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Abstract Let π : Mn

−→ P
n be an n-dimensional small cover over Pn and λ : F(Pn) −→

Z
n

2 be its characteristic function. The author uses the symbol c(λ) to denote the cardinal
number of the image Im(λ). If c(λ) = n + 1 or n + 2, then a necessary and sufficient
condition on the existence of spin structure on M

n is given. As a byproduct, under some
special conditions, the author uses the second Stiefel-Whitney class to detect when P

n is
n-colorable or (n+ 1)-colorable.
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1 Introduction

The notion of small covers was firstly introduced by M. Davis and T. Januszkiewicz in [4].

An n-dimensional small cover is an n-dimensional smooth closed manifold Mn admitting a Z
n
2 -

action and its orbit space is an n-dimensional simple convex polytope. The Z
n
2 -action on Mn

also determines a characteristic function λ : F(Pn) −→ Z
n
2 , where F(Pn) is the set of all facets

of Pn. Conversely, given a simple polytope Pn and a characteristic function λ : F(Pn) −→ Z
n
2 ,

we can also construct a small cover Mn(Pn, λ) over Pn. Davis and Januszkiewicz showed

that the Z2 coefficient equivariant cohomology and cohomology ring structure of a small cover

over Pn can be described in terms of polytope Pn and characteristic function λ. In [13], H.

Nakayama and Y. Nishimura gave a necessary and sufficient condition on the orientability of

small covers. Many further works have also been carried out (eg, see [1], [3], [5], [7–10] and

[14]). The motivation of this paper is to characterize the spin structure of small covers in terms

of the combinatoric structures of the polytope Pn and the characteristic function λ. The spin

structure is very important in differential geometry. It is the foundation of spin geometry. It has

many applications to mathematical physics, also to the purely mathematical area, including spin

cobordism theory, Atiyah-Singer index theorem and so on. So it is very interesting to consider

under what conditions a given oriented manifold admits a spin structure. In [2], A. Borel and

F. Hirzebruch proved that a spin structure exists on an oriented vector bundle E if and only if

the second Stiefel-Whitney class w2 of E vanishes.

Let c(λ) be the cardinal number of the image Im(λ). In [4], M. Davis and T. Januszkiewicz

proved: If c(λ) = n, then the tangental bundle TMn(Pn, λ) is a trivial bundle. In particular,

it is a spin manifold. When c(λ) > n, we want to know under what condition a small cover is

spin. We hope to find the necessary and sufficient condition on the existence of spin structure
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on small covers. Throughout the following, let {e1, e2, · · · , en} denote the standard basis of

Z
n
2 , where ei = (0, · · · , 0, 1, 0, · · · , 0) with the i-th entry 1. We mainly consider two cases:

c(λ) = n+ 1 and c(λ) = n+ 2.

The case I: c(λ) = n + 1. In this case, without loss of generality, we may assume that

Im(λ) = {e1, e2, · · · , en, e1 + e2 + · · ·+ ek} (k > 1). We get the following result.

Theorem 1.1 Let c(λ) = n+ 1.

(i) If the polytope Pn is n-colorable, then the small cover Mn(Pn, λ) is spin if and only if

it is orientable (i.e., k is odd).

(ii) If the polytope Pn is (n + 1)-colorable, then the small cover Mn(Pn, λ) is spin if and

only if k ≡ 3 (mod 4).

As a byproduct, we also obtain the following theorem.

Theorem 1.2 Let c(λ) = n+ 1 and k ≡ 1 or 2 (mod 4). Then

(i) Pn is n-colorable if and only if w2(M
n(Pn, λ)) = 0.

(ii) Pn is (n+ 1)-colorable if and only if w2(M
n(Pn, λ)) 6= 0.

Remark 1.1 M. Joswig gave a necessary and sufficient condition on n-colorability of Pn

in terms of combinatorics (Theorem 2.1, see Section 2). In Theorem 1.2, under the conditions

that c(λ) = n+1 and k ≡ 1 or 2 (mod 4), we can use the second Stiefel-Whitney class to detect

when Pn is n-colorable or (n+ 1)-colorable.

The case II: c(λ) = n+2. Let K = {1, 2, · · · , 8} and F2(Pn) be the set of all 2-faces of Pn.

