
Chin. Ann. Math. Ser. B

41(1), 2020, 61–76
DOI: 10.1007/s11401-019-0186-9

Chinese Annals of
Mathematics, Series B
c© The Editorial Office of CAM and

Springer-Verlag Berlin Heidelberg 2020

A Modified Analytic Function Space Feynman Integral of

Functionals on Function Space∗

SeungJun CHANG1 HyunSoo CHUNG2

Abstract In this paper, the authors introduce a class of functionals. This class forms a

Banach algebra for the special cases. The main purpose of this paper is to investigate some

properties of the modified analytic function space Feynman integral of functionals in the

class. Those properties contain various results and formulas which were not obtained in

previous papers. Also, the authors establish some relationships involving the first variation

via the translation theorem on function space. In particular, the authors establish the

Fubini theorem for the modified analytic function space Feynman integral which was not

obtained in previous researches yet.
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1 Introduction

The function space Ca,b[0, T ], induced by a generalized Brownian motion, was introduced by

Yeh in [19] and studied extensively in [6, 8–10, 12]. Various theories for the generalized analytic

function space Feynman integral (generalized analytic Feynman integral) on function space have

studied in many papers (see [6, 8-11]). However, the Fubini theorem for the generalized analytic

function space Feynman integral was not established because the generalized Brownian motion

has the nonzero mean function a(t). In [9], the authors introduced a new concept of modified

analytic function space Feynman integral and explained some physical phenomenon via the

modified analytic function space Feynman integral. Also, they established various relationships

for the modified analytic function space Feynman integral. Furthermore, they have established

a version of Fubini theorem for the modified analytic function space Feynman integral for the

special cases only.

In this paper, we establish the existence of the modified analytic function space Feynman

integral of functionals in a class. We then obtain various relationships with respect to the

modified analytic function space Feynman integral via the translation theorem. The end of
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this paper, we give the general Fubini theorem with respect to modified analytic function space

Feynman integral instead of the special cases.

The generalized Brownian motion process used in this paper and used in [6, 9–12] is non-

stationary in time, is subject to a drift a(t), and can be used to explain the position of the

Ornstein-Uhlenbeck process in an external force field (see [18]). While the Wiener process used

in [1–5, 7, 13–17] is stationary in time and is free of drift.

2 Definitions and Preliminaries

In this section, we recall some definitions and properties from [6, 9–12, 19–20].

Let D = [0, T ] and let (Ω,B, P ) be a probability measure space. A real-valued stochastic

process Y on (Ω,B, P ) and D is called a generalized Brownian motion process if Y (0, ω)=0

almost everywhere and for 0 = t0 < t1 < · · · < tn ≤ T , the n-dimensional random vector

(Y (t1, ω), · · · , Y (tn, ω)) is normally distributed with density function

Wn(~t, ~η) =
(
(2π)n

n∏

j=1

(b(tj)− b(tj−1))
)− 1

2

× exp
{
− 1

2

n∑

j=1

((ηj − a(tj))− (ηj−1 − a(tj−1)))
2

b(tj)− b(tj−1)

}
,

where ~η = (η1, · · · , ηn), η0 = 0, ~t = (t1, · · · , tn), a(t) is an absolutely continuous real-valued

function on [0, T ] with a(0) = 0, a′(t) ∈ L2[0, T ] and b(t) is a strictly increasing, continuously

differentiable real-valued function with b(0) = 0 and b′(t) > 0 for each t ∈ [0, T ].

As explained in [20, pp.18–20], Y induces a probability measure µ on the measurable space

(RD,BD) where RD is the space of all real valued functions x(t), t ∈ D, and BD is the smallest

σ-algebra of subsets of RD with respect to which all the coordinate evaluation maps et(x) = x(t)

defined on RD are measurable. The triple (RD,BD, µ) is a probability measure space. This

measure space is called the function space induced by the generalized Brownian motion process

Y determined by a(·) and b(·).
We note that the generalized Brownian motion process Y determined by a(·) and b(·) is a

Gaussian process with mean function a(t) and covariance function r(s, t) = min{b(s), b(t)}. By
Theorem 14.2 in [20, p.187], the probability measure µ induced by Y , taking a separable version,

is supported by Ca,b[0, T ] (which is equivalent to the Banach space of continuous functions x

on [0, T ] with x(0) = 0 under the sup-norm). Hence (Ca,b[0, T ],W(Ca,b[0, T ]), µ) is the function

space induced by Y where W(Ca,b[0, T ]) is the collection of all Wiener measurable subsets of

Ca,b[0, T ].

Let L2
a,b[0, T ] be the Hilbert space of functions on [0, T ] which are Lebesgue measurable and

square integrable with respect to the Lebesgue Stieltjes measures on [0, T ] induced by a(·) and
b(·), i.e.,

L2
a,b[0, T ] =

{
v :

∫ T

0

v2(s)db(s) < ∞ and

∫ T

0

v2(s)d|a|(s) < ∞
}
,
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where |a|(t) denotes the total variation of the function a on the interval [0, t].

