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1 Introduction

Let (M,ω) be a Kähler manifold with complex dimension m. A twisted holomorphic chain

consists of a finite number of holomorphic bundles Ei over M and bundle morphisms φi ∈
Hom(Ei⊗ Ẽi, Ei−1), where {Ẽi} is a collection of twisting holomorphic bundles. For simplicity,

we denote by E = (E0, E1, · · · , En) the (n + 1)-tuple of holomorphic bundles Ei over M , by

φ = (φ1, φ2, · · · , φn) an n-tuple of bundle holomorphic morphisms φi ∈ Hom(Ei⊗Ẽi, Ei−1) (1 ≤
i ≤ n), and by C = (E, φ) the twisted holomorphic chain. Throughout this paper, we fix an

n-tuple H̃ = (H̃1, · · · , H̃n) of Hermitian metrics H̃i on the twisting bundles Ẽi (1 ≤ i ≤ n).

Given τ = (τ0, τ1, · · · , τn) ∈ Rn+1, we consider the following chain τ -vortex equations

√
−1ΛωFH0

+
1

2
φ1 ◦ φ∗H

1 = τ0IdE0
,

√
−1ΛωFHi

− 1

2
(φ∗H

i ◦ φi − φi+1 ◦ φ∗H
i+1) = τiIdEi

,

√
−1ΛωFHn

− 1

2
φ∗H
n ◦ φn = τnIdEn

,

(1.1)

where 1 ≤ i ≤ n− 1, Λω denotes the contraction with the Kähler metric ω, Hi is a Hermitian

metric on the holomorphic bundle Ei, FHi
is the curvature form of the Chern connection ∇Hi

on Ei with respect to the metric Hi, and φ∗H
i : Ei−1 → Ei ⊗ Ẽi is the adjoint morphism of φi

with respect to the Hermitian metrics Hi−1 on Ei−1 and Hi⊗H̃i on Ei⊗Ẽi. Moreover, for each

1 ≤ i ≤ n, φi and φ∗H
i can be seen as morphisms φi : Ei → Ei−1⊗Ẽ∗

i and φ∗H
i : Ei−1⊗Ẽ∗

i → Ei,
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so φ∗H
i ◦φi : Ei → Ei makes sense too. In the following, we denote the (n+1)-tuple of Hermitian

metrics Hi on Ei by H = (H0, H1, · · · , Hn).

The simplest situation occurs when the chain has a single bundle, no twisting bundles and no

bundle holomorphic morphisms, in which case a twisted holomorphic chain is just a holomorphic

bundle E, and the chain τ -vortex equation is the Hermitian-Einstein equation. When (M,ω) is

a compact Kähler manifold, the Donaldson-Uhlenbeck-Yau theorem states that the stability of

holomorphic vector bundle (in the sense of Mumford-Takemoto) implies the solvability of the

Hermitian-Einstein equation. This theorem was proved by Narasimhan and Seshadri [23] for

compact Riemann surface case, by Donaldson [12–13] for algebraic manifolds and by Uhlenbeck

and Yau [25] for general compact Kähler manifolds. The classical Donaldson-Uhlenbeck-Yau

theorem has many interesting generalizations (see the references [4–8, 11, 14–15, 18–20, 22,

24] for details). The twisted holomorphic chain and chain τ -vortex equations were introduced

and studied by Álvarez-Cónsul and Garćıa-Prada [1–3]. They introduced a stability criterion

for twisted holomorphic chains, and obtained a generalized Donaldson-Uhlenbeck-Yau theorem,

relating the existence of Hermitian metrics satisfying the chain τ -vortex equations (1.1) to the

stability of the twisted holomorphic chain. As an application, they (see [2]) also obtained a

Bogomolov type Chern numbers inequality for a stable twisted holomorphic chain.

In this paper, we consider the case that the Kähler manifold (M,ω) is not necessarily

compact, but satisfies the following three assumptions.

Assumption 1.1 (M,ω) has finite volume.

Assumption 1.2 There exists a smooth exhaustion non-negative function ϕ on (M,ω)

with ∆ϕ bounded.

Assumption 1.3 There is an increasing function α : [0,∞) → [0,∞) with α(0) = 0 and

α(x) = x for x > 1, such that if f is a bounded positive function on (M,ω) with ∆f ≥ −B,

then

sup
M

|f | ≤ C(B)α
( ∫

M

|f |
)
.

Furthermore, if ∆f ≥ 0 then ∆f = 0.

The above assumptions were introduced by Simpson in the paper [24] where he studied

the Higgs bundles on some non-compact Kähler manifolds. He also showed that if (M,ω) is

a compact Kähler manifold, or (M,ω) is a Zariski open subset of a smooth compact Kähler

manifold M and the metric ω is the restriction of a smooth Kähler metric on M , the above

assumptions hold for (M,ω).

Given a Hermitian metric H on a holomorphic vector bundle E over (M,ω), one can define

the following Chern numbers of E with respect to the Hermitian metric H by

C1(E,H) =

∫

M

c1(E,H) ∧ ωm−1

(m− 1)!
=

√
−1

2π

∫

M

tr ΛωFH

ωm

m!
(1.2)
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and

Ch2(E,H) =

∫

M

1

2
(c1(E,H)2 − 2c2(E,H)) ∧ ωm−2

(m− 2)!

