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Abstract In this paper, the authors introduce a definition of the Schwarzian derivative

of any locally univalent harmonic mapping defined on a simply connected domain in the

complex plane. Using the new definition, the authors prove that any harmonic mapping

f which maps the unit disk onto a convex domain has Schwarzian norm ‖Sf‖ ≤ 6. Fur-

thermore, any locally univalent harmonic mapping f which maps the unit disk onto an

arbitrary regular n-gon has Schwarzian norm ‖Sf‖ ≤ 8

3
.
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1 Introduction

The Schwarzian derivative of an analytic function was first introduced by Schwarz, when

he sought to generalize the Schwarz-Christoffel formula to conformal mappings of polygons

bounded by circular arcs. More recently, Nehari [10], Chuaqui-Duren-Osgood [1–3] and Osgood-

Stowe [11] have developed many important and interesting results in terms of the Schwarzian

derivative and Schwarzian norm of analytic functions.

The classical Schwarzian derivative of a locally univalent analytic function f is defined by

Sf =
(f ′′

f ′

)′

− 1

2

(f ′′

f ′

)2

. (1.1)

The key property is its invariance under postcomposition with Möbius transformations. If

T (z) = az+b
cz+d

, ad − bc 6= 0 is a Möbius transformation, then ST◦f = Sf . This is special case of

the transformation formula

Sg◦f = (Sg ◦ f)(f ′)2 + Sf , (1.2)

since ST = 0 for Möbius transformation T . Also note that if T is Möbius transformation, then

Sf◦T = (Sf ◦ T )(T ′)2.
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Furthermore, let f be an analytic function in the unit disk U = {z | |z| < 1}, then the

Schwarzian norm of f is defined by the formula

‖Sf‖ = sup
z∈U

{(1− |z|2)2|Sf (z)|}. (1.3)

A definition of the Schwarzian derivative for a more general class of complex-valued harmonic

functions was presented by Chuaqui, Duren and Osgood in [1]. The formula was derived by

passing the minimal surface associated locally with a given harmonic function and appealing

to a definition given in [11] for the Schwarzian derivative of a conformal mapping between

arbitrary Riemannian manifolds. Specially, recall that a complex-valued harmonic function

in a simply connected domain has a canonical representation f = h + g (where h and g are

analytic functions) that is unique to an additive constant. Any harmonic mapping f = h + g

with |h′|+ |g′| 6= 0 lifts to a mapping f̂ onto a minimal surface defined by conformal parameters

if and only if the dilatation ω = g′

h′
equals the square of an analytic function q. In other words,

ω = q2 for some analytic function q. For such mapping f , the Schwarzian derivative presented

in [1] is defined by the formula

Sf = 2{(logλ)zz − ((log λ)z)
2}, (1.4)

where λ = |h′|+ |g′| and

(log λ)z =
∂(logλ)

∂z
=

1

2

(∂(logλ)
∂x

− i
∂(logλ)

∂y

)
.

In terms of the canonical representation f = h+ g and the dilatation ω = q2,

Sf = Sh +
2q

1 + |q|2
(
q′′ − q′

h′′

h′

)
− 4

( q′q

1 + |q|2
)2

, (1.5)

where Sh is the classical Schwarzian derivative (1.1) of the analytic function h.

Later, Hernández and Mart́ın gave another definition of Schwarzian derivative for the sense-

preserving harmonic mappings in [7] by changing the conformal metric λ = |h′| + |g′| with
λ =

√
Jf , where Jf = |fz|2 − |fz|2 is the Jacobian determinant of f . Then, by the formula

S(f) = 2{(logλ)zz − ((logλ)z)
2},

and ω = g′

h′
, they obtained

S(f) = Sh +
ω

1− |ω|2
(
ω′h

′′

h′
− ω′′

)
− 3

2

( ω′ω

1− |ω|2
)2

. (1.6)

Now, in this present paper, we will introduce another new definition of the Schwarzian

derivative of harmonic mapping f by using the conformal metric λ =
√
|h′|2 + |g′|2. Then,

similarly, by the formula

Sf = 2{(logλ)zz − ((log λ)z)
2}

and ω = g′

h′
, we get

Sf = Sh +
ω

1 + |ω|2
(
ω′′ − ω′h

′′

h′

)
− 3

2

( ω′ω

1 + |ω|2
)2

, (1.7)
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which is the new Schwarzian derivative formula we will use throughout this paper.

In terms of these three kinds of definitions of Schwarzian derivative of harmonic mappings,

we can easily find that they have one thing in common, that is, if f is an analytic function,

then λ = |f ′|, so that

logλ =
1

2
(log f ′ + log f

′
),

which derives (logλ)z = 1
2
f ′′

f ′
. Therefore, all these three kinds of definitions of Schwarzian

derivative of harmonic mappings become the form

Sf = 2{(logλ)zz − ((log λ)z)
2}

=
(f ′′

f ′

)′

− 1

2

(f ′′

f ′

)2

,

which is in agreement with the classical Schwarzian derivative of analytic functions, the formula

(1.1). Also, it should be emphasized that, in our new definition of Schwarzian derivative of

harmonic mappings, the conformal metric λ =
√
|h′|2 + |g′|2 has Gaussian curvature K ≤ 0, so

that the underlying harmonic mapping might be lifted to a minimal surface.

