a lemma first. Let A be a C∗-algebra, we have a short exact

sequence

0 → SA → CA → A → 0.

Under the functor C∗
max(X, ·), we have a semi-split exact extension

0 → C∗
max(X,SA) → C∗

max(X,CA) → C∗
max(X,A) → 0.

Let DX,A,max : K∗(C
∗
max(X,A)) → K∗+1(C

∗
max(X,SA)) be its boundary map.
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Lemma 2.4 Let A be a C∗-algebra, then there exists a control pair (λ, h) independent the

choice of X and A such that DX,A,max is (λ, h)-invertible.

Proof The proof is similar in [3] Proposition 4.2.1.

Let A and B be two C∗-algebras, for any z ∈ KK0(A,B). For the short exact sequence

0 → SB → CB → B → 0.

Let [∂SB] ∈ KK1(B,SB) be its boundary map. Since DX,A,max and DC∗
max

(X,A),C∗
max

(X,T0⊗A)

are controlled inverse to each other. We use TX,A,max represents DC∗
max

(X,A),C∗
max

(X,T0⊗A). Since

z ⊗B [∂SB ] ∈ KK1(A,SB), we define σ̂X,max(z) := TX,A,max ◦ σ̂X,max(z ⊗B [∂SB]).

Proposition 2.4 Let A and B be two C∗-algebras, for any z ∈ KK0(A,B), there exists a

control pair (αX , kX) and even degree (αX , kX)-controlled morphism

σ̂X,max(z) : K∗(C
∗
max(X,A)) → K∗(C

∗
max(X,B))

such that

(i) σ̂X,max(z) induces right multiplication by σX,max(z) in K-theory.

(ii) σ̂X,max(z) is additive, i.e.,

σ̂X,max(z + z′) = σ̂X,max(z) + σ̂X,max(z
′).

(iii) For any ∗-homomorphism f : A1 → A2, we have

σ̂X,max(f
∗(z)) = σ̂X,max(z) ◦ fX,∗

for any z ∈ KK1(A,B).

(iv) For any ∗-homomorphism g : B1 → B2, we have

σ̂X,max(g∗(z)) = gX,∗ ◦ σ̂X,max(z)

for any z ∈ KK1(A,B).

(v) σ̂X,max([idA])
(αX ,kX )

∼ idK(C∗
max

(C,A)).

The second step is quite similar to the cut off function in group case. For any positive

number d and probability η of the Rips complex Pd(X) can be written as η =
∑
x∈X

λx(η)δx,

where δx is the Dirac probability at x, and λx : Pd(X) → [0, 1] is a continuous function. Let

hd :

{
X ×X → C0(Pd(X)),

(x, y) 7→ λ
1

2

x λ
1

2

y .

Let (ex)x∈X be the canonical basis of l2(X), e is a rank one projection in H and Pd be

defined as the extension by linearity and continuity of

Pd(ex ⊗ ξ ⊗ f) =
∑

y∈X

ey ⊗ (eξ)⊗ (h(x, y)f)
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for every x ∈ X, ξ ∈ H and f ∈ C0(Pd(X)). As
∑
x∈X

λx = 1, Pd is projection of K(l2(X)) ⊗

C0(Pd(X)) of controlled support. Since λ
1

2

x λ
1

2

y = 0 if d(x, y) ≥ d. We give the maximal

completion of Pd in C∗
max(X,C0(Pd(X))). Hence Pd define a class

[Pd, 0]ε,r′ ∈ Kε,r′

0 (C∗
max(X,C0(Pd(X))))

for any ε ∈
(
0, 14

)
and r′ ≥ r.

For every C∗-algebra A and r, r′ satisfying r ≤ r′, the inclusion Pd(X) → Pd′(X) induce

a*-homomorphism

(qd
′

d )∗ : KK∗(C0(Pd(X)), A) → KK∗(C0(Pd′(X)), A)

in KK-theory. And a map

((qd
′

d )X)∗ : K∗(C
∗
max(X,C0(Pd(X)))) → K∗(C

∗
max(X,C0(Pd′(X))))

in K-theory. The family of projections Pd are compatible with the morphism qd
′

d , i.e.,

((qd
′

d )X)∗[Pd′ , 0]ε,r′ = [pd, 0]ε,r,

for ε ∈
(
0, 14

)
.

Definition 2.9 (see [3]) Let A be a C∗-algebra, ε ∈
(
0, 14

)
and positive numbers d, r

satisfying that kX(ε)d ≤ r. The quantitative assembly map µ̂X,A,max,∗ = (µε,d,r
X,A,max,∗)ε,r is

defined as the family of maps

µε,d,r
X,A,max,∗ :

{
KK∗(C0(Pd(X)), A) → Kε,r

∗ (C∗
max(X,A)),

z 7→ ι
αXε′,ε,kX(ε′)r′,r
∗ ◦ σε′,r′

X,max(z)[Pd, 0]ε′,r′ ,

where ε′ and r′ satisfy:

(1) ε′ ∈
(
0, 1

4

)
such that αXε′ ≤ ε.

(2) d ≤ r′ such that kX(ε′)r′ ≤ r.

Remark 2.1 The controlled coarse assembly map is compatible with the structure mor-

phism qd
′

d . Indeed, for any d and d′ satisfying d ≤ d′.

σ̂X,max((q
d′

d )∗(z))[Pd′ , 0]ε,r′ = σ̂X,max(z) ◦ ((q
d′

d )X)∗[Pd′ , 0]ε,r′

= σ̂X,max(z)[Pd, 0]ε,r. (2.1)

Hence µ̂ε,d,r
X,A,max,∗ ◦ (q

d′

d )∗ = µ̂ε,d′,r
X,A,max,∗.

Remark 2.2 The quantitative maximal coarse assembly map is also compatible with the

structure morphism ιε,ε
′,r,r′

∗ , i.e., ιε,ε
′,r,r′

∗ ◦ µ̂ε,d,r
X,A,max,∗ = µ̂ε′,d,r′

X,A,max,∗ for every r ≤ r′ and ε ≤ ε′

such that this equality is defined.

Remark 2.3 The maximal quantitative coarse assembly map µ̂X,A,max,∗ induces the maxi-

mal coarse assembly map µX,A,max,∗ in K-theory.

Throughout this paper, using KK∗(Pd(X), A) represents KK∗(C0(Pd(X)), A). Let A be a

G-algebra, we say that



12 Q. Wang and Z. Wang

(1) (Quantitative injectivity) µX,A,max,∗ is quantitative injective if for any d > 0, there exists

ε ∈
(
0, 14

)
such that for any r > 0 satisfying kX(ε)d ≤ r, there exists d′ > d such that for any

z ∈ KK∗(Pd(X), A) , µε,d,r
X,A,max,∗(z) = 0 implies that (qd

′

d )∗(z) = 0.

(2) (Quantitative surjectivity) µX,A,max,∗ is quantitative surjective if there exists ε ∈
(
0, 1

4

)

such that for any r > 0 such that, there exists ε′ ∈ (ε, 1
4 ) and positive numbers d, r′ such that

r ≤ r′ and kX(ε′)d ≤ r′, for any y ∈ Kε,r
∗ (C∗

max(X,A)) there exists z ∈ KK∗(Pd(X), A) such

that µε′,d,r′

X,A,max,∗(z) = ιε,ε
′,r,r′

∗ (y).

