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Abstract In this paper, the author proves a generalized Donaldson-Uhlenbeck-Yau theo-
rem for twisted holomorphic chain on a non-compact Ké&hler manifold. As an application,
the author obtains a Bogomolov type Chern numbers inequality for semistable twisted
holomorphic chain.
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1 Introduction

Let (M,w) be a Kdhler manifold with complex dimension m. A twisted holomorphic chain
consists of a finite number of holomorphic bundles E; over M and bundle morphisms ¢; €
Hom(E; ® Ei, E;_1), where {E‘l} is a collection of twisting holomorphic bundles. For simplicity,
we denote by E = (Ey, E1,-- -, E,) the (n + 1)-tuple of holomorphic bundles E; over M, by
¢ = (¢1, 02, -+, dn) an n-tuple of bundle holomorphic morphisms ¢; € Hom(Ei®E’i, Ei_1)(1<
i < n), and by C = (E, ¢) the twisted holomorphic chain. Throughout this paper, we fix an
n-tuple H = (ﬁl, e ,ﬁn) of Hermitian metrics H; on the twisting bundles E; (1 <i<n).

Given 7 = (19,71, ,7n) € R"!, we consider the following chain 7-vortex equations

1

V—1A,Fp, + §¢1 o ot = 7oldp,,
1

V—1A,Fy, — §(¢TH °¢; — Pig1 0 ¢ff1) = 7;ldg,, (1.1)
1

V _1AwFHn - §¢ZH o ¢n = TnIdEnv

where 1 <7 <n —1, A, denotes the contraction with the Kéhler metric w, H; is a Hermitian
metric on the holomorphic bundle Ej;, Fpg, is the curvature form of the Chern connection Vg,
on F; with respect to the metric H;, and (be B — B ® El is the adjoint morphism of ¢;
with respect to the Hermitian metrics H; 1 on E;_1 and H; ®ﬁi on F; ®El-. Moreover, for each
1 <7< n,¢p; and ¢;‘H can be seen as morphisms ¢; : E; — E;_4 ®E’1* and (b’{H o Pt ®E’1* — E;,
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so ¢;Ho¢; : E; — E; makes sense too. In the following, we denote the (n+1)-tuple of Hermitian
metrics H; on E; by H = (Ho, Hy,--- , H,).

The simplest situation occurs when the chain has a single bundle, no twisting bundles and no
bundle holomorphic morphisms, in which case a twisted holomorphic chain is just a holomorphic
bundle E, and the chain 7-vortex equation is the Hermitian-Einstein equation. When (M, w) is
a compact Kahler manifold, the Donaldson-Uhlenbeck-Yau theorem states that the stability of
holomorphic vector bundle (in the sense of Mumford-Takemoto) implies the solvability of the
Hermitian-Einstein equation. This theorem was proved by Narasimhan and Seshadri [23] for
compact Riemann surface case, by Donaldson [12-13] for algebraic manifolds and by Uhlenbeck
and Yau [25] for general compact Kéhler manifolds. The classical Donaldson-Uhlenbeck-Yau
theorem has many interesting generalizations (see the references [4-8, 11, 14-15, 18-20, 22,
24] for details). The twisted holomorphic chain and chain T-vortex equations were introduced
and studied by Alvarez-Cénsul and Garcfa-Prada [1-3]. They introduced a stability criterion
for twisted holomorphic chains, and obtained a generalized Donaldson-Uhlenbeck-Yau theorem,
relating the existence of Hermitian metrics satisfying the chain 7-vortex equations (1.1) to the
stability of the twisted holomorphic chain. As an application, they (see [2]) also obtained a
Bogomolov type Chern numbers inequality for a stable twisted holomorphic chain.

In this paper, we counsider the case that the Kéhler manifold (M,w) is not necessarily

compact, but satisfies the following three assumptions.
Assumption 1.1 (M,w) has finite volume.

Assumption 1.2 There exists a smooth exhaustion non-negative function ¢ on (M,w)
with Ay bounded.

Assumption 1.3 There is an increasing function « : [0,00) — [0, 00) with «(0) = 0 and
a(z) = x for x > 1, such that if f is a bounded positive function on (M,w) with Af > —B,
then

suplf| < By [ 17).

