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Abstract The authors establish the coefficient inequalities for a class of holomorphic
mappings on the unit ball in a complex Banach space or on the unit polydisk in C",
which are natural extensions to higher dimensions of some Fekete and Szegd inequalities
for subclasses of the normalized univalent functions in the unit disk.
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1 Introduction

Let A be the class of functions of the form:
) =2+ anz", (1.1)
n=2

which are analytic in the open unit disk
U={zeC:|z| <1}.
We denote by S the subclass of A consisting of all functions in A which are also univalent in
U.
The following notions were introduced by Robertson [12].

A function f € A is said to belong to the class S*(«) of starlike functions of order « in U if
it satisfies the following inequality:

Re ( 2f'(2)
f(z)
A function f € A is said to belong to the class K of convex functions of order « in U if it
satisfies the following inequality:

)>a, zelU; 0<a<.

2"(2)
Fe)
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It is clear that there is an Alexander type result relating S*(«) and K,:
fEKL <= ge S (), (1.2)

where g(2) = zf'(2), z € U.
In [1], Fekete and Szego obtained the following classical result:
Let f(z) be defined by (1.1). If f € S, then

2 22X
max |ag — Aaj| =1+ 2e” 1-x
fes

for X € [0, 1].

The above inequality is known as the Fekete and Szegd inequality. After that, there are
many papers to deal with the corresponding problems for various subclasses of the class S, and
many interesting results have been obtained.

In contrast, although Fekete and Szego inequalities for various subclasses of the class S were
established, only a few results are known for the inequalities of homogeneous expansions for
subclasses of biholomorphic mappings in several complex variables (see for details [2-3, 5-7, 9,
11, 14-18]).

Now, we first recall the Fekete and Szego inequality for the class S which was proved by
Keogh and Merkes [8].

Suppose that g(z) = z + be2? + b3z® + --- € S*. Then

|bs — Ab2| < (1 — @) max{1,[3 —2a —4X\(1 — )|}, AeC.

The above estimation is sharp.
By combining the above relation with (1.2), we may easily prove the following result.

Theorem A Let f(z) be defined by (1.1). If f € K, then
1—
las — Aa2| < TO‘ max{1, [3—2a—3\(1—-a)]}, AeC.

The above estimation is sharp.

In this paper, we will establish inequalities between the second and third coefficients of
homogeneous expansions for a class of holomorphic mappings defined on the unit ball in Banach
complex spaces and the unit polydisc in C™, which generalize Theorem A and other known
results.

Let X be a complex Banach space with norm | - ||, X* be the dual space of X, and E be
the unit ball in X. Also, let U™ denote the boundary of U", and dyU™ be the distinguished
boundary of U™.

For each x € X \ {0}, we define

T(x) ={To € X" : |T:| = 1, To(x) = ||/}

According to the Hahn-Banach theorem, T'(z) is nonempty.
Let H(E) denote the set of all holomorphic mappings from E into X. It is well known that
if f € H(E), then
S 1 n n
S = X D" @ = o))
for all y in some neighborhood of x € E, where D" f(x) is the nth-Fréchet derivative of f at x,
and for n > 1,
D" f(x)((y —x)") = D" fz)(y —x,---,y — ).
| S

n
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Furthermore, D" f(z) is a bounded symmetric n-linear mapping from [[ X into X.
j=1

A holomorphic mapping f : E — X is said to be biholomorphic if the inverse f ! exists and
is holomorphic on the open set f(E). A mapping f € H(FE) is said to be locally biholomorphic
if the Fréchet derivative Df(z) has a bounded inverse for each x € E. If f : E — X is a
holomorphic mapping, then f is said to be normalized if f(0) = 0 and Df(0) = I, where T
represents the identity operator from X into X.

Suppose that 2 C C" is a bounded circular domain. The first Fréchet derivative and the
m(m > 2)-th Fréchet derivative of a mapping f € H(Q2) at point z € Q are written by D f(z)
and D™ f(z)(a™~1,"), respectively. The matrix representations are

Df(z) = (pr(Z)

0z )1<p,k<n’

_ . " fp(2)
m m—1 1\ _ p A
D f(z)(a ) ) ( Z 32k32’11 . azlm71 i almil)lgp,kgn ’

li,l2, el —1=1

where f(Z) = (fl(z)va(Z)v e afn(z))/v a = (alaaQa e 7an)/ eCm.
The following definition is due to Liu and Liu [10].

