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Generalized Weighted Morrey Estimates for

Marcinkiewicz Integrals with Rough Kernel

Associated with Schrodinger Operator and
Their Commutators
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Abstract Let L = —A+V(x) be a Schrodinger operator, where A is the Laplacian on R™,
while nonnegative potential V' (x) belonging to the reverse Holder class. The aim of this pa-
per is to give generalized weighted Morrey estimates for the boundedness of Marcinkiewicz
integrals with rough kernel associated with Schrédinger operator and their commutators.
Moreover, the boundedness of the commutator operators formed by BMO functions and
Marcinkiewicz integrals with rough kernel associated with Schrédinger operators is dis-
cussed on the generalized weighted Morrey spaces. As its special cases, the corresponding
results of Marcinkiewicz integrals with rough kernel associated with Schrédinger operator
and their commutators have been deduced, respectively. Also, Marcinkiewicz integral op-
erators, rough Hardy-Littlewood (H-L for short) maximal operators, Bochner-Riesz means
and parametric Marcinkiewicz integral operators which satisfy the conditions of our main
results can be considered as some examples.
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1 Introduction
In this paper we consider the differential Schrodinger operator
L=-A+4+V(x) onR", n>3,

where V(z) is a nonnegative potential belonging to the reverse Holder class RH, for some
exponent ¢ > %; that is, a nonnegative locally L, integrable function V(x) on R" is said to
belong to RH, (¢ > 1) if there exists a constant C' such that the reverse Holder inequality

(i ! Vi)' < o JZ V(a)dr ()

holds for every ball B C R™ (see [15, 17]). Obviously, RH,, C RH,,, if 1 < ¢2.
We introduce the definition of the reverse Hélder index of V as go = sup{q: V € RH,}. It
is worth pointing out that the RH, class is that, if V € RH, for some ¢ > 1, then there exists
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€ > 0, which depends only on n and the constant C' in (1.1), such that V' € RHg.. Therefore,
under the assumption V' € RH=», we may conclude go > 5. Throughout this paper, we always
assume that 0 2V € RH,,.

The Marcinkiewicz integral operator uq is defined by

/‘ / yl”)lf ‘ )%'

0 |z— y|<t

Stein [18] first introduced the operator ug and proved that pg is of type (p,p) (1 < p < 2) and
of weak type (1,1) in the case of Q € Lip,(5"™1) (0 <~ <1).
Similar to the Marcinkiewicz integral operator g, one defines the Marcinkiewicz integral

operator with rough kernel uﬁﬂ associated with the Schrédinger operator L by

Hiaf(@) /’ / —y)IKf(%y)f(y)dyr%)%,

0 |z—y|<t

where KT(z,y) = K} (z,y)lx —y| and K[ (z,y) is the kernel of R; = fj L2, j=1,---,n. In

TV

particular, when V = 0, KJ»A(x,y) = Ejz(x,y)kv —y| = =4 and IA(jz(x, y) is the kernel of

o=yl

R; = %A_%, j=1,---,n. In this paper, we write KjA(a:,y) = Kj(z,y) and pjo = uﬁg and
SO Nﬁg is defined by

miof(z /‘ / - y)lKj(%y)f(y)dyr%)%-

0 Jz—y[<t

Obviously, pjqo are classical Marcinkiewicz functions with rough kernel.
Now we give the definition of the commutator generalized by pq and b by

it~ (f] | 2 o) — bl | )
0 |e—y|<t

On the other hand, for b € L°¢(R"), denote by B the multiplication operator defined by
Bf(x) = b(x) f(x) for any measurable function f. If uﬁﬂ is a linear operator on some measurable

function space, then the commutator formed by B and Mfg is defined by
Mﬁn,bf(z) = [b, HJLQ]f(JC) = (Bﬂﬁn - HﬁQB)f(JC) = b(z) ,Uﬁfzf(z) - #JLQ(bf)(JC)
The commutators we are interested in here are of the form

oo (@) = b ko) f / [ 0w ikt el )

0 Jz—y[<t

It is worth noting that for a constant C, if uﬁQ is linear we have

b+C, Nﬁﬂ]f =+ C)Hﬁszf - Mﬁﬂ((b +C)f)
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= bMﬁQf + Cﬂﬁgf - Mﬁﬂ(bf) - CﬂﬁQf

This leads one to intuitively look to spaces for which we identify functions which differ by
constants, and so it is no surprise that b € BMO (bounded mean oscillation space) has had the
most historical significance.

The classical Morrey space was introduced by Morrey in [14], since then a large number of
investigations have been given to them by mathematicians. Recently, some authors established
the boundedness of some Marcinkiewicz integrals associated with Schrédinger operator on the
Morrey type spaces from a various point of view provided that the nonnegative potential V'
belonging to the reverse Holder class (see [1, 9, 17]). Motivated by these results, our aim in
this paper is to establish the boundedness for the Marcinkiewicz integrals with rough kernel
and their commutators associated with Schrédinger operator on generalized weighted Morrey
spaces provided that the nonnegative potential V' belonging to the reverse Holder class.

Let f € LI°¢(R™). The rough Hardy-Littlewood (H-L for short) maximal operator Mg and
its commutator are defined by

1

Mof (x) = sup s ( / | 1 — )| (@)ldy,
B(x,t

Mas(f)(x) = sup| B(z,1)| ! / Ib(z) — b1z — )11 () v,

t>0
B(z,t)

respectively.