Then we show that the maximal coarse Baum-Connes conjecture follows from quantitative

maximal coarse Baum-Connes conjecture.

Proposition 2.5 Let X be a discrete metric space with bounded geometry and A be a C∗-

algebra.

(1) If µX,A,max,∗ is quantitative injective then µX,A,max,∗ is one to one.

(2) If µX,A,max,∗ is quantitative surjective then µX,A,max,∗ is onto.

Proof For the first point,we only prove the even case. The odd case is similar. For

any positive number d, any x ∈ KK0(Pd(X), A) such that µX,A,max,∗(x) = 0. Then for any

ε ∈
(
0, 1

4

)
and r > 0 such that kX(ε)d ≤ r, ιε,r ◦ µε,d,r

X,A,max,∗(x) = 0, choose ε′′ > 0 and r′′ > 0

such that αXε′′ ≤ ε and kX(ε′′)r′′ ≤ r. Then there exist a universal λ ≥ 1 and r′ with r′ ≥ r

such that

0 = ιε,λε,r,r
′

0 ◦ µε,d,r
X,A,max,∗(x)

= ιε,λε,r,r
′

0 ◦ ι
αXε′′,ε,kX(ε′′)r′′,r
∗ (σε′′,r′′

X,max,∗(x))[Pd, 0]ε′′,r′′

= σ̂λε,r′

X,max,∗(x)[Pd, 0]λε′,r′

= µλε,d,r′

X,A,max,∗(x). (2.2)

Since it is quantitative injective, then we have (qd
′

d )∗(x) = 0 in KK0(C0(Pd′(X), A)), then

x = 0 in lim
d>0

KK0(C0(Pd′(X), A)).

For the second point, we only prove the even case. The odd case is similar. For any

y ∈ K0(C
∗
max(X,A)), and any ε ∈

(
0, 1

4

)
, there exists r > 0 and x ∈ Kε,r

0 (C∗
max(X,A)) such

that ιε,r0 (x) = y. Then there exist ε′ ∈
(
0, 14

)
, d, r′ > 0 and z ∈ KK0(Pd(x), A)) such that

ε ≤ ε′, kX(ε′) · d ≤ r′, r ≤ r′ and µε′,d,r′

X,A,max,∗(z) = ιε,ε
′,r,r′(x), hence µX,A,max,∗(z) = y.

For any C∗-algebra A. We define the following quantitative statements.

(1) QIX,A,max,∗(d, d
′, ε, r): For any x ∈ KK∗(Pd(X), A), then µε,d,r

X,A,max,∗(x) = 0 implies

(qd
′

d )∗(x) = 0 in KK∗(Pd′(X), A).

(2) QSX,A,max,∗(d, ε, ε
′, r, r′) : For any y ∈ Kε,r

∗ (C∗
max(X,A)), then there exists a

x ∈ KK∗(Pd(X), A)

such that µε′,d,r′

X,A,max,∗(x) = ιε,ε
′,r,r′

∗ (y).

Next we are going to study more relationship between maximal quantitative Baum-Connes

conjecture and the maximal Baum-Conjecture. Firstly, we introduce some useful lemmas.

If A = (Ai)i∈N is any family of filtered C∗-algebras and H a separable Hilbert space. Set

A∞
c,r =

∏
i∈N

K(H)⊗Ai,r for any r > 0 and define the C∗-algebra A∞
c as the closure of

⋃
r>0

A∞
c,r

in
∏
i∈N

K(H)⊗Ai,r.
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Lemma 2.5 (see [13]) Let A = (Ai)i∈N is any family of filtered C*-algebras and let

FA,∗ = (FA, ε, r)0<ε< 1

4
,r>0 : K∗(A

∞
c ) → ΠK∗(Ai),

where

F ε,r
A,∗ : Kε,r

∗ (A∞
c ) →

∏

i∈N

Kε,r
∗ (Ai)

is the map induced n the j-th factor and up to the Morita equivalence by the restriction to A∞
c

of the evaluation
∏
i∈N

K(H) ⊗ Ai → K(H) ⊗ Aj at j ∈ N. Then FA,∗ is a (α, h)-controlled

isomorphism for a control pair (α, h) independent on the family A.

For a family of C∗-algebra A = (Ai)i∈N, denote A∞
X,max is the closure of

⋃
r>0

∏
i∈N

C[X,Ai]r

in
∏
i∈N

C∗
max(X,Ai).

Lemma 2.6 Let X is a discrete matric space with bounded geometry, and a family of C∗-

algebra A = (Ai)i∈N, then there is a control pair (λ, h) and a (λ, h)-isomorphism

K∗(A
∞
X,max) →

∏

i∈N

K∗(C
∗
max(X,Ai)).

Proof We are going to prove it in the even case, the odd case is similar. Firstly, there

exists a (λ, h)-controlled morphism

K∗(A
∞
X,max) →

∏

i∈N

K∗(C
∗
max(X,Ai))

induced by the projection
∏
i∈N

C∗
max(X,Ai) → C∗

max(X,Ai) restrict at A
∞
X,max. For any positive

integer n and i ∈ N, since Mn(l
∞ (X,Ai ⊗ K(H))) ⊆ l∞(X,Ai) ⊗ K(H), hence we have

Mn(C
∗
max(X,Ai)) ⊆ C∗

max(X,Ai). Hence for any positive number r, ε ∈
(
0, 14

)
and any x ∈

∏
i∈N

Kε,r
∗ (C∗

max(X,Ai)). Then x = [P , l], where l is a integer, P ∈ Pn

( ∏
i∈N

C∗
max(X,Ai)

)
, we

write P = (pi)i∈N, for any pi ∈ Pn(C
∗
max(X,Ai)). So we can assume pi ∈ P (C∗

max(X,Ai)),

hence the constructed controlled morphism is (λ, h)-surjective.

To prove this controlled morphism is (λ, h)-injective, we need [10, Proposition 1.30], the

homotopy of ε-r-projections can be chosen to be Lipschitz homotopy in larger matrix size.

Easily this controlled morphism is (λ, h)-injective.

Lemma 2.7 Let X is a discrete metric space with bounded geometry, and a family of C∗-

algebra A = (Ai)i∈N, then we have a filtered isomorphism

φ : C∗
max

(
X,

∏

i∈N

Ai

)
→ A∞

X,max.

Proof Obviously, by the universal property of C∗
max

(
X,

∏
i∈N

Ai

)
, there is a filtered homo-

morphism

φ : C∗
max

(
X,

∏

i∈N

Ai

)
→ A∞

X,max.
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Since the range of this filtered homomorphism under the dense subalgebra C
[
X,

∏
i∈N

Ai

]
is dense

in A∞
X,max. Hence we only need to prove this filtered homomorphism φ is injective.

Since for any i ∈ N, we have the inclusion Ai →
∏
i∈N

Ai. So we have filtered homomorphism

C∗
max(X,Ai) → C∗

max

(
X,

∏

i∈N

Ai

)
.

Hence φ is a filtered isomorphism.

By the former lemmas we have the following result.

Corollary 2.1 Let X is a discrete metric space with bounded geometry, and a family of

C∗-algebra A = (Ai)i∈N. Then there exists a control pair (λ, h) and a (λ, h)-isomorphism:

K∗

(
C∗

max

(
X,

∏

i∈N

Ai

))
→

∏

i∈N

K∗(C
∗
max(X,Ai)).

The following results give the relationship between quantitative maximal Baum-Connes

conjecture and maximal Baum-Connes conjecture.