Then we can do a partition of F2(Pn) (see Section 4). Precisely speaking, there always exists

a set O(Pn, λ) ⊂ K such that F2(Pn) = ⊔d∈O(Pn,λ)Dd, where Dd 6= ∅ for ∀d ∈ O(Pn, λ), and

Dd = ∅ for ∀d ∈ K\O(Pn, λ). The set O(Pn, λ) is uniquely determined by the combinatorial

structure of Pn and the characteristic function λ. For ∀Dd, d ∈ K, we have a corresponding

set D̃d:

D̃1 = {(x, y, z) ∈ Z
3} ∩ E,

D̃2 = {(x, y, z) ∈ Z
3|f(x, y) + y ≡ 0 (mod 2)} ∩ E,

D̃3 = {(x, y, z) ∈ Z
3|f(x, y) + h(z) ≡ 0 (mod 2)} ∩ E,

D̃4 = {(x, y, z) ∈ Z
3|y + h(z) ≡ 0 (mod 2)} ∩ E,

D̃5 = {(x, y, z) ∈ Z
3|f(x, y) + y + h(z) ≡ 0 (mod 2)} ∩ E,

D̃6 = {(x, y, z) ∈ Z
3|h(z) ≡ 0 (mod 2)} ∩E,

D̃7 = {(x, y, z) ∈ Z
3|y ≡ 0 (mod 2)} ∩E,

D̃8 = {(x, y, z) ∈ Z
3|f(x, y) ≡ 0 (mod 2)} ∩ E,

where

f(x, y) =
x+ y + 1

2
,

h(z) =
z + 1

2
,

E = {(x, y, z) ∈ Z
3|x+ y ≡ z ≡ 1 (mod 2) and x > 0, z ≥ y > 0}.
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In this case, without loss of generality, we may assume that Im(λ) = {e1, e2, · · · , en, e1 + e2 +

· · ·+ ei+j , ei+1 + ei+2 + · · ·+ ei+k} (k ≥ j). Then we have the following theorem.

Theorem 1.3 Let c(λ) = n+ 2. Then the small cover Mn(Pn, λ) is spin if and only if

(i, j, k) ∈ ∩d∈O(Pn,λ)D̃d.

This paper is organized as follows: In Section 2, we recall some basic definitions and known

results; in Section 3, we prove Theorems 1.1–1.2; in Section 4, we give a proof of Theorem 1.3.

2 Preliminary

First, we recall some definitions and results in [4].

Definition 2.1 (cf. [4]) An n-dimensional convex polytope Pn is called a simple polytope,

if precisely n codimension-one faces meet at each vertex.

Let F(Pn) be the set of all codimension-one faces of the polytope Pn. If Fr ∈ F(Pn), then

Fr is called a facet of Pn. Let m be the cardinal number of the set F(Pn).

Definition 2.2 (cf. [4]) A simple polytope Pn is called l-colorable, if there exists a function

c: F(Pn) → {1, 2, · · · , l}, such that c(Fr) 6= c(Fs) when Fr ∩ Fs 6= ∅, and l is the minimum

integer.

In [6], M. Joswig proved the following theorem.

Theorem 2.1 (cf. [6, Theorem 16]) Let Pn be an n-dimensional simple polytope. Then

Pn is n-colorable if and only if each 2-face of Pn has even number of vertices.

Definition 2.3 (cf. [4]) A function λ : F(Pn) → Z
n
2 is called a characteristic function,

when it satisfies the condition: If F1, · · · , Fn are the facets meeting at a vertex of Pn, then

λ(F1), · · · , λ(Fn) are linearly independent vectors of Zn
2 .

If the simple polytope Pn is n-colorable, then we have a characteristic function λ such that

c(λ) = n. If the simple polytope Pn is l-colorable and l ≥ n + 1, then we may not have a

characteristic function λ such that c(λ) = l. Of course, when c(λ) ≥ n + 1, all elements of

Im(λ) are not linearly independent.

Given a simple polytope Pn and a characteristic function λ : F(Pn) → Z
n
2 , we can construct

a manifold Mn(Pn, λ). For each point p ∈ Pn, let F (p) be the unique face of Pn which contains

p in its relative interior. We define an equivalence relation on Pn × Z
n
2 as follows:

(p, g) ∼ (q, h) ⇔ p = q, g−1h ∈ GF (p),

where GF (p) is the subgroup generated by λ(F1), · · · , λ(Fk) such that F (p) = F1 ∩ · · · ∩ Fk.

The quotient space (Pn ×Z
n
2 )/ ∼ is a manifold, which is denoted by Mn(Pn, λ). The manifold

Mn(Pn, λ) is called a small cover over Pn with characteristic function λ. π = p1 ◦ q−1 :

Mn(Pn, λ) → Pn is induced by the quotient map q : Pn×Z
n
2 → Mn(Pn, λ) and the projection

p1 : Pn × Z
n
2 → Pn.

In [4], M. Davis and T. Januszkiewicz proved the following results.
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Theorem 2.2 (cf. [4, Theorem 3.1]) Let π : Mn(Pn, λ) → Pn be a small cover over a

simple polytope Pn and b1(M
n) := dimZ2

H1(M
n;Z2). Then b1(M

n) = m− n, where m is the

cardinal number of the set F(Pn).

Theorem 2.3 (cf. [4, Theorem 4.14]) Let π : Mn(Pn, λ) → Pn be a small cover over a

simple polytope Pn. Then

H∗(Mn(Pn, λ);Z2) = Z2[v1, v2, · · · , vm]/(I + J).