For u, v ∈ L2
a,b[0, T ], let

(u, v)a,b =

∫ T

0

u(t)v(t)d[b(t) + |a|(t)].

Then (·, ·)a,b is an inner product on L2
a,b[0, T ] and ‖u‖a,b =

√
(u, u)a,b is a norm on L2

a,b[0, T ].

In particular note that ‖u‖a,b = 0 if and only if u(t) = 0 a.e. on [0, T ]. Furthermore (L2
a,b[0, T ],

‖ · ‖a,b) is a separable Hilbert space. Note that all functions of bounded variation on [0, T ] are

elements of L2
a,b[0, T ]. Also note that if a(t) ≡ 0 and b(t) = t on [0, T ], then L2

a,b[0, T ] = L2[0, T ].

In fact,

(L2
a,b[0, T ], ‖ · ‖a,b) ⊂ (L2

0,b[0, T ], ‖ · ‖0,b) = (L2[0, T ], ‖ · ‖2)

since the two norms ‖ · ‖0,b and ‖ · ‖2 are equivalent.

A subset A of Ca,b[0, T ] is said to be scale-invariant measurable provided ρA ∈ W(Ca,b[0, T ])

for all ρ > 0, and a scale-invariant measurable set N is said to be a scale-invariant null set

provided µ(ρN) = 0 for all ρ > 0. A property that holds except on a scale-invariant null set is

said to hold scale-invariant almost everywhere (s-a.e.) (see [15]).

For v ∈ L2
a,b[0, T ] and x ∈ Ca,b[0, T ] we let 〈v, x〉 =

∫ T

0
v(t)dx(t) denote the Paley-Wiener-

Zygmund (PWZ for short) stochastic integral, for more detailed see [6, 9–12].

Throughout this paper we will assume that each functional F : Ca,b[0, T ] → C we consider

is scale-invariant measurable and

∫

Ca,b[0,T ]

|F (ρx)|dµ(x) < ∞

for each ρ > 0.

In [9], the authors have pointed out the importance of modified analytic function space

Feynman integral. They explained that the concept of modified analytic function space Feyn-

man integral can be used to investigate some behaviors of the anharmonic oscillator in quantum

mechanics. These explains tell us that our research is a meaningful subject.

We recall the definition of the modified analytic function space Feynman integral (AFSFI

for short) (see [9]).

Definition 2.1 Let C denote the complex numbers, let C+ = {λ ∈ C : Re(λ) > 0} and let

C̃+ = {λ ∈ C : λ 6= 0 and Re(λ) ≥ 0}. Let h ∈ Ca,b[0, T ] be given. Let F : Ca,b[0, T ] → C be

such that for each λ > 0, the function space integral

J(λ) =

∫

Ca,b[0,T ]

F (λ− 1

2 x+ cλh)dµ(x)

exists for all λ > 0 where cλ is a real number which depends on λ. If there exists a function

J∗(λ) analytic in D ⊂ C+ such that J∗(λ) = J(λ) for all λ > 0, then J∗(λ) is defined to be the
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modified analytic function space integral of F over Ca,b[0, T ] with parameter λ, and for λ ∈ D

we write

J∗(λ) =

∫ an
cλ
λ

,h

Ca,b[0,T ]

F (x)dµ(x).

Let q 6= 0 be a real number and let F be a functional such that
∫ an

cλ
λ

,h

Ca,b[0,T ] F (x)dµ(x) exists for

all λ ∈ D. If the following limit exists, we call it the modified AFSFI of F with parameter q

and we write

∫ anf
cq
q ,h

Ca,b[0,T ]

F (x)dµ(x) = lim
λ→−iq

∫ an
cλ
λ

,h

Ca,b[0,T ]

F (x)dµ(x),

where λ approaches −iq through values in D.

Remark 2.1 If h(t) ≡ 0 on [0, T ] or cλ = 0, our modified AFSFI equals the concept of the

generalized AFSFI, namely

∫ anf
cq
q ,h

Ca,b[0,T ]

F (x)dµ(x) =

∫ anfq

Ca,b[0,T ]

F (x)dµ(x),

where
∫ anfq

Ca,b[0,T ] F (x)dµ(x) denotes the generalized AFSFI. Furthermore, in the setting of

classical Wiener space (in our research, when a(t) ≡ 0 and b(t) = t on [0, T ]), our modi-

fied analytic Feynman integral, the generalized analytic Feynman integral and the analytic

Feynman integral coincide.

The following is a well-known integration formula which is used several times in this paper.

For each α ∈ C and for v ∈ L2
a,b[0, T ],

∫

Ca,b[0,T ]

exp{α〈v, x〉}dµ(x) = exp
{α2

2
(v2, b′) + α(v, a′)

}
, (2.1)

where (v2, b′) =
∫ T

0
v2(s)db(s) and (v, a′) =

∫ T

0
v(s)da(s).