Furthermore, if Af > 0 then Af = 0.

The above assumptions were introduced by Simpson in the paper [24] where he studied
the Higgs bundles on some non-compact Kéahler manifolds. He also showed that if (M,w) is
a compact Kéhler manifold, or (M,w) is a Zariski open subset of a smooth compact Kéhler
manifold M and the metric w is the restriction of a smooth Kéhler metric on M, the above

assumptions hold for (M, w).

Given a Hermitian metric H on a holomorphic vector bundle E over (M,w), one can define

the following Chern numbers of £ with respect to the Hermitian metric H by

m—1 /1 m
i - tr A Fyy (1.2)
m!

C1(E,H):/M01(E7H)/\(m_1)! 2 Jur
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and
Chs(E H)—/ L (B HY? — 2ey(B, H)) A
AT e e (m — 2)!
1 wm—?
wm
=32 (|V IALFy |l — |FH|%I)W- (1.3)

By Chern-Weil theory, when (M, w) is a compact Kéhler manifold, we know that the above
Chern numbers are independent of the metric H. If M is not compact, the above Chern

numbers measured with different metrics need not be equal to a priori.
For simplicity, we denote

1

()\/_AFH2

(677 0 ¢ — div1 0 91) — 7ldp,, (1.4)

where we set ¢9 = 0 and ¢,+1 = 0. We fix the background metrics K = (Ko, -, K,)

on the chain C = (E, ¢), and set the parameters 7 = (19, -+ ,7,). Making the assumption
sup ( E 10;(K;7)|k) < B, we define the 7-degree of chain C with respect to the metric K to

be the real number:

or deg (C; K) = / (Ztra KT) . (1.5)

Then the 7-slope of chain C is defined by

degT(C K)

Z rank E;

i=0

pr (G K) =

The above T-degree and 7-slope of chain were introduced by Alvarez-Cénsul and Garcia-Prada

[1] in the case that (M,w) is a compact Kahler manifold.

A weakly holomorphic sub-chain of C is a twisted chain C' = (E/,¢’) such that E! is a
saturated sub-sheaf of E; for each 0 < i < n, and ¢, o (fo ® IdEa) = fa—10 ¢, for each
1 < a < n, where f; : E/ — E; are the inclusion morphisms. When E; is a holomorphic
sub-bundle of E; for each 0 < i < n, we call C’ a holgmorphic sub;lchain of C. The weakly

holomorphic sub-chain C’ < C is called proper if 0 < > rank B} < " rank E;.
i=0 i=0
If E! is a saturated sub-sheaf of E;, we know that it is a sub-bundle of E; outside a singularity
set 2J; which is a complex analytic subset in M with complex co-dimension at least 2. The metric
K; induces a metric on E] over M \ ;. Let m; : F; — E! denote the projection onto E! with

respect to the metric K, it is also defined outside 3;. The 7-degree and 7-slope of a weakly



180 C. J. Zhang

holomorphic sub-chain C’ with respect to the metric K are defined by

n

_ n wm
27 deg, (C",K) = / (Z(tfﬂi 0 0;(K;7) — [Omepmili) = > |¢(J)¢_|%()W7
a=1 ’

M "o
_deg,(C',K) (1.7)

n )
E rank F,
=0

respectively. Here ¢ = 741000 ((Idg, —7,)®1d 7, )- The degree of sub-chain defined above

11 (C', K)

is either a real number or —oo, and if the degree is not —oo, then m; € L? for each 0 < i < n.
On the other hand, a straightforward computation shows that

n

1 \ . -
§th(ﬂ°(¢iKO¢i—¢z‘+10¢ii{1)):—2|¢§|§<' (1.8)
=0 a=1

If (M,w) is a compact Kéahler manifold, by Chern-Weil theory and formula (1.8), the degree

deg,.(C’,K) is a holomorphic invariant which is independent of the metric K, in fact we have

deg,(C',K) = > (deg(E]) — mirank E}), (1.9)
=0

where deg(E!) is just the degree of the sheaf E.

