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Abstract In this paper, the author extends Peter Li and Tian Gang’s results on the heat

kernel from projective varieties to analytic varieties. The author gets an upper bound of

the heat kernel on analytic varieties and proves several properties. Moreover, the results

are extended to vector bundles. The author also gets an upper bound of the heat operators

of some Schröndinger type operators on vector bundles. As a corollary, an upper bound of

the trace of the heat operators is obtained.
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1 Introduction

Heat kernel is an important tool in geometric analysis. Many papers have been devoted to

explore this subject. For instance, in [2], Cheeger and Yau developed the general theory of heat

kernel on manifolds and proved a lower bound for the heat kernel under the condition when the

Ricci curvature of the manifold is bounded from below. In [3], Cheng, Li and Yau derived an

upper bound for the heat kernels of minimal submanifolds in Rn+l, Hn+l, and Sn+l. Using the

argument in [3], Li and Tian [9] proved that the heat kernel on projective varieties is square

integrable and got an upper bound estimate.

In this paper, we extend the result of Li and Tian to the case of analytic subvariety and

Schrödinger type operator of its vector bundles. Let N be a compact Kähler manifold of

dimension n, and M ⊂ N be an analytic subvariety of pure dimension m. We assume that the

Riemanninan sectional curvature of N is bounded from above by b. For any y ∈ N , distance

function of N to a fixed point x ∈ M is denoted by rx(y). Our first main result is the following

theorem.

Theorem 1.1 The heat kernel H(x, y, t) exists on M. H has an upper bound

H(x, y, t) ≤ G(x, y, t). (1.1)

Here G(x, y, t) = ρ(rx(y))Ĥ(rx(y), t)+Bt, Ĥ(rx(y), t) is the heat kernel of the 2m-dimensional

space form V 2m
b of constant curvature b, ρ(x, y) is a C2 function on M and B is a constant

depending on the injectivity radius σ on N , the sectional curvature of N and the dimension

of M. ρ and B will be constructed in Section 2. Moreover H(x, y, t) belongs to W 1,2(M), and
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satisfies the semi-group property and the conservation property:

∫

M

H(z, y, t)H(y, x, s)dy = H(z, x, t+ s), (1.2)

∫

M

H(x, y, t)dy = 1. (1.3)

Now let E → M be a vector bundle endowed with a metric h. Let D be a metric connection

on E, and the formal adjoint of D is denoted by Dt. Let L be a positive and symmetric bundle

endomorphism on E. Assume that L is bounded in L2(M,E) and there exists a positive number

l such that (Ls1, s2)h ≥ l(s1, s2)h for any s1, s2 ∈ L2(M,E). Consider the Schrödinger type

operator P = Dt ◦D + L. We can get our second result.

Theorem 1.2 Denote the L2 closure of P by P . Then P is a self-adjoint operator and we

have the following domination of semi-groups:

|e−tP s|h ≤ e−tl|et△s|h (1.4)

for any s ∈ L2(M,E).

As a corollary, we get an estimates of the trace class of the Schröndinger type operators P

on E.

Corollary 1.1 The heat operator e−tP : L2(M,E) → L2(M,E) is a trace class operator

and its trace class Tr satisfies the following inequality:

Tr(e−tP ) ≤ re−tlTr(et△), (1.5)

where r is the rank of the vector bundle E. If Hp denotes the kernel function of e−tP , then the

following inequalities holds:

Hp(x, x, t) ≤ re−tl(Ĥ(0, t) +Bt), (1.6)

Tr(e−tP ) ≤ re−tl(vol(M))(Ĥ(0, t) +Bt). (1.7)

The paper is organised as follows. In Section 2, we prove an upper bound of H(x, y, t)

for the case when M is a submanifold of a compact Kähler manifold. It is well konwn that

submanifolds of Kähler manifold are Kähler and minimal. So in order to get the upper bound,

we first prove a Laplace comparison theorem for minimal submanifolds. After proving this, we

then use the standard Duhamel’s principle to derive the comparison theorem for the heat kernel

H(x, y, t).