The symbols v1, v2, · · · , vm bijectively correspond to F1, F2, · · · , Fm ∈ F(Pn) (|F(Pn)| =

m), respectively. The ideal I is generated by the monomials

vs1 · vs2 · · · · · vsl ,

if

Fs1 ∩ Fs2 ∩ · · · ∩ Fsl = ∅.

The ideal J is generated by the polynomials

λu = λu1 · v1 + λu2 · v2 + · · ·+ λum · vm, 1 ≤ u ≤ n,

where (λuv)n×m denotes the matrix which is determined by the characteristic function λ.

Corollary 2.1 (cf. [4, Corollary 6.8]) Let π : Mn(Pn, λ) → Pn be a small cover over a

simple convex polytope Pn. Then

w(Mn) = j∗
m
∏

r=1

(1 + vr),

where j∗ denotes the projection

j∗ : Z2[v1, v2, · · · , vm] → Z2[v1, v2, · · · , vm]/(I + J).

Hence, we can know that

w1(M
n) = j∗

(

∑

1≤r≤m

vr

)

;

w2(M
n) = j∗

(

∑

1≤r<s≤m

vr · vs

)

.

Proposition 2.1 (cf. [4, Proposition 3.10]) Let π : Mn(Pn, λ) → Pn be a small cover

over a simple convex polytope Pn. For each face F of Pn, the class [MF ] is not zero in

H∗(M
n(Pn, λ),Z2), where MF := π−1(F ) is a submanifold of Mn(Pn, λ).

If F l is a l-face (l-dimensional face of Pn), then F l is the transversal intersection of (n− l)

facets. Let v be a vertex of F l. Then there is an (n− l)-face F (n−l) such that F l ∩ F (n−l) = v.

Remark 2.1 The 1-dimensional class vr is Poincaré dual to [MFr
] (MFr

:= π−1(Fr)), where

Fr ∈ F(Pn). As is well-known, the cup product is Poincaré dual to transversal intersection.

Hence, the cup product of the duality of [MF ] with the duality of [MF ′ ] is the duality of

[MF∩F ′ ], if F and F ′ intersect transversely and zero otherwise. In particular, if F ∩F ′ = v, τF

and τF ′ are the Poincaré duality of [MF ] and [MF ′ ] respectively, then τF · τF ′ = µM , where ·

represents the cup product, µM is the generator of Hn(Mn(Pn, λ),Z2).
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Now we can prove a useful lemma.

Lemma 2.1 Let a ∈ H2(Mn(Pn, λ),Z2).

(i) If a · τF 2 = 0 for ∀F 2 ∈ F2(Pn), then a = 0.

(ii) If there exists a 2-face F 2 ∈ F2(Pn) such that a · τF 2 = µM 6= 0, then a 6= 0.

Proof (i): If a · τF 2 = 0 for any 2-face F 2, then by Poincaré duality

0 = 〈a · τF 2 , [M ]〉 = 〈a, [M ] ∩ τF 2〉 = 〈a, [MF 2 ]〉,

where [M ] is the generator ofHn(M
n,Z2). Since Z2 is a field, by Universal Coefficient Theorem,

we have

H2(Mn,Z2) = HomZ2
(H2(M

n,Z2), Z2).

F 2 is arbitrary, hence by Proposition 2.1, it follows that a = 0.

(ii): If there exists a 2-face F 2 such that a · τF 2 = µM 6= 0, then obviously, a 6= 0.

Here we give two examples to illustrate the ideas.

Example A Let

F1, F2, F3, F4

denote the facets of the 3-dimensional simplex ∆3 and the characteristic function is

λ : F(∆3) −→ Z
3
2

λ(F1) = e1, e1 = (1, 0, 0),

λ(F2) = e2, e2 = (0, 1, 0),

λ(F3) = e3, e3 = (0, 0, 1),

λ(F4) = e1 + e2 + e3, e1 + e2 + e3 = (1, 1, 1).

The matrix (λuv) is




1 0 0 1
0 1 0 1
0 0 1 1



 ,

the ideal I is

〈v1 · v2 · v3 · v4〉,

and the ideal J is

〈v1 + v4, v2 + v4, v3 + v4〉.

Then we have

w1 = v1 + v2 + v3 + v4 = 4v1 = 0,

namely the small cover M3(∆3, λ) is orientable. Since

w2 = v1 · v2 + v1 · v3 + v1 · v4 + v2 · v3 + v2 · v4 + v3 · v4 = 6v21 = 0,

the small cover M3(∆3, λ) is spin. In fact, the small cover M3(∆3, λ) is RP 3. We know that

the tangent bundle of RP 3 is trivial, so wl(RP
3) = 0, 1 ≤ l ≤ 3.
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Example B Let the polytope Pn be I5 and let F1, F2, · · · , F10 be all facets of I5, where

Fu ∩ Fu+5 = ∅, 1 ≤ u ≤ 5. The characteristic function λ : F(I5) → Z
5
2 is defined as follows:

λ(F1) = e1 + e2 + e3, λ(F2) = e2, λ(F3) = e3, λ(F4) = e4, λ(F5) = e5,

λ(F6) = e1, λ(F7) = e2, λ(F8) = e3, λ(F9) = e4, λ(F10) = e3 + e4 + e5.