For each complex number α with Re(α2) ≤ 0, let Sα ≡ Sα(L
2
a,b[0, T ]) be the class of

functionals of the form

F (x) =

∫

L2

a,b
[0,T ]

exp{α〈v, x〉}df(v) (2.2)

for s-a.e. x ∈ Ca,b[0, T ] such that for all ρ > 0,

∫

L2

a,b
[0,T ]

exp
{
ρRe(α)

∫ T

0

|v(t)|d|a|(t)
}
|df(v)| < ∞, (2.3)

where f is in M(L2
a,b[0, T ]), the class of all complex valued countably additive Borel measures

on B(L2
a,b[0, T ]).

Remark 2.2 We have the following observations as follows.
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(1) For each ρ > 0,

∣∣∣
∫

Ca,b[0,T ]

F (ρx)dµ(x)
∣∣∣ ≤

∫

L2

a,b
[0,T ]

exp
{
ρRe(α)

∫ T

0

|v(t)|d|a|(t)
}
|df(v)| < ∞.

This means that F is defined for s-a.e. x ∈ Ca,b[0, T ].

(2) If α = ip for some p is in R, then Re(α) = 0 and so

∣∣∣
∫

Ca,b[0,T ]

F (ρx)dµ(x)
∣∣∣ ≤ ‖f‖ < ∞.

That is to say, the condition (2.3) always holds. Furthermore, using the techniques similar to

those used in [5], we can show that for each α ∈ C with α = ip, p ∈ R, the class Sα is a Banach

algebra with the norm

‖F‖ = ‖f‖ =

∫

L2

a,b
[0,T ]

|df(v)|, f ∈ M(L2
a,b[0, T ]).

One can show that the correspondence f → F is injective, carries convolution into pointwise

multiplication.

(3) In the setting of classical Wiener space (in our research, when a(t) ≡ 0 and b(t) = t on

[0, T ]), the condition (2.3) always holds. Hence the class Sα forms the Banach algebra for all

nonzero complex number α with Re(α2) ≤ 0.

3 Modified AFSFIs of Functionals in Sα

In this section we establish the existence of the modified AFSFI of functionals in Sα.

To establish the existence of modified AFSFI, we have to describe a region as a remark.

Remark 3.1 (1) Let γ1 = η + iζ and γ2 = c+ id be nonzero complex numbers with η ≤ 0

and c ≥ 0. First, we note that

Re
(γ1
γ2

)
=

ηc+ ζd

c2 + d2
≤ 0

implies that ηc + ζd ≤ 0. This tells us that there are many nonzero complex numbers γ1 and

γ2 so that Re
(
γ1

γ2

)
≤ 0. For example, if we take γ1 = −1 + i and γ2 = 1 + i, then Re

(
γ1

γ2

)
= 0.

Also, if we take γ1 = −3 + 2i and γ2 = 4 + 3i, then Re
(
γ1

γ2

)
= −6 ≤ 0.

(2) Let α be a complex number with Re(α2) ≤ 0 and let λ be an element of C+. Throughout

this paper, we will consider a subregion Γα of C+, where

Γα =
{
λ ∈ C+ : Re

(α2

λ

)
≤ 0

}
. (3.1)

In view of (1), the region Γα has sufficiently many complex numbers λ.

(3) Now we explain the region Γα for each α with Re(α2) ≤ 0. Let α2 = η+iζ and λ = c+id

be complex numbers with a ≤ 0 and c > 0. Then for each α with Re(α2) ≤ 0, we can describe

the region Γα as follows.

1) When d = 0 or ζ = 0, Γα = C+.
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2)When d 6= 0 and ζ 6= 0, for a given α, if ζ > 0, then the region Γα is given by
{
λ : d ≤ − η

ζ
c
}

and if ζ < 0, then the region Γα is given by
{
λ : d ≥ − η

ζ
c
}
.

3) The region Γα always contains all positive real numbers.

In our first lemma, we give the existence of the modified analytic function space integral of

a functional F in Sα.

Lemma 3.1 Let F be an element of Sα such that the associated measure f satisfies the

condition

∫

L2

a,b
[0,T ]

exp
{
Re(αλ− 1

2 )

∫ T

0

|v(t)|d|a|(t)

+ Re(cλ)‖zh‖∞
∫ T

0

|v(t)|db(t)
}
|df(v)| < ∞. (3.2)

Then the modified analytic function space integral
∫ an

cλ,h

λ

Ca,b[0,T ] F (x)dµ(x) of F exists and is equal

to

∫

L2

a,b
[0,T ]

exp
{α2

2λ
(v2, b′) + αλ− 1

2 (v, a′) + cλ(vzh, b
′)
}
df(v). (3.3)

Proof First, for zh ∈ L∞[0, T ], let h(t) =
∫ t

0
zh(s)db(s). Then vzh ∈ L2

a,b[0, T ] and

〈v, h〉 = (vzh, b
′) for each v ∈ L2

a,b[0, T ]. Next, we note that for all λ > 0, using formula (2.1)

and the Fubini theorem, it follows that

J(λ) ≡
∫

Ca,b[0,T ]

∫

La,b[0,T ]

exp{λ− 1

2α〈v, x〉+ αcλ(vzh, b
′)}df(v)dµ(x)

=

∫

L2

a,b
[0,T ]

exp
{α2

2λ
(v2, b′) + αλ− 1

2 (v, a′) + cλ(vzh, b
′)
}
df(v).