The structure of this paper is as the following. The first section is devoted to the introduc-
tion. In Section 2, the definitions of basic spaces such as weighted Lebesgue, weighted Morrey
and generalized weighted Morrey spaces and the relationship between these spaces have been
considered. The Section 3 and Section 4 are devoted to the proofs of main results. In last
section, we have applied Theorem 3.2 and Theorem 4.3 (our main results) to several particular
operators such as Marcinkiewicz integral operators, rough H-L. maximal operators, Bochner-
Riesz means and parametric Marcinkiewicz integral operators.

At last, we make some conventions on notation. Throughout this paper, C' denotes a positive
constant that is independent of the main parameters, but whose value may vary from line to
line. The expression F' < G means that there exists a positive constant C' such that F < CG.
If ' <Gand G < F, we write F' ~ GG and say that F' and G are equivalent. We will also
denote the conjugate exponent of p > 1 by p’ = 1% and ¢ > 1by ¢ = #. A weight function
is a locally integrable function on R™ which takes values in (0,00) almost everywhere. For
any set I, x, denotes its characteristic function, if E is also measurable and w is a weight,

w(E) = /w(:z:)dx Also, throughout the paper we assume that € R”™ and r > 0 and also let

B
B(x,r) denotes the open ball centered at x of radius r, BY(x,r) denotes its complement and

| B(x,r)| is the Lebesgue measure of the ball B(x,r) and |B(x,r)| = v,r"™, where v,, = |B(0,1)].
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We have CB(z,r) = B(x,Cr) for C > 0. Finally, we use the notation
fB(r,r) = J? ’F / f
(z,r)

2 Definitions and Preliminaries

In this section, we recall the definitions of basic spaces such as weighted Lebesgue, weighted
Morrey and generalized weighted Morrey spaces and the relationship between these spaces
which has been considered. We also present some basic facts about weight functions that we
use in the following sections.

A locally integrable and positive function defined on R"™ is called a weight. We first recall
the definition of weighted Lebesgue spaces.

Definition 2.1 (Weighted Lebesgue Space) Let 1 < p < oo and given a weight w(z) €
Ap(R™), we shall define weighted Lebesgue spaces as

L) = LB ) = { £ 11,00 = ([lr@Puleyie)” <o}, 1<p<os
‘.

Loow = Loo(R™,w) = {f Nflww = esiﬂip|f(x)|w(x) < oo}.

Here and after, A, denotes the Muckenhoupt classes (see [8]). We now define the funda-

mental classes of weights known as the Muckenhoupt classes.

Definition 2.2 Provided that A, denotes the Muckenhoupt classes (see [8] ), for1 < p < oo,
a locally integrable function w : R™ —(0,00) is said to be an A,(R™) weight if

[w]a, = sup[wla, z)

L
= d 2.1
sup |B|/ T |B|/ < 00, (2.1)

where the supremum is taken with respect to all the balls B and p' = ﬁ, The condition (2.1) is
called the Ap-condition, and the weights which satisfy it are called A,-weights. The property of
the Ap-weights implies that generally speaking, we should check whether a weight w satisfies an
Ayp-condition or not. The expression [w]a, is also called characteristic constant of w. Similarly,
we shall give the definitions of the Muckenhoupt classes A, with p =1, co. A locally integrable
function w : R™ —(0,00) is said to be an Ay (R™) weight if

= sup (|—;|/w(y)dy) esssupw(z) ! < 0o (2.2)
B

zeB

holds for all balls B. A weight belonging to the set

U 4

1<p<oo
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is said to be a Muckenhoupt A weight. It is also known that the monotone property A, C
A, C A holds for every constants 1 < p < ¢ < o0.

By (2.1), we have
_2 a _1 _1
(w™ 7 (B)" = w7z, 5) < C|Blw(B)"7 (2.3)
for 1 < p < oo. Suppose that w € A,(R"™), by the definition of A,(R"), we know that
w'?" € A, (R"). Note that

. -1 1
(eisélgf f(:z:)) = eis:gp o) (2.4)

is true for any real-valued nonnegative function f and is measurable on E (see [20, page 143])
and (2.2); we get
1

—1
w — esSssup ——
lw™ L. (B SSUD )

1
- <C|BwB) . 2.
e < C|BJw(B) (2.5)

Then, Komori and Shirai [12] introduced a version of the weighted Morrey space L, .(w),
which is a natural generalization of the weighted Lebesgue space L,(w), and investigated the

boundedness of classical operators in harmonic analysis (see [12] for details).

Definition 2.3 (Weighted Morrey Space) Let 1 <p < 00, 0 < k < 1 and w be a weight
function. Then the weighted Morrey space Ly, (w) = Ly, o(R™,w) is defined by

Ly x(w) = Lp x(R", w)

= {/ €L ®) : Wflley = _swp_ w(BE)F Iflle, o < oo}

Furthermore, the weak weighted Morrey space W L, .(w) = WL, .(R™,w) is defined by

WL, (w)=WL,,.(R", w)
—{F e WLEL®") W lweyuy = 5w w(B@,)F [ fllwr, 5@ < -

eR” r>0
Remark 2.1 Alternatively, we could define the weighted Morrey spaces with cubes instead
of balls. Hence we shall use these two definitions of weighted Morrey spaces appropriate to

calculation.

Remark 2.2 (1) When w =1 and k = % with 0 < A < n, then the weighted Morrey space
is reduced to the ordinary Morrey space.

(2) If kK = 0, then the weighted Morrey space is reduced to the weighted Lebesgue space.

On the other hand, the generalized weighted Morrey spaces M, ,(w), which is a natural
extension of the weighted Morrey space L, . (w) were been introduced by Guliyev [7] as follows.
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Definition 2.4 (Generalized Weighted Morrey Space) Let 1 < p < oo, ¢(x,r) be a posi-
tive measurable function on R™ x (0,00) and w be non-negative measurable function on R™.