In Section 3, we consider the case when M is an analytic subvariety. We use the result in

Section 2 and method in [9] to prove Theorem 1.1. The ideal is as follows: Let Msing denote

the singular part of M , and let Tε be the ε-tubular neighborhood of Msing. The Dirichlet heat

kernel on Mε = M\Tε is denoted by Hε(x, y, t). By the minimal property of Dirichlet heat

kernel, Hε is monotone increasing. On the other hand the comparsion theorem for the heat

kernel in Section 2 implies that Hε has a uniform upper bound and hence must converge to a

function H. By the local gradient estimate of Li-Yau, it is the heat kernel on M. We will prove

that Hε converges in the W 1,2(M)-norm to H, and H ∈ W 1,2(M). Moreover, H satisfies the

semigroup property and conservation property. Hence H is the only heat kernel on M.
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In Section 4, we consider the Schröndinger operator P on a vector bundle E. As mentioned

above, P is of the form P = Dt ◦D + L. First we will prove the self-adjointness of P . Then

we will derive a Kato’s type inequality for P. Using this inequality, we next prove that the heat

kernel e−tP of P is bounded from above by the heat kernel H(x, y, t) multiplying a constant.

As a corollary, we get an upper bound of the trace class of e−tP .

2 Comparison Theorem for Kähler Submanifold

Let N be an n-dimensional compact Riemannian manifold whose sectional curvature is not

greater than b. Let M ⊂ N be an m-dimensional minimal submanifold of N. Denote the

distance function of N to a fixed point x ∈ M by rx(y). Let σ be the injectivity radius of N,

and B(x, r) be a geodesic ball at x of radius r ≤ σ. Let V m
b be the m-dimensional space form

of constant curvature b, and B̂(r) be a geodesic ball with radius r of V m
b .

Suppose that Ĥ is the heat kernel with Dirichlet boundary condition on B̂(r). Then we

know that Ĥ is only a function of distance function r and time t. For a fixed point x ∈ M and

any y ∈ M , we can regard Ĥ as a function of y by Ĥ(x, y, t) = Ĥ(rx(y), t). Ĥ is smooth on

M \ C, where C denotes the cut-locus of N. Define

s(r) =





1− cos(
√
br), b > 0,

r2

2
, b = 0,

cosh(
√
−br)− 1, b < 0,

(2.1)

and rewrite Ĥ=Ĥ(s(r), t). Then we have

△M Ĥ(x, y, t) = △M Ĥ(s(rx(y)), t) = Ĥs△Ms+ Ĥss|∇Ms|2. (2.2)

We denote the Laplace operator on V m
b by △̂.

Proposition 2.1 On B(x, r) ∩M , we have △Ms≥△̂s with r ≤ σ.

Proof Let {ei} (1 ≤ i ≤ m) be a local orthonormal basis of TM, and
{
êj ,

∂
∂r

}
(1 ≤ j ≤

m− 1) be an orthnormal basis of TVm
b . Note that M is a minimal submanifold of N. Then we

have

△Ms =

m∑

i=1

(eiei(s)−∇M
ei
ei(s))

=

m∑

i=1

(eiei(s)−∇N
ei
ei(s))

=
∂2s

∂r2

m∑

i=1

(ei(r))
2 +

∂s

∂r

m∑

i=1

(eiei(r) −∇N
ei
ei(r))

=
∂2s

∂r2

m∑

i=1

(ei(r))
2 +

∂s

∂r

m∑

i=1

H(r)(ei, ei).

Here H(r) means the Hessian bilinear form. Let e′i =
ei−ei(r)

∂
∂r√

1−ei(r)2
. Then e′i is orthnormal to

∂
∂r

with norm 1, and it is easy to check that H(r)(e′i, e′i) =
1

1−(ei(r))2
H(ei, ei).
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Using the Hessian comparison theorem for N and V n
b , and because V m

b can be regarded as

a totally geodesic submanifold of V n
b (m < n), we have H(r)(e′i, e

′
i) ≥ Ĥ(r)(êj , êj), where Ĥ(r)

is the Hessian form on V m
b .