Theorem 2.3 Let X be a discrete matric space with bounded geometry and A is a C∗-

algebra. The following are equivalent:

(1) µX,l∞(N,K(H)⊗A),max,∗ is one to one.

(2) For any d > 0, ε ∈
(
0, 1

4

)
and r > 0 with kX(ε)d ≤ r, there exists d′ such that d ⊆ d′

and QIX,A,max,∗(d, d
′, ε, r) holds.

Proof Assume that condition (2) holds. Let x ∈ KK∗(Pd(X), l∞(N,K(H)⊗A)) such that

µd
X,l∞(N,K(H)⊗A),max,∗(x) = 0. Since the maximal quantitative assembly map is compatible

with the maximal assembly map and by Proposition 2.1. Then there exist ε > 0 and r > 0 such

that kX(ε)d ≤ r satisfying µε,d,r

X,l∞(N,K(H)⊗A),max,∗(x) = 0 in Kε,r
∗ (C∗

max(X, l∞(N,K(H)⊗ A))).

Denote (xj)j∈N the element of
∏
j

KK∗(Pd(X), A) corresponding to x under the isomorphism of

∏

j

KK∗(Pd(X), A) ∼= KK∗(Pd(X), l∞(N,K(H)⊗A)).

Let d′ > 0 with d ≤ d′ such that QIX,A,max,∗(d, d
′, ε, r) holds. By the naturality of quantitative

assembly map, then we have µε,d,r
X,A,max,∗(xi) = 0 and hence (qd

′

d )∗(xj) = 0 in KK∗(Pd′(X), A).

So (qd
′

d )∗(x) = 0. Then we have µX,l∞(N,K(H)⊗A),max,∗ is one to one.

Let us prove the converse. Assume that there exist positive numbers d > 0, ε ∈
(
0, 1

4

)

and r > 0 such that QIX,A,max,∗(d, d
′, ε, r) is not true for all d ≤ d′. Then we can get a

increasing exhausting sequence dj ≥ d with lim
j

dj = ∞ and xj ∈ KK∗(Pd(X), A) such that

µε,d,r
X,A,max,∗(xj) = 0 and (q

dj

d )∗(xj) 6= 0 in KK∗(Pdj
(X), A). Let x ∈ KK∗(Pd(X), l∞(N,K(H)

⊗ A)) corresponding to each (xj) ∈ KK∗(Pd(X), A). By [10, Corollary 2.1, Proposition 1.30]

and µε,d,r
X,A,max,∗(xj) = 0, up to rescaling, the image of maximal quantitative assembly map for

coefficient l∞(N,K(H)⊗A) is 0. So we have µd
X,l∞(N,K(H)⊗A),max,∗(x) = 0 and (qd

′

d )∗(x) 6= 0 in

KK∗(Pd′(X), l∞(N,K(H)⊗A)) at least with one d′ such that d ≤ d′. So µX,l∞(N,K(H)⊗A),max,∗

is not one to one.
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Theorem 2.4 Let X be a discrete metric space with bounded geometry and A is a C∗-

algebra. Then there exists λ > 1 such that the following are equivalent:

(1) µX,l∞(N,K(H)⊗A),max,∗ is onto.

(2) For any positive numbers ε with ε < 1
4λ and r > 0, there exist d > 0 and r′ > 0 with

kX(ε)d ≤ r and r ≤ r′ for which QSX,A,max,∗(d, r, r
′, ε, λε) is satisfied.

Proof Choose λ as in Proposition 2.1. Assume that the condition (2) holds. Let z be an

element in K∗(C
∗
max(X, l∞(N,K(H)⊗A))) and let y be element in Kε,r

∗ (C∗
max(X, l∞(N,K(H)⊗

A))) such that ιε,r∗ (y) = z, with 0 < ε < 1
4λ and r > 0. Up to a rescaling of parameters, by

Corollary 2.1, let yi be the image of y under the controlled isomorphism

K∗(C
∗
max(X, l∞(N,K(H)⊗A))) →

∏

j

K∗(C
∗
max(X,A)).

Hence (yj)j ∈
∏
j

Kε,r
∗ (C∗

max(X,A)). Let d > 0 and r > 0 with r ≤ r′ and kX(ε)d ≤ r

and such that QSX,A,max,∗(d, r, r
′, ε, λε) holds. Then for any integer i, there exists a xi

in KK∗(Pd(X), A) such that µλε,d,r′

X,A,max,∗(xi) = ιε,λε,r,r
′

∗ (yi) in Kλε,r′

∗ (C∗
max(X,A)). Let x in

KK∗(Pd(X), l∞(N,K(H)⊗A)) corresponding xj under the isomorphism

KK∗(Pd(X), l∞(N,K(H)⊗A)) ∼=
∏

j∈N

KK∗(Pd(X),K(H)⊗A).

By naturality of quantitative asembly maps and Corollary 2.1, we get

µλε,d,r′

G,l∞(N,K(H)⊗A),max,∗(x) = ιε,λε,r,r
′

∗ (y)

in Kλε,r′

∗ (C∗
max(l

∞N,K(H)⊗A)). Then we have

µd
X,l∞(N,K(H)⊗A),max,∗(x) = ιλε,r

′

∗ (y) = ιε,r∗ (y) = z

and therefore µX,l∞(N,K(H)⊗A),max,∗ is onto.

Let us prove the converse. Assume that there exist ε ∈
(
0, 1

4λ

)
and r > 0 such that for any

d > 0 and r′ > 0 with r ≤ r′ and kX(ε)d ≤ r and QSX,A,max,∗(d, r, r
′, ε, λε) is not hold. Let

us prove that µX,l∞(N,K(H)⊗A),max,∗ is not onto. Then we can find increasing and unbounded

sequences (dj)j∈N and (rj)j∈N such that kX(ε)dj ≤ rj and r ≤ rj . Let yj be an element

in Kε,r
∗ (C∗

max(X,A)) such that ι
ε,λε,r,rj
∗ (yi) is not in the image of µλε,di,ri

X,A,max,∗. There exists an

element y in Kε,r
∗ (C∗

max(X, l∞(N,K(H)⊗A))) corresponding to each yi in Kε,r
∗ (C∗

max(X,A)) by

Corollary 2.1. Assume that for some d′ > 0, there exists an x in KK∗(Pd′(X), l∞(N,K(H)⊗A))

such that ιε,r∗ (y) = µd′

X,l∞(N,K(H)⊗A),max,∗(x). Using Proposition 2.4, there exists a positive

number r′ with r ≤ r′ and kX(λε)d′ ≤ r′ such that

ιε,λε,r,r
′

∗ ◦ µε,d′,r

X,l∞(N,K(H)⊗A),max,∗(x) = ιε,λε,r,r
′

∗ (y).

But if we choose j such that r′ ≤ dj and r′ ≤ rj we get by using the naturality of assembly

map that ι
ε,λε,r,rj
∗ (yj) belongs to the image of µλε,di,ri

X,A,max,∗ which contradicts our assumption.

Replacing the algebra l∞(N,K(H)⊗A) by
∏
i∈N

K(H)⊗Ai, using the similar method in the

proof of the former theorems, we can get the following result.
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Corollary 2.2 Let X be a discrete metric space with bounded geometry and A is a C∗-

algebra. Then we have the following results.