Indeed, by the general formula for Gaussian curvature

K = −λ−2∆(logλ),

where λ =
√
|h′|2 + |g′|2 and ∆ denotes the Laplacian. Recall that

∆ = 4
∂2

∂z∂z
,

a straightforward calculation shows that

K = − 4|ω′|2
|h′|2(1 + |ω|2)3 ≤ 0.

In the next section, we will discuss some properties of the new Schwarzian derivative of

locally univalent harmonic mappings in a simply connected domain. In the last part, we mainly

discuss some properties of the new Schwarzian norm and estimate the Schwarzian norm of the

convex harmonic mapping f defined on the unit disk, and we obtain ‖Sf‖ ≤ 6. We also consider

some special convex harmonic mappings defined on the unit disk, such as, the convex harmonic

mapping f which maps the unit disk onto the region inside a regular n-gon inscribed in the

unit circle, and we obtain that ‖Sf‖ ≤ 8
3 for such convex harmonic mapping f . Furthermore,

in terms of Theorem 3.5, we have also get that any convex mapping f , which maps the unit

disk onto a regular n-gon has Schwarzian norm ‖Sf‖ ≤ 8
3 .

2 Some Properties of the New Schwarzian Derivative

In this section, we are going to discuss some properties of the new Schwarzian derivative

(1.7) for locally univalent harmonic mappings in a simply connected domain. And , there is no

loss of generality, we assume that the harmonic mappings in this section are sense-preserving.
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2.1 The chain rule

Let f be a sense-preserving harmonic mapping in a simply connected domain Ω ⊂ C. It is

well known that if ϕ is a locally univalent analytic function for which the composition f ◦ ϕ is

defined, then the function f◦ϕ is again a sense-preserving harmonic mapping. A straightforward

calculation shows that

Sf◦ϕ = (Sf ◦ ϕ)(ϕ′)2 + Sϕ, (2.1)

which is a direct generalization of the chain rule (1.2) for the Schwarzian derivative of analytic

functions. And it’s not difficult to verify that ST◦f = Sf for any Möbius transformation T .

Furthermore, from this formula, it is not difficult to find that if A is an affine mapping of the

form A(z) = az+bz+c with a, b, c ∈ C, the composition A◦f is harmonic (and sense-preserving

if a 6= 0 and
∣∣ b
a

∣∣ < 1). In this case, the Schwarzian derivative (1.7) of A ◦ f may be not equal

to that of f . But we can give two sufficient conditions for SA◦f = Sf .

First, if A(z) = az + bz + c with a, b, c ∈ C, and f = h+ g with dilatation ω = g′

h′
, then

A ◦ f = (ah+ bg) + (ag + bh),

and let F = A ◦ f = H +G, where H = ah+ bg and G = ag + bh. Thus,

H ′ = (a+ bω)h′, G′ = (b+ aω)h′.

In terms of formula

SF = 2(logλF )zz − ((logλF )z)
2,

where λF =
√
|H ′|2 + |G′|2 =

√
|h′|2(|a+ bω|2 + |b+ aω|2).

A straightforward calculation shows

SF = Sh +
(|a|2 + |b|2)ω′′ω

|a+ bω|2 + |b+ aω|2
− h′′

h′

(2ab+ (|a|2 + |b|2)ω′ω

|a+ bω|2 + |b+ aω|2
)

− 3

2

(2ab+ (|a|2 + |b|2)ω′ω

|a+ bω|2 + |b+ aω|2
)2

.

From this formula, it is not difficult to find SF = Sf if b = 0. Indeed, if b = 0, then A(z) = az+c

is a conformal affine mapping.

Another sufficient condition is that the conformal metrics λf =
√
|h′|2 + |g′|2 and λF =√

|H ′|2 + |G′|2 are homothetic. That is, λF = cλf for some constant c > 0.

Indeed,

SF = 2(logλF )zz − ((log λF )z)
2

and

Sf = 2(logλf )zz − ((logλf )z)
2,

then, if SF = Sf , a short calculation shows

(
log

λF

λf

)
zz

+ (logλFλf )z

(
log

λf

λF

)
z
= 0.
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It is not difficult to see that this equality holds if λF = cλf for some constant c > 0.

The next lemma will be very useful in the proof of one upper bound of the Schwarzian norm

of convex harmonic mappings defined on the unit disk, which is one of the main results of the

next section.