Also, for all λ > 0, from the condition (3.2) and the fact that the real part of α2

2λ is still non

positive,

|J(λ)| ≤
∫

L2

a,b
[0,T ]

exp
{
λ− 1

2Re(α)

∫ T

0

|v(t)|d|a|(t)

+ Re(cλ)‖zh‖∞
∫ T

0

|v(t)|db(t)
}
|df(v)| < ∞.

Finally, let

J∗(λ) =

∫

L2

a,b
[0,T ]

exp
{α2

2λ
(v2, b′) + αλ− 1

2 (v, a′) + cλ(vzh, b
′)
}
df(v),

where λ ∈ Γα. Then, the function J∗(λ) is well-defined on the region Γα. In fact,

|J∗(λ)| ≤
∫

L2

a,b
[0,T ]

exp
{
Re(αλ− 1

2 )

∫ T

0

|v(t)|d|a|(t)
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+Re(cλ)‖zh‖∞
∫ T

0

|v(t)|db(t)
}
|df(v)| < ∞

for all λ ∈ Γα. Also, J∗(λ) = J(λ) for all λ > 0. Last, we will show that J∗(λ) is analytic on

Γα. Let Λ be any simple closed contour in Γα. Then using the Fubini theorem and the Cauchy

theorem, we have

∫

Λ

J∗(λ)dλ =

∫

Λ

∫

L2

a,b
[0,T ]

exp
{α2

2λ
(v2, b′) + αλ− 1

2 (v, a′) + cλ(vzh, b
′)
}
df(v)dλ

=

∫

L2

a,b
[0,T ]

∫

Λ

exp
{α2

2λ
(v2, b′) + αλ− 1

2 (v, a′) + cλ(vzh, b
′)
}
dλdf(v)

= 0

because the function exp
{
α2

2λ (v
2, b′)+αλ− 1

2 (v, a′)
}
is analytic as a function of λ on Γα for each

α ∈ C with Re(α2) ≤ 0. Hence using the Morera’s theorem J∗(λ) is analytic on Γα and so we

complete the proof of Lemma 3.1.

The following theorem is the first main theorem in this paper. In our next theorem, we give

the existence of modified AFSFI of functionals in Sα.

Theorem 3.1 Let q0 be a nonzero real number. Let F and f be as in Lemma 3.1 and let q

be a real number such that
{
|q| ≥ |q0| and sign(q) = −sign(Im(α2)), if Im(α2) 6= 0,

|q| ≥ |q0|, if Im(α2) = 0,
(3.4)

where sign denotes the signum function defined by the formula sign(s) =

{
1, if s > 0,

−1, if s < 0.

Assume that

∫

L2

a,b
[0,T ]

exp
{
− Im(α2)

2|q0|
(v2, b′) +

Mα√
2q0

∫ T

0

|v(t)|d|a|(t)

+ Re(cq)‖zh‖∞
∫ T

0

|v(t)|d|a|(t)
}
|df(v)| < ∞, (3.5)

where Mα = |Re(α)− Im(α)|. Then the modified AFSFI
∫ anf

cq,h
q

Ca,b[0,T ]
F (x)dµ(x) of F exists and is

equal to

∫

L2

a,b
[0,T ]

exp
{ iα2

2q
(v2, b′) + α

( i

q

) 1

2

(v, a′) + cq(vzh, b
′)
}
df(v). (3.6)

Proof It suffices to show that

lim
λ→−iq

J∗(λ) =

∫

L2

a,b
[0,T ]

exp
{ iα2

2q
(v2, b′) + α

( i

q

) 1

2

(v, a′) + cq(vzh, b
′)
}
df(v). (3.7)

To do this, we recall the region Γα as in Remark 3.1. Then for all nonzero real number q satisfies

the condition (3.4), there exists a sequence {λl}∞l=1 in Γα such that λl → −iq as l → ∞. Then
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by Remark 3.1 and Lemma 3.1, we see that

|J∗(λl)| ≤
∫

L2

a,b
[0,T ]

exp
{
Re(αλ

− 1

2

l )

∫ T

0

|v(t)|d|a|(t)

+ Re(cλl
)‖zh‖∞

∫ T

0

|v(t)|db(t)
}
|df(v)| < ∞

for all l = 1, 2, · · · . Hence using the dominated convergence theorem, for all nonzero real number

q satisfies the condition (3.4),

lim
λl→−iq

J∗(λl) = lim
λl→−iq

∫

L2

a,b
[0,T ]

exp
{ α2

2λl

(v2, b′) + αλ
− 1

2

l (v, a′) + cλl
(vzh, b

′)
}
df(v)

=

∫

L2

a,b
[0,T ]

exp
{ iα2

2q
(v2, b′) + α

( i

q

) 1

2

(v, a′) + cq(vzh, b
′)
}
df(v),

which establishes (3.7) as desired. Also, we have

∣∣∣
∫ anf

cq,h
q

Ca,b[0,T ]

F (x)dµ(x)
∣∣∣

≤
∫

L2

a,b
[0,T ]

exp
{
− Im(α2)

2|q0|
(v2, b′) +

Re(α) − Im(α)√
2q0

∫ T

0

|v(t)|d|a|(t)

+ Re(cq)‖zh‖∞
∫ T

0

|v(t)|d|a|(t)
}
|df(v)| < ∞.