(1) µX,A,max,∗ is one to one. Then for any ε ∈
(
0, 14

)
and every d > 0, r > 0 such that

kX(ε)d ≤ r, there exists d′ with d ≤ d′ such that QIX,A,max,∗(d, d
′, ε, r) holds.

(2) µX,A,max,∗ is onto. Then for some λ ≥ 1 and any ε ∈
(
0, 1

4λ

)
and every r > 0, there

exists d > 0 and r′ > 0 such that kX(ε)d ≤ r and r ≤ r′ such that QSX,A,max,∗(d, r, r
′, ε, λε)

holds.

3 Persistence Approximation Property

Persistence approximation property was introduced by Oyono-Oyono and Yu in [12]. It

has a strong relationship with Baum-Connes conjecture with coefficient and provide geometric

obstruction for Baum-Connes conjecture. The persistence approximation property was defined

as follows.

Let B be a filtered C∗-algebra and positive numbers ε, ε′, and r′ such that 0 < ε ≤ ε′ < 1
4

and 0 < r ≤ r′.

Definition 3.1 (see [12]) We call that K∗(B) has persistence approximation property if:

For any ε ∈
(
0, 1

4

)
and r > 0, there exists ε′ ∈

(
ε, 1

4

)
and r′ ≥ r such that for any x ∈ Kε,r

∗ (B),

then ιε,ε
′,r,r′

∗ (x) 6= 0 in Kε′,r′

∗ (B) implies that ιε,r∗ (x) 6= 0 in K∗(B).

We give the following quantitative statements. PA∗(B, ε, ε′, r, r′) : For any x ∈ Kε,r
∗ (B),

then ιε,r∗ (x) = 0 in K∗(B) implies that ιε,ε
′,r,r′

∗ (x) = 0 in Kε′,r′

∗ (B).

For the crossed product with groups, we have the following theorem.

Theorem 3.1 (see [12]) Let Γ be a finite generated group and A be a C∗-algebra. Assume

that

(1) µΓ,l∞(N,A⊗K(H)) is onto and µΓ,A is one to one.

(2) Γ admits a cocompact universal example for proper actions.

Then for some universal constant λPA ≥ 1, any ε ∈
(
0, 1

4λPA

)
, any r > 0, and any Γ-C* algebra

A there exists r′ ≥ r such that PA∗(A⋊red Γ, ε, λPAε, r, r
′) holds.

Remark 3.1 A finite generated group with Haagerup property will satisfy Baum-Connes

conjecture for any coefficients (see [6]). If a group is hyperbolic or the fundamental group of a

compact oriented 3-manifolds will admit a cocompact universal example for proper actions (see

[8]). Both of F2 and SL2(Z) satisfy the hypothesis of the former theorem.

For the groupoid C∗-algebras, we have the following theorem.

Theorem 3.2 (see [3]) Let G be an étale groupoid such that

(1) G(0) is compact;

(2) G admits a cocompact example for universal space for proper actions.

Then there exists a universal constant λPA ≥ 1 such that for any G-algebra A, if µG,l∞(N,A⊗K(H))

is onto and µG,A is one to one, then for any ε ∈
(
0, 1

4λPA

)
and every F ∈ E, there exists a F

such that F ⊆ F ′ and PA∗(A⋊red G, ε, λPAε, F, F
′) holds.

Remark 3.2 LetX is a discrete metric space with bounded geometry. IfX embeds coarsely

into a Hilbert space, then the groupoid G(X) is a-T -menable (see [14]). Hence G(X) will satisfy
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Baum-Connes conjecture with coefficients. If this groupoid G(X) also admits a cocompact

universal example for proper actions, then the reduced crossed product with this groupoid will

have persistence approximation property.

For the metric space, we have the following theorem. We also need a hypothesis to replace

that the group (groupoid) admits a cocompact universal example for proper actions.

Definition 3.2 (see [12]) A discrete metric space is coarsely uniformly contractible: If for

every d > 0, there exists d′ > d such that any compact subset of Pd(X) lies in a contractible

invariant compact subset of Pd′(X).

Example 3.1 (see [8]) Any discrete hyperbolic metric space is coarsely uniformly con-

tractible.

The following theorem describe the persistence approximation property for maximal Roe

algebras.

Theorem 3.3 Let X be a discrete metric space with bounded geometry and A is a C∗-

algebra. Assume that

(1) X is coarsely uniformly contractible.

(2) µX,l∞(N,A⊗K(H)),max,∗ is onto and µX,A,max,∗ is one to one.

Then there exists a universal constant λPA ≥ 1 such that for any ε ∈
(
0, 1

4λPA

)
and every r > 0,

there exists a r′ > 0 such that r ≤ r′ and PA∗(C
∗
max(X,A), ε, λPAε, r, r

′) holds.

Proof Let (α, h) be the control pair in Corollary 2.1 and λ be the constant in Proposition

2.1. Set λPA = λα. Assume that the conclusion is not hold. Then there exists ε > 0 and r > 0

such that PA∗(C
∗
max(X,A), ε, λPAε, r, r

′) is not true for any r′ > 0 with r ≤ r′. Hence we can

find an nondecreasing and unbounded sequence of rj and elements xj ∈ Kε,r
∗ (C∗

max(X,A)) such

that ιε,r(xj) = 0 but ιε,λPAε,r,rj (xj) 6= 0.

Let x be the element of Kαε,hεr
∗ (C∗

max(X, l∞(N, A ⊗ K(H)))) corresponding to (xj) ∈∏
j

Kε,r
∗ (C∗

max(X,A)) under the controlled isomorphism of Corollary 2.1. If ιλPAε,hεr
∗ (x) is in the

range of µX,l∞(N,A⊗K(H)),max,∗, then there exists d > 0 and z ∈ KK∗(Pd(X), l∞(N, A⊗K(H))),

such that µd
X,l∞(N,A⊗K(H)),max,∗(z) = ιλPAε,hεr

∗ (x). Let (zj) be the element of
∏
j

KK∗(Pd(X), A)

corresponding the isomorphism

KK∗(Pd(X), l∞(N, A⊗K(H))) ∼=
∏

j

KK∗(Pd(X), A).

By Proposition 2.1, there exists r′′ with hεr ≤ r′′ such that

µλPA,d,r′′

X,l∞(N,A⊗K(H)),max,∗(z) = ιαε,λPA,hεr,r
′′

∗ (x).

Since the quantitative maximal assembly map is compatible with the maximal assembly

map, we have µd
X,A,max,∗(zj) = 0. Since X is coarsely uniformly contractible and µX,A,max,∗ is

injective. There exists d′ with d ≤ d′ and (qd
′

d )∗(z) = 0. Since the following is compatible:

µλPAε,d,r′′

X,l∞(N,A⊗K(H)),max,∗(z) = µλPA,ε,d′,r′′

X,l∞(N,A⊗K(H)),max,∗ ◦ (q
d′

d )∗(z).

Then we have ιαε,λPA,hε·r,r
′′

∗ (x) = 0 in KλPAε,r′′

∗ (C∗
max(X, l∞(N, A ⊗ K(H)))). Choosing

i ∈ N such that r′′ ≤ ri, then we have ιε,λPAε,r,ri
∗ (xi) = 0, which contradicts our assumption.
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From this theorem, the persistence approximation property provides the geometric obstruc-

tion to the maximal coarse Baum-Connes conjecture.