Definition 1.1 Let C = (E, ¢) be a twisted holomorphic chain over (M,w), T = (1o, 71, -+ ,
) € R and K = (Ko, K1, -, K,,) be an (n + 1)-tuple of Hermitian metrics on chain C.
We say that the twisted holomorphic chain C is analytic 7-(semi)stable with respect to the

metric K if for all proper weakly holomorphic sub-chain C' — C, we have
p-(C,K) < (<)p-(C,K). (1.10)

The above analytic 7-(semi)stability was introduced by Wang and Zhang [26]. It is indepen-
dent of the background metrics K = (Ko, -+, K,,) when M is compact. They proved that the
analytic 7- stability implies the solvability of the chain 7-vortex equations (1.1) for twisted holo-
morphic chain on some non-compact Kéhler manifolds which satisfy the Assumptions 1.1-1.3.
In this paper, we consider the semi-stable case. We prove that if the twisted holomorphic chain
is analytic 7-semi-stable then the above chain 7-vortex equations (1.1) admit an approximate
solution in L?-norm sense. Using this result, we can obtain a Bogomolov type Chern numbers

inequality for analytic 7-semi-stable twisted holomorphic chain.

Theorem 1.1 Let (M,w) be a Kdhler manifold which is not necessarily compact, but satis-

fies the above Assumptions 1.1-1.3, and (E, ¢) be a twisted holomorphic chain over M with an
(n+1)-tuple of Hermitian metrics K satisfying sup ( Y. |AvFrk,|x) < 0o, sup (X |¢il%) < o0
M M i=1

i=0
and deg, (C;K) = 0. Suppose C = (E,¢) is analytic T-semi-stable with respect to the ini-
tial metrics K. Then the chain T-vortex equations (1.1) admit an approxzimate solution in

L?%-norm sense, i.e., for any small positive ¢, there is an (n + 1)-tuple of Hermitian metrics
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H. = (Hoe, Hi e, , Hy o) with |0, (Ki_lHi,a)|K,i € L*(M,w), H; . and K; mutually bounded,
and sup [Ny Fy, g, . < oo for eachi=0,1,--- ,n, such that
M

0,(H.;7)2, 2 <. 1.11
[SCLELTAEE (111)

Moreover, assume that 3 |V ¢ilx and Y IV —1AuFg |7, both belong to L*(M,w), and
i=1 i=1 '

\/—1Angi is positive semi-definite for eachi =1,---  n, where H; are fized Hermitian metrics
on the twisting bundles E;. If C = (E, ¢) is analytic T-semi-stable with respect to the metrics
K, then the following Bogomolov type Chern numbers inequality holds:

n n
> 7Ci(Ei, K;) > 21 ) Chy(E;, K;). (1.12)
i=0 i=0

When the Kahler manifold (M,w) is compact, the above Chern numbers inequality (1.12)
was proved by Alvarez-Cénsul and Garcia-Prada [2] for 7-stable twisted holomorphic chain.

There are many results on the existence of approximate solution of Hermitian-Einstein equation

on semi-stable holomorphic bundle and semi-stable Higgs bundle (see references [9-10, 16-17,

21] for details). Theorem 1.1 extends the above results to the non-compact case. The difficult

part of Theorem 1.1 is to prove the existence of approximate solution of the chain 7-vortex

equations (1.1). We will use the heat flow method and follow the argument used by Li and

Zhang [21] in the Higgs bundles case. Even though the global approach is similar, some key

estimates require new inputs because the base manifold M is not necessarily compact. The

paper is organized as follows. In Section 2, we recall some estimates and preliminaries which
will be used in the proof of main theorem. In Section 3, we prove the existence of approximate
solution of the chain T-vortex equations (1.1) and deduce the Bogomolov type Chern numbers

inequality for analytic 7-semi-stable twisted holomorphic chain.