By computation, we can get w1 = 0, w2 = v1 · v5 6= 0. Hence, the small cover M5(I5, λ) is

not a spin manifold.

3 The Proof of Theorems 1.1–1.2

We consider a simple case. If c(λ) = n, then the polytope Pn is n-colorable. Let Im(λ) =

{e1, e2, · · · , en}. We assume that

λ−1(eu) = {Fku,1
, Fku,2

, · · · , Fku,lu
}, 1 ≤ u ≤ n,

namely, λ−1(e1), λ
−1(e2), · · · , λ

−1(en) is a partition of {F1, F2, · · · , Fm} and {k1,1, k1,2, · · · ,

k1,l1}, · · · , {kn,1, kn,2, · · · , kn,ln} is a partition of {1, 2, · · · ,m}. Let

Au = vku,1
+ vku,2

+ · · ·+ vku,lu
, 1 ≤ u ≤ n.

From the characteristic function λ, we can deduce that the ideal

J = 〈A1, A2, · · · , An〉.

We know

w1 =

m
∑

s=1

vs =

n
∑

u=1

Au.

Because Au is in the ideal J , namely Au = 0, it implies w1 = 0, so the small cover Mn(Pn, λ)

is orientable.

If λ(Fs) = λ(Ft), then Fs ∩ Ft = ∅. We have vs · vt ∈ I. Namely, vs · vt = 0. Therefore,

vku,l1
· vku,l2

= 0,

where 1 ≤ l1 < l2 ≤ lu. Then we have

w2 =
∑

1≤s<t≤m

vs · vt =
∑

1≤u<v≤n

Au ·Av +
∑

1≤u≤n

∑

1≤l1<l2≤lu

vku,l1
· vku,l2

=
∑

1≤u<v≤n

Au ·Av = 0,

namely the small cover Mn(Pn, λ) is spin. Therefore, we obtain the following proposition.

Proposition 3.1 (cf. [4, Proposition 6.10]) If c(λ) = n, then the small cover Mn(Pn, λ)

is spin.

If c(λ) = n + 1, then the polytope Pn is n-colorable or (n + 1)-colorable. Without loss of

generality, assume that Im(λ) = {e1, e2, · · · , en, e1+ e2+ · · ·+ ek}. Let the symbol en+1 denote

e1 + e2 + · · ·+ ek. Then we can write

Im(λ) = {e1, e2, · · · , en, en+1}.
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Furthermore, we assume that

λ−1(eu) = {Fku,1
, Fku,2

, · · · , Fku,lu
}, 1 ≤ u ≤ n+ 1.

Let

Au = vku,1
+ vku,2

+ · · ·+ vku,lu
, 1 ≤ u ≤ n+ 1.

As above, we can deduce that the ideal

J = 〈A1 +An+1, A2 +An+1, · · · , Ak +An+1, Ak+1, Ak+2, · · · , An〉.

Let

C1 = {1, 2, · · · , k, n+ 1},

C2 = {k + 1, k + 2, · · · , n}.

Then we have

{1, 2, · · · , n+ 1} = C1 ⊔ C2.

From the ideal J , we get

(1) if r ∈ {1, 2, · · · , k, n+ 1}, then Ar = An+1;

(2) if r ∈ {k + 1, k + 2, · · · , n}, then Ar = 0.

Since λ−1(e1), λ
−1(e2), · · · , λ

−1(en+1) form a partition of F2(Pn) and |C1| = k + 1, we have

w1(M
n) =

m
∑

s=1

vs =

n+1
∑

u=1

Au = |C1|An+1 = (k + 1)An+1.

Lemma 3.1 If c(λ) = n+ 1, then An+1 6= 0. Furthermore, the small cover Mn(Pn, λ) is

orientable if and only if k ≡ 1 (mod 2).

Proof If An+1 = 0, then from the ideal J , we obtain the following equalities:

A1 = A2 = · · · = Ak = An+1 = 0

and

Ak+1 = Ak+2 = · · · = An = 0.

Then the dimension of H1(Mn,Z2) is m−n−1. But by Theorem 2.2 and Universal Coefficient

Theorem, we know that the dimension of H1(Mn,Z2) is m − n. This is a contradiction, so

An+1 6= 0.

By computation, we know w1 = (k + 1)An+1. Hence, w1 = 0 if and only if k ≡ 1 (mod 2).

Now we consider the question, in what situation does the small cover Mn(Pn, λ) admit a

spin structure?

If λ(Fs) = λ(Ft), then Fs ∩ Ft = ∅. We have vs · vt ∈ I. Namely, vs · vt = 0.

w2(M) =
∑

1≤s<t≤m

vs · vt =
∑

1≤u<v≤n+1

Au ·Av.