= − 1

8π2

∫

M

tr (FH ∧ FH) ∧ ωm−2

(m− 2)!

=
1

8π2

∫

M

(|
√
−1ΛωFH |2H − |FH |2H)

ωm

m!
. (1.3)

By Chern-Weil theory, when (M,ω) is a compact Kähler manifold, we know that the above

Chern numbers are independent of the metric H . If M is not compact, the above Chern

numbers measured with different metrics need not be equal to a priori.

For simplicity, we denote

θi(H; τ) =
√
−1ΛωFHi

− 1

2
(φ∗H

i ◦ φi − φi+1 ◦ φ∗H
i+1)− τiIdEi

, (1.4)

where we set φ0 = 0 and φn+1 = 0. We fix the background metrics K = (K0, · · · ,Kn)

on the chain C = (E, φ), and set the parameters τ = (τ0, · · · , τn). Making the assumption

sup
M

( n∑
i=0

|θi(K; τ)|K
)
≤ B, we define the τ -degree of chain C with respect to the metric K to

be the real number:

2π degτ (C;K) =

∫

M

( n∑

i=0

tr θi(K; τ)
)ωm

m!
. (1.5)

Then the τ -slope of chain C is defined by

µτ (C;K) =
degτ (C;K)
n∑

i=0

rankEi

. (1.6)

The above τ -degree and τ -slope of chain were introduced by Álvarez-Cónsul and Garćıa-Prada

[1] in the case that (M,ω) is a compact Kähler manifold.

A weakly holomorphic sub-chain of C is a twisted chain C′ = (E′, φ′) such that E′
i is a

saturated sub-sheaf of Ei for each 0 ≤ i ≤ n, and φα ◦ (fα ⊗ Id
Ẽα

) = fα−1 ◦ φ′
α for each

1 ≤ α ≤ n, where fi : E′
i → Ei are the inclusion morphisms. When E′

i is a holomorphic

sub-bundle of Ei for each 0 ≤ i ≤ n, we call C′ a holomorphic sub-chain of C. The weakly

holomorphic sub-chain C′ →֒ C is called proper if 0 <
n∑

i=0

rankE′
i <

n∑
i=0

rankEi.

If E′
i is a saturated sub-sheaf of Ei, we know that it is a sub-bundle of Ei outside a singularity

set Σi which is a complex analytic subset inM with complex co-dimension at least 2. The metric

Ki induces a metric on E′
i over M \ Σi. Let πi : Ei → E′

i denote the projection onto E′
i with

respect to the metric Ki, it is also defined outside Σi. The τ -degree and τ -slope of a weakly
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holomorphic sub-chain C′ with respect to the metric K are defined by

2π degτ (C
′,K) =

∫

M

( n∑

i=0

(tr πi ◦ θi(K; τ)− |∂Ei⊗E∗

i
πi|2K)−

n∑

α=1

|φ⊥
α |2K

)ωm

m!
,

µτ (C
′,K) =

degα(C
′,K)

n∑

i=0

rankE′
i

,
(1.7)

respectively. Here φ⊥
α = πα−1 ◦φα ◦((IdEα

−πα)⊗Id
Ẽα

). The degree of sub-chain defined above

is either a real number or −∞, and if the degree is not −∞, then πi ∈ L2
1 for each 0 ≤ i ≤ n.

On the other hand, a straightforward computation shows that

1

2

n∑

i=0

tr (πi ◦ (φ∗K
i ◦ φi − φi+1 ◦ φ∗K

i+1)) = −
n∑

α=1

|φ⊥
α |2K . (1.8)

If (M,ω) is a compact Kähler manifold, by Chern-Weil theory and formula (1.8), the degree

degτ (C
′,K) is a holomorphic invariant which is independent of the metric K, in fact we have

degτ (C
′,K) =

n∑

i=0

(deg(E′
i)− τirankE

′
i), (1.9)

where deg(E′
i) is just the degree of the sheaf E′

i.

Definition 1.1 Let C = (E, φ) be a twisted holomorphic chain over (M,ω), τ = (τ0, τ1, · · · ,
τn) ∈ Rn+1, and K = (K0,K1, · · · ,Kn) be an (n+ 1)-tuple of Hermitian metrics on chain C.

We say that the twisted holomorphic chain C is analytic τ-(semi)stable with respect to the

metric K if for all proper weakly holomorphic sub-chain C′ →֒ C, we have

µτ (C
′,K) < (≤)µτ (C,K). (1.10)

The above analytic τ -(semi)stability was introduced by Wang and Zhang [26]. It is indepen-

dent of the background metrics K = (K0, · · · ,Kn) when M is compact. They proved that the

analytic τ - stability implies the solvability of the chain τ -vortex equations (1.1) for twisted holo-

morphic chain on some non-compact Kähler manifolds which satisfy the Assumptions 1.1–1.3.

In this paper, we consider the semi-stable case. We prove that if the twisted holomorphic chain

is analytic τ -semi-stable then the above chain τ -vortex equations (1.1) admit an approximate

solution in L2-norm sense. Using this result, we can obtain a Bogomolov type Chern numbers

inequality for analytic τ -semi-stable twisted holomorphic chain.