Lemma 2.1 Let f = h+g be a sense-preserving harmonic mapping in the simply connected

domain Ω with dilatation ω, where h and g are analytic in Ω. Then, for all z0 ∈ Ω,

Sf (z0) = S
h+ω(z0)g

(z0). (2.2)

The proof of this lemma will be given in the next section.

2.2 Analytic Schwarzian derivative

First, recall that if a sense-preserving harmonic mapping f in the simply connected domain

Ω has constant dilatation, then f = h + αh + γ for some complex-constant α and γ (with

|α| < 1) and some locally univalent function h that is analytic in Ω.

Next, we will use the new Schwarzian derivative to characterize harmonic mappings with

analytic Schwarzian derivative.

Theorem 2.1 Let f = h + g be a sense-preserving harmonic mapping in the simply con-

nected domain Ω, then, Sf is analytic if and only if f has constant dilatation.

Proof If f = h+ αh+ γ for some locally univalent analytic mapping h, some |α| < 1 and

some γ ∈ C, then Sf ≡ Sh in Ω and the result follows.

Suppose that a sense-preserving harmonic mapping f = h+g with dilatation ω has analytic

Schwarzian derivative Sf defined by

Sf = Sh +
ω

1 + |ω|2
(
ω′′ − ω′h

′′

h′

)
− 3

2

( ω′ω

1 + |ω|2
)2

.

If ω ≡ a, a ∈ U , then f = h + αh + γ for some locally univalent analytic function h and

we are done. In order to get a contradiction, we assume that ω is not constant in Ω. After

multiplying the last equation by (1 + |ω|2)2, we obtain

(Sh − Sf )(1 + |ω|2)2 + ω(1 + |ω|2)
(
ω′′ − ω′h

′′

h′

)
− 3

2
(ω′ω)2 = 0. (2.3)

Rewriting (2.3) in terms of 1, ω and ω2, and denoting u = Sh − Sf , we have

u+ ω
(
2uω + ω′′ − ω′h

′′

h′

)
+ ω2

(
uω2 + ω

(
ω′′ − ω′h

′′

h′

)
− 3

2
(ω′)2

)
= 0. (2.4)

Differentiate with respect to z in (2.4) to get

ω′
(
2uω + ω′′ − ω′h

′′

h′

)
+ 2ω ω′

(
uω2 + ω

(
ω′′ − ω′h

′′

h′

)
− 3

2
(ω′)2

)
= 0. (2.5)

Now, since ω is not constant, there exists a disk D(z0, R) with center z0 and radius R > 0

contained in Ω, where ω′ 6= 0. We can divide both sides of (2.5) by ω′, and then take derivative

with respected to z again to obtain

ω′
(
uω2 + ω

(
ω′′ − ω′h

′′

h′

)
− 3

2
(ω′)2

)
= 0 in D(z0, R).
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Keeping in mind that ω′ 6= 0 in D(z0, R), we see that

uω2 + ω
(
ω′′ − ω′h

′′

h′

)
− 3

2
(ω′)2 ≡ 0. (2.6)

Hence, from (2.5) we have

2uω + ω′′ − ω′h
′′

h′
= 0, (2.7)

which implies, by (2.4), that u = Sh − Sf ≡ 0 in D(z0, R) ⊂ Ω. But in this case, using (2.7),

we obtain

ω′′ − ω′h
′′

h′
= 0, (2.8)

and substituting in (2.6), we get ω′ ≡ 0 in D(z0, R). This is a contradiction. Hence, ω ≡ α ∈ U

and f = h+ αh+ γ, as we wanted to prove.

Recall that a locally univalent analytic function f in the simply connected domain Ω is

a Möbius transformation if and only if Sf ≡ 0 in Ω. A locally univalent harmonic Möbius

transformation is a harmonic mapping of the form f = αT + βT + γ, where T is a classical

Möbius transformation were characterized in [1] in terms of the Schwarzian derivative (1.1).

The following corollary also characterizes the harmonic Möbius transformations in terms of Sf .

Corollary 2.1 A locally univalent mapping f = h+ g equals a harmonic Möbius transfor-

mation if and only if Sf ≡ 0, where h and g are analytic functions.

Proof Since Sf = Sf , we can assume that f is sense-preserving. If f is a Möbius transfor-

mation, then Sf = 0. Conversely, if Sf = 0, by Theorem 2.1, f = h+αh+γ for some constants

α ∈ U and γ ∈ C, and for some locally univalent analytic function h with Sh = 0. Hence, h is

a Möbius transformation.

2.3 Harmonic Schwarzian derivative

In this part, we will discuss the harmonic Schwarzian derivative.

The classical Schwarzian derivative (1.1) of a locally univalent analytic function ϕ is also

analytic. In the case of harmonic mappings f = h + g, we have an analogous result, we state

this as a theorem.

Theorem 2.2 Let f = h + g be a sense-preserving harmonic mapping in the simply con-

nected domain Ω. If Sf is harmonic, then Sf is analytic.

