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Abstract Let L = −∆+V (x) be a Schrödinger operator, where ∆ is the Laplacian on Rn,
while nonnegative potential V (x) belonging to the reverse Hölder class. The aim of this pa-
per is to give generalized weighted Morrey estimates for the boundedness of Marcinkiewicz
integrals with rough kernel associated with Schrödinger operator and their commutators.
Moreover, the boundedness of the commutator operators formed by BMO functions and
Marcinkiewicz integrals with rough kernel associated with Schrödinger operators is dis-
cussed on the generalized weighted Morrey spaces. As its special cases, the corresponding
results of Marcinkiewicz integrals with rough kernel associated with Schrödinger operator
and their commutators have been deduced, respectively. Also, Marcinkiewicz integral op-
erators, rough Hardy-Littlewood (H-L for short) maximal operators, Bochner-Riesz means
and parametric Marcinkiewicz integral operators which satisfy the conditions of our main
results can be considered as some examples.

Keywords Marcinkiewicz operator, Rough kernel Schrödinger operator generalized
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1 Introduction

In this paper we consider the differential Schrödinger operator

L = −∆+ V (x) on Rn, n ≥ 3,

where V (x) is a nonnegative potential belonging to the reverse Hölder class RHq for some

exponent q ≥ n
2 ; that is, a nonnegative locally Lq integrable function V (x) on Rn is said to

belong to RHq (q > 1) if there exists a constant C such that the reverse Hölder inequality

( 1

|B|

∫

B

V (x)qdx
) 1

q

≤
C

|B|

∫

B

V (x)dx (1.1)

holds for every ball B ⊂ Rn (see [15, 17]). Obviously, RHq2 ⊂ RHq1 , if q1 < q2.

We introduce the definition of the reverse Hölder index of V as q0 = sup{q : V ∈ RHq}. It

is worth pointing out that the RHq class is that, if V ∈ RHq for some q > 1, then there exists
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ε > 0, which depends only on n and the constant C in (1.1), such that V ∈ RHq+ε. Therefore,

under the assumption V ∈ RHn
2
, we may conclude q0 > n

2 . Throughout this paper, we always

assume that 0 6= V ∈ RHn.

The Marcinkiewicz integral operator µΩ is defined by

µΩ(f)(x) =
( ∞∫

0

∣∣∣
∫

|x−y|≤t

Ω(x− y)

|x− y|n−1
f(y)dy

∣∣∣
2 dt

t3

) 1
2

.

Stein [18] first introduced the operator µΩ and proved that µΩ is of type (p, p) (1 < p ≤ 2) and

of weak type (1, 1) in the case of Ω ∈ Lipγ(S
n−1) (0 < γ ≤ 1).

Similar to the Marcinkiewicz integral operator µΩ, one defines the Marcinkiewicz integral

operator with rough kernel µL
j,Ω associated with the Schrödinger operator L by

µL
j,Ωf(x) =

( ∞∫

0

∣∣∣
∫

|x−y|≤t

|Ω(x− y)|KL
j (x, y)f(y)dy

∣∣∣
2 dt

t3

) 1
2

,

where KL
j (x, y) = K̃L

j (x, y)|x− y| and K̃L
j (x, y) is the kernel of Rj =

∂
∂xj

L− 1
2 , j = 1, · · · , n. In

particular, when V = 0, K∆
j (x, y) = K̃∆

j (x, y)|x − y| =
xj−yj

|x−y|

|x−y|n−1 and K̃∆
j (x, y) is the kernel of

Rj =
∂

∂xj

∆− 1
2 , j = 1, · · · , n. In this paper, we write K∆

j (x, y) = Kj(x, y) and µj,Ω = µ∆
j,Ω and

so µ∆
j,Ω is defined by

µj,Ωf(x) =
( ∞∫

0

∣∣∣
∫

|x−y|≤t

|Ω(x− y)|Kj(x, y)f(y)dy
∣∣∣
2 dt

t3

) 1
2

.

Obviously, µj,Ω are classical Marcinkiewicz functions with rough kernel.

Now we give the definition of the commutator generalized by µΩ and b by

µΩ,b(f)(x) =
( ∞∫

0

∣∣∣
∫

|x−y|≤t

Ω(x− y)

|x− y|n−1
[b(x)− b(y)]f(y)dy

∣∣∣
2 dt

t3

) 1
2

.

On the other hand, for b ∈ Lloc
1 (Rn), denote by B the multiplication operator defined by

Bf(x) = b(x)f(x) for any measurable function f . If µL
j,Ω is a linear operator on some measurable

function space, then the commutator formed by B and µL
j,Ω is defined by

µL
j,Ω,bf(x) = [b, µL

j,Ω]f(x) := (BµL
j,Ω − µL

j,ΩB)f(x) = b(x)µL
j,Ωf(x)− µL

j,Ω(bf)(x).

The commutators we are interested in here are of the form

µL
j,Ω,bf(x) = [b, µL

j,Ω]f(x) =
( ∞∫

0

∣∣∣
∫

|x−y|≤t

|Ω(x − y)|KL
j (x, y)[b(x) − b(y)]f(y)dy

∣∣∣
2 dt

t3

) 1
2

.

It is worth noting that for a constant C, if µL
j,Ω is linear we have

[b+ C, µL
j,Ω]f = (b + C)µL

j,Ωf − µL
j,Ω((b + C)f)
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= bµL
j,Ωf + CµL

j,Ωf − µL
j,Ω(bf)− CµL

j,Ωf

= [b, µL
j,Ω]f.

This leads one to intuitively look to spaces for which we identify functions which differ by

constants, and so it is no surprise that b ∈ BMO (bounded mean oscillation space) has had the

most historical significance.

The classical Morrey space was introduced by Morrey in [14], since then a large number of

investigations have been given to them by mathematicians. Recently, some authors established

the boundedness of some Marcinkiewicz integrals associated with Schrödinger operator on the

Morrey type spaces from a various point of view provided that the nonnegative potential V

belonging to the reverse Hölder class (see [1, 9, 17]). Motivated by these results, our aim in

this paper is to establish the boundedness for the Marcinkiewicz integrals with rough kernel

and their commutators associated with Schrödinger operator on generalized weighted Morrey

spaces provided that the nonnegative potential V belonging to the reverse Hölder class.

Let f ∈ Lloc
1 (Rn). The rough Hardy-Littlewood (H-L for short) maximal operator MΩ and

its commutator are defined by

MΩf(x) = sup
t>0

1

|B(x, t)|

∫

B(x,t)

|Ω(x − y)||f(y)|dy,

MΩ,b(f)(x) = sup
t>0

|B(x, t)|−1

∫

B(x,t)

|b(x)− b(y)||Ω(x− y)||f(y)|dy,

respectively.

The structure of this paper is as the following. The first section is devoted to the introduc-

tion. In Section 2, the definitions of basic spaces such as weighted Lebesgue, weighted Morrey

and generalized weighted Morrey spaces and the relationship between these spaces have been

considered. The Section 3 and Section 4 are devoted to the proofs of main results. In last

section, we have applied Theorem 3.2 and Theorem 4.3 (our main results) to several particular

operators such as Marcinkiewicz integral operators, rough H-L maximal operators, Bochner-

Riesz means and parametric Marcinkiewicz integral operators.

At last, we make some conventions on notation. Throughout this paper, C denotes a positive

constant that is independent of the main parameters, but whose value may vary from line to

line. The expression F . G means that there exists a positive constant C such that F ≤ CG.