2 Preliminaries on Twisted Holomorphic Chain

Let C = (E, ) be a twisted holomorphic chain on a K&hler manifold (M,w), and K =
(Ko, K1, ,K,) be an (n+ 1)-tuple of Hermitian metrics on chain C. We study the following
evolution equations of (n + 1)-tuple of Hermitian metrics H(t) = (Ho(t), H1(t), -+, Hn(t)) on
C with initial metrics H(0) = K,

oM 1 .
HO 16—t0 = _2(\/_1AWFH0 + 5@51 o ¢1H - TOIdEo)v

_ 3H Lo, «

1‘ 1 ( /_1AwFH7; —§(¢iHO¢i_¢i+lOqsi-i}-ll)_TiIdEi)’ (21)
Hn_l 8H (\/ _1AwFHn — %QS:;H o ¢'n, - TnIdEn)v

where 1 < i <n — 1. We first recall some basic estimates for the heat flow (2.1).
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Proposition 2.1 (see [26, Propositions 2.1-2.2]) Let H(t) = (Ho(t), H1(t), -, Hn(t)) be
a solution of the heat flow (2.1). Then

(A - %) itrGi(H(t);T) —0, (2.2)
(a- )(Z oi(22

) >0, (2.3)

and

(A B _) (Z |6il% t)) > ZZ 0 dil7 + Ol(z |¢1|H(t )

~ mmax {1 - ra ) (X bl ) (2.4)
i=1

1<i<n

where Cy is a positive constant depending only on {rank(E;)}}_, and {rank(Ei)}?ZO.
We recall the following existence of long time solution of the heat flow (2.1).

Proposition 2.2 (see [26, Proposition 3.6]) Let (M,w) be a Kdhler manifold satisfying
the Assumptions 1.1-1.3, and let C = (E, ¢) be a twisted holomorphic chain over M. Suppose
the initial (n + 1)-tuple of Hermitian metrics K satisfy sup ( Z 10:(K; 7)|x

) = B < 0.

Then there is a unique solution H(t) to the heat equatwns (2. 1) with H(0) = K such that

f:os]t&p(tr (K7 H;) + tr (H;7'K;)) < 0o on each finite interval of time. For this solution, we

have sup ( zn: 10;(H; 7)| i) < sup ( i 0;(K; 7)|k). Furthermore, if ®*(K) = sup ( i |il%) =
M =0 M =0 M =1

By < 0o, then the solution H(t) must satisfy ®?(H(t)) = sup ( i |¢i|%{(t ) < max{By, Bs} for

all t > 0, where B3 is a posilive constant depending only on rank(E ), rank(Ei) and ;.

For each a > 0, we denote the compact subset { € M | p(z) < a} by M,. Since the
exhaustion function ¢ is smooth, Sard theorem tells us that M, is smooth for almost each
a. When the boundary dM, is smooth, we consider the Dirichlet boundary problem and the
Neumann boundary problem of the heat flow (2.1). Then we have the long time solutions
(see [26, Theorem 3.5]), i.e., there exist two families of (n 4+ 1)-tuple of Hermitian metrics
H,(t) = (Hoa(t), -+, Hpot)) and Hy(t) = (Hoo(t), - , Hy o(t)) such that

Oh; o (t
hZ;(t)W() = —20;(Ho(t);7), hia(t)lt=0o =1dE;,  hialom, = 1dg,|om, (2.5)
and
~ Ohi ot ~ ~ d ~
0 2 o (B 0:7), Realoo=Ws, S hea@low, =0 (26)

for all ¢t € (0,400) and 0 < i < n, where h; , = Ki_lHl-_,a and iNLM = Ki_lﬁi_,a. According to



Semistable Twisted Holomorphic Chains 183

n
the maximum principle and the assumption sup ( Y [6;(K;7)
s

k:) = Bi < 00, we have

=0
sup (3 16:(Ha(0): )y, . ) < By (2.7)
Ma “iso
and
s 0;(H, (t); 7)|2 <B 2.8
53(;“ (N, ) < B (2.8)

for all t > 0 and a > 0. Wang and Zhang proved that (see [26, Proposition 3.6]), by passing
to a subsequence a — 400, Hy(t) — H(t) (or He(t) — H(t)) in local C*°-topology over any
compact subset of M x [0, +00), and H(¢) is just the solution of the evolution equations (2.1).
By the Dirichlet boundary condition, we know that 0;(H,(t); 7)|on, = 0 for all ¢ > 0. Using
(2.3) and Stokes theorem, we get

wm
o[ S0 <0 (29)
Ma =g
for all t > 0 and @ > 0. Now we prove the following monotonicity of [, > |6;(H(t); T)ﬁﬂ(t) ‘;’:,L .
i=0

Lemma 2.1 Let H(t) be the long time solution of the heat equations (2.1) which is obtained

in Proposition 2.2, then

/ZIG (t1);

for all 0 <ty < ts.