Proof By a straightforward calculation,

∂2Sf

∂z∂z
= ϕ′

1

ω′

(1 + |ω|2)2 + 9
(ω′)3(ω)2ω′

(1 + |ω|2)4 − ϕ2
2ωω′

(1 + |ω|2)3 , (2.9)

where

ϕ1 = ω′′ − ω′h
′′

h′
, ϕ2 = ϕ1ω

′ + 3ω′ω′′.
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Assume that ∆Sf ≡ 0 in Ω. Hence, according to formula

∆ = 4
∂2

∂z∂z
,

the right-hand side of (2.9) is identically zero in Ω. After multiplying (2.9) by (1 + |ω|2)4, we
get

0 ≡ ϕ′
1ω

′(1 + |ω|2)2 + 9(ω′)3(ω)2ω′ − 2ϕ2ωω′(1 + |ω|2). (2.10)

If the dilatation ω of f is constant, then the Schwarzian derivative of f is analytic. If ω is not

constant, there exists a disk D(z0, R) ⊂ Ω, where ω′ 6= 0. Dividing (2.10) by ω′, we obtain

0 ≡ ϕ′
1(1 + |ω|2)2 + 9(ω′)3(ω)2 − 2ϕ2ω(1 + |ω|2),

which is equivalent to

0 ≡ ϕ′
1 + (2ϕ′

1ω − 2ϕ2)ω + (ϕ′
1ω

2 + 9(ω′)3 − 2ϕ2ω)(ω)
2. (2.11)

Taking derivative with respect to z in (2.11) and dividing by ω′, we have

0 ≡ (2ϕ′
1ω − 2ϕ2) + 2ω(ϕ′

1ω
2 + 9(ω′)3 − 2ϕ2ω) in D(z0, R).

If ϕ′
1ω

2+9(ω′)3−2ϕ2ω 6= 0, then ω must be constant (in this case ω would be both analytic and

anti-analytic). This is a contradiction since we are assuming that ω′ 6= 0 in D(z0, R). Hence,

ϕ′
1ω

2 + 9(ω′)3 − 2ϕ2ω ≡ 0 (in some disk D ⊂ D(z0, R)). This fact implies that ϕ′
1ω − ϕ2 = 0

in D. Therefore, using (2.11), we obtain that ϕ2 = ϕ′
1 = 0 as well and we conclude that ω is

constant in D. This proves the theorem.

3 The Schwarzian Norm of Harmonic Mappings Defined on the Unit

Disk

Let f be a harmonic mapping in the unit disk U , using the new definition for Schwarzian

derivative (1.7) of harmonic mappings, we define the Schwarzian norm of f by the formula

‖Sf‖ = sup
z∈U

{(1− |z|2)2|Sf (z)|}. (3.1)

3.1 Properties of Schwarzian norm

First, it should be observed that Schwarzian norm is Möbius invariant. In other words,

‖Sf◦T‖ = ‖Sf‖ if T is any Möbius self-mapping of the disk.

In this part, we mainly discuss the new Schwarzian norm (3.1) of convex harmonic mappings

in the unit disk.

First, recall that Kraus [8] proved that if f is analytic and univalent in the unit disk U , then

‖Sf‖ ≤ 6, where the Schwarzian norm ‖Sf‖ is defined by the formula (1.3). Another related

result due to Nehari [9] states that if f is convex that is, f is univalent in the unit disk, and

the domain f(U) is convex, then ‖Sf‖ ≤ 2. Both constants 2 and 6 are sharp.
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Indeed, the analytic Koebe mapping

K(z) =
z

(1− z)2
, z ∈ U

is univalent in the unit disk. It maps U onto the full plane minus the part of the negative real

axis from − 1
4 to infinity and has Schwarzian derivative

SK(z) = − 6

(1− z2)2
.

Hence, ‖SK‖ = 6. Note that |Sf (x)|(1 − x2)2 = 6 for all real numbers −1 < x < 1.

Furthermore, the analytic and univalent strip mapping L, defined in the unit disk by L(z) =
1
2 log

1+z
1−z

, is convex. It has Schwarzian derivative

SL(z) =
2

(1− z2)2
.

The same constant 2 also appears in the Nehari criterion for univalence. This criterion states

that if the Schwarzian norm of a locally univalent analytic function f in the unit disk U is

bounded by 2, then f is univalent in U .

In terms of the Schwarzian derivative defined by (1.5), namely, it was proved in [2] that

there exists a constant C1 such that

‖Sf‖ = sup
z∈U

{(1− |z|2)2|Sf(z)|} ≤ C1,

for any univalent sense-preserving harmonic mapping f = h+ g in the unit disk with dilatation

ω = g′

h′
= q2 for some analytic function q (with |q| < 1) in U . The sharp value of C1 is unknown.

There is an analogous result in our new Schwarzian norm (3.1), we state this as a theorem.