Then, the generalized weighted Morrey space M, ,(w) = M, ,(R™, w) is defined by
My (w) = My, (R™, w)
= {F e s ®) 5 1l

— _1
= sw (@) wB@ ) F |l B <o)
zeR™ r>0

Furthermore, the weak generalized weighted Morrey space WM, ,(w) = WM, ,(R™,w) is de-
fined by

WM, ,(w) = WM, ,(R",w)
= {re WL @) s 1 lwa, .

_ _1
= s (@) w(B@ ) w5 <<}
zeR™ r>0

Remark 2.3 (1) When w = 1, then the generalized weighted Morrey space is reduced to
the generalized Morrey space.

(2) If p(z,7) = w(B(x,T))%, 0 < k < 1, then the generalized weighted Morrey space is
reduced to the weighted Morrey space.

(3) When w =1 and p(z,r) = P with 0 < X\ < n, then the generalized weighted Morrey
space is reduced to the ordinary Morrey and weak Morrey space, respectively.

(4) If o(z,7) = w(B(x, 7‘))_%, then the generalized weighted Morrey space is reduced to the

weighted Lebesgue space.

3 Marcinkiewicz Integrals with Rough Kernel Associated with Schro-
dinger Operator Nf,n on the Generalized Weighted Morrey Spaces

M, o (w)

In this section we prove boundedness of the operators ,uﬁQ, j=1,---,n on the generalized
weighted Morrey spaces M, ,(w) by using the following Lemma 3.1 and (2.4).
We first prove the following Theorem.

Theorem 3.1 Let Q € L,(S"1), 1 < q < oo, Quz) = Qx) for any p > 0,z € R™\ {0}
and V'€ RH,,. Then, for every q¢' < p < oo and w € Az the inequality
q

5o (D, S IFlL, . (3.1)
holds.
Proof The statement of Theorem 3.1 follows by the following inequality
uﬁQf(x) <wpiaf(z)+CMqf(x) ae zeR",

and the boundedness of operators ;o and Mg on Ly(w) (see [4, 6]) in the same manner as in
the proof of Theorem 5 in [1].
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Before we give the proof of Theorem 3.2, we need the following lemma.

Lemma 3.1 Let Q € L, (S" 1), 1 < g < oo, Quz) = Q) for any p > 0,2 € R™\ {0} and
V € RH,.
If ¢ <p<ooandw e Az, then the inequality
q

1 1
1 1 dt
||/L§:Q(f)||Lp,w(B(wo,r)) < w(B Zo,T P / ||f||Lp w(B( mo,t))w( ($0a )) P v (3-2)
holds for any ball B(xo,r) and for all f € LlOC ¢ (R™).
Moreover, for p=1 < q < oo the inequality
L < —1 dt
5o (HlIW L w(Bo,m) S w(B (20, 7)) [ IfllLswBo,mw(Blao, )" — (33)

holds for any ball B(xo,r) and for all f € LS, (R™).

Proof For any zy € R", set B = B(xo,r) for the ball centered at z¢ and of radius r and
2B = B(zg,2r). We represent [ as

f=h+fn fily)=FfYxes), f2(y)=FfWxesely), >0, (3.4)

and have
50Dy ws) < lefa(fllL, ) + i (f2)lL, . )

Since fi € Ly(w), plo(fi) € Lp(w) and from the boundedness of ulg on L,(w) (see
Theorem 3.1) it follows that:

5o (Pl Lywe) < ko), vy S 1AL, @ = ClfliL,..e8) (3.5)

where constant C' > 0 is independent of f.

By the Holder’s inequality,
1,1
|B(zo,7)| S w(B(2o,7))? w7 ||L,,(B(xo,r)- (3.6)

Then, for ¢ < p < oo, it is clear that w € A implies w € Ay, by (3.6) and (2.3) we have

oo

dt det
Ifllz,..2B) = |B(ffoa7“)|||f||Lp,w(B(zo,2r))/th S |B(wo,r |/||f||pr(B (20,0)) g
2r 2r
1, 1 dt
S w(B(wo,7))7 [|w p||Lp,(B(mo,r))/||f||Lp,w(B(wo7t))W
2r

1 dt
< w(Blxo, )} / 171y 000 1075l 5000

< w(B(o, 1))} / 171 a0y (B0, 1))~ (3.7)
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By (3.7), we get

d7 (3.8)

) 1
ko ()L, .5) S w(B(xo,r P/||f||Lp w(Bao,t)W(B(z0,t)) P
To estimate |[ufo(f2)llL, .(B(we.r)), We first need to prove Nﬁg satisfies the following in-

equality:

(o) 1
7/

swplio(fola)l s L@ F ([ 1wl ) (39)

J=1 B(0,20+17)
Indeed, let A; = B(zg, 29T1r)\ B(x0,2’r) and z € B(zg,r). By the Hélder’s inequality, we

have

SUp |11 (f2(2)| < sup / /i~ 9Y1,
zEDB

z€B (i |$0 - y|n

g e o) (] S

When z € B(xg,7) and y € A;, then by a direct calculation, we can see that 2071y <
ly — x| < 2771, Hence,

1
Py

1
q - 1
/ [ — ) [%dy) " S 9], 50| Blao, 277 10) . (310)

We also note that if z € B = B(zo,7), y € (2B)¢ = B%(2¢,2r), then |y — x| ~ |y — x0|.