If F . G and G . F , we write F ≈ G and say that F and G are equivalent. We will also

denote the conjugate exponent of p > 1 by p′ = p
p−1 and q > 1 by q′ = q

q−1 . A weight function

is a locally integrable function on Rn which takes values in (0,∞) almost everywhere. For

any set E, χ
E

denotes its characteristic function, if E is also measurable and w is a weight,

w(E) :=

∫

E

w(x)dx. Also, throughout the paper we assume that x ∈ Rn and r > 0 and also let

B(x, r) denotes the open ball centered at x of radius r, BC(x, r) denotes its complement and

|B(x, r)| is the Lebesgue measure of the ball B(x, r) and |B(x, r)| = vnr
n, where vn = |B(0, 1)|.
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We have CB(x, r) = B(x,Cr) for C > 0. Finally, we use the notation

fB(x,r) =
1

|B(x, r)|

∫

B(x,r)

f(y)dy.

2 Definitions and Preliminaries

In this section, we recall the definitions of basic spaces such as weighted Lebesgue, weighted

Morrey and generalized weighted Morrey spaces and the relationship between these spaces

which has been considered. We also present some basic facts about weight functions that we

use in the following sections.

A locally integrable and positive function defined on Rn is called a weight. We first recall

the definition of weighted Lebesgue spaces.

Definition 2.1 (Weighted Lebesgue Space) Let 1 ≤ p ≤ ∞ and given a weight w(x) ∈

Ap(R
n), we shall define weighted Lebesgue spaces as

Lp(w) ≡ Lp(R
n, w) =

{
f : ‖f‖Lp,w

=
(∫

Rn

|f(x)|pw(x)dx
) 1

p

< ∞
}
, 1 ≤ p < ∞,

L∞,w ≡ L∞(Rn, w) =
{
f : ‖f‖L∞,w

= esssup
x∈Rn

|f(x)|w(x) < ∞
}
.

Here and after, Ap denotes the Muckenhoupt classes (see [8]). We now define the funda-

mental classes of weights known as the Muckenhoupt classes.

Definition 2.2 Provided that Ap denotes the Muckenhoupt classes (see [8] ), for 1 < p < ∞,

a locally integrable function w : Rn →(0,∞) is said to be an Ap(R
n) weight if

[w]Ap
:= sup

B

[w]Ap(B)

= sup
B

( 1

|B|

∫

B

w(x)dx
)( 1

|B|

∫

B

w(x)−
p′

p dx
) p

p′

< ∞, (2.1)

where the supremum is taken with respect to all the balls B and p′ = p
p−1 . The condition (2.1) is

called the Ap-condition, and the weights which satisfy it are called Ap-weights. The property of

the Ap-weights implies that generally speaking, we should check whether a weight w satisfies an

Ap-condition or not. The expression [w]Ap
is also called characteristic constant of w. Similarly,

we shall give the definitions of the Muckenhoupt classes Ap with p = 1, ∞. A locally integrable

function w : Rn →(0,∞) is said to be an A1(R
n) weight if

[w]A1 := sup
B

[w]A1(B)

= sup
B

( 1

|B|

∫

B

w(y)dy
)
esssup
x∈B

w(x)−1 < ∞ (2.2)

holds for all balls B. A weight belonging to the set

A∞ =
⋃

1≤p<∞

Ap
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is said to be a Muckenhoupt A∞ weight. It is also known that the monotone property Ap ⊂

Aq ⊂ A∞ holds for every constants 1 ≤ p < q < ∞.

By (2.1), we have

(w− p′

p (B))
1
p′ = ‖w− 1

p ‖Lp′(B) ≤ C|B|w(B)−
1
p (2.3)

for 1 < p < ∞. Suppose that w ∈ Ap(R
n), by the definition of Ap(R

n), we know that

w1−p′

∈ Ap′(Rn). Note that

(
essinf
x∈E

f(x)
)−1

= esssup
x∈E

1

f(x)
(2.4)

is true for any real-valued nonnegative function f and is measurable on E (see [20, page 143])

and (2.2); we get

‖w−1‖L∞(B) = esssup
x∈B

1

w(x)

=
1

essinf
x∈B

w(x)
≤ C|B|w(B)−1. (2.5)

Then, Komori and Shirai [12] introduced a version of the weighted Morrey space Lp,κ(w),

which is a natural generalization of the weighted Lebesgue space Lp(w), and investigated the

boundedness of classical operators in harmonic analysis (see [12] for details).

Definition 2.3 (Weighted Morrey Space) Let 1 ≤ p < ∞, 0 < κ < 1 and w be a weight

function. Then the weighted Morrey space Lp,κ(w) ≡ Lp,κ(R
n, w) is defined by

Lp,κ(w) ≡ Lp,κ(R
n, w)

=
{
f ∈ Lloc

p,w(R
n) : ‖f‖Lp,κ(w) = sup

x∈Rn,r>0
w(B(x, r))−

κ
p ‖f‖Lp,w(B(x,r)) < ∞

}
.

Furthermore, the weak weighted Morrey space WLp,κ(w) ≡ WLp,κ(R
n, w) is defined by

WLp,κ(w) ≡ WLp,κ(R
n, w)

=
{
f ∈ WLloc

p,w(R
n) : ‖f‖WLp,κ(w) = sup

x∈Rn,r>0
w(B(x, r))−

κ
p ‖f‖WLp,w(B(x,r)) < ∞

}
.

Remark 2.1 Alternatively, we could define the weighted Morrey spaces with cubes instead

of balls. Hence we shall use these two definitions of weighted Morrey spaces appropriate to

calculation.

Remark 2.2 (1) When w ≡ 1 and κ = λ
n
with 0 ≤ λ ≤ n, then the weighted Morrey space

is reduced to the ordinary Morrey space.

(2) If κ = 0, then the weighted Morrey space is reduced to the weighted Lebesgue space.

On the other hand, the generalized weighted Morrey spaces Mp,ϕ(w), which is a natural

extension of the weighted Morrey space Lp,κ(w) were been introduced by Guliyev [7] as follows.
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Definition 2.4 (Generalized Weighted Morrey Space) Let 1 ≤ p < ∞, ϕ(x, r) be a posi-

tive measurable function on Rn × (0,∞) and w be non-negative measurable function on Rn.

Then, the generalized weighted Morrey space Mp,ϕ(w) ≡ Mp,ϕ(R
n, w) is defined by

Mp,ϕ(w) ≡ Mp,ϕ(R
n, w)

=
{
f ∈ Lloc

p,w(R
n) : ‖f‖Mp,ϕ(w)

= sup
x∈Rn,r>0

ϕ(x, r)−1 w(B(x, r))−
1
p ‖f‖Lp,w(B(x,r)) < ∞

}
.

Furthermore, the weak generalized weighted Morrey space WMp,ϕ(w) ≡ WMp,ϕ(R
n, w) is de-

fined by

WMp,ϕ(w) ≡ WMp,ϕ(R
n, w)

=
{
f ∈ WLloc

p,w(R
n) : ‖f‖WMp,ϕ(w)

= sup
x∈Rn,r>0

ϕ(x, r)−1 w(B(x, r))−
1
p ‖f‖WLp,w(B(x,r)) < ∞

}
.

Remark 2.3 (1) When w ≡ 1, then the generalized weighted Morrey space is reduced to

the generalized Morrey space.

(2) If ϕ(x, r) ≡ w(B(x, r))
κ−1

p , 0 < κ < 1, then the generalized weighted Morrey space is

reduced to the weighted Morrey space.

(3) When w ≡ 1 and ϕ(x, r) = r
λ−n

p with 0 ≤ λ ≤ n, then the generalized weighted Morrey

space is reduced to the ordinary Morrey and weak Morrey space, respectively.