Definition 1.1 (see [10]) Suppose that o € [0,1) and f : E — X s a normalized locally
biholomorphic mapping. If

Re{T,[(Df ()" (D*f(2)(2*) + Df (x)2)]} > allall, =€ E\{0}, T € T(x), (1.3)

then f is called a quasi-convex mapping of type B and order o on E. If X = C", E =U", then
it is obvious that the above condition is equivalent to

9;(2)

Rez— >, Vz e U" \ {O},
J
where g(2) = (g1(2), -+ ,gn(2)) = (Df(2)) Y (D?f(2)(2%) + Df(2)z) is a column vector in C",
and j satisfies |z;| = ||z|| = 1r§n];a§xn{|zk|}
Especially, when X = C, E =1, the condition (1.3) reduces to
21"(2)
Re(1 U
e( + f’(z) ) >, z2z€U,

which is the usual condition for the class KCo, in the unit disc U.

When « = 0, Definition 1.1 is the definition of the quasi-convex mapping of type B, which
was introduced by Roper and Suffridge [13].
Let K, (F) denote the class of quasi-convex mappings of type B and order « on E.

Definition 1.2 Let h: U — C be a biholomorphic function such that h(0) = 1, Reeh(§) > 0
on U. We define My, to be the class of mappings given by

T.(p(z))

]

M, = {p € H(E) : p(0) = 0, Dp(0) =1, € h(U), = € E\{0}, T, ¢ T(a:)}.

When X = C", E =U", the above relation is equivalent to

My, = {p € HU™ : p(0) =0, Dp(0) =1, 23 ¢ puy, 5 e U"\{O}},

Zj

where p(z) = (p1(2),- -+ ,pn(2)) is a column vector in C", j satisfies |z;| = ||z|| = 1I<n]?<xn{|zk|}
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Remark 1.1 Let F' € H(F) be a normalized locally biholomorphic mapping. If
(DF(x))"'(D*F(z)(z*) + DF (x)(x)) € M,

then there are many choices of the function A which would provide interesting subclasses of

holomorphic mappings. For example, if we let h(§) = #:?0‘)5 in Definition 1.2, then we

easily obtain F' € Ky (E).

2 Some Lemmas

In order to prove the desired results, we give some lemmas.

Lemma 2.1 (see [4]) Let s(§) =1+ i beé® € H(U), and Re s(€) >0, £ € U. Then
k=1

1 1
b ——b2‘<2——b 2,
‘2 9 = 2|1|

Lemma 2.2 Suppose that s € H(U), h is a biholomorphic function on U, and s(0) = h(0),
s(€) € h(U), V¢ € U. Then

$'(0) 1 R"(0)
2 2(K(0))?

[s"(0)?
[W(0)]

(') < I1'(0)] - (2.1)

Proof From the condition of Lemma 2.2, we have s < h. So, there exists p € H(U,U), ¢(0) =
0 such that

s(§) = h(e(§)), el

A simple computation shows that

() = W (€)@ (€),  ¢"(&) = h"(@(£)(#'(£))* + W (9(£))¢" (£).

Therefore, we have

s’ s / 2 _ s 2

#(0) = h/%’ 5(0) = (0)(h (0)()h/(0)f;3(0)( (0)) . (2.2)

Define
1+ 9()
k(€) = o cel.
‘We thus find that
E(&) =14 2p(€) +20%(€) +--- and Re k(¢) >0, €£cU.
Consequently, we have
K0 =200, 12— 10 +26(0)% (2.3

By Lemma 2.1 and (2.2)—(2.3), we obtain (2.1), as desired. This completes the proof.
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3 Main Results
In this section, we state and prove the main results of our present investigation.
Theorem 3.1 Let h: U — C satisfy the conditions of Definition 1.2, f € H(E,C), f(z) #
0, z € E, f(0) =1, F(x) = xf(z) and suppose that (DF(x))"Y(D?*F(z)(2?) + DF(z)(x)) €
My,. Then

T (D*F(0)(2*) T(D*F(0)(x*)) \2
EIE - IEIE )|

| (0)] 1 1"(0)
< 6 max{ , _W

The above estimation is sharp.

(- g)\)h’(o)‘}, NEC, s E\{0}, T € T(x).  (3.1)

Proof Fix z € X\{0}, and denote xg = H - Letg:U— C be given by
T ((DF(§xo)) ' (D*F (§x0)((§20)?) + DF (€x0)&20))
_ ;o §#0,
9(§) = 3
1, €=0.

