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Abstract Let A(z) be an entire function with µ(A) < 1
2
such that the equation f (k) +

A(z)f = 0, where k ≥ 2, has a solution f with λ(f) < µ(A), and suppose that A1 = A+h,
where h 6≡ 0 is an entire function with ρ(h) < µ(A). Then g(k)+A1(z)g = 0 does not have
a solution g with λ(g) < ∞.
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1 Introduction and Main Results

We shall assume that the reader is familiar with the standard notations and fundamental

results of Nevanlinna theory of meromorphic functions (cf. [11, 13, 21]), such as T (r, f), N(r, f),

m(r, f) and S(r, f) = o(T (r, f)) outside a set of finite measure. In addition, for a meromorphic

function f(z) in the complex plane C, the order of growth ρ(f), lower order of growth µ(f) and

exponent of convergence of the zeros λ(f) are defined as follows, respectively,

ρ(f) = lim sup
r→∞

log+ T (r, f)

log r
,

µ(f) = lim inf
r→∞

log+ T (r, f)

log r
,

λ(f) = lim sup
r→∞

log+ N
(

r,
1

f

)

log r
,

where N
(

r, 1
f

)

is the counting function of zeros of f(z), defined by

N
(

r,
1

f

)

=

∫ r

0

n
(

t,
1

f

)

− n
(

0,
1

f

)

t
dt+ n

(

0,
1

f

)

log r,

where n
(

r, 1
f

)

denotes the number of zeros of f(z) in |z| ≤ r, counting multiplicities.
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Remark 1.1 By [21], the exponent of convergence of zeros of f(z) is also defined by

λ(f) = lim sup
r→∞

log+ n
(

r,
1

f

)

log r
.

Let A be an entire function. Suppose that k ≥ 2 is an integer. Suppose that fj (j =

1, 2, · · · , k) are solutions of the following complex differential equation:

f (k) +A(z)f = 0. (1.1)

In [12], Hille proved that any solutions of (1.1) are entire functions. In recent years, a lot of

results have been done in the connection between the order of growth ρ of coefficient A and the

exponent of convergence of the zeros λ of fj (j = 1, 2, · · · , k), such as [1, 2, 4, 15–16, 20]. In

particular it was shown in [2, 20] that, if k = 2 and A is transcendental entire function with

ρ(A) ≤ 1
2 , then (1.1) cannot have two linearly independent solutions f1 and f2, each with λ(fj)

finite. A comparable result was proved for higher order equations in [16]. More results regarding

complex oscillation of solution of linear differential equation can be found, for example, in [3,

6–10, 14, 18–19]. On the other hand, it is possible to have one solution f of (1.1) with no zeros,

even for coefficients of very small growth. To see this, set f = eB where B is an entire function.

Then f solves (1.1) with k = 2 and −A = f ′′

f
= B′′ + (B′)2, as well as similar equations of

higher order obtained by computing f(k)

f
in terms of B. In [1], the author proved that small

perturbations of such equations lead to the exponent of convergence of zeros of solution being

at least the order of growth of the coefficient A.

Theorem 1.1 Suppose that A(z) is a transcendental entire function with ρ(A) < 1
2 . Sup-

pose that k ≥ 2 and (1.1) has a solution f with λ(f) < ρ(A), and suppose that

A1 = A+ h, (1.2)

where h(6≡ 0) is an entire function with ρ(h) < ρ(A). Then

g(k) +A1(z)g = 0 (1.3)

does not have a solution g with λ(g) < ρ(A).

For a transcendental entire coefficient in (1.1), it seems interesting what conditions on A(z)

will guarantee that every solution g 6≡ 0 of (1.3) has the infinite exponent of convergence of

zeros? In this paper, using the similar idea in [1], we can obtain the following result, which

shows that small perturbations of such equations lead to solutions whose zeros must have the

infinite exponent of convergence.

Theorem 1.2 Let A(z) be a transcendental entire function of finite order with µ(A) < 1
2 .

Suppose that k ≥ 2 and (1.1) has a solution f with λ(f) < µ(A), and suppose that A1 satisfies

(1.2) and h 6≡ 0 is an entire function with ρ(h) < µ(A). Then the exponent of convergence of

zeros of any nontrivial solutions of (1.3) is infinite.

Remark 1.2 If µ(A) = ρ(A) in Theorem 1.2, then we will see a more general result than

Theorem 1.1. At the same time, Theorem 1.2 contains also the case µ(A) < ρ(A).
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By the proof of Theorem 1.2, we can easily see the following result.

Corollary 1.1 Let A(z) be a transcendental entire function of finite order with µ(A) < 1
2 .