By the identities in (1) and (2), we can get

w2(M) =
∑

1≤u<v≤n+1

Au ·Av =

(

|C1|

2

)

A2
n+1 =

k(k + 1)

2
A2

n+1.
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Lemma 3.2 If c(λ) = n+ 1, then w2(M) = k(k+1)
2 A2

n+1.

Now we choose an arbitrary 2-dimensional face F 2. Since Pn is simple, F 2 is the intersection

of n− 2 facets and the images under λ of the (n− 2) facets give n− 2 vectors. We denote the

set of the n− 2 vectors by Im(F 2). Each vertex of F 2 is the intersection of F 2 with other two

facets. Let Fs = λ−1(es), s ∈ {1, · · · , n+ 1}. We can give a partition of the vertices of F 2:

B1(F
2) = {X ∩ Y ∩ F 2|X ∈ Fp, Y ∈ Fq; ∀p, q ∈ C1, (p < q) with ep, eq ∈ Im(λ)\Im(F 2)},

B2(F
2) = {X ∩ Y ∩ F 2|X ∈ Fp, Y ∈ Fq; ∀p ∈ C1, ∀q ∈ C2 with ep, eq ∈ Im(λ)\Im(F 2)},

B3(F
2) = {X ∩ Y ∩ F 2|X ∈ Fp, Y ∈ Fq; ∀p, q ∈ C2, (p < q) with ep, eq ∈ Im(λ)\Im(F 2)}.

We use the symbol gt(F
2) to denote the cardinal number of the set Bt(F

2) (1 ≤ t ≤ 3), and

use τF 2 to denote the Poincaré duality of [MF 2 ]. Actually, this defines a function

gt : F
2(Pn) −→ Z,

where F2(Pn) is the set of all 2-faces of Pn. Note that when p 6= q and ep, eq ∈ Im(λ)\Im(F 2),

by definitions of Ap, Aq and Poincaré duality (see Remark 2.1), we have

Ap · Aq · τF 2 = (vkp,1
+ vkp,2

+ · · ·+ vkp,lp
) · (vkq,1

+ vkq,2
+ · · ·+ vkq,lq

) · τF 2

= #{X ∩ Y ∩ F 2|X ∈ Fp, Y ∈ Fq} · µM ,

where µM is the generator of Hn(M,Z2). By definition of set B1, we get

ep,eq∈Im(λ)\Im(F 2)
∑

p,q∈C1,p<q

Ap · Aq · τF 2 ≡ g1(F
2)µM (mod 2).

Since |Im(λ)\Im(F 2)| = 3, one may suppose that Im(λ)\Im(F 2) = {ep1
, eq1 , er1}.

(i) If p1, q1, r1 ∈ C1, then by the identity Ar = An+1 in (1), we have

ep,eq∈Im(λ)\Im(F 2)
∑

p,q∈C1,p<q

Ap ·Aq · τF 2 =

(

3

2

)

· A2
n+1 · τF 2 = 3 ·A2

n+1 · τF 2 .

(ii) If p1, q1 ∈ C1 and r1 ∈ C2, then

ep,eq∈Im(λ)\Im(F 2)
∑

p,q∈C1,p<q

Ap ·Aq · τF 2 =

(

2

2

)

·A2
n+1 · τF 2 = A2

n+1 · τF 2 .

(iii) If p1 ∈ C1, q1, r1 ∈ C2 or p1, q1, r1 ∈ C2, then

ep,eq∈Im(λ)\Im(F 2)
∑

p,q∈C1,p<q

Ap · Aq · τF 2 = 0,

and g1(F
2) = 0 (B1(F

2) = ∅). Naturally, we have A2
n+1 · τF 2 = 0 = g1(F

2)µM .

From (i)–(iii), we can infer that:

ep,eq∈Im(λ)\Im(F 2)
∑

p,q∈C1,p<q

Ap · Aq · τF 2 ≡ A2
n+1 · τF 2 ≡ g1(F

2)µM (mod 2).
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By the identity Ar = 0 in (2) and the sets B2, B3, we have

0 ≡

ep,eq∈Im(λ)\Im(F 2)
∑

p∈C1,q∈C2

Ap · Aq · τF 2 ≡ g2(F
2)µM (mod 2),

0 ≡

ep,eq∈Im(λ)\Im(F 2)
∑

p,q∈C2,p<q

Ap · Aq · τF 2 ≡ g3(F
2)µM (mod 2).

It follows that

g2(F
2) ≡ 0 (mod 2),

g3(F
2) ≡ 0 (mod 2).

Let f0(F
2) be the number of the vertices of F 2, then we know

g1(F
2) + g2(F

2) + g3(F
2) = f0(F

2).

Since g2(F
2) ≡ g3(F

2) ≡ 0 (mod 2), we can obtain

g1(F
2) ≡ f0(F

2) (mod 2).