Then g € H(U), g(0) = h(0) = 1, and since (DF(x))"Y(D?*F(x)(2?) + DF(x)x) € M, we
deduce that

Ty ((DF(Ex0)) (D F (£x0)((€20)?) + DF (Ex0)Ex0))

g(§) =

3
_ Tao(DF(6x0)) ' (D*F(€x0)((§20)%) + DF (§20)€0))
3
_ Teao (DE(Ex0)) " (D F(§20)((620)*) + DF (§x0)€x0)) WU), E€U
1620l ’ '
By Lemma 2.2, we obtain
g"(0) 1 n"0) / lg'(0)”
3@ O] < WOl - (3.2
Using a similar method as in [4, Theorem 7.1.14], we have
L SioN
(DF(z)) ::ﬂ@(f—1+5%gm)

We easily compute that
D*F(z)(2*) + DF (z)(x) = (D*f(2)(z*) + 3D f (z)(x) + f(x))z.
From this it follows that

D2 f(x)(@?) + 3D (x)() + f(z)

(DF(z))""(D*F(x)(a®) + DF ()(x)) = (@) + Df()(@)

(3.3)

Therefore

T:(DF(x) {(D*F(x)(2?) + DF(z)(z))) _ D*f(x)(z?) +3Df (z)(x) + f(x)

El - @) 1 D) (x) (34
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In view of (3.4), we obtain

g(6) = Tew, (DF (£x0)) " (D?F(E20)((€20)?) + DF (€x0)€0))
€0l
D?f(&xo)((20)?) + 3D f (Exo) (E0) + f (o)
f(€xo) + D f(€xo)(Exo) 7

or, equivalently,

9(€)(f(&xo) + D f(€xo)(Ewo)) = D f(€x0)((€x0)?) + 3D f(Exo)(€x0) + f(Exo).

Using Taylor series expansions in £, we obtain

(1+ "(0)¢ + ()52 )(1+2Df(0)(x0)§+gsz(())(xg)§2+...)

=14 4Df(0)(z0)¢ + 5D%”( )(x5)€” +

Comparing the homogeneous expansions of two sides of the above equality, we deduce that
g// 0
¢(0) =2DFO)0), L1 = 302 F(0)(a3) ~ 4(DF0) o))"
That is

( )

g 0)l|zll = 2Df(0)(w), =——=ll=[* = 3D f(0)(2*) — 4(Df(0)(x))*. (3-5)

Moreover, from F(z) = xf(x), we have
D*F(0)(z®) _ D*f(0)(2?) ~ D?*F(0)(z*)

30 = 51 x, 51 = Df(0)(z)x. (3.6)
From (3.6), we conclude that
T,(D*F(0)(2%)) _ D?f(0)(2?)] ||
3! - 2! (87)
and
LDTOED _ p (o) a) o). (3.5

Thus, from (3.2), (3.5), (3.7) and (3.8), we obtain

T,.(D3F(0)(z®))||z T, (D2F(0)(z3))\2
( (3!)( Pl H_/\( ( 25 )( ))H

=l 2O o )@
= [Blel?D2£)?) — 62l 2(DF 0) ())?)
= L3l D? F(0)(a?) — 4llelP(DFO)(@)) + (4~ 6X) [P (DF ) ()

7O (1B

1 g’(0) 1 n'0) 1 n'(0) 3 ,
Loty 9 OF 11 A"(0) 3l oz

< gl (WOl - e >| agop t1- e
L Ig( 1 n"(0 ) 3.\ 7 n| 19 (O

= sl (PO - g * 3@ + (1= 37O rEr)
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Now, we consider the following two cases.

Case I If |2 7 0) + ( — %/\)h'(O)} <1, then

T,.(D3F(0)(z))||z T, (D2F(0)(x2))\2
( (3!)( Pl H_A( ( 25 )( )))‘

Looval lg'(0)]* | |1A"(0) 3.\, lg 0
< gl (o)1 - o] Tz " (130 |h’(0)|)

< LWl (3.9)

Case IT If |17 h,(o) ) 1 (1—2M)(0)] > 1, then

T (D?F(0)(2*)) ||| ) Tz(DQF(O)(l“Q)))?‘

3! 2!
1 ; lg'(0)* | |1R"(0) 3.\ | 19/ (0)?
< <Jlall* (10 0)] - mor Tz T (1-37)n0) |h’(0)|)
1 1 1 1"(0) 3\, g'(0)]?

= g POl + gl (|5 3007 + (1= 3P0 = 1) g
Since |¢’(0)| < |W/(0)[, we obtain

T (D*F(0)(=%)) || ) Tm(DQF(O)(fBQ)))?‘

3! 2!