Theorem 1.1 Let (M,ω) be a Kähler manifold which is not necessarily compact, but satis-

fies the above Assumptions 1.1–1.3, and (E, φ) be a twisted holomorphic chain over M with an

(n+1)-tuple of Hermitian metrics K satisfying sup
M

( n∑
i=0

|ΛωFKi
|K

)
< ∞, sup

M

( n∑
i=1

|φi|2K
)
< ∞

and degτ (C;K) = 0. Suppose C = (E, φ) is analytic τ-semi-stable with respect to the ini-

tial metrics K. Then the chain τ-vortex equations (1.1) admit an approximate solution in

L2-norm sense, i.e., for any small positive ε, there is an (n + 1)-tuple of Hermitian metrics
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Hε = (H0,ε, H1,ε, · · · , Hn,ε) with |∂Ei
(K−1

i Hi,ε)|Ki
∈ L2(M,ω), Hi,ε and Ki mutually bounded,

and sup
M

|ΛωFHi,ε
|Hi,ε

< ∞ for each i = 0, 1, · · · , n, such that

∫

M

n∑

i=0

|θi(Hε; τ)|2Hε

ωm

m!
≤ ε. (1.11)

Moreover, assume that
n∑

i=1

|∇1,0
K φi|K and

n∑
i=1

|
√
−1ΛωFH̃i

|
H̃i

both belong to L2(M,ω), and

√
−1ΛωFH̃i

is positive semi-definite for each i = 1, · · · , n, where H̃i are fixed Hermitian metrics

on the twisting bundles Ẽi. If C = (E, φ) is analytic τ-semi-stable with respect to the metrics

K, then the following Bogomolov type Chern numbers inequality holds:

n∑

i=0

τiC1(Ei,Ki) ≥ 2π

n∑

i=0

Ch2(Ei,Ki). (1.12)

When the Kähler manifold (M,ω) is compact, the above Chern numbers inequality (1.12)

was proved by Álvarez-Cónsul and Garćıa-Prada [2] for τ -stable twisted holomorphic chain.

There are many results on the existence of approximate solution of Hermitian-Einstein equation

on semi-stable holomorphic bundle and semi-stable Higgs bundle (see references [9–10, 16–17,

21] for details). Theorem 1.1 extends the above results to the non-compact case. The difficult

part of Theorem 1.1 is to prove the existence of approximate solution of the chain τ -vortex

equations (1.1). We will use the heat flow method and follow the argument used by Li and

Zhang [21] in the Higgs bundles case. Even though the global approach is similar, some key

estimates require new inputs because the base manifold M is not necessarily compact. The

paper is organized as follows. In Section 2, we recall some estimates and preliminaries which

will be used in the proof of main theorem. In Section 3, we prove the existence of approximate

solution of the chain τ -vortex equations (1.1) and deduce the Bogomolov type Chern numbers

inequality for analytic τ -semi-stable twisted holomorphic chain.

2 Preliminaries on Twisted Holomorphic Chain

Let C = (E, φ) be a twisted holomorphic chain on a Kähler manifold (M,ω), and K =

(K0,K1, · · · ,Kn) be an (n+1)-tuple of Hermitian metrics on chain C. We study the following

evolution equations of (n + 1)-tuple of Hermitian metrics H(t) = (H0(t), H1(t), · · · , Hn(t)) on

C with initial metrics H(0) = K,

H−1
0

∂H0

∂t
= −2

(√
−1ΛωFH0

+
1

2
φ1 ◦ φ∗H

1 − τ0IdE0

)
,

H−1
i

∂Hi

∂t
= −2

(√
−1ΛωFHi

− 1

2
(φ∗H

i ◦ φi − φi+1 ◦ φ∗H
i+1)− τiIdEi

)
,

H−1
n

∂Hn

∂t
= −2

(√
−1ΛωFHn

− 1

2
φ∗H
n ◦ φn − τnIdEn

)
,

(2.1)

where 1 ≤ i ≤ n− 1. We first recall some basic estimates for the heat flow (2.1).



182 C. J. Zhang

Proposition 2.1 (see [26, Propositions 2.1–2.2]) Let H(t) = (H0(t), H1(t), · · · , Hn(t)) be

a solution of the heat flow (2.1). Then

(
∆− ∂

∂t

) n∑

i=0

tr θi(H(t); τ) = 0, (2.2)

(
∆− ∂

∂t

)( n∑

i=0

|θi(H(t); τ)|2Hi(t)

)
≥ 0, (2.3)

and

(
∆− ∂

∂t

)( n∑

i=1

|φi|2H(t)

)
≥ 2

n∑

i=1

|∂Hφi|2H + C1

( n∑

i=1

|φi|2H(t)

)2

− max
1≤i≤n

{|τi − τi−1|}
( n∑

i=1

|φi|2H(t)

)
, (2.4)

where C1 is a positive constant depending only on {rank(Ei)}ni=0 and {rank(Ẽi)}ni=0.

We recall the following existence of long time solution of the heat flow (2.1).

Proposition 2.2 (see [26, Proposition 3.6]) Let (M,ω) be a Kähler manifold satisfying

the Assumptions 1.1–1.3, and let C = (E, φ) be a twisted holomorphic chain over M . Suppose

the initial (n + 1)-tuple of Hermitian metrics K satisfy sup
M

( n∑
i=0

|θi(K; τ)|Ki

)
= B1 < ∞.