Theorem 3.1 Let f = h+ g be a univalent harmonic mapping in the unit disk, then there

exists a constant C2 such that

‖Sf‖ ≤ C2.

The sharp value of C2 is unknown.

Proof Since SA◦f = Sf for any conformal mapping A, we may assume that f ∈ SH ,

where SH denotes the class of all sense-preserving harmonic mappings of the unit disk with

h(0) = g(0) = 1 − h′(0) = 0. Notice that f is univalent and φ is an automorphism of the disk

with φ(0) = z, then f ◦ φ is also univalent and |Sf◦φ(0)| = (1 − |z|2)2|Sf (z)|. Hence, it is not

difficult to verify that

sup
f∈SH

‖Sf‖ = sup
f∈SH

|Sf (0)|.

Now, fix an arbitrary function f ∈ SH . According to [13, Theorem 9], fR(z) = f(Rz) is a

univalent convex harmonic mapping. Therefore, |SfR(0)| ≤ 6 by Theorem 3.4, which will be

introduced in the next section. Using the chain rule, we see that

R2|Sf (0)| = |SfR(0)| ≤ 6.
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Therefore

sup
f∈SH

|Sf (0)| ≤
6

R2
.

This proves the theorem.

If we just consider the locally univalent harmonic mappings in the unit disk, then we have

the result below.

Theorem 3.2 Let f = h+ g be a locally univalent sense-preserving harmonic mapping in

the unit disk U . Then, ‖Sf‖ ≤ ∞ if and only if ‖Sh‖ ≤ ∞.

Proof First suppose that ‖Sh‖ ≤ ∞. By hypothesis, f has analytic dilatation ω = g′

h′
, and

|ω(z)| < 1 in the unit disk. Hence

|ω(z)|
1 + |ω(z)|2 ≤ 1

2
, z ∈ U,

and so it follows from (1.7) that

|Sf (z)| ≤ |Sh(z)|+
1

2
|ω′′(z)|+ 1

2
|ω′(z)|

∣∣∣h
′′(z)

h′(z)

∣∣∣+ 3

8
|ω′(z)|2.

By the Schwarz-Pick lemma,

|ω′(z)| ≤ |ω′(z)|
1− |ω(z)|2 ≤ 1

1− |z|2 .

If a function ϕ is analytic in the unit disk and |ϕ(z)| ≤ 1
1−|z|2 , then it follows from Cauchy’s

integral formula that |ϕ′(z)| ≤ 4
(1−|z|2)2 . We apply this to the function ϕ = ω′ to see that

|ω′′(z)| ≤ 4

(1− |z|2)2 .

Finally, a result of Pommerenke [12, p. 133] asserts that

(1 − |z|2)
∣∣∣h

′′(z)

h′(z)

∣∣∣ ≤ 2 + 2
(
1 +

1

2
‖Sh‖

) 1

2

. (3.2)

Putting the estimates together, we conclude that

‖Sf‖ ≤ ‖Sh‖+
(
1 +

1

2
‖Sh‖

) 1

2

+
27

8
<∞.

Conversely, suppose ‖Sf‖ ≤ ∞, the formula (1.7) and preceding estimates show that

|Sh(z)| ≤ |Sf (z)|+
19

8(1− |z|2)2 +
1

2(1− |z|2)
∣∣∣h

′′(z)

h′(z)

∣∣∣. (3.3)

In order to use Pommerenke’s estimate of h′′

h′
, we apply (3.3) to the dilated function fr = hr+gr,

where 0 < r < 1 and fr(z) = f(rz). Note that Sfr(z) = r2Sf (rz), so that

(1− |z|2)2|Sfr (z)| ≤ (1− |rz|2)2|Sf (rz)| ≤ ‖Sf‖.
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Because ‖Shr
‖ is finite for each r < 1, we can apply (3.3) to fr and invoke (3.2) to infer that

(1− |z|2)2|Shr
(z)| ≤ ‖Sf (z)‖+

(
1 +

1

2
‖Shr

‖
) 1

2

+
27

8
,

or

‖Shr
‖ −

(
1 +

1

2
‖Shr

‖
) 1

2 ≤ ‖Sf‖+
27

8
.

Now, let r → 1 to conclude that ‖Sh‖ ≤ ∞.

Indeed, in terms of this proof and inserting the estimate in [3] that ‖Sh‖ < 19, 204, we

obtain ‖Sf‖ < 19, 306 for any univalent harmonic mapping f in the unit disk.

Finally, we observe that univalent harmonic mappings with range convex in one direction

have finite Schwarzian norm ‖Sf‖ ≤ 38.375. These mappings are obtained by a known process

of shearing conformal mappings whose range is convex in one direction [6, Section 3.4].

Theorem 3.3 Suppose a function ϕ is analytic and univalent in the unit disk, and its

range is convex in the horizontal direction. Let f = h+ g be the the harmonic shear of ϕ in the

horizontal direction with dilatation ω = g′

h′
, where ω in analytic and |ω(z)| < 1 in the unit disk.