Let X be a discrete metric space with bounded geometry. If X admits a fibred coarse

embedding into Hilbert space, then X satisfies the maximal coarse Baum-Connes conjecture

(see [2]). So whether or not the persistence approximation property holds for C∗
max(X) when

X admits a fibred coarse embedding Hilbert space?

Theorem 3.4 Let X be a discrete metric space with bounded geometry. Assume that X

admits a fibred coarse embedding into Hilbert space and X is coarsely uniformly contractible.

Then there exists a universal constant λPA ≥ 1 such that: For any ε ∈
(
0, 1

4λPA

)
and any r > 0

there exists r′ > r such that PA∗(C
∗
max(X), ε, λPAε, r, r

′) holds.

Proof Since X can be fibred coarse embedding into Hilbert space, then X satisfies the

quantitative maximal coarse Baum-Connes conjecture with coefficient K(H). By Theorem 2.4,

µX,l∞(N,K(H)),max,∗ is surjective. Since µX,K(H),max,∗ is injective and X is coarsely uniformly

contractible, then by Theorem 3.3, there exists a universal constant λPA ≥ 1 such that: For

any ε ∈
(
0, 1

4λPA

)
and any r > 0, there exists r′ > r such that PA(C∗

max(X), ε, λPAε, r, r
′)

holds.

A very important example of metric space which admits a fibred coarse embedding into

Hilbert space comes from the box space residually finite group. The box space of residually

finite group admits a fibred coarse embedding into Hilbert space if and only if the group has

Haagerup property (see [1]).

Here we give some examples of maximal Roe algebra satisfying the persistence approximation

property. For a finitely generated residually finite group Γ with Haagerup property and {Γi}i∈N

be a family of finite index normal group with trivial intersection. We endow Γ/Γi with the metric

d(aΓi, bΓi) = min{d(aγ1, bγ2); γ1, γ2 ∈ Γi}. We set X(Γ) =
⊔
i∈N

Γ/Γi and equip X(Γ) with the

following metric d :

(1) On Γ/Γi, then d is the metric defined above;

(2) d(Γ/Γi,Γ/Γj) ≥ i + j if i 6= j;

(3) The group Γ acts on X(Γ) by isometries.

As in [9, Proposition 2.8], let BΓ = l∞(X(Γ),K(H)), BΓ,0 = C0(X(Γ),K(H)) and AΓ =

BΓ/BΓ,0. There is a short exact sequence:

0 → K(l2(X(Γ))⊗H) → C∗
max(X(Γ)) → AΓ ⋊max Γ → 0.

C∗
max(X(Γ)) is filtered by (C[X(Γ)]r)r>0. Let Jr = C[X(Γ)]r ∩ K(l2(X(Γ) ⊗ H) and J =

K(l2(X(Γ) ⊗ H). Let q : C∗
max(X(Γ)) → AΓ ⋊max Γ be quotient map, from the prove of the

Proposition 2.8 in [9], the propagation of q(C[X(Γ)]r) is no more than r.

To use the six-term exact sequence of quantitative K-theory, we need the extension is

completely filtered. Firstly, we will show the above extension is completely filtered.

Lemma 3.1 The extension

0 → K(l2(X(Γ))⊗H) → C∗
max(X(Γ)) → AΓ ⋊max Γ → 0
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is completely filtered, i.e., for any integer n, r > 0 and x ∈ Mn(C[X(Γ)]r), we have

inf
y∈Mn(Jr)

‖x− y‖ = inf
y∈Mn(J)

‖x− y‖.

Proof Since for any positive integer n, we have

l∞(X(Γ),K(H))⊗Mn(C) ⊆ l∞(X(Γ),K(H)).

Hence C∗
max(X(Γ)) ⊗Mn(C) ⊆ C∗

max(X(Γ)). So we only need to prove for n = 1 case. Since

for any x ∈ C[X(Γ)]r, easily we have inf
y∈Jr

‖x− y‖ ≥ inf
y∈J

‖x− y‖.

Let eλ be an approximate unit for K(l2(X(Γ)⊗H)), obviously we can choose eλ to be the

0 propagation operators on l2(X(Γ)⊗H). We also have

inf
y∈J

‖x− y‖ = lim
λ

‖x− xeλ‖

and xeλ ∈ C[X(Γ)]r. Hence inf
y∈Jr

‖x− y‖ ≤ inf
y∈J

‖x− y‖, then we get our result.

Secondly, we show K(l2(X(Γ) ⊗H)) has persistence approximation property, then we use

the controlled exact sequence to prove C∗
max(X(Γ)) also has this property.

Proposition 3.1 Let Γ be a finitely generated residually finite group with Haagerup pro-

perty, if Γ admits a cocompact universal example for proper actions. Then there exists a u-

niversal constant λ ≥ 1 for any ε ∈
(
0, 1

4λ

)
and any r > 0 there exists r′ > r such that

PA∗(K(l2(X(Γ)⊗H)), ε, λε, r, r′) holds.

Proof We only prove the even case. For the odd case is similar. By Theorem 3.2, there exists

λPA making the persistence approximation property holds. Let λ = max{5, λPA} for any ε ∈
(
0, 1

4λ

)
, r > 0 and x ∈ P ε,r(K(l2(X(Γ)⊗H))), then x = x′+x′′ with x′ ∈ K(l2

( n−1∐
i=0

Γ/Γi

)
⊗H)

and x′′ = (x′′
i )i≥n ∈

∏
i≥n

K(l2(X(Γi) ⊗ H)). This decomposition is independent of the choice

of x only depend on r. Since x′ · x′′ = 0,then ιε,r0 (x′) = 0 and ιε,r0 (x′′) = 0 . If ιε,r0 (x) = 0,

then ιε,r0 (x′) = 0 and ιε,r0 (x′′) = 0. Since for any operators in K
(
l2
( n−1∐

i=0

Γ/Γi

)
⊗ H

)
, their

propagation is finite. Hence there exists r′1 with r′1 ≥ r only depend on r, such that x′ and

ιε,r0 (x′) is homotopic in 5ε-r′1-projections in K
(
l2
( n−1∐

i=0

Γ/Γi

)
⊗H

)
.

Since there exists a inclusion BΓ,0 ⋊red Γ → K(l2(X(Γ)⊗H)) and

x′′ = (x′′
i )i≥n ∈ BΓ,0 ⋊red Γ.

Since ιε,r0 (x′′) = ιε,r0 (x′′
i )i≥n = 0 and ιε,r0 (x′′

i )i≥n ∈ BΓ,0 ⋊red Γ. If Γ has Haagerup proper-

ty and admits cocompact universal example for proper actions. Then by Theorem 3.1, for

some universal constant λ2 ≥ 1, any ε ∈
(
0, 1

4λ2

)
, any r > 0, there exists r′2 ≥ r such that

PA∗(BΓ,0 ⋊red Γ, ε, λ2ε, r, r
′
2) holds. Then ιε,λ2,r,r2

0 (x′′) = 0 in Kλ2ε,r2
0 (BΓ,0 ⋊red Γ). Hence

ιε,λ2,r,r2
0 (x′′) = 0 in Kλ2ε,r2

0

( ∏
i≥n

K(l2(Γ/Γi)⊗H)
)
.