Suppose that k ≥ 2 and (1.1) has a solution f with finitely many zeros, and suppose that A1

satisfies (1.2) and h(6≡ 0) is an entire function with ρ(h) < µ(A). Then (1.3) does not have a

nontrivial solution with finitely many zeros.

The paper is organized as follows. In Section 2, we state and prove some lemmas. In Section

3, we prove Theorem 1.2.

2 Lemmas

In order to prove our theorem, we need the following definition and lemma.

Definition 2.1 (cf. [13]) Let B(zn, rn) = {z : |z−zn| < rn} be the open disc in the complex

plane. We say that countable union
∞
⋃

n=1
B(zn, rn) is an R-set if zn → ∞ and Σrn < ∞.

Lemma 2.1 (cf. [13]) Suppose that f(z) is a meromorphic function of finite order. Then

there exists a positive integer N such that

∣

∣

∣

f ′(z)

f(z)

∣

∣

∣
= O(|z|N ) (2.1)

holds for large z outside of an R-set.

Before stating the following lemma, for E ⊂ [0,∞), we define the Lebesgue measure of E

by mes(E), the logarithmic measure of E ⊂ [1,∞) by ml(E) =
∫

E
dt
t
, and the upper and lower

logarithmic density of E ⊂ [1,∞), respectively, by

logdensE = lim sup
r→∞

ml(E ∩ [1, r])

log r

and

logdensE = lim inf
r→∞

ml(E ∩ [1, r])

log r
.

The proof of our theorem highly depends on the following lemma.

Lemma 2.2 (cf. [5]) Let f(z) be an entire function with 0 ≤ µ(f) < 1
2 . Suppose that m(r)

is defined as

m(r) = inf
|z|=r

log |f(z)|. (2.2)

If µ(f) ≤ σ < min
(

ρ(f), 1
2

)

, then the set {r : m(r) > rσ} has positive upper logarithmic density.

Moreover, we are going to use the following lemma, which gives an asymptotic representation

for the logarithmic derivative of solutions of (1.1) with few zeros. It is a special case of a result

from [16].

Lemma 2.3 (cf. [17]) Let A(z) be a transcendental entire function of finite order, and let

E1 be a subset of [1,∞) of infinite logarithmic measure and with the following property. For

each r ∈ E1, there exists an arc

ar = {reit : 0 ≤ αr ≤ t ≤ βr ≤ 2π}



30 J. R. Long and Y. Z. Li

of the circle S(0, r) = {z : |z| = r} such that

lim
r→∞,r∈E1

min{log |A(z)| : z ∈ ar}

log r
= +∞. (2.3)

Let k ≥ 2 and let f be a solution of (1.1) with λ(f) < ∞. Then there exists a subset E2 ⊂ [1,∞)

of finite measure, such that for large r ∈ E0 = E1\E2, we have

f ′(z)

f(z)
= crA(z)

1
k −

k − 1

2k

A′(z)

A(z)
+O(r−2) (2.4)

holds for all z ∈ ar, where the constant cr satisfies ckr = −1 and may depend on r, for a given

r ∈ E0 but not depend on z, and the branch of A(z)
1
k is analytic on ar (included in the case

where ar is the whole circle S(0, r)).

We note that E2 has finite measure and so finite logarithmic measure, so E0 has infinite

logarithmic measure.

We will employ the following well-known representation for higher order logarithmic deriva-

tives (cf. [11]).

Lemma 2.4 Let f(z) be an analytic function, and let F = f ′

f
. Then for k ∈ N we have

f (k)

f
= F k +

k(k − 1)

2
F k−2F ′ + Pk−2(F ), (2.5)

where Pk−2 is a differential polynomial with constant coefficients, which vanishes identically for

k ≤ 2 and has degree of (k − 2) when k > 2.

Remark 2.1 By using Lemma 2.4, we shall see that it is possible to have a solution f of

(1.1) with no zeros. Let F = f ′

f
, f = eB where B is an entire function, obviously F = B′. It

is clear to see that f = eB , which has no zeros, solves (1.1) with −A = f(k)

f
.

Lemma 2.5 Let A(z) be a transcendental entire function with µ(A) = µ < 1
2 in the complex

plane C. Suppose that f is an entire function with λ(f) < µ. Then there exists a set E3 ⊂ [1,∞)

with logdensE3 > 0, such that for any σ
(

µ ≤ σ < min
(

1
2 , ρ(A)

))

, we have

inf
|z|=r∈E3

log |A(z)| > rσ

and

lim
r→∞,r∈E3

n
(

r,
1

f

)

log r

T (r, A)
= 0.