H;(t1) '—/Zw (t2);

Proof We prove it by contradiction. If not, then there exist 0 < t; < t3 such that

/ Zw tl |H (t1 +Eo / Zw tg |H (t2) m' (211)

for some positive constant 5. We choose a compact subset 2 C M such that
1
B; - Vol(M\ Q) < 750" (2.12)

Since H,(t) — H(t) in local C*°-topology as a — 400, we have

‘/ZIG (t1);

w™ 1
i,a(tl))m‘ S 550 (213)

ey — 10:(Ha(t); 7)1

and

- wm 1
| S0 E(0): r y — 10 B t2): ) | < 20 (2.14)
i=0
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for some large a such that Q C M,. By (2.7) and (2.12)—(2.14), we obtain

/MQZX; 10:(H la(t) ‘ml —/Z |0;(H
/Z 0 R 7) ) o+ 2
</ Z<|ei<H<t2>;T)|;i(t2))%_ggo

w™ 1
/M Z |0; (H m(t2)) ;— 50 (2.15)

a =0

Ia(ig)) +Bl VOI(M\Q)

m

This contradicts (2.9).

Since tr TLW satisfies Neumann boundary condition on dM,, it holds that

V=IAL (B0t i) = 0. (2.16)
M, m'

From the estimates (2.8), we see that iNLi,a and |AwF}~Ii a| are uniformly bounded for finite time

intervals. Integrating the following identity

Autr (hio (Fg. = Fk,) + (p,hia) 0 by 0 Ok, hia) = Au(D0tr hig) (2.17)
over M,, we deduce
= 7 T3 wm ~
/Ma |Op:hia) © hidl(g, oy < © (218)

for finite time intervals, where C is a constant independent of a. From this estimate, it follows
that |0g, (K; " H;(t))|k, € L*(M,w) for all t > 0.

Applying % to both sides of the heat equation (2.6), we know that zn: tr 0;(H, (t); 7) satisfies
the corresponding Neumann boundary condition. So (2.2) and Stokeézt(ileorem imply that

m

/M Ztr@ ) =0 (2.19)

a =0
for all t > 0 and a > 0. Since Hy(t) — H(t) in local C*-topology as a — +oco, by a similar
argument as that in Lemma 2.1, we get that [,, > tr6;(H(t); 7)<0 is independent of ¢. Hence
i=0
we obtain the following lemma.

Lemma 2.2 Let H(t) be the long time solution of the heat equations (2.1) which is obtained

in Proposition 2.2, then
05, (K, Hi(1))|x, € L*(M,w) (2.20)

and

m

2 deg, (C; H(t / Ztr@ —| = 21 deg, (C; K) (2.21)

for allt > 0.
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3 Proof of Theorem 1.1

In this section, we will use the heat flow method to prove that the analytic 7-semi-stability
implies that the chain 7-vortex equations (1.1) admit an approximate solution in L?-norm sense
and deduce the Bogomolov type Chern numbers inequality (1.12). Before giving the detailed
proof, we need to recall some notations. Let K be a fixed Hermitian metric on a holomorphic
bundle E over M, and denote

Sk(E) = {s € Q°(M,End(E)) | s* = s}. (3.1)

Given p € C*°(R,R), ¥V € C*(R x R,R), s € Sk(E), p € Q°(M,End(E)), we define p(s) and
Uls](p) as follows. At each point x on M, let {e;}7_, be a unitary basis with respect to the metric
K, such that s(e;) = d;e;, and {e;}7_; be the dual basis for {e;}!_;, then p € Q°(M, End(FE))

can be written as p = Yp;je; ® ej. We set
p(s)(ei) = p(di)e; (3.2)
and
U[s](p) = XU(d;,0;)pijer ® ey (3.3)

Let’s recall Donaldson’s functional defined on the space & of Hermitian metrics on the bundle
E (see [24, Section 5] for details),