Then there is a unique solution H(t) to the heat equations (2.1) with H(0) = K such that
n∑

i=0

sup
M

(tr (K−1
i Hi) + tr (H−1

i Ki)) < ∞ on each finite interval of time. For this solution, we

have sup
M

( n∑
i=0

|θi(H; τ)|H
)
≤ sup

M

( n∑
i=0

|θi(K; τ)|K
)
. Furthermore, if Φ2(K) = sup

M

( n∑
i=1

|φi|2K
)
=

B2 < ∞, then the solution H(t) must satisfy Φ2(H(t)) = sup
M

( n∑
i=1

|φi|2H(t)

)
≤ max{B2, B3} for

all t ≥ 0, where B3 is a positive constant depending only on rank(Ei), rank(Ẽi) and τi.

For each a > 0, we denote the compact subset {x ∈ M | ϕ(x) ≤ a} by Ma. Since the

exhaustion function ϕ is smooth, Sard theorem tells us that ∂Ma is smooth for almost each

a. When the boundary ∂Ma is smooth, we consider the Dirichlet boundary problem and the

Neumann boundary problem of the heat flow (2.1). Then we have the long time solutions

(see [26, Theorem 3.5]), i.e., there exist two families of (n + 1)-tuple of Hermitian metrics

Ha(t) = (H0,a(t), · · · , Hn,a(t)) and H̃a(t) = (H̃0,a(t), · · · , H̃n,a(t)) such that

h−1
i,a(t)

∂hi,a(t)

∂t
= −2θi(Ha(t); τ), hi,a(t)|t=0 = IdEi

, hi,a|∂Ma
= IdEi

|∂Ma
(2.5)

and

h̃−1
i,a (t)

∂h̃i,a(t)

∂t
= −2θi(H̃a(t); τ), h̃i,a(t)|t=0 = IdEi

,
∂

∂ν
h̃i,a(t)|∂Ma

= 0 (2.6)

for all t ∈ (0,+∞) and 0 ≤ i ≤ n, where hi,a = K−1
i Hi,a and h̃i,a = K−1

i H̃i,a. According to
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the maximum principle and the assumption sup
M

( n∑
i=0

|θi(K; τ)|Ki

)
= B1 < ∞, we have

sup
Ma

( n∑

i=0

|θi(Ha(t); τ)|2Hi,a(t)

)
≤ B1 (2.7)

and

sup
Ma

( n∑

i=0

|θi(H̃a(t); τ)|2H̃i,a(t)

)
≤ B1 (2.8)

for all t ≥ 0 and a > 0. Wang and Zhang proved that (see [26, Proposition 3.6]), by passing

to a subsequence a → +∞, Ha(t) → H(t) (or H̃a(t) → H(t)) in local C∞-topology over any

compact subset of M × [0,+∞), and H(t) is just the solution of the evolution equations (2.1).

By the Dirichlet boundary condition, we know that θi(Ha(t); τ)|∂Ma
= 0 for all t > 0. Using

(2.3) and Stokes theorem, we get

d

dt

∫

Ma

n∑

i=0

|θi(Ha(t); τ)|2Hi,a(t)

ωm

m!
≤ 0 (2.9)

for all t > 0 and a > 0. Now we prove the following monotonicity of
∫
M

n∑
i=0

|θi(H(t); τ)|2
Hi(t)

ωm

m! .

Lemma 2.1 Let H(t) be the long time solution of the heat equations (2.1) which is obtained

in Proposition 2.2, then

∫

M

n∑

i=0

|θi(H(t1); τ)|2Hi(t1)

ωm

m!
≥

∫

M

n∑

i=0

|θi(H(t2); τ)|2Hi(t2)

ωm

m!
(2.10)

for all 0 < t1 ≤ t2.

Proof We prove it by contradiction. If not, then there exist 0 < t1 < t2 such that

∫

M

n∑

i=0

|θi(H(t1); τ)|2Hi(t1)

ωm

m!
+ ε0 ≤

∫

M

n∑

i=0

|θi(H(t2); τ)|2Hi(t2)

ωm

m!
(2.11)

for some positive constant ε0. We choose a compact subset Ω ⊂ M such that

B1 ·Vol(M \ Ω) < 1

4
ε0. (2.12)

Since Ha(t) → H(t) in local C∞-topology as a → +∞, we have

∣∣∣
∫

Ω

n∑

i=0

(|θi(H(t1); τ)|2Hi(t1)
− |θi(Ha(t1); τ)|2Hi,a(t1)

)
ωm

m!

∣∣∣ ≤ 1

8
ε0 (2.13)

and

∣∣∣
∫

Ω

n∑

i=0

(|θi(H(t2); τ)|2Hi(t2)
− |θi(Ha(t2); τ)|2Hi,a(t2)

)
ωm

m!

∣∣∣ ≤ 1

8
ε0 (2.14)
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for some large a such that Ω ⊂ Ma. By (2.7) and (2.12)–(2.14), we obtain
∫

Ma

n∑

i=0

(|θi(Ha(t1); τ)|2Hi,a(t)
)
ωm

m!
≤

∫

Ω

n∑

i=0

(|θi(Ha(t1); τ)|2Hi,a(t)
)
ωm

m!
+B1 ·Vol(M \ Ω)

≤
∫

Ω

n∑

i=0

(|θi(H(t1); τ)|2Hi(t1)
)
ωm

m!
+

3

8
ε0

≤
∫

M

n∑

i=0

(|θi(H(t2); τ)|2Hi(t2)
)
ωm

m!
− 5

8
ε0

≤
∫

Ma

n∑

i=0

(|θi(Ha(t2); τ)|2Hi,a(t2)
)
ωm

m!
− 1

4
ε0. (2.15)

This contradicts (2.9).