< Ol + Sl (3l + (1= 3o - 1)L
< gl + el (328 + (1= Do) - 1) O
= LK)l \Qh, )+(1—g/\)h’(0)‘. (3.10)

From (3.9)—(3.10), we deduce (3.1), as desired.
To see that the estimation of Theorem 3.1 is sharp, it suffices to consider the following
examples.

Example 3.1 If |3 ];II/I(O) (1- %)\)h’ (0)| > 1, we consider the following example:

dt
—Iex/ ,xEE, lu| = 1.
)(@

We deduce that (DF(z))~'(D?F(z
the relation

D*F(0)(=%) ( h'(0)  (R'(0))*
3! o 12 6
From this it follows that

To(D*F(0)(=®))ll=ll /\(Tm(D2F(0)(w2)))Q‘

3! 21
_ ‘(w

%) + DF(x)(z)) € My, and a short computation yields

D?F(0)(=*) _ h'(0)

(h'(0))* 21,112 (1'(0)) 2112112
5 +T)(T (@)l = A= (Tu(@)? |
(Tu(@))?||2| (0)] 1 A" (0)

_ - 20 " (1 - gx\)h’(o)‘. (3.11)
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Setting © = ru (0 <r < 1) in (3.11), we have

T.(D°F(0)(z%)) (T =(D?

1 1"(0)
3!|(? }_

2 1/ (0)

2'Hxll2 ) } N

If |4 W) (1= 32X)R/(0)] <1, we consider the following example:

Tu(@) dt
DF(z) = Iexp/ (h(t?) — 1) , T€E, |u=1. (3.12)
0
It is elementary to verify that the mapping F(x) defined in (3.12) satisfies (DF(z)) ™1 (D?F (z)(2?)+
DF(z)(x)) € My, and a simple computation shows that

D*F(0)(z®) _ W(0)(Tu(x))®x  D?F(0)(2?)
3! 6 ’ 2!

=0. (3.13)
From (3.13), we have

To(D*F(0)(@®)) ||l /\(TI(D2F(0)(ZE2)))2‘ _ WO () ?]|]”
3! 2! 6 '
Taking z = ru (0 < r < 1) in (3.14), we obtain

T.(D*f(0) (%) A(i’}(sz(O)(%Q)))"" _ [P (0)]
3!J]® 2|2 6

(3.14)

This completes the proof of Theorem 3.1.

Theorem 3.2 Let h : U — C satisfy the conditions of Definition 1.2, f € H(U" C), f(z) #
0, 2 € U, f(0) =1, F(2) = 2f(2) and suppose that (DF(z))"*(D?F(z)(2?) + DF(2)(z)) €
M,;,. Then
D3F(0)(z? 1 D2F(0)(22
[P - agrro (- )|
< [ O)ll=[" )|H [ 1 1"(0) 33\
{1 ‘ o) +(1—§/\)h(0)

Proof For z € U™\ {0}, denote zy = ey~ Let ¢; : U — C be given by

b ozeun, (3.15)

p;(&20)|l]l
5 = { & 0 T
1, £=0,
where p(z) = (DF(2)) Y (D?*F(2)(2%) + DF(2)z) and j satisfies |z;| = ||z]| = max {]zx]}.

1<k<n

Since (DF(2)) Y (D?*F(2)(2?) + DF(2)z) € M, we have ¢;(¢) € h(U), ¢ € U. Therefore,
according to Lemma 2.2, we obtain

¢;(0) 1 _h"(0)

2 2(w(0))?

According to (3.3), we have

D? f(£20)((£20)%) + 3D f(€20)(E20) + f(E20)
f(€z0) + D f(€20)(€20) ’

|4 (0)?
(0]

5(45(0)*| < |R'(0)] — (3.16)

g (§) =
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or, equivalently,
q;(€)(f(E20) + Df(€20)(€20)) = D* f(€20)((€20)%) + 3D f(€20)(E20) + f(€20).

Using Taylor series expansions in &, we obtain

(1 +q;(0)§ + qu(O)@ +- ) (1 +2Df(0)(20)¢ + gDQf(O)(z§)§2 ¥ )

= 144D f(0)(z0)¢ + gDQf(O)(Zg){" +

Comparing the homogeneous expansions of two sides of the above equality, we deduce that

qj;O) =3D?f(0)(z5) — 4(Df(0)(20))*. (3.17)

¢;(0) = 2D f(0)(20),
Moreover, from F(z9) = z0f(20), we have

DUF(0)(8) _ Df(0)(:) 2z DE(0)(z3) _ %
s = A =) — D)) (3.18)