Mo (K, H) = / tr (sv/=TALFi ) + (U(s)(ms), s e

. =4 (3.4)

where W(z,y) = (x —y) 2(eY® — (y — ) — 1), and exps = K 1H. We recall the modified
Donaldson’s functional of two (n + 1)-tuple of Hermitian metrics K = (Ko, -, K,) and H =
(Ho,- -+, H,) on the twisted holomorphic chain C,

n n wm
Me.o(K.H) = Mp, (Ki, H) + Y /M(IcﬁiI% = [8ilF)——
i=0 i=1 '
= /M aitr (log (K ) (3.5)
=0
where a = (ag, - ,ap,) € R""1. From the estimates in Proposition 2.2 and Lemma 2.2, it is

easy to see that H;(t) belongs to the definition space &y and Mc (K, H(t)) is well defined
for the evolving (n + 1)-tuple of Hermitian metrics H(¢) along the heat flow (2.1) (for every

t > 0). Furthermore, we have the following lemma.

Lemma 3.1 (see [26, Lemma 7.1]) Let H(t) be a solution of the heat flow (2.1) with an
initial (n + 1)-tuple of Hermitian metrics K which satisfy the same conditions in Theorem 1.1,
then

Me,-(H(t1), H(ts)) = Mc,-(H(t1), H(t2)) + Mc - (H(t2), H(ts)) (3.6)



186 C. J. Zhang

for all 0 <ty <ty <tsz, and
d
—Mc,T(K,H(t))

/Z|2v TAwFa, ) — (677 0 90 — dig1 0 i) — 273

m

w
i oo (3.7)

for allt > 0.

Proposition 3.1 Let H(t) be a solution of the heat flow (2.1) with an initial (n + 1)-
tuple of Hermitian metrics K which satisfy the same conditions in Theorem 1.1. If the twisted
holomorphic chain C = (E, ¢) is analytic T-semi-stable with respect to the initial metrics K,
then

m

- . . w
/ Z'QV_lAwFHI(t) _(¢ZH(t) O¢i_¢i+1 O¢14}-Il(t))_2TZIdE7|%Il(t)W —0 (38)
M i—o :

as t — +oo.

Proof Set h;(t) = K; 'H;(t) = exp(si(t)) for all 0 < i < n. By a direct calculation, we

derive
0 -1
5 log(tr hi(t) + trh; " (t))
(om0 %) (0 250 )

ot ot ’
trhy(t) + trhy ' (t)
<2V —=1AuFh, 1) — (67 0 ¢y — giga 0 ¢ff1(t)) —271d g, |, 1) (3.9)

From Proposition 2.2, we see that sup 12V =1AWFy, 1) — (qb*H(t) 0 — his1 o¢:f1(t))—n

is bounded independent of ¢. So there exists a constant C; such that
sup log(tr hy(t) + tr h;1(t)) < log(2rank(E;)) 4 Cit (3.10)
M

for all 0 < ¢ < n and ¢ > 0. On the other hand, by [26, Corollary 2.8], we have

Alg(i )+ tr(h )))

=0

=
N—

(S RV Pk, — (6 0 61 — dun 0 6255) — 21
=0

— (Y VTAF, — (91 0 6 — G 0 67fh) — 21

=0

H) (3.11)
Due to the Assumption 1.3, there exist two constants C, and 6'3 such that

1 (30 1e8) .
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< 52(/ g (Dt (hi) +tr(n )))% +Cy). (3.12)
1=0 ’
On the other hand, one can check that
1g( e 1)) <
2 Z 7 =0 1=
i=0
< (Zr_) 18> (trhy + trhi Y, (3.13)

i=0 i=0

where r; = rank F;. So there exist positive constants C~’4 and 6’5 such that

Z [[si(®)]| Lo < 04(2 [[s(t ||L1) +Cs (3.14)

=0

for all ¢ > 0.