Lemma 3.3 If c(λ) = n+ 1, then

(i) Pn is n-colorable if and only if A2
n+1 = 0;

(ii) Pn is (n+ 1)-colorable if and only if A2
n+1 6= 0.

Proof (i) By Theorem 2.1, if Pn is n-colorable, then g1(F
2) ≡ f0(F

2) ≡ 0 (mod 2). For

any τF 2 , A2
n+1 · τF 2 = g1(F

2) · µM = 0. From Lemma 2.1, it follows that A2
n+1 = 0.

(ii) If Pn is (n + 1)-colorable, then by Theorem 2.1, there exists a 2-face F 2 such that

f0(F
2) ≡ 1 (mod 2). Namely, g1(F

2) ≡ 1 (mod 2). We knowA2
n+1·τF 2 = g1(F

2)·µM = µM 6= 0.

Hence, by Lemma 2.1, we have A2
n+1 6= 0.

If c(λ) = n+ 1, then Pn is n-colorable or (n+ 1)-colorable. So the sufficiency is obvious.

When k ≡ 1 (mod 4) or k ≡ 2 (mod 4), one knows w2(M
n) = A2

n+1 by Lemma 3.2. It is

immediate that Theorem 1.2 follows from Lemma 3.3.

Proof of Theorem 1.1 From Lemma 3.1, we know w1(M) = 0 if and only if k ≡ 1 (mod 2).

By Lemma 3.2, we have w2(M
n) = k(k+1)

2 A2
n+1.

(i) Pn is n-colorable if and only if A2
n+1 = 0. Hence, the small cover Mn(Pn, λ) is spin if

and only if it is orientable.

(ii) Pn is (n+ 1)-colorable if and only if A2
n+1 6= 0. So the small cover Mn(Pn, λ) is spin if

and only if k ≡ 1 (mod 2) and k(k+1)
2 ≡ 0 (mod 2). Namely, k ≡ 3 (mod 4).

4 The Proof of Theorem 1.3

If c(λ) = n + 2, then the simple polytope can be n-colorable, (n + 1)-colorable or (n + 2)-

colorable. Without loss of generality, assume that Im(λ) = {e1, e2, · · · , en, e1 + e2 + · · · +

ei+j , ei+1 + ei+2 + · · ·+ ei+k} (k ≥ j). Let the symbols en+1, en+2 denote e1 + e2 + · · ·+ ei+j ,

ei+1 + ei+2 + · · ·+ ei+k respectively. Then we can write

Im(λ) = {e1, e2, · · · , en, en+1, en+2}.
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Furthermore, we assume that

λ−1(eu) = {Fku,1
, Fku,2

, · · · , Fku,lu
}, 1 ≤ u ≤ n+ 2.

Let

Au = vku,1
+ vku,2

+ · · ·+ vku,lu
, 1 ≤ u ≤ n+ 2.

We can deduce that the ideal J = 〈A1 + An+1, A2 + An+1, · · · , Ai + An+1, Ai+1 + An+1 +

An+2, Ai+2+An+1+An+2, · · · , Ai+j+An+1+An+2, Ai+j+1+An+2, Ai+j+2+An+2, · · · , Ai+k+

An+2, Ai+k+1, · · · , An〉.

Let

C1 = {1, 2, · · · , i, n+ 1},

C2 = {i+ 1, i+ 2, · · · , i+ j},

C3 = {i+ j + 1, i+ j + 2, · · · , i+ k, n+ 2},

C4 = {i+ k + 1, i+ k + 2, · · · , n}.

Then we have

{1, 2, · · · , n+ 2} = C1 ⊔ C2 ⊔C3 ⊔ C4,

giving a partition of {1, 2, · · · , n+ 2}. From the ideal J , we have the following four identities:

(3) if r ∈ C1, then Ar = An+1;

(4) if r ∈ C2, then Ar = An+1 +An+2;

(5) if r ∈ C3, then Ar = An+2;

(6) if r ∈ C4, then Ar = 0.

Since |C1| = i+ 1, |C2| = j and |C3| = k − j + 1 (k ≥ j), we have

w1(M) =

m
∑

r=1

vr =

n+2
∑

u=1

Au

= |C1|An+1 + |C2|(An+1 +An+2) + |C3|An+2 ( by identities in (3)–(6))

= (i+ 1)An+1 + j(An+1 +An+2) + (k − j + 1)An+2

= (i+ j + 1)An+1 + (k + 1)An+2.

Let E = {(x, y, z) ∈ Z
3|x+ y ≡ z ≡ 1 (mod 2) and x > 0, z ≥ y > 0}.

Lemma 4.1 If c(λ) = n+2, then An+1 6= 0, An+2 6= 0 and An+1+An+2 6= 0. Furthermore,

the small cover Mn(Pn, λ) is orientable if and only if (i, j, k) ∈ E.

Proof It is a similar argument way to Lemma 3.1.

Similarly, if λ(Fs) = λ(Ft), then Fs ∩ Ft = ∅. We have vs · vt ∈ I. Namely, vs · vt = 0.