(4) If ϕ(x, r) ≡ w(B(x, r))−
1
p , then the generalized weighted Morrey space is reduced to the

weighted Lebesgue space.

3 Marcinkiewicz Integrals with Rough Kernel Associated with Schrö-
dinger Operator µL

j,Ω
on the Generalized Weighted Morrey Spaces

Mp,ϕ(w)

In this section we prove boundedness of the operators µL
j,Ω, j = 1, · · · , n on the generalized

weighted Morrey spaces Mp,ϕ(w) by using the following Lemma 3.1 and (2.4).

We first prove the following Theorem.

Theorem 3.1 Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, Ω(µx) = Ω(x) for any µ > 0, x ∈ Rn \ {0}

and V ∈ RHn. Then, for every q′ < p < ∞ and w ∈ A p

q′
the inequality

‖µL
j,Ω(f)‖Lp,w

. ‖f‖Lp,w
(3.1)

holds.

Proof The statement of Theorem 3.1 follows by the following inequality

µL
j,Ωf(x) ≤ µj,Ωf(x) + CMΩf(x) a.e. x ∈ Rn,

and the boundedness of operators µj,Ω and MΩ on Lp(w) (see [4, 6]) in the same manner as in

the proof of Theorem 5 in [1].
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Before we give the proof of Theorem 3.2, we need the following lemma.

Lemma 3.1 Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, Ω(µx) = Ω(x) for any µ > 0, x ∈ Rn \ {0} and

V ∈ RHn.

If q′ < p < ∞ and w ∈ A p

q′
, then the inequality

‖µL
j,Ω(f)‖Lp,w(B(x0,r)) . w(B(x0, r))

1
p

∞∫

2r

‖f‖Lp,w(B(x0,t))w(B(x0, t))
− 1

p
dt

t
(3.2)

holds for any ball B(x0, r) and for all f ∈ Lloc
p,w(R

n).

Moreover, for p = 1 < q ≤ ∞ the inequality

‖µL
j,Ω(f)‖WL1,w(B(x0,r)) . w(B(x0, r))

∞∫

2r

‖f‖L1,w(B(x0,t))w(B(x0, t))
−1 dt

t
(3.3)

holds for any ball B(x0, r) and for all f ∈ Lloc
1,w(R

n).

Proof For any x0 ∈ Rn, set B = B(x0, r) for the ball centered at x0 and of radius r and

2B = B(x0, 2r). We represent f as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ(2B)C (y), r > 0, (3.4)

and have

‖µL
j,Ω(f)‖Lp,w(B) ≤ ‖µL

j,Ω(f1)‖Lp,w(B) + ‖µL
j,Ω(f2)‖Lp,w(B).

Since f1 ∈ Lp(w), µL
j,Ω(f1) ∈ Lp(w) and from the boundedness of µL

j,Ω on Lp(w) (see

Theorem 3.1) it follows that:

‖µL
j,Ω(f1)‖Lp,w(B) ≤ ‖µL

j,Ω(f1)‖Lp,w(Rn) . ‖f1‖Lp,w(Rn) = C‖f‖Lp,w(2B), (3.5)

where constant C > 0 is independent of f .

By the Hölder’s inequality,

|B(x0, r)| . w(B(x0, r))
1
p ‖w− 1

p ‖Lp′(B(x0,r)). (3.6)

Then, for q′ < p < ∞, it is clear that w ∈ A p

q′
implies w ∈ Ap, by (3.6) and (2.3) we have

‖f‖Lp,w(2B) ≈ |B(x0, r)|‖f‖Lp,w(B(x0,2r))

∞∫

2r

dt

tn+1
. |B(x0, r)|

∞∫

2r

‖f‖Lp,w(B(x0,t))
dt

tn+1

. w(B(x0, r))
1
p ‖w− 1

p ‖Lp′(B(x0,r))

∞∫

2r

‖f‖Lp,w(B(x0,t))
dt

tn+1

. w(B(x0, r))
1
p

∞∫

2r

‖f‖Lp,w(B(x0,t))‖w
− 1

p ‖Lp′(B(x0,t))
dt

tn+1

. w(B(x0, r))
1
p

∞∫

2r

‖f‖Lp,w(B(x0,t))w(B(x0, t))
− 1

p
dt

t
. (3.7)
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By (3.7), we get

‖µL
j,Ω(f1)‖Lp,w(B) . w(B(x0, r))

1
p

∞∫

2r

‖f‖Lp,w(B(x0,t))w(B(x0 , t))
− 1

p
dt

t
. (3.8)

To estimate ‖µL
j,Ω(f2)‖Lp,w(B(x0,r)), we first need to prove µL

j,Ω satisfies the following in-

equality:

sup
x∈B

|µL
j,Ω(f2(x))| .

∞∑

j=1

(2j+1r)
− n

q′

( ∫

B(x0,2j+1r)

|f(y)|q
′

dy
) 1

q′

. (3.9)

Indeed, let ∆i = B(x0, 2
j+1r)�B(x0, 2

jr) and x ∈ B(x0, r). By the Hölder’s inequality, we

have

sup
x∈B

|µL
j,Ω(f2(x))| ≤ sup

x∈B

∣∣∣
∫

(2B)C

|f(y)||Ω(x− y)′|

|x0 − y|n
dy

∣∣∣

≤ sup
x∈B

∞∑

j=1

(∫

∆i

|Ω(x− y)′|qdy
) 1

q
(∫

∆i

|f(y)|q
′

|x− y|nq′
dy

) 1
q′

.

When x ∈ B(x0, r) and y ∈ ∆i, then by a direct calculation, we can see that 2j−1r ≤

|y − x| < 2j+1r. Hence,

(∫

∆i

|Ω(x− y)′|qdy
) 1

q

. ‖Ω‖Lq(Sn−1)|B(x0, 2
j+1r)|

1
q . (3.10)

We also note that if x ∈ B = B(x0, r), y ∈ (2B)C = BC(x0, 2r), then |y − x| ≈ |y − x0|.

Consequently,

(∫

∆i

|f(y)|q
′

|x− y|nq′
dy

) 1
q′

≤
1

|B(x0, 2j+1r)|

( ∫

B(x0,2j+1r)

|f(y)|q
′

dy
) 1

q′

. (3.11)

Combining (3.10) and (3.11), we get (3.9).

Let q′ < p < ∞ and w ∈ A p

q′
. Since µL

j,Ω satisfies (3.9), it follows from the Hölder’s

inequality that

sup
x∈B

|µL
j,Ω(f2(x))| .

∞∑

j=1

(2j+1r)
− n

q′ ‖f‖Lp,w(B(x0,2j+1r))‖w
− 1

p ‖Lq′(
p

q′
)′ (B(x0,2j+1r))

.

∞∑

j=1

2j+2r∫

2j+1r

(2j+1r)
−(1+ n

q′
)‖f‖Lp,w(B(x0,t))‖w

− 1
p ‖L

q′(
p

q′
)′ (B(x0,t))dt

.

∞∫

2r

‖f‖Lp,w(B(x0,t))‖w
− 1

p ‖Lq′(
p

q′
)′ (B(x0,t))

dt

t
1+ n

q′
. (3.12)

Note that w ∈ A p

q′
, by (2.3) we get

‖w− 1
p ‖Lq′(

p

q′
)′ (B(x0,t)) . t

n
q′ w(B(x0, t))

− 1
p . (3.13)
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Then by (3.12)–(3.13),

sup
x∈B

|µL
j,Ω(f2(x))| .