The monotonicity of [, 3 [0;(FL(t); )7, t)% yields that
i=0 ’ )

. - * * w™ N
lim / ST 12VETAGF g, ) — (677 0 ¢ — pia1 0 6111")) — 271dp, [}, — = C*. (3.15)
M =0 m!

t—+oo
Now we prove (3.8) by contradiction. If C* > 0, based on (3.7), we get

Mec, (K, H(t)) < -C*t (3.16)
for all 0 < tg < t. Then it is clear that (3.10), (3.13) and (3.16) imply

Mo, (K.H() _ €

C )
ZHS )z ’

lim inf (3.17)
t—4o0

where Cg is a positive constant. According to the definition of modified Donaldson’s functional

(3.5) and (3.16), we know that there must exists a sequence t; — +o0o such that

Z 85t 22 — +oc. (3.18)

Let E = Eg® E; - - -® E, be the direct sum of holomorphic bundles F;, K = Kog®K;---® K,
and H = Hy® Hy - --® H,, be the induced Hermitian metrics on F. Denote h = hg® hy---D hy,
and s =80 P S1 P Sy 6 End(FE). The InOI‘phlSInS o B ® E; — E,;_; induce a section
¢ = @ ¢; of the bundle @ Hom(E; ® E;, E;_1) (or @ Hom(E;, E;_y ® E})). Then we define

=1 1=1 i=1
the endomorphisms ¢*7 o ¢ = Z ¢t o ¢; and ot = Z ¢i o ¢; € End(E). In the
following, we denote by 7; : —> E the projection onto the sub bundle E; with respect to the
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initial Hermitian metric K = Ko ® K; --- @ K,,. The heat flow (2.1) can be rewritten as the

following:

H—la_H -

= —2(\/—_1AWF _ %(5“1 0od—dogt - ;m) (3.19)

Set I; = ||s(t;)]| o2 and u; = lj_ls(tj) € End(FE). From (3.18), we see that [; — oo as j — o0.
Using (3.14), we obtain
lujlir =1, Jusllze < Co (3.20)

for all j, where C~'7 is a positive constant.

Combining the formula (2.21) and the initial assumption deg, (C; K) = 0, we obtain

JRCE B B

:/%/ Z@trs _dt /f/ Zﬁdet atlH()) i

t;

_ _2/0 /M ;tr (Gi(H(t),T))%dt — 2 [ deg.(C; K)dt = 0. (3.21)

0

So it holds that
wm

By (3.20), (3.22) and a similar argument as that in [26, Proposition 7.2], we have that, by
choosing a subsequence which also is denoted by wu;, u; — us weakly in L? as j — oo. The

limit ueo satisfies [[uco||z1 = 1, [;, tr o’y = 0 and
ool Lo < C. (3.23)

Moreover, we deduce

m

/M <Uja 2vV/—1A,Fx — 2 gTin’>K%W; +2 /M<\If[uj](5Euj),5Euj>K%
<( [ (st 2vTaupic - zng—%{“’% 42 [ (s Bes(0,), Tes(t) )

< MR L [ (3, - 302
Z Js4(t5) 12

Applying (3.17) and the same discussion as that in [24, Lemma 5.4], we get

n _ _ w™ C*
/M <uoo, V1A, Fr — ;7‘1‘71'1‘>K + <\Il[uoo](3E*®Euoo),8E*®Euoo>1<m < —a (3.24)
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and

- — — w™ c*
/M (oo VTAFc — gmz—}K + (Cltoc) O pue0), Tp-pticc) o <~ = (3.25)

Cs

for any positive function ¢ € C°°(R x R, R) which satisfies ((z,y) < (z —y)~! whenever x > y.

From (3.25) and the same argument in [26, Lemma 7.3], it follows that the eigenvalues of

Uso are constant almost everywhere. Let /\1 < Ag < --- < \; denote the distinct eigenvalues
of Uno. Since ||ucollzr = 1 and fMtruoo =+ = 0, we must have [ > 2. For 1 < 8 < [, define
: R — R such that
1, if z < Ag,
Py(x)=¢ " "7 (3.26)
0, if x> Ag41.
Set
7TIB = Ps(too), (3.27)

where the notation is the same as the one of (3.2). Based on [26, Proposition 7.4], we obtain
(1) 7 € LI(Sk (E));
(2) mf =mp = ik
(3) (Id — wﬂ)aE*@)E(W'B) = 0 almost everywhere;
(4) I1d = 7)o Fo w2 = 0.
Set 7T/BZ- =m0 7T/B oig, and d)l’@i = ¢; -