Consequently,
IO 1 ,
( v — y[e' dy) SW( / 1f ()] dy) : (3.11)

A B(xzg,2i+1r)

U=

Combining (3.10) and (3.11), we get (3.9).
Let ¢ < p < oo and w € Ar. Since Mﬁg satisfies (3.9), it follows from the Holder’s
inequality that

00 _1
sup iF o (F2@)] D @) T (| fllz,, (B2 w0 Py (Blao 21

= q

27i+2,
1
Z @) f By 07 F 1L o2y (B, v)dt
:12 1y
dt
< HfHLp,w(B(wmt))”w IIL v &y (Bloot) T 5 (3.12)

Note that w € Az, by (2.3) we get

1 n 1
[|lw pHLq/(L/)/(B(wmt)) St w(B(zo,t)) " 7. (3.13)
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Then by (3.12)—(3.13),

%. (3.14)

_1
sup [ fafa))| S J 11ty oot Blao, 1)
When ¢’ = p, then w € A;. Then for any p > 1, by (3.9) and (2.5) we have

0 1
supluta(fala) S @ E ([ @)’
i=1 B(0,29+1r)

S [ wpea)’ (e ww)
Jj=1 7

B(xo,2i+1r)
2042y

j _1

S’Z / HfHLp,w(B(w072j+lr))w(B(xO723"‘17»)) >
I=hjt,
2i+2,

_1
S [ WAl wtmtanyoBlan, 1)

I=hit,

%. (3.15)

_ 1
< / 1712, o (5o (B0, £)) "
2r

Hence, for all p € [1,00) by (3.14)—(3.15) we get

; 1 dt
s o ()L, ) S w(B(xo,r P/||f||pr(B w00 W(B(20,1)) 77 —. (3.16)

Combining (3.8) and (3.16) we complete the proof of (3.2).
On the other hand, let p =1 < ¢ < co. From the weak (1,1) boundedness of Tq and (3.7)
it follows that

e o(Dllwerws < lefa(fllwe @ S 1Al @

_,dt
= Ifllzy.2B) Sw(B(xo,r))/||fIILl,w<B<mo,t))w(B(fE07L‘)) S (37)

Then from (3.16)—(3.17) we get (3.3), which completes the proof.

In the following theorem (our main result), we get the boundedness of the operators uﬁﬂ,

j=1,---,n on the generalized weighted Morrey spaces M, ,(w).

Theorem 3.2 Let Q € L,(S" 1), 1< q< oo, Qux) = Q(z) for any p > 0,2 € R™\ {0}
and V € RH,,. Let also, for ¢ <p and w € Az, the pair (@1, p2) satisfies the condition
q

te<s§1<nofo o1(z, T)w(B(z, ))% dt <c 3.18
/ w(B(z,1))¥ t e o

T
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where C' does not depend on x and .

Then the operators MfQ’ j=1,---,n are bounded from My, (w) to M, ,,(w) for p > 1
and from M 4, (w) to WM ,,(w). Moreover, we have for p > 1,

5 (Mt oy ) S 10ty )
and for p =1,
g (D wass g, ) S 1F 1, )
Proof Since f € M, ,,(w), then from (2.4) and the fact that the norm || f[|z, . (B(xo.t)) 18

a non-decreasing function with respect to ¢, we get

1Nz, o (Bo.t) 1fllz, o(B(o.t)

1 T
! B P 0<i<r<oo B z
o Sesinf @1 (w0, T)w(B(0,T)) <t<r<co 1 (z0, T)w(B(z0,T))

< esssup

£l 2.0 (B(o.7)

7>0,20€R™ 1 (x0, T)w(B(x0, 7'))%

<

Sy, (). (3:19)

For ¢’ < p < oo, since (@1, p2) satisfies (3.18), we have

_adt
J11s, cipeniotBlan, )+ 5
1
N]o £ 112, (Bo.) cosinf @1 (wo, M)w(B(zo, 7))” dt
J essinf 1 (o, T)w(B(xo,7))¥ w(B(wo,t))7 t
<1l L/sﬂiw@m><3@mﬂﬁm
Vet w(Blao, 1)) /
Sl agy o, (wyp2(20, 7). (3.20)
Then by (3.2) and (3.20), we get
_ _1
50 aty py ) = suD  pa(@o, )" w(B(wo, )" 7 150 ()L, (B

zoER™ r>0

_1
< swp ol /wm%wB@m w(B(zo,1))"}

zoER™, >0

g
t
Sl g, (w)-

For the case of 1 = p < ¢, we can also use the same method, so we omit the details. This

completes the proof of Theorem 3.2.
When Q =1, from Theorem 3.2 we get the following corollary.

Corollary 3.1 Let 1 <p<oo, w € A,, V € RH,, and the pair (p1,p2) satisfies condition
(3.18). Let also the operators ;LJL, j=1,-+-,n are bounded on Ly(w) for p > 1 and bounded
Jrom Ly(w) to WLy (w). Then the operators p%, j = 1,---,n are bounded from M, ,, (w) to

My, o, (w) for p>1 and from My o, (w) to WM ,,(w).
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Remark 3.1 Note that, in the case of w = 1, Theorem 3.2 has been proved in [1].

k=1

Let ¢1(z,7) = po(x,7) = w(B(z,7)) " ,0< kK <1, w € As and V € RH,,. Then for
¢ <p,p#1andw e Az, the pair (¢1,p2) satisfies condition (3.18). Hence, from Theorem

3.2 we get the following new result.