Proof By using Lemma 2.2, for any µ ≤ σ < min
(

1
2 , ρ(A)

)

, we see that there exists a set

E0 ⊂ [1,∞) with logdensE0 > 0, where

E0 =
{

r > 1 : inf
|z|=r

log |A(z)| > rσ
}

. (2.6)

Since λ(f) < σ, for any given 0 < ε <
σ−λ(f)

2 , there exists an r0 > 1 such that

n
(

r,
1

f

)

< rλ(f)+ε (2.7)
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holds for all r > r0. Set E3 = E0 ∩ [r0,∞). We claim that logdensE3 > 0. Note that

[r0,∞) = ([r0,∞) ∩E0) ∪ ([r0,∞)− E0).

Thus

logdensE3 ≥ logdensE3

= logdens[r0,∞)− logdens([r0,∞)− E0)

≥ logdens[r0,∞)− (1− logdensE0)

= logdensE0 > 0.

By using (2.6)–(2.7) and T (r, A) ≤ log+ M(r, A) ≤ 3T (2r, A), we have that

n
(

r,
1

f

)

log r

T (r, A)
≤

rλ(f)+ε log r
( r

2

)σ

holds for any r ∈ E3. So

lim
r→∞,r∈E3

n
(

r,
1

f

)

log r

T (r, A)
= 0.

The proof of Lemma 2.5 is completed.

3 Proof of Theorem 1.2

Suppose that (1.1) has a solution f with λ(f) < µ(A), (1.3) has a solution g with λ(g) < ∞,

and note that ρ(A) = ρ(A1). Using (1.2) and ρ(h) < µ(A), let

f = P eU (3.1)

and

g = QeV , (3.2)

where P , Q, U and V are entire functions which satisfy ρ(P ) = λ(f) < ∞ and ρ(Q) = λ(g) < ∞,

and max{ρ(U), ρ(V )} ≤ ρ(A) (cf. [15]). Let

F =
f ′

f
=

P ′

P
+ U ′, G =

g′

g
=

Q′

Q
+ V ′. (3.3)

Applying Lemma 2.4, we obtain

f (k)

f
= F k +

k(k − 1)

2
F k−2F ′ + Pk−2(F ) (3.4)

and

g(k)

g
= Gk +

k(k − 1)

2
Gk−2G′ + Pk−2(G), (3.5)
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where Pk−2 is a differential polynomial with constant coefficients, which vanishes identically for

k ≤ 2 and has degree of k − 2 when k > 2.

Choose σ such that

max{λ(f), ρ(h)} < µ(A) ≤ σ < min
(

ρ(A),
1

2

)

. (3.6)

It follows from Lemma 2.5 that there exits a set E1 ⊂ [1,∞) with logdensE1 > 0 such that

inf
|z|=r

log |A(z)| > rσ (3.7)

holds for all r ∈ E1. By Lemma 2.1, there exist E2 ⊂ [1,∞) of finite measure and M1 ∈ N,

such that

∣

∣

∣

A′(z)

A(z)

∣

∣

∣
+
∣

∣

∣

P ′(z)

P (z)

∣

∣

∣
+
∣

∣

∣

Q′(z)

Q(z)

∣

∣

∣
≤ rM1 , |z| = r ≥ 1, r 6∈ E2. (3.8)

For large |z| = r ∈ E1, by using (1.2) and (3.6)–(3.7), we also have

log |A1(z)| >
rσ

2
. (3.9)

The next step is to estimate f ′(z)
f(z) and g′(z)

g(z) in terms of A(z). We apply Lemma 2.3 to (1.1)

and (1.3). Choose ar to be the whole circle |z| = r ∈ E1. This is possible since (3.7) and (3.9)

imply that Lemma 2.3 holds. Hence for large r ∈ E0 = E1\E3, where E3 has finite measure

and E3 ⊃ E2, by Lemma 2.3, the following is true:

f ′(z)

f(z)
= cA(z)

1
k −

k − 1

2k

A′(z)

A(z)
+O(r−2), |z| = r, ck = −1, (3.10)

and

g′(z)

g(z)
= dA1(z)

1
k −

k − 1

2k

A′
1(z)

A1(z)
+O(r−2), |z| = r, dk = −1. (3.11)

Here c, d may depend on r, but not on z.