Then, ‖Sf‖ ≤ 38.375.

Proof From the process of shear construction, we have h − g = ϕ and h′ = ϕ′

1−ω
. A

straightforward calculation yields the formula

Sf = Sϕ +
ω

1 + |ω|2
(
ω′′ − ω′ϕ

′′

ϕ′
− (ω′)2

1− ω

)
− 3

2

( ω′ω

1 + |ω|2
)2

− ω′

1− ω

ϕ′′

ϕ′
+

(ω′)2 + 2ω′′(1− ω)

2(1− ω)2
.

The preceding estimates for ω and its derivatives in the proof of Theorem 3.2 can now be

applied to derive the inequality

|Sf (z)| ≤ |Sϕ(z)|+
19

8(1− |z|2)2 +
1

2(1− |z|2)
∣∣∣ϕ

′′(z)

ϕ′(z)

∣∣∣+ 1

2(1− |z|2)
∣∣∣ ω′(z)

1− ω(z)

∣∣∣

+
∣∣∣ ω′(z)

1− ω(z)

∣∣∣
∣∣∣ϕ

′′(z)

ϕ′(z)

∣∣∣+ 1

2

∣∣∣ ω′(z)

1− ω(z)

∣∣∣
2

+
∣∣∣ ω′′(z)

1− ω(z)

∣∣∣.

Since ∣∣∣ ω′(z)

1− ω(z)

∣∣∣ ≤ |ω′(z)|
1− |ω(z)| ≤

2|ω′(z)|
1− |ω(z)|2 <

2

1− |z|2 ,

and let ψ = ω′

2(1−ω) , by Cauchy’s integral formula that |ψ′(z)| ≤ 4
(1−|z|2)2 , we have

∣∣∣ ω′′(z)

1− ω(z)
+
( ω′(z)

1− ω(z)

)2∣∣∣ ≤ 8

(1− |z|2)2 ,

which implies that ∣∣∣ ω′′(z)

1− ω(z)

∣∣∣ ≤ 12

(1− |z|2)2 .

Furthermore, since ϕ is analytic univalent function, a standard inequality (see [5, p. 32]) shows

that ∣∣∣ϕ
′′(z)

ϕ′(z)

∣∣∣ ≤ 6

1− |z|2 ,
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and Kraus’ theorem gives (1− |z|2)2|Sϕ(z)| ≤ 6, combining these estimates, we find that

‖Sf‖ ≤ 6 +
19

8
+ 3 + 1 + 12 + 2 + 12 = 38.375.

This proves the theorem.

The harmonic shear of the Koebe function K(z) = z(1 − z)−2with dilatation ω(z) = z is

f = h+ g, where

h(z) =
z − 1

2z
2 + 1

6z
3

(1− z)3
, g(z) =

1
2z

2 + 1
6z

3

(1 − z)3

under the assumption that h(0) = g(0) = 0. A straightforward calculation yields that

h′(z) =
1 + z

(1 − z)4
,

so that

Sf (z) =
−19− 10z − 3z2

2(1− z2)2
− z(5 + 3z)

(1 + |z|2)(1 − z2)
− 3

2

( z

1 + |z|2
)2

,

from which an easy calculation gives ‖Sf‖ = 25.5. These results are unchanged if the Koebe

function K(z) = z(1−z)−2 is sheared with dilatation ω(z) = eiθz for any θ ∈ [0, 2π). Therefore,

since the Koebe function maximizes the Schwarzian norm for analytic univalent functions, it is

reasonable to conjecture that ‖Sf‖ ≤ 25.5 for all univalent harmonic mappings in the unit disk.

3.2 Schwarzian norm of convex harmonic mappings

Recall that Hernández and Mart́ın have proved in [7, Proposition 2] that if f = h + g is a

convex harmonic mapping in the unit disk U , then ‖S(f)‖ ≤ 6, where the Schwarzian norm

‖S(f)‖ is defined by the formula

‖S(f)‖ = sup
z∈U

{(1− |z|2)2|S(f)(z)|},

and S(f) is defined by (1.6). Moreover, the sharp value of 6 is unknown.

Now, by the new Schwarzian derivative (1.7) and Schwarzian norm (3.1), we get the same

result that if f = h + g is a harmonic mapping in the unit disk U , then ‖Sf‖ ≤ 6. We state

this as a theorem.

Theorem 3.4 Let f be a convex harmonic mapping in the unit disk, then

‖Sf‖ ≤ 6.

Note that, the sharp value of 6 is also unknown.

We say that f is a convex harmonic mapping in the domain Ω if f is a univalent harmonic

mapping in Ω, and f(Ω) is convex.

The next lemma will play an important role in the proof of Theorem 3.4.