So

∂2s

∂r2

m∑

i=1

(ei(r))
2 +

∂s

∂r

m∑

i=1

H(r)(ei, ei)

=
∂2s

∂r2

m∑

i=1

(ei(r))
2 +

∂s

∂r

m∑

i=1

(1− (ei(r))
2)H(r)(e′i, e

′
i)

≥ ∂2s

∂r2

m∑

i=1

(ei(r))
2 +

∂s

∂r

m∑

i=1

(1− (ei(r))
2)
( 1

m− 1

m−1∑

j=1

Ĥ(r)(êj , êj)
)

=
∂2s

∂r2

m∑

i=1

(ei(r))
2 +

∂s

∂r

m∑

i=1

(1− (ei(r))
2)h

=
(∂2s

∂r2
− ∂s

∂r
h
) m∑

i=1

(ei(r))
2 +mh

∂s

∂r

= △̂s,

where h denotes the mean curvature of geodesic sphere of radius r of V m
b . The last equality

follows from a direct calculation. For example, when b > 0, h =
√
bcot(

√
br), so ∂2s

∂r2
− ∂s

∂r
h = 0,

and △̂s = ∂2s
∂r2

+ (m− 1)h ∂s
∂r

= mh ∂s
∂r
.

This theorem first appears in [11] without proof.

Here we give a complete proof.

According to [2], we have ∂Ĥ
∂r

≤0, so Ĥs =
∂Ĥ
∂r

∂r
∂s

≤ 0, and by [3], we have Ĥss ≥ 0. Moreover

|∇Ms|2 ≤
(
∂s
∂r

)2
for |∇Mr| ≤ 1. So in B(x, r) ∩M with r ≤ σ we have

△MĤ(x, y, t) = Ĥs△Ms+ Ĥss|∇Ms|2 ≤ Ĥs△M̂
s+ Ĥs

(∂s
∂r

)2

= △̂Ĥ. (2.3)

Now choose γ to be a C2 function on R such that γ(t) = 1 for t ≤ 1
2 and γ(t) = 0 for t ≥ 1.

For fixed x and any y ∈ M, we define a C2 function ρ on M by ρ(r) = ρ(rx(y)) = γ
(
s(r)
2

)
if

b ≥ 0 and σ ≥ π√
b
, and ρ(r) = γ

(
s(r)
s(σ)

)
otherwise.

Then ρ is a C2 function on M satisfying

−C1(σ) ≤
∂ρ

∂r
≤ 0,

∣∣∣∂
2ρ

∂r2

∣∣∣ ≤ C2(σ). (2.4)

Here C1(ρ) and C2(ρ) are constants depending on ρ. Set G(x, y, t) = ρ(rx(y))Ĥ(rx(y), t) + tB,

where B is a constant to be determined.

Proposition 2.2 There exists a constant B depending only on the injectivity radius σ on

N , the sectional curvature of N and the dimension of M , such that

(
△− ∂

∂t

)
G(x, y, t) ≤ 0 (2.5)

on M .
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Proof Since

(
△− ∂

∂t

)
(Ĥρ+ tB) = ρ△Ĥ + 2(∇Ĥ,∇ρ) + Ĥ△ρ− ρ

∂

∂t
Ĥ −B

= ρ
(
△Ĥ − ∂

∂t

)
Ĥ + 2(∇Ĥ,∇ρ) + Ĥ△ρ−B

≤ 2(∇Ĥ,∇ρ) + Ĥ△ρ−B.

In order to get (2.5), we must choose a positive constant B such that

B ≥ 2(∇Ĥ,∇ρ) + Ĥ△ρ. (2.6)

But

2(∇Ĥ,∇ρ) + Ĥ△ρ = 2ρ′
∂s

∂r
Ĥr(∇r,∇r) + Ĥρ′′

(∂s
∂r

)2

|∇r|2 + Ĥρ′△s. (2.7)

Now since ρ′ < 0, △s ≥ △̂s > 0, the third term is negative. Furthermore Ĥ and Ĥr are

bounded on [c, σ]× [0,∞) for some constant c > 0, and by (2.4) we see that the first and second

terms are bounded from above. So there exists a constant B which depends on the injective

radius σ on N, the sectional curvature of N and the dimension of M.B also satisfies (2.6).

Now we are ready to prove comparison theorem for the heat kernel of complex submanifold

for minimal submanifold.