Hence we complete the proof of Theorem 3.1.

Remark 3.2 (1) From the definition of the class Sα, Lemma 3.1 and Theorem 3.1, we gave

a condition to establish the existence of the modified analytic function space Feynman integral

and modified AFSFI of F in Sα respectively. But, we can give only one condition which contains

these conditions as follows; let M1 = ρRe(α),M2 = Re(αλ− 1

2 ),M3 = Re(cλ)‖zh‖∞,M4 =

− Im(α2)
2|q0| ,M5 = Mα√

2q0
and M6 = Re(cq)‖zh‖∞. Then all conditions (2.3), (3.2) and (3.5) are

dominated by the condition

∫

L2

a,b
[0,T ]

exp{Mα,λ,q0(‖v‖a,b + ‖v‖1a,b)}|df(v)| < ∞, (3.8)

where Mα,λ,q0 = max{|M1|, · · · , |M6|} and ‖v‖1a,b denotes the L1-norm with respect to the a

and b. Hence we can assume that for each F in Sα, F always satisfies the condition (3.8) above.

(2) If α = ip for some p ∈ R, then Mα,λ,q0 = max{|M2|, |M3|, |M5|, |M6|} and

∫

L2

a,b
[0,T ]

exp{Mα,λ,q0‖v‖1a,b}|df(v)| < ∞.

In particular, if h(t) = 0 on [0, T ], then Mα,λ,q0 = |M2| and
∫

L2

a,b
[0,T ]

exp{M2‖v‖1a,b}|df(v)| < ∞.
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4 Some Properties for the Modified AFSFI

In this section we give some relationships with respect to the modified AFSFI via the

translation theorem on function space.

The following result was established in [11, p. 379].

Lemma 4.1 (Translation Theorem) Let z ∈ L2
a,b[0, T ] be given and let x0(t) =

∫ t

0
z(s)db(s)

for t ∈ [0, T ]. Assume that for F : Ca,b[0, T ] → C,
∫

Ca,b[0,T ]

|F (ρx)|dµ(x) < ∞

for all non-zero real numbers ρ. Then
∫

Ca,b[0,T ]

F (x + x0)dµ(x)

= exp
{
− 1

2
(z2, b′)− (z, a′)

}∫

Ca,b[0,T ]

F (x) exp{〈z, x〉}dµ(x). (4.1)

We next give the definition of the first variation of a functional F on Ca,b[0, T ].

Definition 4.1 Let F be a functional defined on Ca,b[0, T ]. Then the first variation of F

is defined by the formula

δF (x | u) = ∂

∂k
F (x+ ku)

∣∣∣
k=0

, x, u ∈ Ca,b[0, T ], (4.2)

if it exists.

We state an interesting observation involving the first variation.

Remark 4.1 (1) To establish the existence of the first variation of F in Sα, we give a

condition for f as follows. For F ∈ Sα, we will assume that the associated measure f in

M(L2
a,b[0, T ]) of F always satisfies the following inequality

∫

L2

a,b
[0,T ]

‖v‖a,b|df(v)| < ∞. (4.3)

(2) First we could consider the following integral
∫

L2

a,b
[0,T ]

α〈v, u〉 exp{α〈v, x〉}df(v). (4.4)

Since Re(α2) ≤ 0 and by an assumption (4.3),
∫

L2

a,b
[0,T ]

α〈v, u〉df(v) < ∞ (4.5)

and ∫

L2

a,b
[0,T ]

exp{α〈v, x〉}df(v)

exists for s-a.e. x ∈ Ca,b[0, T ]. However, the integral (4.4) might not exist because the product

of L1-functionals might not be in L1. Hence we should give a condition for f as follows. If

Re(α2) ≤ 0 and (4.3) holds then the integral (4.4) always exists.
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In our next theorem, we obtain the formula for the first variation of functionals from Sα

into Sα.

Theorem 4.1 Let F and f be as in Theorem 3.1 and let u(t) =
∫ t

0 zu(s)db(s) for some

zu ∈ L∞[0, T ]. Assume that

∣∣∣
∂

∂k
exp{α〈v, x+ ku〉}

∣∣∣ ≤ L(x), (4.6)

where L(x) is integrable on Ca,b[0, T ]. Then the first variation δF (x | u) of F exists and is

equal to

δF (x | u) =
∫

L2

a,b
[0,T ]

α〈v, u〉 exp{α〈v, x〉}df(v) (4.7)

for s-a.e. x ∈ C0[0, T ]. Furthermore, as a function of x, δF is an element of Sα. In fact,

δF (x | u) =
∫

L2

a,b
[0,T ]

exp{α〈v, x〉}dφ(v),

where φ is an element of M(L2
a,b[0, T ]).