Since tr h̃i,a satisfies Neumann boundary condition on ∂Ma, it holds that
∫

Ma

√
−1Λω(∂∂tr h̃i,a)

ωm

m!
= 0. (2.16)

From the estimates (2.8), we see that h̃i,a and |ΛωFH̃i,a
| are uniformly bounded for finite time

intervals. Integrating the following identity

Λωtr
(
h̃i,a ◦ (FH̃i,a

− FKi
) + (∂Ei

h̃i,a) ◦ h̃−1
i,a ◦ ∂Ki

h̃i,a

)
= Λω(∂∂tr h̃i,a) (2.17)

over Ma, we deduce
∫

Ma

|(∂Ei
h̃i,a) ◦ h̃− 1

2

i,a |2
(H̃i,a,ω)

ωm

m!
≤ Ĉ (2.18)

for finite time intervals, where Ĉ is a constant independent of a. From this estimate, it follows

that |∂Ei
(K−1

i Hi(t))|Ki
∈ L2(M,ω) for all t ≥ 0.

Applying ∂
∂ν

to both sides of the heat equation (2.6), we know that
n∑

i=0

tr θi(H̃a(t); τ) satisfies

the corresponding Neumann boundary condition. So (2.2) and Stokes theorem imply that

d

dt

∫

Ma

n∑

i=0

tr θi(H̃a(t); τ)
ωm

m!
= 0 (2.19)

for all t ≥ 0 and a > 0. Since H̃a(t) → H(t) in local C∞-topology as a → +∞, by a similar

argument as that in Lemma 2.1, we get that
∫
M

n∑
i=0

tr θi(H(t); τ)ω
m

m! is independent of t. Hence

we obtain the following lemma.

Lemma 2.2 Let H(t) be the long time solution of the heat equations (2.1) which is obtained

in Proposition 2.2, then

|∂Ei
(K−1

i Hi(t))|Ki
∈ L2(M,ω) (2.20)

and

2π degτ (C;H(t)) =

∫

M

n∑

i=0

tr θi(H(t); τ)
ωm

m!
= 2π degτ (C;K) (2.21)

for all t ≥ 0.
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3 Proof of Theorem 1.1

In this section, we will use the heat flow method to prove that the analytic τ -semi-stability

implies that the chain τ -vortex equations (1.1) admit an approximate solution in L2-norm sense

and deduce the Bogomolov type Chern numbers inequality (1.12). Before giving the detailed

proof, we need to recall some notations. Let K be a fixed Hermitian metric on a holomorphic

bundle E over M , and denote

SK(E) = {s ∈ Ω0(M,End(E)) | s∗K = s}. (3.1)

Given ρ ∈ C∞(R,R), Ψ ∈ C∞(R × R,R), s ∈ SK(E), p ∈ Ω0(M,End(E)), we define ρ(s) and

Ψ[s](p) as follows. At each point x onM , let {ei}ri=1 be a unitary basis with respect to the metric

K, such that s(ei) = δiei, and {e∗i }ri=1 be the dual basis for {ei}ri=1, then p ∈ Ω0(M,End(E))

can be written as p = Σpije
∗
i ⊗ ej. We set

ρ(s)(ei) = ρ(δi)ei (3.2)

and

Ψ[s](p) = ΣΨ(δi, δj)pije
∗
i ⊗ ej. (3.3)

Let’s recall Donaldson’s functional defined on the space P0 of Hermitian metrics on the bundle

E (see [24, Section 5] for details),

ME(K,H) =

∫

M\Σ

tr (s
√
−1ΛωFK) + 〈Ψ(s)(∂Es), ∂Es〉K

ωm

m!
, (3.4)

where Ψ(x, y) = (x − y)−2(ey−x − (y − x) − 1), and exp s = K−1H . We recall the modified

Donaldson’s functional of two (n+ 1)-tuple of Hermitian metrics K = (K0, · · · ,Kn) and H =

(H0, · · · , Hn) on the twisted holomorphic chain C,

MC,α(K,H) =
n∑

i=0

MEi
(Ki, Hi) +

n∑

i=1

∫

M

(|φi|2H − |φi|2K)
ωm

m!

− 2

n∑

i=0

∫

M

αitr (log(K
−1
i Hi))

ωm

m!
, (3.5)

where α = (α0, · · · , αn) ∈ Rn+1. From the estimates in Proposition 2.2 and Lemma 2.2, it is

easy to see that Hi(t) belongs to the definition space P0 and MC,τ (K,H(t)) is well defined

for the evolving (n + 1)-tuple of Hermitian metrics H(t) along the heat flow (2.1) (for every

t ≥ 0). Furthermore, we have the following lemma.

Lemma 3.1 (see [26, Lemma 7.1]) Let H(t) be a solution of the heat flow (2.1) with an

initial (n+1)-tuple of Hermitian metrics K which satisfy the same conditions in Theorem 1.1,

then

MC,τ (H(t1),H(t3)) = MC,τ (H(t1),H(t2)) +MC,τ (H(t2),H(t3)) (3.6)
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for all 0 ≤ t1 ≤ t2 ≤ t3, and

d

dt
MC,τ (K,H(t))

= −
∫

M

n∑

i=0

|2
√
−1ΛωFHi(t) − (φ

∗H(t)
i ◦ φi − φi+1 ◦ φ∗H(t)

i+1 )− 2τiIdEi
|2Hi(t)

ωm

m!
(3.7)

for all t ≥ 0.