Theorem 2.1 Let N be a compact Riemannian manifold with sectional curvature not

greater than b, and M ⊂ N be a minimal submanifold. Suppose that H is the Dirichlet heat

kernel of M. For all x, y ∈ M and t ∈ [0,∞), we have

H(x, y, t) ≤ G(x, y, t). (2.8)

Proof We have already proved that
(
△− ∂

∂t

)
G(x, y, t) ≤ 0. Using Duhamel’s principle, we

have

G(x, y, t)−H(x, y, t)

=

∫ t

0

∂

∂s

( ∫

M

G(x, z, s)H(z, y, t− s)dz
)
ds

=

∫ t

0

∫

M

∂G

∂s
(x, z, s)H(z, y, t− s)dzds−

∫ t

0

∫

M

G(x, z, s)
∂H

∂(t− s)
(z, y, t− s)dzds

≥
∫ t

0

∫

M

△G(x, z, s)H(z, y, t− s)dzds−
∫ t

0

∫

M

G(x, z, s)△H(z, y, t− s)dzds

=

∫ t

0

∫

∂M

∂G

∂vz
(x, z, s)H(z, y, t− s)dzds−

∫ t

0

∫

∂M

G(x, z, s)
∂H

∂vz
(z, y, t− s)dzds

for x, y ∈ M and t > 0. Since H satisfies the Dirichlet boundary condition, i.e., H = 0 on ∂M ,

the first term of the right is zero. On the other hand H is positive on the interior of M, so
∂H
∂vz

(z, y, t− s) < 0. Because G is positive, we then conclude that H(x, y, t) ≤ G(x, y, t).

Now if N is a compact Kähler manifold of complex dimesion n and M is a complex sub-

manifold of N, then it is well known that M is Kähler and minimal. So we can derive directly

from Theorem 2.1 the comparison theorem of the heat kernel for the Kähler case.
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Corollary 2.1 Let N be a compact Kähler manifold with Riemannian curvature not greater

than b and M be a Kähler submanifold of N. Then the heat kernel H(x, y, t) on M has an upper

bound

H(x, y, t) ≤ G(x, y, t). (2.9)

3 Heat Kernel for Analytic Subvariety

In this section, let M ⊂ N be an analytic subvariety of pure dimension m, where N is a

compact Kähler manifold. Locally M is given by zero set of holomorphic functions of N. We

denote the smooth part of M by Mreg, and singular part of M by Msing. Then Mreg is an

incomplete open Riemannian manifold, and the real codimension of Msing is at least 2. The

ε-neighborhood of the Msing is defined by Tε = {x ∈ M | dist(x,Msing) ≤ ε}. Let Mε = M \ Tε

and let Hε be the Dirichlet heat kernel on Mε. Since Dirichlet heat kernel is minimal, when

ε′≤ε, we have Hε′(x, y, t)≥Hε(x, y, t) for all x, y ∈Mε and for all t > 0. By Corollary 2.1,

we have Hε(x, y, t)≤G(x, y, t) for all ε. So on any compact subset of M, Hε is monotonically

increasing and bounded from above as ε tends to 0, and hence Hε must converges to a function

H. By the local gradient estimate of Li-Yau [10], H satisfies the heat equation on Mreg.

Lemma 3.1 Hε converges in W 1,2(M)-norm to H on M , in particular H ∈ W 1,2(M).

Proof Firstly since H(x, y, t) ≤ G(x, y, t), it is clear that H(x, y, t) ∈ L2(M). For any

compact subset K ⊂ M , choose ε sufficiently small such that K ⊂ M2ε. Take 0 < ε′ < ε and φ

a non negative truncation function supported on Mε and φ = 1 on M2ε.

Using the local gradient estimate for Hε′ −Hε by [10] on Mε, we have

|∇(Hε′ −Hε)|2 − α(Hε′ −Hε)
( ∂

∂t
(Hε′ −Hε)

)
≤ C(Hε′ −Hε)

2, (3.1)

where α > 1 is a constant. Then
∫

M

φ2|∇(Hε′ −Hε)|2 ≤ α

∫

M

φ2(Hε′ −Hε)
( ∂

∂t
(Hε′ −Hε)

)
+ C

∫

M

φ2(Hε′ −Hε)
2

≤ α

∫

M

φ2(Hε′ −Hε)(△(Hε′ −Hε)) + C

∫

M

φ2(Hε′ −Hε)
2

≤ −α

∫

M

φ2|∇(Hε′ −Hε)|2 − 2

∫

M

φ(Hε′ −Hε)(∇φ,∇(Hε′ −Hε))

+ C

∫

M

φ2(Hε′ −Hε)
2.