Lemma 3.1 If f is a convex harmonic mapping in the unit disk U , then for each ε ∈ U ,

the analytic function νε = h+ εg is close-to-convex in U , thus univalent in U .
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This result was proved by Clunie and Sheil-Small [4, Theorem 5.7]. Using this lemma, we

can get a simple proof of Theorem 3.4.

Proof of Theorem 3.4 Since f is convex harmonic mapping, in terms of Lemma 3.1,

there exist analytic harmonic functions νε = h + εg that are univalent for all ε ∈ U . By the

formula (1.1) for analytic function in the introduction, we obtain

Sνε =
(ν′′ε
ν′ε

)′

− 1

2

(ν′′ε
ν′ε

)2

,

and in terms of ω = g′

h′
, a simple calculation gives

Sνε = Sh +
ε

1 + εω

(
ω′′ − ω′h

′′

h′

)
− 3

2

( εω′

1 + εω

)2

, (3.4)

where Sh is defined by formula (1.1).

In particular, for an arbitrary point z0 ∈ U , let ε = ω(z0), where ω is the dilatation of f , a

simple calculation, we get

Sνε(z0) = Sh(z0) +
ω(z0)

1 + |ω(z0)|2
(
ω′′(z0)− ω′(z0)

h′′(z0)

h′(z0)

)
− 3

2

(ω(z0)ω′(z0)

1 + |ω(z0)|2
)2

, (3.5)

compare this formula (3.5) with (1.7), we can easily obtain

Sνε(z0) = Sf (z0). (3.6)

In other words,

S
h+ω(z0)g

(z0) = Sf (z0). (3.7)

Note that, by (3.7), we have also given the proof of Lemma 2.1 in this process.

Furthermore, as shown in Lemma 3.1, the analytic function νε is univalent in U . Therefore,

in terms of Kraus’ theorem (see [8]), which claims that any function f is analytic and univalent

in the unit disk has ‖Sf‖ ≤ 6. So that

(1− |z0|2)2|Sνε(z0)| ≤ 6

for z0 is arbitrary in U . Thus, for all z ∈ U , there is

(1− |z|2)2|Sνε(z)| ≤ 6,

and by (3.6), we get

(1− |z|2)2|Sf (z)| ≤ 6.

Thus

‖Sf‖ ≤ 6. (3.8)

This proves the theorem. We do not know if the constant 6 in this theorem is sharp.
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Now, we can see that the definitions (1.6)–(1.7) have the same upper bound 6 of the

Schwarzian norm for convex harmonic mappings, which is in agreement with the upper bound

of classical definition of Schwarzian derivative (1.1) for analytic functions. Indeed, if f is ana-

lytic, then both (1.6)–(1.7) is equivalent to (1.1), of course, have the same sharp upper bound

of Schwarzian norm of mapping f .

In the next, we will discuss the Schwarzian norm of special convex harmonic mapping f ,

which maps the unit disk U onto the region inside a regular n-gon inscribed in the unit circle

with positive integer n ≥ 3. Moreover, by a simple proof, we also get that for any convex

harmonic mapping f , which maps the unit disk onto an regular n-gon has Schwarzian norm

‖Sf‖ ≤ 8
3 .

Theorem 3.5 Let f = h+g be harmonic mapping in the unit disk U , and f(U) is a regular

n-gon (where integer n ≥ 3) inscribed in the unit circle, then

‖Sf‖ ≤ 8

3
.

Proof In [6], Duren has given the explicit formula of a canonical harmonic mapping f =

h+ g, which maps the unit disk onto the domain inside a regular n-gon (where integer n ≥ 3)

with vertices at the n-th roots of unity. The formula is

f(z) =
1

2πi

n−1∑

k=0

αk
{
log

z − β2k+1

z − β2k−1
− log

z − β2k+1

z − β2k−1

}
, (3.9)

where α = e
2πi

n (n ≥ 3) is the nth roots of unity, and β =
√
α = e

πi

n .

After a simple calculation, we obtain

h′(z) =
1− α

2πi

nβn−1

1 + zn
, g′(z) =

1− α

2πi

nβzn−2

1 + zn
. (3.10)

So the dilatation of f has the form ω(z) = zn−2.

Now, let us calculate the Schwarzian derivative and Schwarzian norm of f .

First, as the new Schwarzian derivative formula (1.7) shows

Sf = Sh +
ω

1 + |ω|2
(
ω′′ − ω′h

′′

h′

)
− 3

2

( ω′ω

1 + |ω|2
)2

, (3.11)

where

Sh =
(h′′
h′

)′

− 1

2

(h′′
h′

)2

.