Proposition 3.1 Let H(t) be a solution of the heat flow (2.1) with an initial (n + 1)-

tuple of Hermitian metrics K which satisfy the same conditions in Theorem 1.1. If the twisted

holomorphic chain C = (E, φ) is analytic τ-semi-stable with respect to the initial metrics K,

then

∫

M

n∑

i=0

|2
√
−1ΛωFHi(t) − (φ

∗H(t)
i ◦ φi − φi+1 ◦ φ∗H(t)

i+1 )− 2τiIdEi
|2Hi(t)

ωm

m!
→ 0 (3.8)

as t → +∞.

Proof Set hi(t) = K−1
i Hi(t) = exp(si(t)) for all 0 ≤ i ≤ n. By a direct calculation, we

derive

∂

∂t
log(tr hi(t) + tr h−1

i (t))

=
tr
(
hi(t) · h−1

i (t)
∂hi(t)

∂t

)
− tr

(
h−1
i (t)

∂hi(t)

∂t
· h−1

i (t)
)

trhi(t) + trh−1
i (t)

≤ |2
√
−1ΛωFHi(t) − (φ

∗H(t)
i ◦ φi − φi+1 ◦ φ∗H(t)

i+1 )− 2τiIdEi
|Hi(t). (3.9)

From Proposition 2.2, we see that sup
M

|2
√
−1ΛωFHi(t)−(φ

∗H(t)
i ◦φi−φi+1◦φ∗H(t)

i+1 )−τiIdEi
|Hi(t)

is bounded independent of t. So there exists a constant C̃1 such that

sup
M

log(tr hi(t) + tr h−1
i (t)) ≤ log(2rank(Ei)) + C̃1t (3.10)

for all 0 ≤ i ≤ n and t ≥ 0. On the other hand, by [26, Corollary 2.8], we have

∆ lg
( n∑

i=0

(tr (hi) + tr (h−1
i ))

)

≥ −
( n∑

i=0

|2
√
−1ΛωFKi

− (φ∗K
i ◦ φi − φi+1 ◦ φ∗K

i+1)− 2τiIdEi
|Ki

)

−
( n∑

i=0

|2
√
−1ΛωFHi

− (φ∗H
i ◦ φi − φi+1 ◦ φ∗H

i+1)− 2τiIdEi
|Hi

)
. (3.11)

Due to the Assumption 1.3, there exist two constants C̃2 and C̃3 such that

∥∥∥ lg
( n∑

i=0

(tr (hi) + tr (h−1
i ))

)∥∥∥
L∞
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≤ C̃2

( ∫

M

lg
( n∑

i=0

(tr (hi) + tr (h−1
i ))

)ωm

m!
+ C̃3

)
. (3.12)

On the other hand, one can check that

lg
( 1

2

n∑

i=0

ri

n∑

i=0

(tr hi + trh−1
i )

)
≤

n∑

i=0

|si|Ki
=

n∑

i=0

|si|Hi

≤
( n∑

i=0

r
1

2

i

)
lg

n∑

i=0

(tr hi + trh−1
i ), (3.13)

where ri = rankEi. So there exist positive constants C̃4 and C̃5 such that

n∑

i=0

‖si(t)‖L∞ ≤ C̃4

( n∑

i=0

‖si(t)‖L1

)
+ C̃5 (3.14)

for all t ≥ 0.

The monotonicity of
∫
M

n∑
i=0

|θi(H(t); τ)|2
Hi(t)

ωm

m! yields that

lim
t→+∞

∫

M

n∑

i=0

|2
√
−1ΛωFHi(t) − (φ

∗H(t)
i ◦ φi − φi+1 ◦ φ∗H(t)

i+1 )− 2τiIdEi
|2Hi(t)

ωm

m!
= C∗. (3.15)

Now we prove (3.8) by contradiction. If C∗ > 0, based on (3.7), we get

MC,τ (K,H(t)) ≤ −C∗t (3.16)

for all 0 < t0 ≤ t. Then it is clear that (3.10), (3.13) and (3.16) imply

lim inf
t→+∞

−MC,τ (K,H(t))
n∑

i=0

‖si(t)‖L1

≥ C∗

C̃6

, (3.17)

where C̃6 is a positive constant. According to the definition of modified Donaldson’s functional

(3.5) and (3.16), we know that there must exists a sequence tj → +∞ such that

n∑

i=0

‖si(tj)‖L1 → +∞. (3.18)

Let E = E0⊕E1 · · ·⊕En be the direct sum of holomorphic bundles Ei, K = K0⊕K1 · · ·⊕Kn

and H = H0⊕H1 · · ·⊕Hn be the induced Hermitian metrics on E. Denote h = h0⊕h1 · · ·⊕hn

and s = s0 ⊕ s1 · · · ⊕ sn ∈ End(E). The morphisms φi : Ei ⊗ Ẽi → Ei−1 induce a section