Corollary 3.2 Let Q € L,(S"1), 1 < g < oo, Q(px) = Q(z) for any p > 0,2 € R™\ {0},
0<kx<1andV € RH,. Let also the operators ,uﬁg, j=1,---,n are bounded on L,(w) for
p > 1 and bounded from Li(w) to WLi(w). Forq <p, p#1 andw € Az, the pair (¢1,p2)
satisfies condition (3.18). Then the operators uﬁg, J=1,---,n are bouniled on the weighted
Morrey spaces Ly, (w) for p > 1 and bounded from Li ,.(w) to WLy .(w).

4 Commutators of Marcinkiewicz Integrals with Rough Kernel Asso-
ciated with Schrodinger Operator ,u,f’ﬂ on the Generalized Weighted
Morrey Spaces M), ,(w)

In this section we prove the boundedness of the operators uﬁgyb, J=1---,n with b €
BMO(R™) on the generalized weighted Morrey spaces M), ,(w) by using the following Lemma
4.4 and (2.4).

Spaces of Bounded Mean Oscillation (BMO for short) have been, and continue to be, of great
interest and a subject of intense research in harmonic analysis. One of the most fascinating
aspects of BMO spaces is their self-improvement properties, which go back to the work of John
and Nirenberg in [11]. Functions of BMO were also introduced by John and Nirenberg [11], in

connection with differential equations. The definition on R™ reads as follows.

Definition 4.1 (see [11]) The space BMO(R™) of functions of bounded mean oscillation

consists of locally summable functions with finite semi-norm

1
bll« = ||b = sup 7/ b(y) — bp(e.m|dy < o0, 4.1
6l = bllwo = sw_ e, )| () — bieldy (4.1)

where bp(y .y is the mean value of the function b on the ball B(x,r) and ||bl|« is called the
BMO-norm of b, and it becomes a norm on after dividing out the constant functions. Bounded
functions are in BMO and a BMO-function is locally in Ly(R) for every p < oco. Typical

examples of BMO-functions are of the form log|P| with a polynomial on R™. Furthermore,
BMO is a bit like the space Lo, but Lo is a subspace of BMO. Indeed,

1 1 1
b —b z,r dy < b d _ b o d
s | Pl [ bl g [ i
B(zr) B(z,r) B(z,r)
: /
|B(x,7)| (@)
B(z,r)
1 /
<2 [b(y)ldy < 2|]b] L.
|B(,7)|
B(z,r)

As a result, since ||b]|« < 2||b||L.., Loo(R™) C BMO(R™) is valid.
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Remark 4.1 (see [9]) The fact that precisely the mean value bp(,,y figures in (4.1) is
inessential and one gets an equivalent seminorm if bp(, ) is replaced by an arbitrary constant

C:

1

b||s« ~ sup inf —— / b(y) — c|dy.

ol ~ supinf e [ o) — cldy
B(z,r)

In 1961, John and Nirenberg [11] established the following deep property of functions from

BMO.

Theorem 4.1 (see [11]) If b € BMO(R"™) and B(xz,r) is a ball, then

€

s 0
o) €70

{w € Bla,r) + [b(z) = b > €} < Bl ) exp (
where C' depends only on the dimension n.

By Theorem 4.1, it is easy to get the following.

Lemma 4.1 Let w € Ao and b € BMO(R™). Then for any p > 1 we have
1 1
- —bplP P<
(5 [ 1) = bolw(w)ay)” < ol
B

Lemma 4.2 (see [13]) Let b be a function in BMO(R™). Let also 1 < p < oo, z € R™ and
r1,72 > 0. Then

(|BT17741)| (/ ) b(y) — bB(w7r2)|pdy)% < (1 + }ln:—; )HbH*
B(z,r

By Lemmas 4.1-4.2, it is easily to prove the following result.

Lemma 4.3 (see [8]) Let w € As and b € BMO(R™). Let also 1 < p < oo, z € R" and
ri,r9 > 0. Then

1

(m / [b(y) — bB(z,m)Ipw(y)dy)% < (1 + \ ln:—;‘) [

B(z,r1)
We first prove the following Theorem.
Theorem 4.2 Let Q € Ly(S" 1), 1 < g < oo, Quz) = Qx) for any pu > 0,z € R™\ {0},

V € RH, and b € BMO(R™). Then, for every ¢’ < p < oo and w € Az, there is a constant C
q
independent of f such that

sz, < ClflL, .- (4.2)
Proof The statement of Theorem 4.2 follows by the following inequality
wiapf (@) < pjosf(@) + CMaypf(x) ae xR, (4.3)

and the boundedness of operators Mg, and ;.05 on L,(w) (see [2, 5]) in the same manner as

in the proof of Theorem 3 in [9].

We present the following lemma, which is the heart of the proof of Theorem 4.3.
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Lemma 4.4 Let Q € Ly(S™™1), 1 < q < oo, Quz) = Qz) for any u > 0,z € R™ \ {0},
V € RH,, and b € BMO(R"). Then, for ¢ <p < oo and w € Ax the inequality

15 05 (P Ly (B oo

o0

% (4.4)

1 t _1
S Pl w(Bleo, s [ (1410 2) 1, oo Blao, 1)

2r
holds for any ball B(xo,r) and for all f € LS, (R™).