By (3.10) and ω(z) = zn−2, a calculation then yields

Sh =
−2n(n− 1)zn−2 + (2n− n2)z2n−2

2(1 + zn)2
,

and
ω

1 + |ω|2
(
ω′′ − ω′h

′′

h′

)
=

(n2 − 5n+ 6)|z|2n−8z2 + (2n2 − 7n+ 6)|z|2n−4zn−2

(1 + |z|2n−4)(1 + zn)
,

and
3

2

( ω′ω

1 + |ω|2
)2

=
3(n− 2)2|z|4n−12z2

2(1 + |z|2n−4)2
.
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Thus

Sf (z) =
−2n(n− 1)zn−2 + (2n− n2)z2n−2

2(1 + zn)2

+
(n2 − 5n+ 6)|z|2n−8z2 + (2n2 − 7n+ 6)|z|2n−4zn−2

(1 + |z|2n−4)(1 + zn)

− 3(n− 2)2|z|4n−12z2

2(1 + |z|2n−4)2
.

Next, let F (z) = (1− |z|2)2|Sf (z)|, then

F (z) =
(1− |z|2)2

2(1 + |z|2n−4)2(1 + zn)2
|(2n− 2n2)zn−2 + (2n− 2n2)|z|4n−8zn−2 + (2n− n2)z2n−2

+ (2n2 − 20n+ 24)|z|2n−4zn−2 + (2n2 − 10n+ 12)|z|2n−4z2n−2

+ 2(n2 − 5n+ 6)|z|2n−8z2 + (2n− n2)|z|4n−12z2|.

Note that the zeros of the function ψ(z) = 1 + zn may be the discontinuous points of function

F (z). Indeed, a simple calculation yields

zk = e(
π

n
+ 2kπ

n
)i, k = 0, 1, 2, · · · , n− 1

is the nth roots of function ψ(z) = 1 + zn, and for any k = 0, 1, 2, · · · , n − 1, a simple proof

shows ∏

j 6=k

|zk − zj | = n,

where j = 0, 1, 2, · · · , n− 1. We can just consider the case k = 0 for the other cases it keeps the

same result under circle rotation.

It is not difficult to see
n−1∏

j=1

|z0 − zj | =
n−1∏

i=1

|1− αi|,

where α = e
2πi

n , and function

f1(x) = (x− α)(x − α2)(x − α3) · · · (x− αn−1),

then
n−1∏

i=1

|1− αi| = |f1(1)|.

Furthermore, polynomial

g1(x) = xn−1 + xn−2 + · · ·+ x+ 1

has the same roots with f1(x), so

|f1(1)| = |g1(1)| = n.

Thus
n−1∏

j=1

|z0 − zj| = n
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and ∏

j 6=k

|zk − zj | = n,

where k, j = 0, 1, 2, · · · , n− 1. So that, let z approach to zk by the Stolz angle, we obtain

lim
z→zk

1− |z|2
|1 + zn| = lim

z→zk

1− |z|
z − zk

1 + |z|∏

j 6=k

|zk − zj|
=

2

n
. (3.12)

Therefore, zk(k = 0, 1, 2, · · · , n− 1) are not the discontinuous points of F (z). In other words,

F (z) is continuous and bounded in the unit disk. Then

lim
z→zk

F (z) = lim
z→zk

1

2n2
|(24− 2n2 − 16n)zn−2 + (12− 8n+ n2)z2n−2 + (n2 − 8n+ 12)z2|

≤ n2 + 8n− 12 + |n2 − 8n+ 12|
n2

, n ≥ 3. (3.13)

It is not difficult to verify that if n ≥ 6, then

n2 − 8n+ 12 ≥ 0.

Thus

lim
z→zk

F (z) ≤ 2n2

n2
= 2,

and if 3 ≤ n ≤ 5, then

n2 − 8n+ 12 ≤ 0.

Therefore

lim
z→zk

F (z) ≤ 16n− 24

n2
,

and it is easy to see that function ϕ(n) = 16n−24
n2 is strictly decreasing for integer n ≥ 3. Thus,

if 3 ≤ n ≤ 5, we have

lim
z→zk

F (z) ≤ 8

3
.

Finally, in terms of the maximum principle of analytic functions, we obtain that for any integer

n ≥ 3, it follows that

‖Sf‖ = sup
z∈U

{(1− |z|2)2|Sf (z)|} ≤ 8

3
. (3.14)

This proves the theorem.

Next, for any harmonic f which maps the unit disk onto a regular n-gon (n ≥ 3), we also

have the same result about the Schwarzian norm ‖Sf‖.

Theorem 3.6 Let f = h+g be harmonic mapping in the unit disk U , and f(U) is a regular

n-gon (n ≥ 3), then ‖Sf‖ ≤ 8
3 .

Proof Since the Schwarzian derivative of a locally univalent harmonic mapping f is p-

reserved by composition with translation, there is no loss of generality, we can assume that
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f(0) = 0. Then, by a pre-composition with a conformal affine mapping A, which maps f(U) to

a regular n-gon inscribed in the unit circle. Since SA◦f = Sf , we have ‖Sf‖ = ‖SA◦f‖, and by

Theorem 3.5, it is not difficult to find that ‖SA◦f‖ ≤ 8
3 . Therefore, ‖Sf‖ ≤ 8

3 . This proves the

theorem.
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