Hence,

w2(M
n) =

∑

1≤s<t≤m

vs · vt =
∑

1≤u<v≤n+2

Au · Av.
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By the identities in (3)–(6), we have

w2(M
n) =

(

|C1|

2

)

A2
n+1 +

(

|C2|

2

)

(An+1 +An+2)
2

+

(

|C3|

2

)

A2
n+2 + |C1||C2|An+1(An+1 +An+2)

+ |C1||C3|An+1An+2 + |C2||C3|(An+1 +An+2)An+2

=
i(i+ 1)

2
A2

n+1 +
j(j − 1)

2
(An+1 +An+2)

2

+
(k − j + 1)(k − j)

2
A2

n+2 + (i + 1)jAn+1(An+1 +An+2)

+ (i+ 1)(k − j + 1)An+1An+2 + j(k − j + 1)(An+1 +An+2)An+2

=
(i + j)(i+ j + 1)

2
A2

n+1 +
k(k + 1)

2
A2

n+2

+ [(i+ 1)(k + 1) + j(k − j + 1)]An+1An+2.

If w1(M
n) = 0, then i+ j ≡ 1 (mod 2) and k ≡ 1 (mod 2). Hence,

w2(M
n) =

i+ j + 1

2
A2

n+1 +
k + 1

2
A2

n+2 + jAn+1 · An+2.

Lemma 4.2 If c(λ) = n+ 2 and w1(M
n) = 0, then

w2(M
n) =

i+ j + 1

2
A2

n+1 +
k + 1

2
A2

n+2 + jAn+1 · An+2.

Now we choose an arbitrary 2-dimensional face F 2. Since Pn is simple, F 2 is the intersection

of n− 2 facets and the images under λ of the (n− 2) facets give n− 2 vectors. We denote the

set of the n− 2 vectors by Im(F 2). Each vertex of F 2 is the intersection of F 2 with other two

facets. Let Fs = λ−1(es), s ∈ {1, 2, · · · , n+ 2}. We define three subsets formed by vertices of

F 2 as follows:

B4(F
2, s, t) = {X ∩ Y ∩ F 2|X ∈ Fs, Y ∈ Ft; s, t ∈ C1, (s < t) with es, et ∈ Im(λ)\Im(F 2)},

B5(F
2, s, t) = {X ∩ Y ∩ F 2|X ∈ Fs, Y ∈ Ft; s ∈ C1, t ∈ C3 with es, et ∈ Im(λ)\Im(F 2)},

B6(F
2, s, t) = {X ∩ Y ∩ F 2|X ∈ Fs, Y ∈ Ft; s, t ∈ C3, (s < t) with es, et ∈ Im(λ)\Im(F 2)}.

Let g̃4(F
2, s, t) denote the cardinal number of the set B4(F

2, s, t) and τF 2 denote the Poincaré

duality of [MF 2 ]. Actually, we can use g̃4(F
2, s, t) to define a function

g4 : F2(Pn) −→ Z2 = {0, 1},

where F2(Pn) is the set of all 2-faces of Pn, such that if g̃4(F
2, s, t) (s < t) is even, then

g4(F
2) = 0, and if g̃4(F

2, s, t) is odd, then g4(F
2) = 1.

We claim that g4 is well-defined. For this, it suffices to show that for each F 2 ∈ F2(Pn),

the odevity of g4(F
2, s, t) does not depend on the choices of s, t.

If there exists another pair s1, t1 ∈ C1 (s1 < t1) with es1 , et1 ∈ Im(λ)\Im(F 2), then by the

identity Ar = An+1 in (3), we have

As ·At · τF 2 = A2
n+1 · τF 2 ,

As1 · At1 · τF 2 = A2
n+1 · τF 2 .
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Similar to the argument of the case: c(λ) = n + 1. By Poincaré duality (see Remark 2.1), it

follows that

As · At · τF 2 = g̃4(F
2, s, t)µM ,

As1 ·At1 · τF 2 = g̃4(F
2, s1, t1)µM .

Hence,

g̃4(F
2, s, t) ≡ g̃4(F

2, s1, t1) (mod 2).

In a similar way as above, we can also use B5(F
2, s, t), B6(F

2, s, t) to define the functions

g5, g6 : F2(Pn) −→ Z2, respectively.

By the identity in (3), we can get

A2
n+1 · τF 2 ≡ As ·At · τF 2 ≡ g̃4(F

2, s, t)µM ≡ g4(F
2)µM (mod 2).

Similarly, by the identities in (3) and (5), we have the following:

An+1 ·An+2 · τF 2 ≡ g5(F
2)µM (mod 2),

A2
n+2 · τF 2 ≡ g6(F

2)µM (mod 2).

Moreover, by Lemma 4.2, we know

w2(M
n) =

i+ j + 1

2
A2

n+1 +
k + 1

2
A2

n+2 + jAn+1 · An+2.