Let r′ = max{r1, r2}, since the choice of r1, r2 do not depend on x. Hence there exists

a universal constant λ ≥ 1 for any ε ∈
(
0, 1

4λ

)
and any r > 0 there exists r′ > r such that

PA∗(K(l2(X(Γ)⊗H)), ε, λε, r, r′) holds.
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Theorem 3.5 Let Γ be a finitely generated residually finite group with haagerup property

and admits a cocompact universal example for proper actions. Then there exists a univer-

sal constant λPA ≥ 1 for any ε ∈
(
0, 1

4λPA

)
and any r > 0 there exists r′ > r such that

PA∗(C
∗
max(X(Γ)), ε, λPAε, r, r

′) holds.

Proof Since Γ has Haagerup property, then Γ is K-amenable and satisfies Baum-Connes

conjecture with any coefficients (see [6]). By Theorem 5.10 in [10] there is a control pair (λ, h)

such that

λΓ,A,∗ : K∗(AΓ ⋊max Γ) → K∗(AΓ ⋊red Γ)

is a (λ, h)-isomorphism. If Γ admits a cocompact universal example for proper actions. Then

by Theorem 3.1, for some universal constant λPAΓ
≥ 1, any ε ∈

(
0, 1

4λPAΓ

)
,any r > 0, and

any Γ-C* algebra A there exists r′0 ≥ r such that PA∗(A ⋊red Γ, ε, λPAΓ
ε, r, r′0) holds. Up to

rescaling of parameters, we can assume there exists some universal constant λPAΓ
≥ 1, any

ε ∈
(
0, 1

4λPAΓ

)
, any r > 0, there exists r′0 ≥ r such that PA∗(AΓ ⋊max Γ, ε, λPAΓ

ε, r, r′0) holds.

Since the extension

0 → K(l2(X(Γ))⊗H) → C∗
max(X(Γ)) → AΓ ⋊max Γ → 0

is completely filtered. So we have a six-term exact sequence of quantitative K-theory: Denote

D0 = D0
K(l2(X(Γ)⊗H),C∗

max
(X(Γ)), D1 = D1

K(l2(X(Γ)⊗H),C∗
max

(X(Γ)) by the controlled boundary

map. There exists a control pair (λ′, h′) such that the following six-term sequence is (λ′, h′)-

exact

K0(K(l2(X(Γ)⊗H)))
j∗ // K0(C

∗
max(X(Γ)))

q∗ // K0(AΓ ⋊max Γ)

D0

��
K1(AΓ ⋊max Γ)

D1

OO

K1(C
∗
max(X(Γ))

q∗oo K1(K(l2(X(Γ)⊗H)))
j∗oo

SinceK(l2(X(Γ)⊗H)) has persistence approximation property for some universal constant λPA,

we may assume λPA ≥ λ′ > 1. Then for any ε ∈
(
0, 1

4λPA

)
, r > 0 and x ∈ Kε,r

0 (C∗
max(X(Γ)))

with ιε,r0 (x) = 0 in K0(C
∗
max(X(Γ))). Since ιε,r0 (q(x)) = q(ιε,r0 (x)) = 0 in K0(AΓ ⋊max Γ) and

AΓ ⋊max Γ has persistence approximation property. Then q(x) = 0 in K
λAΓ

ε,r′
0

0 (AΓ ⋊max Γ).

Since the six term sequence is (λ′, h′) exact. Then there exists an element

y ∈ K
λ′ε,h′

εr

0 (K(l2(X(Γ))))

such that

jλ
′ε,h′

εr(y) = ι
ε,λ′ε,r,h′

εr
0 (x)

in K
λ′ε,h′

εr
0 (C∗

max(X(Γ))). By [9, Proposition 2.10], the inclusion

K(l2(X(Γ)⊗H)) →֒ C∗
max(X(Γ))

induces an injection Z →֒ K0(C
∗
max(X(Γ))). Then

ι
λ′ε,h′

εr

0 (jλ
′ε,h′

εr(y)) = j(ι
λ′ε,h′

εr

0 (y)) = 0

induces ι
λ′ε,h′

εr
0 (y) = 0. Since K(l2(X(Γ)⊗H)) has persistence approximation property, we may

choose a bigger λPA with λPA ≥ λ′ and there exists r′ ≥ h′
εr such that ι

λ′ε,λPAε,h′
ε,r

′

0 (y) = 0 in
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K
λPA,r′

1

0 (K(l2(X(Γ)))). Hence jλPAε,r′(y) = ιε,λPAε,r,r′

0 (x) = 0 in KλPAε,r′

0 (C∗
max(X(Γ))) and

the choice of r′ does not depend on x.

For the odd case is similar. Hence there exists a universal constant λPA ≥ 1 for any

ε ∈
(
0, 1

4λPA

)
and any r > 0 there exists r′ > r such that PA∗(C

∗
max(X(Γ)), ε, λPAε, r, r

′)

holds.

Remark 3.3 Both F2 and SL2(Z) are finite generated group with Haagerup property.

Since their classifying space is a tree and this tree is cocompact. So they admit a cocompact

universal example for proper actions. Hence the maximal Roe algebras of their box spaces will

have persistence approximation property.

4 Quantitative Assembly Map for a Family of Metric Spaces

Initially the quantitative K-theory was used to prove the coarse Baum-Connes conjecture

for the space with finite asymptotic dimension. In this section, we will study an application of

quantitative K-theory.

Let X = (Xi)i∈N be a family of discrete metric space with bounded geometry and A =

(Ai)i∈N be a family of C∗-algebras. Denote C∗
max(X ,A) by the closure of

⋃
r>0

( ∏
i∈N

C[Xi, Ai]
)
r

in
∏
i∈N

C∗
max(Xi, Ai). Then C∗

max(X ,A) is filtered C∗-algebra.

Lemma 4.1 There exists a control pair (λ, h) and a (λ, h)-controlled isomorphism

K∗(C
∗
max(X ,A)) →

∏

i

K∗(C
∗
max(Xi, Ai)).

Proof We will prove it in the even case, for the odd case is similar. Obviously, there

is a controlled homomorphism induced by the projection to the i-th factor. For any x ∈∏
i∈N

Kε,r
0 (C∗

max(Xi, Ai)), then x = (xi) and for each xi ∈ Kε,r
0 (C∗

max(Xi, Ai)). Then xi = [pi, li],

pi ∈ P ε,r
ni

(C∗
max(Xi, Ai)) and ni, li ∈ N. Since Ai⊗K(H)⊗Mn(C) ∼= Ai⊗K(H) for any positive

integer n and i. Then we can assume pi ∈ P ε,r(C∗
max(Xi, Ai)). Hence there exists a control pair

(λ, h) such that this map is (λ, h)-surjective. By [10, Proposition 1.30], up to enlarge matrix

size, the homotopy of ε-r projections can be chosen to be Lipschitz homotopy. Hence we can

choose a bigger control pair (λ, h) such that this map is (λ, h) isomorphism.

As [3, Proposition 4.2.6], there exists a universal control pair (α, h) such that:

(1) For any family X = (Xi)i∈N of metric space;

(2) For any family of C∗-algebras A = (Ai)i∈N and B = (Bi)i∈N;

(3) For any z = (zi)i∈N in
∏
i∈N

KK∗(Ai, Bi),

There exists an (α, h)-controlled morphism

σ̂∞
X ,max(z) = (σ̂∞,ε,r

X ,max)0<ε< 1

4α
,r>0 : K∗(C

∗
max(X ,A)) → K∗(C

∗
max(X ,B))

that satisfies the analogous properties listed in [3, Proposition 4.2.6].