φ̃ =
n⊕

i=1

φi of the bundle
n⊕

i=1

Hom(Ei ⊗ Ẽi, Ei−1) (or
n⊕

i=1

Hom(Ei, Ei−1 ⊗ Ẽ∗
i )). Then we define

the endomorphisms φ̃∗H ◦ φ̃ =
n∑

i=1

φ∗H
i ◦ φi and φ̃ ◦ φ̃∗H =

n∑
i=1

φi ◦ φ∗H
i ∈ End(E). In the

following, we denote by πi : E → E the projection onto the sub-bundle Ei with respect to the
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initial Hermitian metric K = K0 ⊕K1 · · · ⊕ Kn. The heat flow (2.1) can be rewritten as the

following:

H−1∂H

∂t
= −2

(√
−1ΛωFH − 1

2
(φ̃∗H ◦ φ̃− φ̃ ◦ φ̃∗H)−

n∑

i=0

τiπi

)
. (3.19)

Set lj = ‖s(tj)‖L1 and uj = l−1
j s(tj) ∈ End(E). From (3.18), we see that lj → ∞ as j → ∞.

Using (3.14), we obtain

‖uj‖L1 = 1, ‖uj‖L∞ ≤ C̃7 (3.20)

for all j, where C̃7 is a positive constant.

Combining the formula (2.21) and the initial assumption degτ (C;K) = 0, we obtain

∫

M

tr s(tj)
ωm

m!
=

∫

M

n∑

i=0

tr si(tj)
ωm

m!

=

∫ tj

0

∫

M

n∑

i=0

∂tr si(t)

∂t

ωm

m!
dt =

∫ tj

0

∫

M

n∑

i=0

∂ det(K−1
i Hi(t))

∂t

ωm

m!
dt

= −2

∫ tj

0

∫

M

n∑

i=0

tr (θi(H(t), τ))
ωm

m!
dt = −2

∫ ti

0

degτ (C;K)dt = 0. (3.21)

So it holds that
∫

M

tr uj

ωm

m!
= 0. (3.22)

By (3.20), (3.22) and a similar argument as that in [26, Proposition 7.2], we have that, by

choosing a subsequence which also is denoted by uj , uj ⇀ u∞ weakly in L2
1 as j → ∞. The

limit u∞ satisfies ‖u∞‖L1 = 1,
∫
M

tr u∞
ωm

m! = 0 and

‖u∞‖L∞ ≤ C̃7. (3.23)

Moreover, we deduce

∫

M

〈
uj, 2

√
−1ΛωFK − 2

n∑

i=0

τiπi

〉
K

ωm

m!
+ 2

∫

M

〈Ψ[uj](∂Euj), ∂Euj〉K
ωm

m!

≤ l−1
j

(∫

M

〈
s(tj), 2

√
−1ΛωFK − 2

n∑

i=0

τiφi

〉
K

ωm

m!
+ 2

∫

M

〈Ψ[s(tj)](∂Es(tj)), ∂Es(tj)〉K
ωm

m!

)

≤ MC,τ (K,H(tj))
n∑

i=0

‖si(tj)‖L1

+ l−1
j

(∫

M

(|φ̃|2H(tj)
− |φ̃|2K)

ωm

m!

)
.

Applying (3.17) and the same discussion as that in [24, Lemma 5.4], we get

∫

M

〈
u∞,

√
−1ΛωFK −

n∑

i=0

τiπi

〉
K
+ 〈Ψ[u∞](∂E∗⊗Eu∞), ∂E∗⊗Eu∞〉K

ωm

m!
≤ −C∗

C̃6

(3.24)



Semistable Twisted Holomorphic Chains 189

and

∫

M

〈
u∞,

√
−1ΛωFK −

n∑

i=0

τiπi

〉
K
+ 〈ζ[u∞](∂E∗⊗Eu∞), ∂E∗⊗Eu∞〉K

ωm

m!
≤ −C∗

C̃6

(3.25)

for any positive function ζ ∈ C∞(R×R,R) which satisfies ζ(x, y) ≤ (x− y)−1 whenever x > y.

From (3.25) and the same argument in [26, Lemma 7.3], it follows that the eigenvalues of

u∞ are constant almost everywhere. Let λ1 < λ2 < · · · < λl denote the distinct eigenvalues

of u∞. Since ‖u∞‖L1 = 1 and
∫
M

tr u∞
ωm

m! = 0, we must have l ≥ 2. For 1 ≤ β < l, define

Pβ : R → R such that

Pβ(x) =

{
1, if x ≤ λβ ,

0, if x ≥ λβ+1.
(3.26)

Set

π′
β = Pβ(u∞), (3.27)

where the notation is the same as the one of (3.2). Based on [26, Proposition 7.4], we obtain

(1) π′
β ∈ L2

1(SK(E));

(2) π′2
β = π′

β = π′∗K
β ;

(3) (Id− π′
β)∂E∗⊗E(π

′
β) = 0 almost everywhere;

(4) ‖(Id− π′
β) ◦ φ̃ ◦ π′

β‖2L2 = 0.