Next, we apply the binomial theorem to expand A1(z)
1
k and

A′

1(z)
A1(z)

in terms of A(z)
1
k and

A′(z)
A(z) . Using (3.6)–(3.7), we have

∣

∣

∣

h(z)

A(z)

∣

∣

∣
≤

er
ρ(h)+o(1)

erσ
= o(1), |z| = r → ∞, r ∈ E0,

∣

∣

∣

h′(z)

A(z)

∣

∣

∣
≤

er
ρ(h)+o(1)

erσ
= o(1), |z| = r → ∞, r ∈ E0.

By using the above inequalities, we get for |z| = r ∈ E0, on suppressing the variable z for

brevity,

A
1
k

1 = (A+ h)
1
k = A

1
k

(

1 +
h

A

)
1
k

= A
1
k

(

1 +O
( |h|

|A|

))

(3.12)
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and

A′
1

A1
=

A′ + h′

A+ h
=

A′ + h′

A
(

1 +
h

A

)

=
A′

A

(

1 +O
( |h|

|A|

))

+ o
( |h|

|A|

)

. (3.13)

Using (3.11)–(3.13), we deduce that, for |z| = r ∈ E0,

g′(z)

g(z)
= dA(z)

1
k −

k − 1

2k

A′(z)

A(z)
+O(r−2), dk = −1. (3.14)

We recall Lemma 2.3 that c and d may depend on r, for given r ∈ E0, but not depend on z.

The following claim is key point to prove the Theorem 1.2.

Suppose that c and d are as in (3.10) and (3.14) respectively. Then we claim that c = d for

all large r ∈ E0. In fact, we may write d = cω where ωk = 1. Using (3.14), we obtain

g′(z)

g(z)
= cωA(z)

1
k −

k − 1

2k

A′(z)

A(z)
+O(r−2), ωk = 1. (3.15)

Multiplying (3.10) by ω and subtracting (3.15), we get

ω
(f ′(z)

f(z)
+

k − 1

2k

A′(z)

A(z)

)

=
g′(z)

g(z)
+

k − 1

2k

A′(z)

A(z)
+O(r−2).

Integrating around |z| = rn, where rn → ∞ as n → ∞ and rn ∈ E0, we then find that

ω
(

n
(

rn,
1

f

)

+
k − 1

2k
n
(

rn,
1

A

))

+ o(1) = n
(

rn,
1

g

)

+
k − 1

2k
n
(

rn,
1

A

)

. (3.16)

But the right-hand side of (3.16) must be positive since n
(

rn,
1
g

)

≥ 0 and n
(

rn,
1
A

)

> 0. This is

because N
(

rn,
1
A

)

= 0, if n
(

rn,
1
A

)

= 0. Since inf
|z|=rn

log |A(z)| is very large for rn → ∞, rn ∈ E0,

we get

m
(

rn,
1

A

)

= 0.

Hence

T
(

rn,
1

A

)

= 0.

Using the first fundamental theorem of Nevanlinna theory, we obtain

T (rn, A) = O(1).

This contradicts the fact that A is transcendental and proves the claim that n
(

rn,
1
A

)

> 0. For

the same reason, n
(

rn,
1
f

)

+ n
(

rn,
1
A

)

is a positive integer.

Since n
(

rn,
1
A

)

≥ 1, n
(

rn,
1
f

)

+ k−1
2k n

(

rn,
1
A

)

≥ k−1
2k . Thus,

∣

∣

∣
Im

[

ω
(

n
(

rn,
1

f

)

+
k − 1

2k
n
(

rn,
1

A

))]
∣

∣

∣
≥

k − 1

2k
|Imω|.

By (3.16), we get

Im
[

ω
(

n
(

rn,
1

f

)

+
k − 1

2k
n
(

rn,
1

A

))]

+ Im o(1) = 0.
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Set δ = inf{|Imω| : ωk = 1, Imω 6= 0}. Obviously, δ > 0. Thus for sufficiently large rn ∈ E0

and |Im o(1)| < δ k−1
2k , we get Imω = 0. It follows from this and ωk = 1 that ω = 1 or ω = −1.

From (3.16) it is impossible that ω = −1. Therefore, ω = 1 and c = d.

To complete the proof of theorem, by using (3.10), (3.14) and c = d, for r → ∞ and r ∈ E0,

we get

f ′(z)

f(z)
=

g′(z)

g(z)
+ o(1), |z| = r.

And hence

n
(

r,
1

f

)

= n
(

r,
1

g

)

(3.17)

holds for lager r ∈ E0.

Using (3.3), we get

P ′(z)

P (z)
+ U ′ =

Q′(z)

Q(z)
+ V ′ + o(1).