For each metric space Xi and positive number d, there is a projection Pd,Xi,max with

propagation less than d in C∗
max(Xi). For a family of metric space X = (Xi)i∈N, denote

P∞
d,X ,max = (Pd,Xi,max)i∈N is projection of propagation less than d in C∗

max(X ,A), where A is a

family of C∗-algebras C0(Pd(Xi)).
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Then we can defined the quantitative assembly map valued in C∗
max(X ). For any ε ∈

(
0, 1

4

)

and d, r > 0 with kX (ε) · d ≤ r. Define

µ∞,ε,d,r
X ,max,∗ :





∏
i∈N

KK∗(C0(Pd(Xi)),C) → Kε,r
∗ (C∗

max(X )),

z 7→ ι
αX ε′,ε,kX (ε′)r′,r
∗ ◦ σ̂∞

X (z)[P∞
d,X ,max, 0]ε′,r′ ,

where ε′ and r′ satisfy

(1) ε′ ∈
(
0, 1

4

)
such that αX · ε′ ≤ ε;

(2) d ≤ r′ and kX (ε′) · r′ ≤ r.

Remark 4.1 The quantitative assembly map is compatible with the inclusion of the inclu-

sion of Rips complex, i.e., For any positive number d and d′ with d ≤ d′, we have µ∞,ε,d,r
X ,max,∗ ◦

(q∞,d′

d )∗ = µ∞,ε,d′,r
X ,max,∗.

Remark 4.2 The quantitative assembly map is also compatible with structure morphism

ιε,ε
′,r,r′

∗ , i.e., ιε,ε
′,r,r′

∗ ◦ µ∞,ε′,d,r′

X ,max,∗ = µ∞,ε,d,r
X ,max,∗ for any ε ≤ ε′ and r ≤ r′.

Similarly we give two quantitative statements.

(1) QIX ,max,∗(d, d
′, r, ε): for any x ∈

∏
i∈N

KK∗(Pd(Xi),C), then µ∞,ε,d,r
X ,max,∗(x) = 0 implies

(qd
′

d )∗(x) = 0 in
∏
i∈N

KK∗(Pd(Xi),C).

(2)QSX ,max,∗(d, r, r
′, ε, ε′): for any y ∈ Kε,r

∗ (C∗
max(X )), there exists x ∈

∏
i∈N

KK∗(Pd(Xi),C)

such that µ∞,ε′,d,r′

X ,max,∗ (x) = ιε,ε
′,r,r′

∗ (y).

Let Σ =
⊔
i∈N

Xi, where (Xi)i∈N is a family of metric space satisfying: For any r > 0, there

exists an integer Nr such that for any integer i, any ball of radius r in Xi is no more than Nr

element.

The metric d on Σ is defined to be:

(1) On each Xi, the metric is just the usual metric on Xi;

(2) d(Xi, Xj) ≥ i + j if i 6= j.

Obviously, there is a inclusion of filtered C∗-algebras jΣ,max : C∗
max(X ) →֒ C∗

max(Σ). Let

A = (Ai)i∈N be a family of C∗-algebras and denote A⊕ =
⊕
i∈N

Ai, for each i ∈ N, there

is an inclusion Ai ⊗ K(l2(Xi) ⊗ H) →֒ A⊕ ⊗ K(l2(Σ) ⊗ H) induce the inclusion jA,Σ,max :

C∗
max(X ,A) →֒ C∗

max(Σ,A
⊕). Recall there is an isomorphism

∏

i∈N

KK∗(Ai,C) ∼= KK∗(A
⊕,C).

Lemma 4.2 For a family of C*-algebras A = (Ai)i∈N, Σ =
⊔
i∈N

Xi and z ∈
∏
i∈N

KK∗(Ai,

C), then we have a commutative diagram:

K∗(C
∗
max(X ,A))

σ∞
X,max

(z)
//

(jA,Σ,max)∗

��

K∗(C
∗
max(X ))

(jΣ,max)∗

��
K∗(C

∗
max(Σ,A

⊕))
σΣ,max(z)// K∗(C

∗
max(Σ))
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Proof Firstly we prove the odd case, assume z ∈
∏
i∈N

KK1(Ai,C) ∼= KK1(A
⊕,C) (We

write z = (zi)i∈N for each zi ∈ KK1(Ai,C)). Let us fix a separable Hilbert space H . For each

i ∈ N, let (H, πi, Ti) be the K-cycle for KK1(Ai,C) representing zi,where πi : Ai → L(H)

a representation and Ti in L(H) satisfying the K-cycle conditions. Let Pi = Ti+IdH

2 and

Ei = {(x, T ) ∈ Ai ⊕ L(H) such that Piπi(x)Pi − T ∈ K(H)}. Then we have a semi-split

extension

0 → K(H) → Ei → Ai → 0.

The cross-section s : Ai → Ei; x 7→ (x, PixPi). Then for the X = (Xi)i∈N family of metric

spaces, we have a family of semi split filtered C∗-algebras extension

0 → C∗
max(Xi,K(H)) → C∗

max(Xi, Ei) → C∗
max(Xi, Ai) → 0.

Let E = (Ei)i∈N be the family of C∗-algebras, since C∗
max(Xi,K(H)) = C∗

max(Xi), we can

get a semi-split filtered C∗-algebras

0 → C∗
max(X ) → C∗

max(X , E) → C∗
max(X ,A) → 0.

The boundary map associated this extension is σ∞
X ,max(z) : K∗(C

∗
max(X ,A)) → K∗+1(C

∗
max(X )).

Using the similar way, let E = {((xi)i∈N, T ) ∈ A∞⊕L(l2(N)⊗H) such that
( ⊕
i∈N

Piπi(xi)Pi

)

− T ∈ K(l2(N)⊗H)}. Then we have a semi-split extension

0 → K(l2(N)⊗H) → E → A⊕ → 0.

Hence we get a semi-split filtered C∗-algebras extension

0 → C∗
max(Σ,K(l2(N)⊗H)) → C∗

max(Σ, E) → C∗
max(Σ,A

∞) → 0.

The boundary map associated with this extension is

σΣ,max(z) : K∗(C
∗
max(Σ,A

∞)) → K∗+1(C
∗
max(Σ)).

For each integer i, there is obvious a representation ofK(l2(Xi)⊗H)⊗Ei on the right E-Hilbert

module H ⊗ l2(Σ) ⊗ E as a corner which gives a C∗-homomorphism jE,Σ,max : C∗
max(X , E) →

C∗
max(Σ, E) such that jE,Σ(C

∗
max(X )) ⊆ C∗

max(Σ,K(l2(N)⊗H)). Then we have a commutative

diagram:

0 // C∗
max(X ) //

jE,Σ,max

��

C∗
max(X , E)

jE,Σ,max

��

// C∗
max(X ,A)

jA,Σ,max

��

// 0

0 // C∗
max(Σ,K(l2(N)⊗H)) // C∗

max(Σ, E) // C∗
max(Σ,A

⊕) // 0

By the naturality of the index map and exponential map, we have the commutative diagram:

K∗(C
∗
max(X ,A))

σ∞
X,max

(z)
//

(jA,Σ,max)∗

��

K∗+1(C
∗
max(X ))

(jΣ,max)∗

��
K∗(C

∗
max(Σ,A

⊕))
σΣ,max(z)// K∗+1(C

∗
max(Σ))
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Next we will prove it in the even case. Let z ∈
∏
i∈N

KK0(A1,C). For a family of extensions

0 → SAi → CAi → Ai → 0.