∞∫

2r

‖f‖Lp,w(B(x0,t))w(B(x0, t))
− 1

p
dt

t
. (3.14)

When q′ = p, then w ∈ A1. Then for any p > 1, by (3.9) and (2.5) we have

sup
x∈B

|µL
j,Ω(f2(x))| .

∞∑

j=1

(2j+1r)−
n
p

( ∫

B(x0,2j+1r)

|f(y)|pdy
) 1

p

.

∞∑

j=1

(2j+1r)−
n
p

( ∫

B(x0,2j+1r)

|f(y)|pw(x)dy
) 1

p
(

essinf
x∈B(x0,2j+1r)

w(x)
)− 1

p

.

∞∑

j=1

2j+2r∫

2j+1r

‖f‖Lp,w(B(x0,2j+1r))w(B(x0, 2
j+1r))−

1
p
dt

t

.

∞∑

j=1

2j+2r∫

2j+1r

‖f‖Lp,w(B(x0,t))w(B(x0, t))
− 1

p
dt

t

.

∞∫

2r

‖f‖Lp,w(B(x0,t))w(B(x0, t))
− 1

p
dt

t
. (3.15)

Hence, for all p ∈ [1,∞) by (3.14)–(3.15) we get

‖µL
j,Ω(f2)‖Lp,w(B) . w(B(x0, r))

1
p

∞∫

2r

‖f‖Lp,w(B(x0,t))w(B(x0 , t))
− 1

p
dt

t
. (3.16)

Combining (3.8) and (3.16) we complete the proof of (3.2).

On the other hand, let p = 1 < q ≤ ∞. From the weak (1, 1) boundedness of TΩ and (3.7)

it follows that

‖µL
j,Ω(f1)‖WL1,w(B) ≤ ‖µL

j,Ω(f1)‖WL1,w(Rn) . ‖f1‖L1,w(Rn)

= ‖f‖L1,w(2B) . w(B(x0, r))

∞∫

2r

‖f‖L1,w(B(x0,t))w(B(x0, t))
−1 dt

t
. (3.17)

Then from (3.16)–(3.17) we get (3.3), which completes the proof.

In the following theorem (our main result), we get the boundedness of the operators µL
j,Ω,

j = 1, · · · , n on the generalized weighted Morrey spaces Mp,ϕ(w).

Theorem 3.2 Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, Ω(µx) = Ω(x) for any µ > 0, x ∈ Rn \ {0}

and V ∈ RHn. Let also, for q′ < p and w ∈ A p

q′
, the pair (ϕ1, ϕ2) satisfies the condition

∞∫

r

essinf
t<τ<∞

ϕ1(x, τ)w(B(x, τ))
1
p

w(B(x, t))
1
p

dt

t
≤ C ϕ2(x, r), (3.18)
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where C does not depend on x and r.

Then the operators µL
j,Ω, j = 1, · · · , n are bounded from Mp,ϕ1(w) to Mp,ϕ2(w) for p > 1

and from M1,ϕ1(w) to WM1,ϕ2(w). Moreover, we have for p > 1,

‖µL
j,Ω(f)‖Mp,ϕ2(w) . ‖f‖Mp,ϕ1(w),

and for p = 1,

‖µL
j,Ω(f)‖WM1,ϕ2 (w) . ‖f‖M1,ϕ1(w).

Proof Since f ∈ Mp,ϕ1(w), then from (2.4) and the fact that the norm ‖f‖Lp,w(B(x0,t)) is

a non-decreasing function with respect to t, we get

‖f‖Lp,w(B(x0,t))

essinf
0<t<τ<∞

ϕ1(x0, τ)w(B(x0 , τ))
1
p

≤ esssup
0<t<τ<∞

‖f‖Lp,w(B(x0,t))

ϕ1(x0, τ)w(B(x0 , τ))
1
p

≤ sup
τ>0,x0∈Rn

‖f‖Lp,w(B(x0,τ))

ϕ1(x0, τ)w(B(x0 , τ))
1
p

. ‖f‖Mp,ϕ1(w). (3.19)

For q′ < p < ∞, since (ϕ1, ϕ2) satisfies (3.18), we have

∞∫

r

‖f‖Lp,w(B(x0,t))w(B(x0, t))
− 1

p
dt

t

≈

∞∫

r

‖f‖Lp,w(B(x0,t))

essinf
t<τ<∞

ϕ1(x0, τ)w(B(x0 , τ))
1
p

essinf
t<τ<∞

ϕ1(x0, τ)w(B(x0 , τ))
1
p

w(B(x0, t))
1
p

dt

t

. ‖f‖Mp,ϕ1(w)

∞∫

r

essinf
t<τ<∞

ϕ1(x0, τ)w(B(x0 , τ))
1
p

w(B(x0, t))
1
p

dt

t

. ‖f‖Mp,ϕ1(w)ϕ2(x0, r). (3.20)

Then by (3.2) and (3.20), we get

‖µL
j,Ω(f)‖Mp,ϕ2(w) = sup

x0∈Rn,r>0
ϕ2(x0, r)

−1w(B(x0, r))
− 1

p ‖µL
j,Ω(f)‖Lp,w(B(x0,r))

. sup
x0∈Rn,r>0

ϕ2(x0, r)
−1

∞∫

r

‖f‖Lp,w(B(x0,t))w(B(x0 , t))
− 1

p
dt

t

. ‖f‖Mp,ϕ1(w).

For the case of 1 = p < q, we can also use the same method, so we omit the details. This

completes the proof of Theorem 3.2.

When Ω ≡ 1, from Theorem 3.2 we get the following corollary.

Corollary 3.1 Let 1 ≤ p < ∞, w ∈ Ap, V ∈ RHn and the pair (ϕ1, ϕ2) satisfies condition

(3.18). Let also the operators µL
j , j = 1, · · · , n are bounded on Lp(w) for p > 1 and bounded

from L1(w) to WL1(w). Then the operators µL
j , j = 1, · · · , n are bounded from Mp,ϕ1(w) to

Mp,ϕ2(w) for p > 1 and from M1,ϕ1(w) to WM1,ϕ2(w).
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Remark 3.1 Note that, in the case of w ≡ 1, Theorem 3.2 has been proved in [1].

Let ϕ1(x, r) = ϕ2(x, r) ≡ w(B(x, r))
κ−1

p
, 0 < κ < 1, w ∈ A∞ and V ∈ RHn. Then for

q′ ≤ p, p 6= 1 and w ∈ A p

q′
, the pair (ϕ1, ϕ2) satisfies condition (3.18). Hence, from Theorem

3.2 we get the following new result.

Corollary 3.2 Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, Ω(µx) = Ω(x) for any µ > 0, x ∈ Rn \ {0},

0 < κ < 1 and V ∈ RHn. Let also the operators µL
j,Ω, j = 1, · · · , n are bounded on Lp(w) for

p > 1 and bounded from L1(w) to WL1(w). For q′ ≤ p, p 6= 1 and w ∈ A p

q′
, the pair (ϕ1, ϕ2)

satisfies condition (3.18). Then the operators µL
j,Ω, j = 1, · · · , n are bounded on the weighted

Morrey spaces Lp,κ(w) for p > 1 and bounded from L1,κ(w) to WL1,κ(w).

4 Commutators of Marcinkiewicz Integrals with Rough Kernel Asso-
ciated with Schrödinger Operator µL

j,Ω on the Generalized Weighted

Morrey Spaces Mp,ϕ(w)

In this section we prove the boundedness of the operators µL
j,Ω,b, j = 1, · · · , n with b ∈

BMO(Rn) on the generalized weighted Morrey spaces Mp,ϕ(w) by using the following Lemma

4.4 and (2.4).