Proof Using (4.2) it follows that for s-a.e. x ∈ Ca,b[0, T ],

δF (x | u) = ∂

∂k

(∫

L2

a,b
[0,T ]

exp{α〈v, x〉 + αk〈v, u〉}df(v)
)∣∣∣

k=0

=

∫

L2

a,b
[0,T ]

α〈v, u〉 exp{α〈v, x〉}df(v)

=

∫

L2

a,b
[0,T ]

exp{α〈v, x〉}dφ(v), (4.8)

where φ(E) =
∫
E
α〈v, u〉df(v) for E ∈ B(L2

a,b[0, T ]). The first equality in (4.8) follows from

condition (4.6) and so by using Remark 4.1, the all expressions in (4.8) exists. Hence we

completes the proof of Theorem 4.2.

The following theorem is the second main result in this paper. In Theorem 4.2, we establish

the existence of the modified AFSFI of the first variation for a functional F in Sα.

Theorem 4.2 Let F, f, q and u be as in Theorem 4.1. Then the modified generalized AFSFI
∫ anf

cq,h
q

Ca,b[0,T ]
δF (x | u)dµ(x) of δF (x | u) exists and is equal to

∫

L2

a,b
[0,T ]

α〈v, u〉 exp
{ iα2

2q
(v2, b′) + α

( i

q

) 1

2

(v, a′) + cq(vzh, b
′)
}
df(v). (4.9)

Proof From Theorem 3.1 by replacing F with δF , we can prove Theorem 4.2.

To establish some relationships via the translation theorem, we need some facts as follows.

For F and G be functionals on Ca,b[0, T ], δ(FG)(x | u) = δF (x | u)G(x) + F (x)δG(x | u) if it
exists. Let F, u, h be as in Theorem 4.2 and let G(x) = exp{λcλ〈zh, x〉}. Then we have

δG(x | u) = λcλ(zhzu, b
′) exp{λcλ〈zh, x〉},
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and so

δ(FG)(x | u) = δF (x | u) exp{λcλ〈zh, x〉} + λcλ(zhzu, b
′)F (x) exp{λcλ〈zh, x〉}.

Thus we can conclude that

δF (x | u) exp{λcλ〈zh, x〉} = δ(F (·) exp{λcλ〈zh, ·〉})(x | u)
− λcλ(zhzu, b

′)F (x) exp{λcλ〈zh, x〉}. (4.10)

The first relationship tells us that the modified AFSFI of the first variation of F in Sα can

be expressed by the modified AFSFIs without usage concept the first variation. It is called the

modified Cameron-Storvick type theorem for the modified AFSFI.

Theorem 4.3 Relation 1 Let F, q, h and u be as in Theorem 4.2. Then

∫ anf
cq,h
q

Ca,b[0,T ]

δF (x | u)dµ(x) = iqcq(zuzh, b
′)

∫ anf
cq,h
q

Ca,b[0,T ]

F (x)dµ(x) − iq

∫ anf
cq,h
q

Ca,b[0,T ]

〈zu, x〉F (x)dµ(x)

− (−iq)
1

2 (zu, a
′)

∫ anf
cq,h
q

Ca,b[0,T ]

F (x)dµ(x). (4.11)

Proof First, let Fh(x) = F (x+ cλh) and Gλ(x) = Fh(λ
− 1

2 x). Using (4.2), for each λ > 0,

∫

Ca,b[0,T ]

δF (λ− 1

2x+ cλh | u)dµ(x) = ∂

∂k

∫

Ca,b[0,T ]

F (λ− 1

2x+ cλh+ ku)dµ(x)
∣∣∣
k=0

=
∂

∂k

∫

Ca,b[0,T ]

Gλ(x+ x0)dµ(x)
∣∣∣
k=0

,

where x0(t) =
∫ t

0
λ

1

2 kzudb(s). Applying the translation theorem in Lemma 4.1 to the functional

Gλ, we have

∫

Ca,b[0,T ]

δF (λ− 1

2x+ cλh | u)dµ(x)

=
∂

∂k

[
exp

{
− λk2

2
(v2, b′)− λ

1

2 k(v, a′)
}∫

Ca,b[0,T ]

Gλ(x) exp{λ
1

2 k〈zu, x〉}dµ(x)
]∣∣∣

k=0

= −λ
1

2 (zu, a
′)

∫

Ca,b[0,T ]

F (λ− 1

2x+ cλh)dµ(x)

+

∫

Ca,b[0,T ]

λ
1

2 〈zu, x〉F (λ− 1

2 x+ cλh)dµ(x)

= λ

∫

Ca,b[0,T ]

〈zu, λ− 1

2 x+ cλh〉F (λ− 1

2x+ cλh)dµ(x)

− λcλ(zuzh, b
′)

∫

Ca,b[0,T ]

F (λ− 1

2 x+ cλh)dµ(x)

− λ
1

2 (zu, a
′)

∫

Ca,b[0,T ]

F (λ− 1

2x+ cλh)dµ(x).