Proof Let 1 < p < oo and b € BMO(R"™). As in the proof of Lemma 3.1, we represent

function f in form (3.4) and have

||ﬂﬁﬂ7b(f)||Lp,w(B) < ||H;€Q,b(f1)||Lp,w(B) + ”:ugl‘:Q,b(fQ)HLp,w(B)-

For ¢' < p and w € Az, from the boundedness of Mﬁmb on L,(w) (see Theorem 4.2) it follows
that

15 0s(FOl L. 0B < Ii5as(FOlL, W@
S bl fillz,. @y = 10l fllL,..2B)-

As in the proof of (3.7), we get
1 _1dt
15 s (Fl Ly (e S 6]l w(B(2o,) 7 /llfllew (B(zo,0)W(B(20,1)) 77—

We now turn to deal with the term ||N£be(f2)||Lp’w(B). For any given x € B(xo,r), we have

|15 0 (f2(@))] S [b(2) = bp(aer |50 (f2(@))] + 1150 (b = bpag.m).f2) (@)]
=Ji + Js.

Since pfo, satisfies (3.9), by (3.14)~(3.15) we get

_1dt
T S 1000) = bntean| [ 111, wimtaonyo(Blan, ).
Applying Lemma 4.3, we get
1 T 1dt
140 2 ey S Iew(Bo, ) [ (140 )z, ey (Bl 1) 75 5
2r

Now, let us estimate Jo. When Q € L,(S"!), 1 < ¢ < oo, it follows from (3.9) that

J2 S i 27+ ) ( / |(0(y) = bB(zo,m)) f(¥)]? dy)
=1

B(z0,29117r)

L
Py
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Set v = %. From w € A,, we know w'™"" € A,.. Since ¢ < p, it follows from Holder’s
inequality that

([ 106 - bsenl 17w )

B(xg,27t1r)

S Ly wB@o 21 100) = 0B@om L, (i Blao,25+1r)-

Jo S Z(2j+lr)_q_, ”f”Lp,w(B(gcg,Qle))”b(') - bB(zmr)||Lq,u,(wlfv’,B(mO,zjﬂr))

j=1
> 2j+1’l” : _n
S Z(l +In )(234_17") e ”f”Lp,w(B(zo,Qle))||b(') - bB(zo,r)||Lq,u,(wlfv’,B(wmzle))
j=1
29+2,
- t dt
S (1 +1In ;) AN 2y (B o, 1B() — bB(wo,T)||Lq/,,/(w1*”/,B(wo7t))F
I=hit,
T ¢ dt
S [ (1410 ) ey et tp 166 = Dot s, iy 557
2r
Since w™ 7 = w'™" € A, by (3.12), we know
’ _1 n 1
(w'™" (B(xo,1))) 77 < tvw(B(zo,t)) v (4.5)
Using Lemma 4.3 and by the fact that w € A, and (4.5), we thus obtain
(] 100 = ba) e w)y) ™
B(z0,2it1r)
t : a1
S (1410 ) (0! (Blan, )7
£
< ||b||*(1 —i—ln;)tq’w(B(xo,t))_%. (4.6)
Then by (4.6),
T t _a1dt
T S 1ol [ (141015 e (Blaas )
2r
Hence,
< 1 T t _adt
12l Bwr) S bl w(Bo,r)) [ (14102 )1 £y 0.0 w(Blao, )75
2r

Summing up (| J1l|z, . (B(wo,r)) a0 [|J2]lL, . (B(zo.r)) for all p € (1,00), we get

11505 (FI L. (B (wo,))
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oo

1 t _adt
S Pl (B0, [ (1410 D)1 oo (Blaa,t) 3 5
2r
Finally, we have
L
15 0.6 (N 2y (Bzo.r)

1 T t _adt
S Pl w(Bleo, ) [ (1410 D)1 iy (Blaa,t) 3 5

2r
This completes the proof of Lemma 4.4.

Now we can give the following theorem (our main result).

91

Theorem 4.3 Let Q € Ly(S" 1), 1 < g < oo, Quz) = Qx) for any pu > 0,z € R™\ {0},

V € RH,, and b € BMO(R").
Let also, for ¢ <p < oo and w € Ax the pair (p1,p2) satisfies the condition

o0 essinf 1 (x, 7)w(B(, T))%

/(1+1n3)t<7<°° . dt < Cpa(z,r),
r w(B(z,t))r ¢

T

where C' does not depend on x and .

(4.7)

Then, the operators Mﬁ&b; Jj=1,---,n are bounded from M, ,, (w) to M, ,,(w). Moreover

1145 0.6 (D agy. oy (o) S B F [0, (0)-

Proof Similar to the proof of Theorem 3.2, by (3.19), we have
7 t _a1dt
J (11 2) 150, oo B, )+

T

Tl

oo

essinf o1 (zo, T)w(B(zo,T)) dt

T/ essinf ¢4 (CL‘Q,T)’U}(B({E(),T))% w(B(xo,t))%

T t<T<00

%) : 5
8L 1o (Bl )R g
Sz gy @y [ (14~ ; t
p.e1 r w(B(CCo,t))E 3

T

For ¢’ < p < oo, since (@1, p2) satisfies (4.7), we know
t _1
J (11021 iy 0Bl 075 5 S Sty oyt )

T

Then by (4.4) and (4.8), we get

Hliﬁmb(f)||Mp,g,,2 (w)

— 1
= sup  @a(zo,7)  w(B(wo, 7)) 7 |50 (Fll Ly (Blror)
xoER™ r>0

x/(1+1nf) 112y (B0 ) 2 i

(4.8)
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oo

_ t _1
Sl sup oo, [ (L)1 oo (Blao, )

dt
ro€R™,r>0 t

T

SN f Wl a1y, )

This completes the proof of Theorem 4.3.
When Q =1, from Theorem 4.3 we get the following corollary.

Corollary 4.1 Let 1 < p < oo, w € A,, V € RH,, b € BMO(R") and the pair (p1,p2)
satisfies condition (4.7). Let also the operators uﬁb, j=1,---,n are bounded on L,(w). Then

the operators uﬁb, Jj=1,---,n are bounded from M, ,, (w) to My ,,(w).