Spaces of Bounded Mean Oscillation (BMO for short) have been, and continue to be, of great

interest and a subject of intense research in harmonic analysis. One of the most fascinating

aspects of BMO spaces is their self-improvement properties, which go back to the work of John

and Nirenberg in [11]. Functions of BMO were also introduced by John and Nirenberg [11], in

connection with differential equations. The definition on Rn reads as follows.

Definition 4.1 (see [11]) The space BMO(Rn) of functions of bounded mean oscillation

consists of locally summable functions with finite semi-norm

‖b‖∗ ≡ ‖b‖BMO = sup
x∈Rn,r>0

1

|B(x, r)|

∫

B(x,r)

|b(y)− bB(x,r)|dy < ∞, (4.1)

where bB(x,r) is the mean value of the function b on the ball B(x, r) and ‖b‖∗ is called the

BMO-norm of b, and it becomes a norm on after dividing out the constant functions. Bounded

functions are in BMO and a BMO-function is locally in Lp(R) for every p < ∞. Typical

examples of BMO-functions are of the form log|P | with a polynomial on Rn. Furthermore,

BMO is a bit like the space L∞, but L∞ is a subspace of BMO. Indeed,

1

|B(x, r)|

∫

B(x,r)

|b(y)− bB(x,r)|dy ≤
1

|B(x, r)|

∫

B(x,r)

|b(y)|dy +
1

|B(x, r)|

∫

B(x,r)

|bB(x,r)|dy

=
1

|B(x, r)|

∫

B(x,r)

|b(y)|dy + |bB(x,r)|

≤ 2
1

|B(x, r)|

∫

B(x,r)

|b(y)|dy ≤ 2‖b‖L∞.

As a result, since ‖b‖∗ ≤ 2‖b‖L∞, L∞(Rn) ⊂ BMO(Rn) is valid.
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Remark 4.1 (see [9]) The fact that precisely the mean value bB(x,r) figures in (4.1) is

inessential and one gets an equivalent seminorm if bB(x,r) is replaced by an arbitrary constant

c :

‖b‖∗ ≈ sup
r>0

inf
c∈C

1

|B(x, r)|

∫

B(x,r)

|b(y)− c|dy.

In 1961, John and Nirenberg [11] established the following deep property of functions from

BMO.

Theorem 4.1 (see [11]) If b ∈ BMO(Rn) and B(x, r) is a ball, then

|{x ∈ B(x, r) : |b(x)− bB(x,r)| > ξ}| ≤ |B(x, r)| exp
(
−

ξ

C‖b‖∗

)
, ξ > 0,

where C depends only on the dimension n.

By Theorem 4.1, it is easy to get the following.

Lemma 4.1 Let w ∈ A∞ and b ∈ BMO(Rn). Then for any p ≥ 1 we have

( 1

w(B)

∫

B

|b(y)− bB|
pw(y)dy

) 1
p

. ‖b‖∗.

Lemma 4.2 (see [13]) Let b be a function in BMO(Rn). Let also 1 ≤ p < ∞, x ∈ Rn and

r1, r2 > 0. Then

( 1

|B(x, r1)|

∫

B(x,r1)

|b(y)− bB(x,r2)|
pdy

) 1
p

.
(
1 +

∣∣∣ ln r1

r2

∣∣∣
)
‖b‖∗.

By Lemmas 4.1–4.2, it is easily to prove the following result.

Lemma 4.3 (see [8]) Let w ∈ A∞ and b ∈ BMO(Rn). Let also 1 ≤ p < ∞, x ∈ Rn and

r1, r2 > 0. Then

( 1

w(B(x, r1))

∫

B(x,r1)

|b(y)− bB(x,r2)|
pw(y)dy

) 1
p

.
(
1 +

∣∣∣ ln r1

r2

∣∣∣
)
‖b‖∗.

We first prove the following Theorem.

Theorem 4.2 Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, Ω(µx) = Ω(x) for any µ > 0, x ∈ Rn \ {0},

V ∈ RHn and b ∈ BMO(Rn). Then, for every q′ < p < ∞ and w ∈ A p

q′
, there is a constant C

independent of f such that

‖µL
j,Ω,b(f)‖Lp,w

≤ C‖f‖Lp,w
. (4.2)

Proof The statement of Theorem 4.2 follows by the following inequality

µL
j,Ω,bf(x) ≤ µj,Ω,bf(x) + CMΩ,bf(x) a.e. x ∈ Rn, (4.3)

and the boundedness of operators MΩ,b and µj,Ω,b on Lp(w) (see [2, 5]) in the same manner as

in the proof of Theorem 3 in [9].

We present the following lemma, which is the heart of the proof of Theorem 4.3.
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Lemma 4.4 Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, Ω(µx) = Ω(x) for any µ > 0, x ∈ Rn \ {0},

V ∈ RHn and b ∈ BMO(Rn). Then, for q′ < p < ∞ and w ∈ A p

q′
the inequality

‖µL
j,Ω,b(f)‖Lp,w(B(x0,r))

. ‖b‖∗w(B(x0, r))
1
p

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp,w(B(x0,t))w(B(x0, t))

− 1
p
dt

t
(4.4)

holds for any ball B(x0, r) and for all f ∈ Lloc
p,w(R

n).

Proof Let 1 < p < ∞ and b ∈ BMO(Rn). As in the proof of Lemma 3.1, we represent

function f in form (3.4) and have

‖µL
j,Ω,b(f)‖Lp,w(B) ≤ ‖µL

j,Ω,b(f1)‖Lp,w(B) + ‖µL
j,Ω,b(f2)‖Lp,w(B).

For q′ < p and w ∈ A p

q′
, from the boundedness of µL

j,Ω,b on Lp(w) (see Theorem 4.2) it follows

that

‖µL
j,Ω,b(f1)‖Lp,w(B) ≤ ‖µL

j,Ω,b(f1)‖Lp,w(Rn)

. ‖b‖∗‖f1‖Lp,w(Rn) = ‖b‖∗‖f‖Lp,w(2B).

As in the proof of (3.7), we get

‖µL
j,Ω,b(f1)‖Lp,w(B) . ‖b‖∗w(B(x0, r))

1
p

∞∫

2r

‖f‖Lp,w(B(x0,t))w(B(x0, t))
− 1

p
dt

t
.

We now turn to deal with the term ‖µL
j,Ω,b(f2)‖Lp,w(B). For any given x ∈ B(x0, r), we have

|µL
j,Ω,b(f2(x))| . |b(x)− bB(x0,r)||µ

L
j,Ω(f2(x))| + |µL

j,Ω((b− bB(x0,r))f2)(x)|

= J1 + J2.

Since µL
j,Ω satisfies (3.9), by (3.14)–(3.15) we get

J1 . |b(y)− bB(x0,r)|

∞∫

2r

‖f‖Lp,w(B(x0,t))w(B(x0, t))
− 1

p
dt

t
.

Applying Lemma 4.3, we get

‖J1‖Lp,w(B(x0,r)) . ‖b‖∗w(B(x0, r))
1
p

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp,w(B(x0,t))w(B(x0, t))

− 1
p
dt

t
.

Now, let us estimate J2. When Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, it follows from (3.9) that

J2 .

∞∑

j=1

(2j+1r)
− n

q′

( ∫

B(x0,2j+1r)

|(b(y)− bB(x0,r))f(y)|
q′dy

) 1
q′

.
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Set ν = p
q′
. From w ∈ Aν , we know w1−ν′

∈ Aν′ . Since q′ < p, it follows from Hölder’s

inequality that

( ∫

B(x0,2j+1r)

|(b(y)− bB(x0,r))|
q′ |f(y)|q

′

dy
) 1

q′

. ‖f‖Lp,w(B(x0,2j+1r))‖b(·)− bB(x0,r)‖Lq′ν′(w1−ν′
,B(x0,2j+1r)).