It can be analytically λ in C+. As λ → −iq, we can obtain (4.11).
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Throughout the next relationship, we establish that the modified generalized AFSFI of the

first variation of F in Sα is the generalized AFSFIs. That is to say, (4.12) tells that there is a

connection between the modified AFSFI and generalized AFSFI.

Theorem 4.4 Relation 2 Let F, h, q and u be as in Theorem 4.3. Then

∫ anf
cq,h
q

Ca,b[0,T ]

δF (x | u)dµ(x) = exp
{ iqc2q

2
(zh, b

′)− (−iq)
1

2 cq(zh, a
′)
}

·
∫ anfq

Ca,b[0,T ]

δ(F (·) exp{−iqcq〈zh, ·〉})(x | u)dµ(x)

+ iqcq(zhzu, b
′) exp

{ iqc2q
2

(zh, b
′)− (−iq)

1

2 cq(zh, a
′)
}

·
∫ anfq

Ca,b[0,T ]

F (x) exp{−iqcq〈zh, x〉}dµ(x). (4.12)

Proof Let Hλ(x) = δF (λ− 1

2x | u) and let x0(t) =
∫ t

0
λcλzh(s)db(s). Then using (4.1)–(4.2),

we have
∫

Ca,b[0,T ]

δF (λ− 1

2x+ cλh | u)dµ(x)

=

∫

Ca,b[0,T ]

δF (λ− 1

2 (x+ λ
1

2 cλh) | u)dµ(x)

=

∫

Ca,b[0,T ]

Hλ(x+ x0)dµ(x)

= exp
{
− λc2λ

2
(z2h, b

′)− λ
1

2 cλ(zh, a
′)
}∫

Ca,b[0,T ]

δF (λ− 1

2 x | u) exp{λ 1

2 cλ〈zh, x〉}dµ(x).

Using (4.10), we have

∫

Ca,b[0,T ]

δF (λ− 1

2 x+ cλh | u)dµ(x)

= exp
{
− λc2λ

2
(zh, b

′)− λ
1

2 cλ(zh, a
′)
}

·
∫

Ca,b[0,T ]

δ(F (·) exp{λcλ〈zh, ·〉})(λ− 1

2x | u)dµ(x)

− λcλ(zhzu, b
′) exp

{
− λc2λ

2
(zh, b

′)− λ
1

2 cλ(zh, a
′)
}

·
∫

Ca,b[0,T ]

F (λ− 1

2x) exp{λcλ〈zh, λ− 1

2x〉}dµ(x).

It can be analytically λ in C+. As λ → −iq, we can obtain (4.12).

Remark 4.2 Applying Theorems 4.3–4.4, the right-side of (4.11)–(4.12), we can obtain a

formula for the modified AFSFI and the generalized AFSFI. Also, we can apply the Cameron-

Storvick type theorem used in [9, 12] to obtain another formula in first term in the right-side

of (4.12).
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5 More Properties for the Modified AFSFI

In this section we give some more relationships with respect to the modified AFSFI. In

particular, we give the Fubini theorem with respect to the modified AFSFI for the general

cases. Before do this, we will consider the following notations and formulas.

(1) We define a function to simply express many results and formulas in this paper. For

n ≥ 2, define a function Hn : C̃n
+ → C̃+ by

Hn(z1, · · · , zn) =
n∑

j=1

z
− 1

2

j −
( n∑

j=1

z−1
j

) 1

2

,

where
n∑

j=1

z
− 1

2

j 6= 0 and
n∑

j=1

z−1
j 6= 0. Note that Hn is a symmetric function for all n = 2, 3, · · · .

(2) Let F be a C-valued functional on Ca,b[0, T ] such that

∫

C2

a,b
[0,T ]

|F (γx+ βy)|d(µ× µ)(x, y) < ∞

for all nonzero real numbers γ and β. Then

∫

C2

a,b
[0,T ]

F (γx+ βy)d(µ× µ)(x, y)

=

∫

Ca,b[0,T ]

F (
√

γ2 + β2z + (γ + β −
√
γ2 + β2)a)dµ(z)

=

∫

Ca,b[0,T ]

F (
√

γ2 + β2z +H2(γ
−2, β−2)a)dµ(z). (5.1)

In [9], the author have established a Fubini theorem for the modified AFSFI as the special

cases with respect to a instead of h only as follows:

∫ anf
cq2
q2

,a

Ca,b[0,T ]

(∫ anf
cq1
q1

,a

Ca,b[0,T ]

F (x+ y)dµ(x)
)
dµ(y)

.
=

∫ anf
cq3
q3

,a

Ca,b[0,T ]

F (z)dµ(z),

where
.
= means that if either side exists, both sides exist and equality holds, q3 = q1q2

q1+q2
and

cq3 = H2(−iq1,−iq2) + cq1 + cq2 . However, by using an interesting formal used in the proof of

Theorem 5.1, we can solve this problem. In our next theorem, we give the Fubini theorem for

the modified AFSFI in general cases.