Set π′
βi = πi ◦ π′

β ◦ iEi
and φ′

βi = φi

∣∣
π′

βi

. By Uhlenbeck and Yau’s regularity theorem of

L2
1-subbundle (see [25]), we know that π′

βi represents a saturated sub-sheaf E′
βi of Ei. On the

other hand, property (4) implies that

φi ◦ π′
βi ⊗ Id

Ẽi
= π′

β(i−1) ◦ φi ◦ π′
βi ⊗ Id

Ẽi
. (3.28)

So those (E′
βi, φ

′
βi) determine a sequence of proper weakly holomorphic sub-chain Cβ of C =

(E, φ). Define

Q(τ) := λl degτ (C,K)−
l−1∑

β=1

(λβ+1 − λβ) degτ (Cβ ,K). (3.29)

Due to u∞ = λlIdE −
l−1∑
β=1

(λβ+1 − λβ)πβ and
∫
M\Σ

tr u∞
ωm

m! = 0, we have

λlrank(E)−
l−1∑

β=1

(λβ+1 − λβ)rank(π
′
β) = 0. (3.30)

Then it holds that

Q(τ) =

l−1∑

β=1

rank(π′
β)(λβ+1 − λβ)(µτ (C,K)− µτ (Cβ ,K)). (3.31)
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Set ζ̃ =
l−1∑
β=1

(λβ+1 − λβ)(dPβ)
2. It is easy to see that ζ̃(λ, µ) ≤ (λ − µ)−1 for λ > µ. From

the formulas (7.30)–(7.31) in [26] and (3.25), we get

Q(τ) =
1

2π

∫

M

〈
u∞,

√
−1ΛωFK −

n∑

i=0

τiπi

〉
K

+ 〈ζ̃[u∞](∂E∗⊗Eu∞), ∂E∗⊗Eu∞〉K
ωm

m!

≤ −C∗

C̃6

< 0. (3.32)

On the other hand, the semi-stability and (3.31) imply Q(τ) ≥ 0, which derives a contradiction.

So we get C∗ = 0 and this concludes the proof of Proposition 3.1.

Proof of Theorem 1.1 By the estimates in Section 2, we know that |∂Ei
(K−1

i Hi(t))|Ki
∈

L2(M,ω), Hi(t) and Ki mutually bounded, and sup
M

|ΛωFHi(t)|Hi(t) < ∞ for each i = 0, 1, · · · , n
and t ≥ 0. So (3.17) implies the existence of an approximate solution of the chain τ -vortex

equations (1.1) in L2-norm sense. Now we only need to prove the Bogomolov type Chern

numbers inequality (1.12).

From the assumption ∂
E∗

i
⊗Ẽ∗

i
⊗Ei−1

φi = 0, it follows that

∫

M

n∑

i=1

|∇1,0
H φi|2H

ωm

m!
=

n∑

i=0

∫

M

Re〈
√
−1ΛωFHi

, φi+1 ◦ φ∗H
i+1 − φ∗H

i ◦ φi〉H
ωm

m!

−
n∑

i=1

∫

M

Re〈φi ◦ (IdEi
⊗
√
−1ΛωFH̃i

), φi〉H
ωm

m!
. (3.33)

Since the proof of the above equality can be found in [26, Proposition 8.2], we omit it. A

straightforward computation shows that

−
n∑

i=0

8π2Ch2(Ei, Hi) +

n∑

i=0

4πτiC1(Ei, Hi)

=

n∑

i=1

‖∂Hφi‖2L2 +

n∑

i=0

(
‖FHi

‖2L2 +
∥∥∥1
2
(φi+1 ◦ φ∗H

i+1 − φ∗H
i ◦ φi)− τiIdEi

∥∥∥
2

L2

)

+

n∑

i=1

∫

M

〈φi ◦ (IdEi
⊗
√
−1ΛωFH̃i

), φi〉H
ωm

m!

−
n∑

i=0

∥∥∥
√
−1ΛωFHi

+
1

2
(φi+1 ◦ φ∗H

i+1 − φ∗H
i ◦ φi)− τiIdEi

∥∥∥
2

L2

. (3.34)

The assumption that
√
−1ΛωFH̃i

is positive semi-definite for each i = 1, · · · , n yields that

−
n∑

i=0

8π2Ch2(Ei, Hi) +

n∑

i=0

4πτiC1(Ei, Hi)

≥ −
n∑

i=0

∥∥∥
√
−1ΛωFHi

+
1

2
(φi+1 ◦ φ∗H

i+1 − φ∗H
i ◦ φi)− τiIdEi

∥∥∥
2

L2

. (3.35)
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Noting the assumption that 0 ≤
√
−1∂∂ϕ ≤ Cω,

n∑
i=1

|∇1,0
K φi|K and

n∑
i=1

|
√
−1ΛωFH̃i

|
H̃i

both

belong to L2(M,ω), we have

Ch2(Ei, Hi(t)) ≥ Ch2(Ei,Ki) (3.36)

and

C1(Ei, Hi(t)) = C1(Ei,Ki) (3.37)

for every t ≥ 0. The proof of the above two formulas can be found in [26, Theorem 8.3].

Combining (3.35)–(3.37), we obtain

−
n∑

i=0

8π2Ch2(Ei,Ki) +

n∑

i=0

4πτiC1(Ei,Ki)

≥ −
n∑

i=0

∥∥∥
√
−1ΛωFHi(t) +

1

2
(φi+1 ◦ φ∗H(t)

i+1 − φ
∗H(t)
i ◦ φi)− τiIdEi

∥∥∥
2

L2

(3.38)

for all t ≥ 0. So (3.17) implies (1.12). This completes the proof of Theorem 1.1.
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