Then

J2 .

∞∑

j=1

(2j+1r)
− n

q′ ‖f‖Lp,w(B(x0,2j+1r))‖b(·)− bB(x0,r)‖Lq′ν′ (w1−ν′
,B(x0,2j+1r))

.

∞∑

j=1

(
1 + ln

2j+1r

r

)
(2j+1r)

− n
q′ ‖f‖Lp,w(B(x0,2j+1r))‖b(·)− bB(x0,r)‖Lq′ν′(w1−ν′

,B(x0,2j+1r))

.

∞∑

j=1

2j+2r∫

2j+1r

(
1 + ln

t

r

)
‖f‖Lp,w(B(x0,t))‖b(·)− bB(x0,r)‖Lq′ν′(w1−ν′

,B(x0,t))

dt

t
n

q′
+1

.

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp,w(B(x0,t))‖b(·)− bB(x0,r)‖Lq′ν′(w1−ν′

,B(x0,t))

dt

t
n

q′
+1

.

Since w
− ν′

q′ = w1−ν′

∈ Aν′ , by (3.12), we know

(w1−ν′

(B(x0, t)))
1

q′ν′ . t
n
ν w(B(x0, t))

− 1
p . (4.5)

Using Lemma 4.3 and by the fact that w ∈ Aν and (4.5), we thus obtain

( ∫

B(x0,2j+1r)

|(b(y)− bB(x0,r))|
q′ν′

w1−ν′

(y)dy
) 1

q′ν′

. ‖b‖∗
(
1 + ln

t

r

)
(w1−ν′

(B(x0, t)))
1

qν′

. ‖b‖∗
(
1 + ln

t

r

)
t

n
q′ w(B(x0, t))

− 1
p . (4.6)

Then by (4.6),

J2 . ‖b‖∗

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp,w(B(x0,t))w(B(x0, t))

− 1
p
dt

t
.

Hence,

‖J2‖Lp,w(B(x0,r)) . ‖b‖∗w(B(x0, r))
1
p

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp,w(B(x0,t))w(B(x0 , t))

− 1
p
dt

t
.

Summing up ‖J1‖Lp,w(B(x0,r)) and ‖J2‖Lp,w(B(x0,r)) for all p ∈ (1,∞), we get

‖µL
j,Ω,b(f2)‖Lp,w(B(x0,r))
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. ‖b‖∗w(B(x0, r))
1
p

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp,w(B(x0,t))w(B(x0 , t))

− 1
p
dt

t
.

Finally, we have

‖µL
j,Ω,b(f)‖Lp,w(B(x0,r))

. ‖b‖∗w(B(x0, r))
1
p

∞∫

2r

(
1 + ln

t

r

)
‖f‖Lp,w(B(x0,t))w(B(x0 , t))

− 1
p
dt

t
.

This completes the proof of Lemma 4.4.

Now we can give the following theorem (our main result).

Theorem 4.3 Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, Ω(µx) = Ω(x) for any µ > 0, x ∈ Rn \ {0},

V ∈ RHn and b ∈ BMO(Rn).

Let also, for q′ < p < ∞ and w ∈ A p

q′
the pair (ϕ1, ϕ2) satisfies the condition

∞∫

r

(
1 + ln

t

r

) essinf
t<τ<∞

ϕ1(x, τ)w(B(x, τ))
1
p

w(B(x, t))
1
p

dt

t
≤ C ϕ2(x, r), (4.7)

where C does not depend on x and r.

Then, the operators µL
j,Ω,b, j = 1, · · · , n are bounded from Mp,ϕ1(w) to Mp,ϕ2(w). Moreover

‖µL
j,Ω,b(f)‖Mp,ϕ2(w) . ‖b‖∗‖f‖Mp,ϕ1(w).

Proof Similar to the proof of Theorem 3.2, by (3.19), we have

∞∫

r

(
1 + ln

t

r

)
‖f‖Lp,w(B(x0,t))w(B(x0 , t))

− 1
p
dt

t

≈

∞∫

r

(
1 + ln

t

r

) ‖f‖Lp,w(B(x0,t))

essinf
t<τ<∞

ϕ1(x0, τ)w(B(x0, τ))
1
p

essinf
t<τ<∞

ϕ1(x0, τ)w(B(x0 , τ))
1
p

w(B(x0, t))
1
p

dt

t

. ‖f‖Mp,ϕ1(w)

∞∫

r

(
1 + ln

t

r

) essinf
t<τ<∞

ϕ1(x0, τ)w(B(x0 , τ))
1
p

w(B(x0, t))
1
p

dt

t
.

For q′ < p < ∞, since (ϕ1, ϕ2) satisfies (4.7), we know

∞∫

r

(
1 + ln

t

r

)
‖f‖Lp,w(B(x0,t))w(B(x0, t))

− 1
p
dt

t
. ‖f‖Mp,ϕ1(w)ϕ2(x0, r). (4.8)

Then by (4.4) and (4.8), we get

‖µL
j,Ω,b(f)‖Mp,ϕ2 (w)

= sup
x0∈Rn,r>0

ϕ2(x0, r)
−1w(B(x0, r))

− 1
p ‖µL

j,Ω,b(f)‖Lp,w(B(x0,r))
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. ‖b‖∗ sup
x0∈Rn,r>0

ϕ2(x0, r)
−1

∞∫

r

(
1 + ln

t

r

)
‖f‖Lp,w(B(x0,t))w(B(x0, t))

− 1
p
dt

t

. ‖b‖∗‖f‖Mp,ϕ1(w).

This completes the proof of Theorem 4.3.

When Ω ≡ 1, from Theorem 4.3 we get the following corollary.

Corollary 4.1 Let 1 < p < ∞, w ∈ Ap, V ∈ RHn, b ∈ BMO(Rn) and the pair (ϕ1, ϕ2)

satisfies condition (4.7). Let also the operators µL
j,b, j = 1, · · · , n are bounded on Lp(w). Then

the operators µL
j,b, j = 1, · · · , n are bounded from Mp,ϕ1(w) to Mp,ϕ2(w).

Remark 4.2 Note that, in the case of w ≡ 1, Theorem 4.3 has been proved in [9].

Let ϕ1(x, r) = ϕ2(x, r) ≡ w(B(x, r))
κ−1

p
, 0 < κ < 1, w ∈ A∞ and V ∈ RHn. Then for

q′ < p and w ∈ A p

q′
, the pair (ϕ1, ϕ2) satisfies condition (4.7). Hence, from Theorem 4.3 we

get the following new result.

Corollary 4.2 Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, Ω(µx) = Ω(x) for any µ > 0, x ∈ Rn \ {0},

V ∈ RHn, 0 < κ < 1 and b ∈ BMO(Rn). Let also the operators µL
j,Ω,b, j = 1, · · · , n are bounded

on Lp(w) for p > 1. For q′ < p and w ∈ A p

q′
, the pair (ϕ1, ϕ2) satisfies condition (4.7). Then

the operators µL
j,Ω,b, j = 1, · · · , n are bounded on the weighted Morrey spaces Lp,κ(w) for p > 1.

5 Some Applications

In this section, we shall apply Theorem 3.2 and Theorem 4.3 to several particular operators

such as Marcinkiewicz integral operators, rough H-L maximal operators, Bochner-Riesz means

and parametric Marcinkiewicz integral operators.