Theorem 5.1 Let q0 be a nonzero real number. Let q1 and q2 be real numbers whose satisfy

the condition (3.4) with q1+q2 6= 0. Let F be an element of Sα such that the associated measure

f satisfies the condition (3.8). Then

∫ anf
cq1

,h1

q1

Ca,b[0,T ]

(∫ anf
cq2

,h2

q2

Ca,b[0,T ]

F (x+ y)dµ(x)
)
dµ(y)
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=

∫ anf
cq3

,h3

q3

Ca,b[0,T ]

F (z)dµ(z)

=

∫ anf
cq2

,h2

q2

Ca,b[0,T ]

( ∫ anf
cq1

,h1

q1

Ca,b[0,T ]

F (x+ y)dµ(y)
)
dµ(x), (5.2)

where q3 = q1q2
q1+q2

, cq3 =
√
H2

2 (−iq1,−iq2) + c2q1 + c2q2 6= 0 and

h3 =
H2(−iq1,−iq2)

cq3
a+

cq1
cq3

h1 +
cq2
cq3

h2.

Further, they are given by the formula

∫

L2

a,b
[0,T ]

exp
{( iα2

2q1
+

iα2

2q2

)
(v2, b′) + α

(( i

q1

) 1

2

+
( i

q2

) 1

2

)
(v, a′)

+ (cq1 + cq2)(vzh, b
′)
}
df(v). (5.3)

Proof First, we note that for each positive real numbers γ1, γ2 and γ3, and h1, h2, h3 ∈
Ca,b[0, T ], we have for t ∈ [0, T ],

γ1h1(t) + γ2h2(t) + γ3h3(t)

=
√
γ2
1 + γ2

2 + γ2
3

( γ1h1(t)√
γ2
1 + γ2

2 + γ2
3

+
γ2h2(t)√

γ2
1 + γ2

2 + γ2
3

+
γ3h3(t)√

γ2
1 + γ2

2 + γ2
3

)

≡ γh0(t) (5.4)

for some γ ∈ R and h0 ∈ Ca,b[0, T ]. Next, using equation (5.4) and (5.1) for λ1, λ2 > 0, we have
∫

Ca,b[0,T ]

∫

Ca,b[0,T ]

F (λ
− 1

2

1 x+ λ
− 1

2

2 y + cλ1
h1 + cλ2

h2)dµ(x)µ(y)

=

∫

Ca,b[0,T ]

F (

√
λ−1
1 + λ−1

2 z +H2(λ1, λ2)a+ cλ1
h1 + cλ2

h2)dµ(z)

=

∫

Ca,b[0,T ]

F (

√
λ−1
1 + λ−1

2 z + γ3h)dµ(z),

where

γ3 =
√
H2

2 (λ1, λ2) + c2λ1
+ c2λ2

and

h =
H2(λ1, λ2)

γ3
a+

cλ1

γ3
h1 +

cλ2

γ3
h2.

It can be analytically in λ1 and λ2 in C+ and as λ1 → −iq1 and λ2 → −iq2, we can establish

(5.2). Finally, applying Theorem 3.1 repeatedly, we can obtain (5.3) as desired.

Combing Theorems 4.3–4.4 and 5.1, we have the following formulas.

(1) The first formula below is the modified Cameron-Storvick type theorem for the double

modified AFSFIs.

∫ anf
cq1

,h1

q1

Ca,b[0,T ]

(∫ anf
cq2

,h2

q2

Ca,b[0,T ]

δF (x+ y | u)dµ(x)
)
dµ(y)
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= i
q1q2

q1 + q2
cq3(zuzh, b

′)

∫ anf
cq3

,h3

q3

Ca,b[0,T ]

F (z)dµ(z)

− i
q1q2

q1 + q2

∫ anf
cq3

,h3

q3

Ca,b[0,T ]

〈zu, z〉F (z)dµ(z)−
(
− i

q1q2

q1 + q2

) 1

2

(zu, a
′)

∫ anf
cq3

,h3

q3

Ca,b[0,T ]

F (z)dµ(z).

(2) The second formula below is the relationship between the double modified AFSFIs and

generalized AFSFI.

∫ anf
cq1

,h1

q1

Ca,b[0,T ]

( ∫ anf
cq2

,h2

q2

Ca,b[0,T ]

δF (x + y | u)dµ(x)
)
dµ(y)

= exp
{ iq1q2c

2
q3

2(q1 + q2)
(zh, b

′)−
(
− i

q1q2

q1 + q2

) 1

2

cq3(zh, a
′)
}

·
∫ anfq3

Ca,b[0,T ]

δ(F (·) exp{−iq3cq3〈zh, ·〉})(x | u)dµ(x)

+ i
q1q2

q1 + q2
cq3(zhzu, b

′) exp
{ iq1q2c

2
q3

2(q1 + q2)
(zh, b

′)−
(
− i

q1q2

q1 + q2

) 1

2

cq3(zh, a
′)
}

·
∫ anfq

Ca,b[0,T ]

F (x) exp{−iq3cq3〈zh, x〉}dµ(x).

Remark 5.1 Using the mathematical induction, we also can establish all formulas and

results for the n-dimensional version in this paper.
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