Thus, from (3.16)—(3.18), we have

D?’Fj 0)(23)||= 1 5 D2F(0)(z2 z
OUDIL L oo (2'>< )Lzl
- [ZLOE) b pegioer, <o><zo,zO>¥
2 52
= [P0 (D (a0 202

= SIBDF(O0)(=3) ~ 6A(DS (0)(z0))
= SBDFO)(=3) ~ A(DF(0)(z0))” + (4~ 6X)(DF(0)(20))’|

1 q;’z(()) . (1 _ g)\)(q;(o)ﬂ
114/(0) 1 n"(0) ,, 1_h"(0) 3\
=52 2mr @O’ Gy t1 - 2 GO

Ly GO 1 n(0) ,
) ;) 11 1"(0) 3.\, 145(0))7
6(|h O =Tor * 1270 (1= h(0)] )

Using similar arguments as in the proof of Theorem 3.1, we obtain

DQF(O)(ZS)) El

2! zj

1

| DPE OGN SD2F(0) (=0,

121l
- A
3lz;

< gt ma{1 377y + (1= )0




46 Q. H Xu, T. S. Liu and X. S. Liu

If zg € 0yU", then we get

‘w A3 Lp2r F5(0) (=0 W)‘
3 ’ 2!
< |h’é0)| max {1, 57;,/((0)) +(1- g/\)h'(o)}}, =12 .n
Also since
w - /\%DQFJ'(O)(Z7W), j=1,2,-,n

are holomorphic functions on Un, in view of the maximum modulus theorem of holomorphic
functions on the unit polydisc, we obtain

DEOGD e (., ZPOGD)

3! 2
B e [0+ - w0} v g1
That is
< Ol >||\ P {1 ‘2h"(<8>+(1_;)h/(0)\}, seU, j=12,n
Therefore,
DEONE) L pep (-, 22O
Jl‘h(()il'l {f "”(()Z (- A)h/)m} e
S S P T DR G o
as desired.

In order to prove the sharpness, it suffices to consider the following examples.

If |% };L, (0)) + (1 — %/\) h’(O)‘ > 1, we consider the following example:

DF(z) = Iexp/om(h(t) - 1)%7 z e U™ (3.19)

If |2 hN(O + (1= 2N/ (0)| <1, we consider the following example:
. dt
DF(z) :Iexp/ (h(t?) — 1) , zelUm (3.20)
0

It is not difficult to verify that the mappings F'(z) defined in (3.19) and (3.20) satisfy
(DF(z))" Y (D*F(2)(2%) + DF(2)(2)) € M.

Taking z = (r,0,---,0) (0 < r < 1) in (3.19) and (3.20), respectively, we deduce that the
equality in (3.15) holds. This completes the proof of Theorem 3.2.

In view of Remark 1.1, if we set h(&) = H(}%O‘)E in Theorems 3.1 and 3.2, we can deduce
Corollary 3.1, which we merely state here without proof.
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Corollary 3.1 Let f: E— C, F(x) =xzf(z) € Ko(E). Then

To(D*F(0)(2%)) (Tz(DQF(O)(xQ)))Q‘
3|2 2!|z||?

< 1_Tamax{l, 3—20—3\1—a)[}, AeC, ze€E\{0}, T € T(x).

If X =C", E=T1U", then

DF(0)(2°) |1, D?F(0)(2*)
| — - pro(==——)|
< I_Tamax{l, 3-2a—3\1-a)l}, AeC, zeU" (3.21)

These estimates are sharp.
Especially, when n =1, E =T, (3.21) reduces to the following

F®) (0 F"(0 -
‘ 3'( ) /\( ) ‘< O[maux{l, 3—2a—-3X1—-0a)|}, AeC, z€U,

which is equivalent to Theorem A.

At present, we do not know whether the assertions of Theorems 3.1 and 3.2 hold true for a
normalized locally biholomorphic mapping F satisfying (DF(z))"Y(D?F(2)(2?) + DF(2)(z)) €
My,. Consequently, we pose the following open problem.

Open Problem Let F € H(FE) be a normalized locally biholomorphic mapping. If

(DF(2))"(D*F(x)(2*) + DF (2)(x)) € M,

then
3
‘T (D3'ﬁx|3 (Tr 2'Hx||2 )))2‘
< 'h/é()” max{l ”‘”((O)) ( - —)\)h’( )‘} AeC, ze E\{0}, T, € T(x).

It X =C" E =10U", then
|ZEOED 3L pepq) (-, ZEOED)|

LA >||| H?’max{ NERAV) (1=}, rec zevn

(0)

These estimates are sharp.

Acknowledgement The authors are grateful to the anonymous referees for their valuable
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