Therefore, we obtain

w2 · τF 2 =
i+ j + 1

2
· A2

n+1 · τF 2 +
k + 1

2
·A2

n+2 · τF 2 + j · An+1 ·An+2 · τF 2

=
[ i+ j + 1

2
· g4(F

2) + j · g5(F
2) +

k + 1

2
· g6(F

2)
]

µM .

This gives the following lemma.

Lemma 4.3 If c(λ) = n+ 2 and w1(M
n) = 0, then

w2 · τF 2 =
[ i+ j + 1

2
· g4(F

2) + j · g5(F
2) +

k + 1

2
· g6(F

2)
]

µM .

Assume that

D1 = {F 2 ∈ F2(Pn)|g4(F
2) = g5(F

2) = g6(F
2) = 0},

D2 = {F 2 ∈ F2(Pn)|g4(F
2) = g5(F

2) = 1, g6(F
2) = 0},

D3 = {F 2 ∈ F2(Pn)|g4(F
2) = g6(F

2) = 1, g5(F
2) = 0},

D4 = {F 2 ∈ F2(Pn)|g5(F
2) = g6(F

2) = 1, g4(F
2) = 0},

D5 = {F 2 ∈ F2(Pn)|g4(F
2) = g5(F

2) = g6(F
2) = 1},

D6 = {F 2 ∈ F2(Pn)|g4(F
2) = g5(F

2) = 0, g6(F
2) = 1},

D7 = {F 2 ∈ F2(Pn)|g4(F
2) = g6(F

2) = 0, g5(F
2) = 1},

D8 = {F 2 ∈ F2(Pn)|g5(F
2) = g6(F

2) = 0, g4(F
2) = 1}.
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Obviously, F2(Pn) = ∪d∈KDd, where K = {1, 2, · · · , 8}. For each set Dd (1 ≤ d ≤ 8), we can

give a corresponding set D̃d as follows:

D̃1 = {(x, y, z) ∈ Z
3} ∩ E,

D̃2 = {(x, y, z) ∈ Z
3|f(x, y) + y ≡ 0 (mod 2)} ∩ E,

D̃3 = {(x, y, z) ∈ Z
3|f(x, y) + h(z) ≡ 0 (mod 2)} ∩ E,

D̃4 = {(x, y, z) ∈ Z
3|y + h(z) ≡ 0 (mod 2)} ∩ E,

D̃5 = {(x, y, z) ∈ Z
3|f(x, y) + y + h(z) ≡ 0 (mod 2)} ∩ E,

D̃6 = {(x, y, z) ∈ Z
3|h(z) ≡ 0 (mod 2)} ∩E,

D̃7 = {(x, y, z) ∈ Z
3|y ≡ 0 (mod 2)} ∩E,

D̃8 = {(x, y, z) ∈ Z
3|f(x, y) ≡ 0 (mod 2)} ∩ E,

where

f(x, y) =
x+ y + 1

2
,

h(z) =
z + 1

2
.

Lemma 4.4 Assume that Dd 6= ∅ for some d ∈ K. If F 2 ∈ Dd, then w2 · τF 2 = 0 if and

only if (i, j, k) ∈ D̃d.

Proof We only give the proof of the case d = 2, since the arguments of other cases are

similar. We would like to leave them as exercises to readers.

Assume that d = 2. By Lemma 4.3, we have

w2(M
n) · τF 2 =

[ i + j + 1

2
· g4(F

2) + j · g5(F
2) +

k + 1

2
· g6(F

2)
]

µM .

If F 2 ∈ D2, then g4(F
2) = g5(F

2) = 1, g6(F
2) = 0. Hence, we have

w2 · τF 2 =
[ i+ j + 1

2
+ j

]

µM .

We can infer that w2 · τF 2 = 0 if and only if i+j+1
2 + j ≡ 0 (mod 2), namely (i, j, k) ∈ D̃2.

We know F2(Pn) = ∪d∈KDd, where K = {1, 2, · · · , 8}. Hence, for each F 2 ∈ F2(Pn), there

exists a unique d ∈ K such that F 2 ∈ Dd. So there is uniquely a function

α : F2(Pn) −→ K

such that for each F 2 ∈ F2(Pn), F 2 ∈ Dα(F 2). Let O(Pn, λ) = Im(α) ⊂ K. Then we have

F2(Pn) = ⊔d∈O(Pn,λ)Dd. Namely, if d ∈ O(Pn, λ), then Dd 6= ∅, and if d ∈ K\O(Pn, λ),

then Dd = ∅. Since the sets Dd (1 ≤ d ≤ 8) are determined by the combinatorial structure of

Pn and the characteristic function λ. Hence, we can know that the set O(Pn, λ) is uniquely

determined by the combinatorial structure of Pn and the characteristic function λ.

Proof of Theorem 1.3 From Lemma 2.1, one knows that w2 = 0 if and only if w2 ·τF 2 = 0

for ∀F 2 ∈ F2(Pn). By Lemma 4.4, the conclusion holds.
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