Remark 4.2 Note that, in the case of w = 1, Theorem 4.3 has been proved in [9].

r—1

Let @1 (1) = @a(z,7) = w(B(x,7) * ,0 <k <1, w € Ay and V € RH,. Then for
¢ <pand w € Ar, the pair (¢1,p2) satisfies condition (4.7). Hence, from Theorem 4.3 we

get the following new result.

Corollary 4.2 Let Q € Ly(S"1), 1 < g < o0, Q(px) = Q(z) for any p > 0,2 € R™\ {0},
Ve€RH,, 0<k<1andbe BMO(R"). Let also the operators Nﬁg,b; 7 =1,--- n are bounded
on Ly(w) forp>1. Forq <p and w € Af, the pair (1, p2) satisfies condition (4.7). Then
the operators ,uﬁgb, j=1,---,n are bounded on the weighted Morrey spaces L, .(w) forp > 1.

5 Some Applications

In this section, we shall apply Theorem 3.2 and Theorem 4.3 to several particular operators
such as Marcinkiewicz integral operators, rough H-L. maximal operators, Bochner-Riesz means

and parametric Marcinkiewicz integral operators.

5.1 Marcinkiewicz integral operators

Let Q € Ly(S" '), 1 < ¢ < oo and b € BMO(R™). Then by [4-5], for every ¢’ < p and
w € Az, there is a constant C' independent of f such that

o (L, <ClfllL,.,
and
oz, < ClblfllL,,.,-

Theorem 5.1 Let Q€ Ly(S" 1), 1< q < oo and b€ BMO(R"). Let also ¢’ < p < oo and
w e Ag/.
If the pair (p1,p2) satisfies condition (3.18), then we have for p > 1,

e (F) a1y oy w0y S 101y 4, (w)s

and for p =1,
o (I lwan gy () S I llat 4, (w)-
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If the pair (o1, ¢2) satisfies condition (4.7), then we have for p > 1,

1,6 (Pt oy () S N0l Fllnt, o, (-

Proof In the proof of Theorem 5.1, we will check whether 1o only satisfies (3.9). We know
that if z € B = B(zo,7), y € (2B)¢ = B%(z0,2r) and A; = B(x¢, 2/ 1)\ B(z0,277) (j > 1),
then

t> |z —y| > |y —xo| — |z — 20| > 27710,

Then, by Minkowski’s inequality we get
Q(x—y) 2dty 3
pe(fXepe)@ /‘ / w1/ W1 | )
0 2B)°n{y:lz—y|<t}
T Qx —y 2dty 2
/2] / o 0] )
0 I (aneniyle—yl<t)

2 (/ L L) [ )’

A 2i—1p

— j+1 ( )|

T )y (5.1)

I
/N

2

J:1

7

When Q € Lo, (S™ 1), then we have

sup [ua(Fxeme)@)] S Y@ [ 15wy (5.2)
J=1 B(x0,20+17)
When Q2 € L,(S"™1), 1 < ¢ < oo, then by Hélder’s inequality,
[z —y)| / / \fly 3
dy < Qx qd . 5.3
@Iy < (f1ot —v'ity)" (= Wl)q dy) (5.3)
Hence, it follows from (3.10), (5.1), (5.3) that
o] 1
sup o (Fxeme) @] S ST [ swia) (5.4)
vel J=1 B(zg,2t1r)

Combining (5.2) with (5.4) and since the rest of the proof is the same as the proof of Theorem
3.2 and Theorem 4.3, the proof of Theorem 5.1 is completed.

5.2 Rough H-L maximal operators

Duoandikoetxea [6] and Alvarez et al. [2] proved the following results, respectively.
Let Q € Ly(5"71), 1 < g < o0, Quz) = Q(x) for any g > 0,2 € R*\ {0} and b € BMO(R™).
Then, for every ¢’ < p < oo and w € Ar, there is a constant C' independent of f such that

[Ma(Hllz,. <ClflL,.



94 F. Girbiz

and
[Mab(llLy.. < CUbI Nz,

Theorem 5.2 Let Q € L,(S"1), 1 < q < oo, Quz) = Qx) for any u > 0,z € R™\ {0}
and b € BMO(R™). Let also ¢’ <p < oo and w € Az, .
q
If the pair (p1,p2) satisfies condition (3.18), then we have for p > 1,

[Ma ()01, (w) S 1101,y )5

and for p =1,
1Mo (Hllwat, g, w) S 1Fllan ., @w)-

If the pair (o1, ¢2) satisfies condition (4.7), then we have for p > 1,

1Mo,b ()| agy, o () S WOl f a0, )

Proof Similar to the proof of Theorem 5.1, we will check whether Mg only satisfies (3.9).
Let * € B = B(xg,7), y € (2B)¢ = B%(x0,2r) and A; = B(xo, 27 1)\ B(z0,277) (j > 1).
Note that, if A; N{y: |z —y| <t} #0, then

t>|z—y|l>ly—a0| — |z — 20| > 270 — 1 > C2 Ty,
Thus,
< 2ty
Hence, for any t > 0,

o / 1 — )1/ () ldy

(2B)°{y:[z—y|<t}

S [ e -l

—1
J Ain{y:|lz—y|<t}

@0 [ 196 - )l
Ay

A

Mg

=

By Holder’s inequality, the above expression is majorized by

o0

<SS /mx— o) ([ )’

j=1 B(zo.29+1r)