. By Uhlenbeck and Yau’s regularity theorem of
L3-subbundle (see [25]), we know that 77, represents a saturated sub-sheaf E; of E;. On the
other hand, property (4) implies that

®; © 77,/6’1‘ & IdE, = W/B(i_l) op; 0 F/Bi ® IdEi' (3.28)
So those (E’m, ¢/Bi) determine a sequence of proper weakly holomorphic sub-chain Cg of C =

(E, ¢). Define

-1
Q(T) =N degT(Cv K) - ()‘54'1 - /\5) deg‘r(Cﬁv K) (329)
B=1

-1
Due t0 uso = NIdg — > (Ag41 — Ag)ms and fM\E truse %y = 0, we have

B=1
-1
Arank(E) — > " (Agq1 — Ag)rank(rj) = 0. (3.30)
B=1
Then it holds that
-1
= rank(mh)(Ag1 — As) (1 (C, K) — 17 (C, K)). (3.31)

p=1
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- =1 -
Set ¢ = Y. (Ag41 — Ag)(dPg)?. Tt is easy to see that (A, u) < (A — p)~! for A > p. From
B=1
the formulas (7.30)—(7.31) in [26] and (3.25), we get
Q(r) = i/ (ttoe, VTN Fic - Zn:nm>

2 7 i=0 K

+ <Z[u00](3E*®EuOO)75E*®EUOO>KW
- o (3.32)

Cs

On the other hand, the semi-stability and (3.31) imply Q(7) > 0, which derives a contradiction.
So we get C* = 0 and this concludes the proof of Proposition 3.1.

Proof of Theorem 1.1 By the estimates in Section 2, we know that [0, (K; ' H;(t))
L?(M,w), H;(t) and K; mutually bounded, and sup |Aw Fr, ()| 1, (1) < 0o foreachi =0,1,---,n
M

K; €

and t > 0. So (3.17) implies the existence of an approximate solution of the chain 7-vortex
equations (1.1) in L?-norm sense. Now we only need to prove the Bogomolov type Chern
numbers inequality (1.12).

From the assumption 0 B 1¢i =0, it follows that

QE;QE;

m

o0, 2 @ - *H *H d
0512, = Re(V—1A,Fu,, ¢i it1 — @i i/ H )
/M;|VH¢ H ;/M e( Hy> Qi1 0 Giy1 — & O¢>Hm!
=3 [ Retoro (e @ VIAEg ) o)u S (33)
i=1/M '

Since the proof of the above equality can be found in [26, Proposition 8.2], we omit it. A

straightforward computation shows that

— Z 87T2Oh2(Ei, Hz) + Z 47T7'1'Cl (EZ, Hl)
=0 i=0

= Z 10rbill72 + Z (HFH
im1 i=0

n o

2
)

1 * *
Yo+ ||5(0us1 0 6ifh — 617 0 6) — milde,

2

. 1 . .
- E H\/ —1AuFm, + §(¢i+1 ot — ¢t 0 ¢y) — 1ldp, Lo (3.34)
i=0

The assumption that \/—lAwFﬁi is positive semi-definite for each ¢ = 1,--- ,n yields that

- Z 87T2Ch2(Ei, HZ) + Z 47T7'icl (El, Hl)
=0 =0
2

. 1
> =3 |VETAGFu, + 5 (0 0 618 = 61 0 00) —mldg | | (3.35)
i=0




Semistable Twisted Holomorphic Chains 191
Noting the assumption that 0 < v/—109p < Cw, En: |V}50¢>1-|K and En: |\/__1AwFH|H both
belong to L*(M,w), we have - -
Cho(E;, Hi(t)) > Che(E;, K;) (3.36)
and
Cy(E;, Hi(t)) = C1(E;, K;) (3.37)

for every t > 0. The proof of the above two formulas can be found in [26, Theorem 8.3].
Combining (3.35)—(3.37), we obtain

- ZSW2Ch2(El‘, KZ) + Z47TTicl(Ei, Kz)
=0 1=0

= 1 . "
> =3 VA E o + 5 (81 0 6110 — 6770 0 1) — i, (3.38)
1=0

2
L2

for all ¢ > 0. So (3.17) implies (1.12). This completes the proof of Theorem 1.1.
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