5.1 Marcinkiewicz integral operators

Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞ and b ∈ BMO(Rn). Then by [4–5], for every q′ < p and

w ∈ A p

q′
, there is a constant C independent of f such that

‖µΩ(f)‖Lp,w
≤ C‖f‖Lp,w

and

‖µΩ,b(f)‖Lp,w
≤ C‖b‖∗‖f‖Lp,w

.

Theorem 5.1 Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞ and b ∈ BMO(Rn). Let also q′ < p < ∞ and

w ∈ A p

q′
.

If the pair (ϕ1, ϕ2) satisfies condition (3.18), then we have for p > 1,

‖µΩ(f)‖Mp,ϕ2 (w) . ‖f‖Mp,ϕ1(w),

and for p = 1,

‖µΩ(f)‖WM1,ϕ2 (w) . ‖f‖M1,ϕ1(w).
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If the pair (ϕ1, ϕ2) satisfies condition (4.7), then we have for p > 1,

‖µΩ,b(f)‖Mp,ϕ2 (w) . ‖b‖∗‖f‖Mp,ϕ1(w).

Proof In the proof of Theorem 5.1, we will check whether µΩ only satisfies (3.9). We know

that if x ∈ B = B(x0, r), y ∈ (2B)C = BC(x0, 2r) and ∆i = B(x0, 2
j+1r)�B(x0, 2

jr) (j ≥ 1),

then

t ≥ |x− y| ≥ |y − x0| − |x− x0| ≥ 2j−1r.

Then, by Minkowski’s inequality we get

µΩ(fχ(2B)C )(x) =
( ∞∫

0

∣∣∣
∫

(2B)C∩{y:|x−y|≤t}

Ω(x− y)

|x− y|n−1
f(y)dy

∣∣∣
2 dt

t3

) 1
2

=
( ∞∫

0

∞∑

j=1

∣∣∣
∫

(∆i)C∩{y:|x−y|≤t}

Ω(x− y)

|x− y|n−1
f(y)dy

∣∣∣
2 dt

t3

) 1
2

.

∞∑

j=1

(∫

∆i

|Ω(x− y)|

|x− y|n−1
|f(y)|dy

)( ∞∫

2j−1r

dt

t3

) 1
2

.

∞∑

j=1

(2j+1r)−1

∫

∆i

|Ω(x− y)|

|x− y|n−1
|f(y)|dy. (5.1)

When Ω ∈ L∞(Sn−1), then we have

sup
x∈B

|µΩ(fχ(2B)C )(x)| .
∞∑

j=1

(2j+1r)−n

∫

B(x0,2j+1r)

|f(y)|dy. (5.2)

When Ω ∈ Lq(S
n−1), 1 < q < ∞, then by Hölder’s inequality,

∫

∆i

|Ω(x− y)|

|x− y|n−1
|f(y)|dy .

(∫

∆i

|Ω(x− y)′|qdy
) 1

q
(∫

∆i

|f(y)|q
′

|x− y|(n−1)q′
dy

) 1
q′

. (5.3)

Hence, it follows from (3.10), (5.1), (5.3) that

sup
x∈B

|µΩ(fχ(2B)C )(x)| .
∞∑

j=1

(2j+1r)
− n

q′

( ∫

B(x0,2j+1r)

|f(y)|q
′

dy
) 1

q′

. (5.4)

Combining (5.2) with (5.4) and since the rest of the proof is the same as the proof of Theorem

3.2 and Theorem 4.3, the proof of Theorem 5.1 is completed.

5.2 Rough H-L maximal operators

Duoandikoetxea [6] and Alvarez et al. [2] proved the following results, respectively.

Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, Ω(µx) = Ω(x) for any µ > 0, x ∈ Rn\{0} and b ∈ BMO(Rn).

Then, for every q′ ≤ p < ∞ and w ∈ A p

q′
, there is a constant C independent of f such that

‖MΩ(f)‖Lp,w
≤ C‖f‖Lp,w
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and

‖MΩ,b(f)‖Lp,w
≤ C‖b‖∗‖f‖Lp,w

.

Theorem 5.2 Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, Ω(µx) = Ω(x) for any µ > 0, x ∈ Rn \ {0}

and b ∈ BMO(Rn). Let also q′ < p < ∞ and w ∈ A p

q′
.

If the pair (ϕ1, ϕ2) satisfies condition (3.18), then we have for p > 1,

‖MΩ(f)‖Mp,ϕ2(w) . ‖f‖Mp,ϕ1(w),

and for p = 1,

‖MΩ(f)‖WM1,ϕ2 (w) . ‖f‖M1,ϕ1(w).

If the pair (ϕ1, ϕ2) satisfies condition (4.7), then we have for p > 1,

‖MΩ,b(f)‖Mp,ϕ2(w) . ‖b‖∗‖f‖Mp,ϕ1(w).

Proof Similar to the proof of Theorem 5.1, we will check whether MΩ only satisfies (3.9).

Let x ∈ B = B(x0, r), y ∈ (2B)C = BC(x0, 2r) and ∆i = B(x0, 2
j+1r)�B(x0, 2

jr) (j ≥ 1).

Note that, if ∆i ∩ {y : |x− y| ≤ t} 6= ∅, then

t > |x− y| ≥ |y − x0| − |x− x0| ≥ 2j+1r − r ≥ C2j+1r.

Thus,

t−n ≤ C(2j+1r)−n.

Hence, for any t > 0,

t−n

∫

(2B)C∩{y:|x−y|<t}

|Ω(x− y)||f(y)|dy

.

∞∑

j=1

t−n

∫

∆i∩{y:|x−y|<t}

|Ω(x− y)||f(y)|dy

.

∞∑

j=1

(2j+1r)−n

∫

∆i

|Ω(x − y)||f(y)|dy.

By Hölder’s inequality, the above expression is majorized by

.

∞∑

j=1

(2j+1r)−n
(∫

∆i

|Ω(x− y)|qdy
) 1

q
( ∫

B(x0,2j+1r)

|f(y)|q
′

dy
) 1

q′

.

Applying (3.10), we get

t−n

∫

(2B)C∩{y:|x−y|<t}

|Ω(x− y)||f(y)|dy

.

∞∑

j=1

(2j+1r)
− n

q′

( ∫

B(x0,2j+1r)

|f(y)|q
′

dy
) 1

q′
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for any t > 0. This means that

MΩ(fχ(2B)C )(x) .

∞∑

j=1

(2j+1r)
− n

q′

( ∫

B(x0,2j+1r)

|f(y)|q
′

dy
) 1

q′

holds for any x0 ∈ Rn and r > 0 and since the rest of the proof is the same as the proof of

Theorem 3.2 and Theorem 4.3, the proof of Theorem 5.2 is completed.

5.3 Bochner-Riesz means

Bochner-Riesz means were first introduced by Bochner [3] in connection with summation of

multiple Fourier series and played an important role in harmonic analysis. The Bochner-Riesz

means of order δ > 0 in Rn(n ≥ 2) are defined initially for Schwartz functions in terms of

Fourier transforms by

(Bδ
Rf)

Λ(ξ) =
(
1−

|ξ|2

R2

)
+
f̂(ξ), 0 < R < ∞,

where f̂ denotes the Fourier transform of f and A+ = max(A, 0). We recall that the Bochner-

Riesz means can be expressed as convolution operators (see [19])

Bδ
Rf(x) = (f ∗ φ 1

R
)(x),

where φ 1
R
(x) = Rnf(Rx), and for all δ ≥ n−1

2 the kernel φ can be represented as (see [19])

φ(x) . (1 + |x|)−n−(δ− n−1
2 ). (5.5)

The associated maximal Bochner-Riesz operator is defined by

Bδ
∗(f)(x) = sup

R>0
|Bδ

Rf(x)|.