L
g

Applying (3.10), we get

g / 19 — 9)[|£(v)|dy

(2B)Cn{y:z—y|<t}

syt ([ rwla)’

J=1 B(0,20+17)

.
Py
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for any ¢ > 0. This means that

o0 1
7/

MalFxeme)@) £ 3T ([ 1wl )

J=1 B(w0,2i+17)
holds for any z¢p € R™ and r > 0 and since the rest of the proof is the same as the proof of
Theorem 3.2 and Theorem 4.3, the proof of Theorem 5.2 is completed.
5.3 Bochner-Riesz means

Bochner-Riesz means were first introduced by Bochner [3] in connection with summation of
multiple Fourier series and played an important role in harmonic analysis. The Bochner-Riesz
means of order 6 > 0 in R"(n > 2) are defined initially for Schwartz functions in terms of

Fourier transforms by

2 -~
O =(1-5) o, 0<r<o

where f denotes the Fourier transform of f and Ay = max(A,0). We recall that the Bochner-

Riesz means can be expressed as convolution operators (see [19])

By f(x) = (f * ¢1)(2),

where ¢ 1 (z) = R"f(Rx), and for all § > 251 the kernel ¢ can be represented as (see [19])

$(z) S (L4 |z))™" == (5.5)

The associated maximal Bochner-Riesz operator is defined by

B2(f)(x) = sup [ B} f(z)|-

R>0

When § > 251 it is well-known that (see [19])

BI(f)(x) S M(f)(x).

Then, by the boundedness of maximal function M(f) on Ly ., we know that if w € 4, (1 <
p < 00), then for all § > 251

IBIA Ly S 11l

holds.
Let b € BMO(R™) and 0 < R < oo. Consider the commutator [b, B] defined by

[b, BRI(f)(2) = b(x) By f(x) — By (bf)(x) = /[b(x) —b(y)le

R

(z —y)f(y)dy.

L
R

The maximal operator [b, BY] associated with the commutator is defined by

[b, B21(f)(x) = sup [[b, BR](f)(x)|-

R>0



96 F. Gurbiz

Note that BS f(x) < B2(f)(x), then if w € A, (1 < p < o0), the following

BRIy S NNz,

holds for all 6 > "T_l Thus, by the boundedness criterion for the commutators of linear

operators, we see that if b € BMO(R"™), then [b, BY] is also bounded on L, ,, for all 1 < p < oo
and w € A,.

Theorem 5.3 Let § > =L and 1 < p < oo. Let also b € BMO(R") and w € A,.
If the pair (p1, p2) satzsﬁes condition (3.18), then we have for p > 1,

1B aty g ) S NIty (05

and for p =1,
1B Wty ) S Il ()

If the pair (p1,p2) satisfies condition (4.7), then we have for p > 1,

110, BRI My ) S MONlLf 2, -

Proof As in the proof of Theorem 5.1, we will check whether B% and B? only satisfy (3.9).
Note that when ¢ > 5=, then by (5.5), we get

lo(@)| < |7
We also note that if z € B = B(zo,7), y € (2B)¢ = B%(x0,2r), then |z — y| =~ |z — z¢|. Thus,

sup |BY (fx(2pyc) ()] < sup |BS(fX(2m)c)(@)]

= sup sup [(fx@B)e) x &1 (2)]

xEB R
< sup sup / Llf(y)ldy
z€B R>0 (Rlz —y[)»
(2B)“

sy [ 1wy
=1

B(z0,2it1r)

This means that BS, and B? satisfy (3.9) and since the rest of the proof is the same as the proof
of Theorem 3.2 and Theorem 4.3, the proof of Theorem 5.3 is completed.

5.4 Parametric Marcinkiewicz integral operators

For 0 < p < n, in 1960, Hormander [10] defined the parametric Marcinkiewicz integral
operator of higher dimension as

@)t )
t2p+1 ’

O
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where

G (x) = / L_y_)f(y)dy,

|z —y|"=r
|z—y|<t

and proved that it is of type (p, p) for 1 < p < oo and of weak type (1,1) when Q € Lip,(S™~!)
(0 < <1). When p = 1, we simply denote it by pq. It is well known that the operator uq
was defined by Stein in [18].

Let b be alocally integrable function, the commutator generated by parametric Marcinkiewicz

integral operator uf, and b is defined by

bl /} [ 2 ) - sl )’ 0<p<n

0 |z—y|<t

In [16], the weighted boundedness of parametric Marcinkiewicz integral and its commutator

with rough kernels were considered.

Theorem 5.4 (see [16]) Let Q € L,(S™™1), 1 < ¢ < oo, Quz) = Qx) for any p > 0,z €
"\ {0}, b € BMO(R") and 0 < p < n. Then, for every ¢ <p < oo and w € Az, there is a
q
constant C' independent of f such that

1S 2y < Clf Ly
and
10, k) (P Ly < ClONN NI 2,00

Theorem 5.5 Let Q € Ly(S" 1), 1 < g < oo, Quz) = Qx) for any pu > 0,z € R™\ {0},
be BMO(R™) and 0 < p <n. Let also ¢ <p < oo andw € Az .
q
If the pair (p1,p2) satisfies condition (3.18), then we have for p > 1,

1 (P 0y (w) S N0y, 0)s
and for p =1,
QW Ly oy (w) S N F s, (a0)-

If the pair (p1,p2) satisfies condition (4.7), then we have for p > 1,

11bs Q) (P aty gy w) S MBI N F a4, (0)-

Proof The statement of Theorem 5.5 follows by Lemma 3.1 and Lemma 4.4 in the same

manner as in the proof of Theorem 3.2 and Theorem 4.3.
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