Using (3.8), we see that

|U ′(z)− V ′(z)| ≤ 2rM1

holds for |z| = r and large r ∈ E0. Since U and V are entire, we deduce that Q0(= U ′ − V ′) is

a polynomial. Thus (3.3) becomes

F = G+M, M =
P ′

P
−

Q′

Q
+Q0. (3.18)

Using (1.1) and (3.4), we get

F k +
k(k − 1)

2
F k−2F ′ + Pk−2(F ) = −A, (3.19)

where Pk−2 is a differential polynomial with constant coefficients, which vanishes identically for

k ≤ 2 and has degree of at most k− 2 when k > 2. Combining (1.2)–(1.3) and (3.5), we obtain

Gk +
k(k − 1)

2
Gk−2G′ + Pk−2(G) = −A− h. (3.20)

Using (3.18)–(3.19), we get

(G+M)k +
k(k − 1)

2
(G+M)k−2(G′ +M ′) + Pk−2(G+M) = −A.

Expanding (G+M)k and (G+M)k−2 by binomial theorem in above equality, we get

Gk + kMGk−1 +
k(k − 1)

2
Gk−2G′ +Rk−2(G,M) = −A, (3.21)

where Rk−2(G,M) is a polynomial in M , G and their derivatives, and has total degree of at

most k − 2 in G and its derivatives.

Combining (3.20) and (3.21), by the binomial theorem, we then get

h = kMGk−1 + Sk−2(G,M), (3.22)
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where Sk−2(G,M) is a polynomial in G, M and their derivatives, of total degree of at most

k − 2 in G and its derivatives.

Now we claim that M 6≡ 0. To prove the claim, we assume that M ≡ 0. Using (3.18), we

get F ≡ G. Using (3.19)–(3.20), we have h ≡ 0. This contradicts the hypothesis h 6≡ 0 and the

claim follows.

Dividing (3.22) by MGk−2, we get

kG+
Sk−2(G,M)

MGk−2
=

h

MGk−2
. (3.23)

Suppose that |G| > 1. Now
Sk−2(G,M)
MGk−2 is a sum of terms

1

MGk−2
M j0(M ′)j1 · · · (M (k))jkGq0(G′)q1 · · · (G(k))qk ,

where q0 + q1 + · · ·+ qk ≤ k − 2 and hence such a term has modulus

|M |j0+j1+···+jk−1
∣

∣

∣

M ′

M

∣

∣

∣

j1

· · ·
∣

∣

∣

M (k)

M

∣

∣

∣

jk
|G|q0+q1+···+qk−k+2

∣

∣

∣

G′

G

∣

∣

∣

q1

· · ·
∣

∣

∣

G(k)

G

∣

∣

∣

qk

≤ |M |j0+j1+···+jk−1
∣

∣

∣

M ′

M

∣

∣

∣

j1

· · ·
∣

∣

∣

M (k)

M

∣

∣

∣

jk
∣

∣

∣

G′

G

∣

∣

∣

q1

· · ·
∣

∣

∣

G(k)

G

∣

∣

∣

qk
. (3.24)

Using (3.23)–(3.24), we get

m(r,G) ≤ c0m(r,M) +m
(

r,
1

M

)

+m(r, h) + S(r,G) + S(r,M)

≤ c1T (r,M) + T (r, h) + S(r,G), (3.25)

where cj denote positive constants. Using (3.3), (3.7)–(3.8), (3.14), (3.17)–(3.18), (3.25) and

Lemma 2.5, we deduce that

m(r, A) ≤ c2(m(r,G) + log r)

≤ c3T (r,M) + o(T (r, A))

≤ c3N(r,M) + o(T (r, A))

≤ c3

(

N
(

r,
1

f

)

+N
(

r,
1

g

))

+ o(T (r, A))

≤ c3

(

n
(

r,
1

f

)

+ n
(

r,
1

g

))

log r + o(T (r, A))

≤ 2c3n
(

r,
1

f

)

log r + o(T (r, A))

= o(T (r, A))

= o(m(r, A))

holds for large r ∈ E0, where cj denote positive constants. This is a contradiction. The proof

of Theorem 1.2 is completed.
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[18] Latreuch, Z. and Beläıdi, B., Growth and oscillation of differential polynomials generated by complex
differential equations, Electro. J. Differential Equations, 16, 2013, 14 pages.

[19] Li, Y. Z. and Wang, J., Oscillation of solutions of linear differential equations, Acta. Math. Sinica, 24(1),
2008, 167–176.

[20] Rossi, J., Second order differential equations with transcendental coefficients, Proc. Amer. Math. Soc., 97,
1986, 61–66.

[21] Yang, L., Value Distribution Theory, Springer-Verlag, Berlin; Science Press Beijing, Beijing, 1993.