When δ > n−1
2 , it is well-known that (see [19])

Bδ
∗(f)(x) . M(f)(x).

Then, by the boundedness of maximal function M(f) on Lp,w, we know that if w ∈ Ap (1 <

p < ∞), then for all δ ≥ n−1
2 ,

‖Bδ
∗(f)‖Lp,w

. ‖f‖Lp,w

holds.

Let b ∈ BMO(Rn) and 0 < R < ∞. Consider the commutator [b, Bδ
R] defined by

[b, Bδ
R](f)(x) = b(x)Bδ

Rf(x)−Bδ
R(bf)(x) =

∫

Rn

[b(x)− b(y)]φ 1
R
(x− y)f(y)dy.

The maximal operator [b, Bδ
∗] associated with the commutator is defined by

[b, Bδ
∗ ](f)(x) = sup

R>0
|[b, Bδ

R](f)(x)|.
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Note that Bδ
Rf(x) ≤ Bδ

∗(f)(x), then if w ∈ Ap (1 < p < ∞), the following

‖Bδ
R(f)‖Lp,w

. ‖f‖Lp,w

holds for all δ ≥ n−1
2 . Thus, by the boundedness criterion for the commutators of linear

operators, we see that if b ∈ BMO(Rn), then [b, Bδ
R] is also bounded on Lp,w for all 1 < p < ∞

and w ∈ Ap.

Theorem 5.3 Let δ ≥ n−1
2 and 1 < p < ∞. Let also b ∈ BMO(Rn) and w ∈ Ap.

If the pair (ϕ1, ϕ2) satisfies condition (3.18), then we have for p > 1,

‖Bδ
∗(f)‖Mp,ϕ2 (w) . ‖f‖Mp,ϕ1(w),

and for p = 1,

‖Bδ
∗(f)‖WM1,ϕ2 (w) . ‖f‖M1,ϕ1(w).

If the pair (ϕ1, ϕ2) satisfies condition (4.7), then we have for p > 1,

‖[b, Bδ
R](f)‖Mp,ϕ2 (w) . ‖b‖∗‖f‖Mp,ϕ1(w).

Proof As in the proof of Theorem 5.1, we will check whether Bδ
R and Bδ

∗ only satisfy (3.9).

Note that when δ ≥ n−1
2 , then by (5.5), we get

|φ(x)| . |x|−n.

We also note that if x ∈ B = B(x0, r), y ∈ (2B)C = BC(x0, 2r), then |x− y| ≈ |x− x0|. Thus,

sup
x∈B

|Bδ
R(fχ(2B)C )(x)| ≤ sup

x∈B

|Bδ
∗(fχ(2B)C )(x)|

= sup
x∈B

sup
R>0

|(fχ(2B)C ) ∗ φ 1
R
(x)|

. sup
x∈B

sup
R>0

∫

(2B)C

Rn

(R|x− y|)n
|f(y)|dy

.

∞∑

j=1

(2j+1r)−n

∫

B(x0,2j+1r)

|f(y)|dy.

This means that Bδ
R and Bδ

∗ satisfy (3.9) and since the rest of the proof is the same as the proof

of Theorem 3.2 and Theorem 4.3, the proof of Theorem 5.3 is completed.

5.4 Parametric Marcinkiewicz integral operators

For 0 < ρ < n, in 1960, Hörmander [10] defined the parametric Marcinkiewicz integral

operator of higher dimension as

µ
ρ
Ω(f)(x) =

( ∞∫

0

|F ρ
Ω,t(x)|

2 dt

t2ρ+1

) 1
2

,
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where

F
ρ
Ω,t(x) =

∫

|x−y|≤t

Ω(x− y)

|x− y|n−ρ
f(y)dy,

and proved that it is of type (p, p) for 1 < p < ∞ and of weak type (1, 1) when Ω ∈ Lipγ(S
n−1)

(0 < γ ≤ 1). When ρ = 1, we simply denote it by µΩ. It is well known that the operator µΩ

was defined by Stein in [18].

Let b be a locally integrable function, the commutator generated by parametric Marcinkiewicz

integral operator µρ
Ω and b is defined by

[b, µρ
Ω](f)(x) =

( ∞∫

0

∣∣∣
∫

|x−y|≤t

Ω(x− y)

|x− y|n−ρ
[b(x)− b(y)]f(y)dy

∣∣∣
2 dt

t2ρ+1

) 1
2

, 0 < ρ < n.

In [16], the weighted boundedness of parametric Marcinkiewicz integral and its commutator

with rough kernels were considered.

Theorem 5.4 (see [16]) Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, Ω(µx) = Ω(x) for any µ > 0, x ∈

Rn \ {0}, b ∈ BMO(Rn) and 0 < ρ < n. Then, for every q′ ≤ p < ∞ and w ∈ A p

q′
, there is a

constant C independent of f such that

‖µρ
Ω(f)‖Lp,w

≤ C‖f‖Lp,w

and

‖[b, µρ
Ω](f)‖Lp,w

≤ C‖b‖∗‖f‖Lp,w
.

Theorem 5.5 Let Ω ∈ Lq(S
n−1), 1 < q ≤ ∞, Ω(µx) = Ω(x) for any µ > 0, x ∈ Rn \ {0},

b ∈ BMO(Rn) and 0 < ρ < n. Let also q′ < p < ∞ and w ∈ A p

q′
.

If the pair (ϕ1, ϕ2) satisfies condition (3.18), then we have for p > 1,

‖µρ
Ω(f)‖Mp,ϕ2 (w) . ‖f‖Mp,ϕ1(w),

and for p = 1,

‖µρ
Ω(f)‖WM1,ϕ2 (w) . ‖f‖M1,ϕ1(w).

If the pair (ϕ1, ϕ2) satisfies condition (4.7), then we have for p > 1,

‖[b, µρ
Ω](f)‖Mp,ϕ2 (w) . ‖b‖∗‖f‖Mp,ϕ1(w).

Proof The statement of Theorem 5.5 follows by Lemma 3.1 and Lemma 4.4 in the same

manner as in the proof of Theorem 3.2 and Theorem 4.3.
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[10] Hörmander, L., Translation invariant operators, Acta Math., 104, 1960, 93–139.

[11] John, F. and Nirenberg, L., On functions of bounded mean oscillation, Comm. Pure Appl. Math., 14,
1961, 415–426.

[12] Komori, Y. and Shirai, S., Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282,
2009, 219–231.

[13] Lin, Y. and Lu, S. Z., Strongly singular Calderón-Zygmund operators and their commutators, Jordan J.

Math. Stat. (JJMS), 1, 2008, 31–49.

[14] Morrey, C. B., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math.

Soc., 43, 1938, 126–166.

[15] Shen, Z., Lp estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble),
45, 1995, 513–546.

[16] Shi, X. and Jiang, Y., Weighted boundedness of parametric Marcinkiewicz integral and higher order
commutator, Anal. Theory Appl., 25, 2009, 25–39.

[17] Shu, Y. and Wang, M., The fractional maximal operator and Marcinkiewicz integrals associated with
Schrödinger operators on Morrey spaces with variable exponent, Anal. Theory Appl., 31, 2015, 77–89.

[18] Stein, E. M., On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc.,

88, 1958, 430–466.

[19] Stein, E. M. and Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical
Series, Princeton University Press, Princeton, N.J., 1971.

[20] Wheeden, R. L. and Zygmund, A., Measure and Integral: An Introduction to Real Analysis, 43, Pure and
Applied Mathematics, Marcel Dekker, New York, NY, USA, 1977.