Since ∂Ai
∈ KK1(Ai, SAi) then let z′ = ([∂Ai

]−1 ⊗Ai
zi)i∈N ∈

∏
i∈N

KK1(SAi,C). We denote

σ∞
X ,max(z) = σ∞

X ,max(z
′) ◦ σ∞

X ,max((∂Ai
)i∈N) :

K∗(C
∗
max(X ,A)) → K∗+1(C

∗
max(X , SA)) → K∗(C

∗
max(X )).

Since (SA)⊕ ∼= SA⊕ and (CA)⊕ ∼= CA⊕ we have a commutative diagram:

0 // C∗
max(X , SA) //

jSA,Σ,max

��

C∗
max(X , CA)

jCA,Σ,max

��

// C∗
max(X ,A)

jA,Σ,max

��

// 0

0 // C∗
max(Σ, SA

⊕) // C∗
max(Σ, CA⊕) // C∗

max(Σ,A
⊕) // 0

Let ∂A⊕ ∈ KK1(A
⊕, SA⊕),z′′ = ([∂A⊕ ]−1 ⊗A⊕ z ∈ KK1(SA

⊕,C), then σΣ,max(z) =

σΣ,max(z
′′) ◦ σΣ,max(∂A⊕) : K∗(C

∗
max(Σ,A

⊕)) → K∗(C
∗
max(Σ)). By the naturality of the boun-

dary map we have the commutative diagram:

K∗(C
∗
max(X ,A)) //

(jE,Σ,max)∗

��

K∗+1(C
∗
max(X , SA))

(jS,E,Σ,max)∗

��

// K∗(C
∗
max(X ))

(jΣ,max)∗

��
K∗(C

∗
max(Σ,A

⊕)) // K∗+1(C
∗
max(Σ, SA

⊕)) // K∗(C
∗
max(Σ))

Proposition 4.1 Let Σ =
⊔
i∈N

Xi as above, let s be a positive number, such that d(Xi, Xj) >

s if i 6= j. Then we have commutative diagram:

∏
i∈N

KK∗(Ps(Xi),C))
µ
∞,s

X,max,∗//

∼=

��

K∗(C
∗
max(X ))

(jΣ,max)∗

��
KK∗(Ps(Σ),C)

µs
Σ,max,∗ // K∗(C

∗
max(Σ))

Proof Since C0(Ps(Σ)) =
⊕
i∈N

C0(Ps(Xi)) then we have the isomorphism

∏

i∈N

KK∗(Ps(Xi),C) ∼= KK∗(Ps(Σ),C).

Let z = (zi)i∈N ∈
∏
i∈N

KK∗(Ps(Xi),C). Let us consider the family A = (C0(Ps(Xi)))i∈N of

C∗-algebras. Since d(Xi, Xj) > s if i 6= j. Hence jA,Σ,max(P
∞
s,X ,max) = Ps,Σ,max. Following the

previous lemma, we have

jΣ,max ◦ σ
∞
X ,max(z)([P

∞
s,X ,max, 0]) = σΣ,max(z) ◦ jA,Σ,max([Ps,Σ,max, 0]).

Then we get our commutative diagram.
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Theorem 4.1 Let X = (Xi)i∈N be a family of discrete metric space with bounded geome-

try.Let Σ =
⊔
i∈N

Xi defined as before. Assume that

(1) for any ε ∈
(
0, 14

)
and positive numbers d,r such that αX (ε) · d ≤ r, there exists d′ with

d ≤ d′, such that QIX ,max,∗(d, d
′, ε, r) is holds;

(2) for some λ > 1 and any ε ∈
(
0, 1

4λ

)
, r > 0, there exists d > 0 and r′ > r with αX (ε)·d ≤ r′

such that QSX ,max,∗(d, r, r
′, ε, λε).

Then Σ satisfies the maximal coarse Baum-Connes conjecture.

Proof Firstly, let us to prove µΣ,∗ is one to one. Let d be a positive number and x ∈

KK∗(Pd(Σ),C) such that µd
Σ,max,∗(x) = 0 in K∗(C

∗
max(Σ)). We may assume without loss of

generality that d(Xi, Xj) > d if i 6= j.Then Pd(Σ) =
⊔
i∈N

Pd(Xi). Hence KK∗(Pd(Σ),C) ∼=
∏
i∈N

KK∗(Pd(Xi),C). We write x = (xi)i∈N corresponding to this identification for each xi ∈

KK∗(Pd(Xi),C). By Proposition 4.1, we have

(jΣ,max)∗ ◦ µ
∞,d
X ,max,∗(x) = 0.

Fix a ε > 0 small enough and choose λ > 1 in Proposition 2.1. Let us fix a positive number r

with αX (ε) · d ≤ r, then we have

(jΣ,max)∗ ◦ µ
∞,d
X ,max,∗ = (jΣ,max)∗ ◦ ι

ε,r
∗ ◦ µ∞,ε,d,r

X ,max,∗ = ιε,r∗ ◦ (jε,rΣ,max)∗ ◦ µ
∞,ε,r
X ,max,∗.

Then by Proposition 2.1, there exists r′ with r ≤ r′ such that (jλε,r
′

Σ,max)∗ ◦ µ∞,λε,d,r′

X ,max,∗ (x) = 0

in Kλε,r′

∗ (C∗
max(Σ)). Therefore up to replacing λε by ε and r by r′, we may assume there

exists ε ∈
(
0, 14

)
and r > 0 such that (jε,rΣ,max)∗ ◦ µ

∞,ε,d,r
X ,max,∗(x) = 0 in Kε,r

∗ (C∗
max(Σ)). We may

assume without loss of generality that d(Xi, Xj) ≥ r if i 6= j. Then we have µ∞,ε,d,r
X ,max,∗(x) = 0 in

Kε,r
∗ (C∗

max(X )).By assumption then there exists d′ with d ≤ d′ such that (qd
′

d )∗(x) = 0 in

∏

i∈N

KK∗(Pd(Xi),C) ∼= KK∗(Pd(Σ),C).

Hence µΣ,max,∗ is one to one.

Next to prove µΣ,max,∗ is onto. Let y ∈ K∗(C
∗
max(Σ)) and positive number ε small enough.

Then there exists r > 0 and y′ ∈ Kε,r
∗ (C∗

max(Σ)) such that ιε,r∗ (y′) = y. Let ε′ ∈ (ε, 1
4 ) and

positive numbers d, r′ with r ≤ r′ and αX (ε) · d ≤ r′ such that QSX ,max,∗(d, r, r
′, ε, λε) holds.

We may assume without loss of generality that d(Xi, Xj) > max{d, r} if i 6= j. Then there exists

z ∈ Kε,r
∗ (C∗

max(X )) such that (jε,rΣ,max)∗(z) = y′. Hence there exists x ∈
∏
i∈N

KK∗(Pd(Xi),C)

such that µ∞,λε,d,r′

X ,max,∗ (x) = ιε,λε,r,r
′

∗ (z). By Proposition 4.1, we have µd
Σ,max,∗(x) = (jΣ,max)∗ ◦

µ∞,d
X ,max,∗(x) = (jΣ,max)∗ ◦ ι

λε,r′

∗ ◦ µ∞,λε,d,r′

X ,max,∗ (x) = ιλε,r
′

∗ (y′) = y. Hence µΣ,max,∗ is onto.
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