Applying the Schwarz inequality

−2

∫

M

φ(Hε′ −Hε)(∇φ,∇(Hε′ −Hε)) ≤
∫

M

φ2|∇(Hε′ −Hε)|2 +
∫

M

|∇φ|2(Hε′ −Hε)
2,

we have
∫

M

φ2|∇(Hε′ −Hε)|2 ≤ C

∫

M

φ2(Hε′ −Hε)
2 + α

∫

M

|∇φ|2(Hε′ −Hε)
2. (3.2)

Thus
∫

K

|∇(Hε′ −Hε)|2 ≤ C

∫

M

φ2(Hε′ −Hε)
2 + α

∫

Mε,2ε

|∇φ|2(Hε′ −Hε)
2. (3.3)
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Here Mε,2ε denotes Mε \M2ε. If we choose the truncation function φ such that |∇φ| ≤ 5
ε
, we

have
∫

Mε,2ε

|∇φ|2 ≤ C1ε
−2V (ε, 2ε), (3.4)

where V (ε, 2ε) is the volume of Mε,2ε. The fact that the singular part of M is of at least real

codimension 2 implies that
∫

Mε,2ε

|∇φ|2 ≤ C1ε
−2V (ε, 2ε) ≤ C2. (3.5)

So the second term of right-hand side of (3.3) tends to 0 as ε → 0, since Hε uniformly converges

to H. The first term is obviously tends 0, hence Hε converges in the W 1,2(M)-norm to H on

any compact subset of M.

If we using the local gradient estimate for Hε, we have
∫

M

φ2|∇Hε|2 ≤ α

∫

M

φ2Hε

∂Hε

∂t
+ C

∫

M

φ2H2
ε ≤ C

∫

M

φ2H2
ε + α

∫

M

|∇φ|2H2
ε . (3.6)

By (3.5), we have an estimate of the second term
∫

M

|∇φ|2H2
ε =

∫

Mε,2ε

|∇φ|2H2
ε ≤ C(t). (3.7)

The first term in (3.6) is clearly bounded, thus we have
∫

K

|∇Hε|2 ≤ C(t).

Then H is uniformly bounded on any compact subset of M, hence H ∈ W 1,2(M).

Lemma 3.2 On M, H satisfies the semi-groups property.

Proof Let ε ≥ ε′,
∫

Mε

Hε′(z, y, t)Hε′(x, y, s)dy ≤
∫

Mε′

Hε′(z, y, t)Hε′(x, y, s)dy

= Hε′(z, x, t+ s) ≤ H(z, x, t+ s).

Let ε′ → 0, we have
∫

Mε

H(z, y, t)H(x, y, s)dy ≤ H(z, x, t+ s).

Let ε → 0, we conclude that
∫

M

H(z, y, t)H(x, y, s)dy ≤ H(z, x, t+ s).

On the other hand,
∫

M

H(z, y, t)H(x, y, s)dy ≥
∫

Mε′

H(z, y, t)H(x, y, s)dy

≥
∫

Mε′

Hε′(z, y, t)Hε′(x, y, s)dy = Hε′(z, x, t+ s).
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Hence
∫

M

H(z, y, t)H(x, y, s)dy ≥ H(z, x, t+ s).

Therefore we have
∫

M

H(z, y, t)H(x, y, s)dy = H(z, x, t+ s).

Proposition 3.1 On M, H satisfies the conservation property

∫

M

H(x, y, t)dy = 1. (3.8)

Hence H is the only heat kernel on M satisfying this property.

Proof By Green formula we have

∂

∂t

∫

M

φH =

∫

M

φ△H = −
∫

M

(∇φ,∇H),

where φ is the truncation function defined above. By the Schwarz inequality, we see that for

any 0 < t1 < t2,

∣∣∣
∫

M

φ(y)H(x, y, t2)dy −
∫

M

φ(y)H(x, y, t1)dy
∣∣∣

≤
∫ t2

t1

∣∣∣ ∂
∂t

∫

M

φ(y)H(x, y, t)dy
∣∣∣dt

≤
∫ t2

t1

( ∫

Mε,2ε

|∇φ|2(y)dy
) 1

2

( ∫

Mε,2ε

|∇H |2(x, y, t)dy
) 1

2

dt.

The first term is uniformly bounded as argued in Lemma 3.1, and the second term tends to 0

for H ∈ W 1,2(M), hence

∫

M

H(x, y, t2)dy =

∫

M

H(x, y, t1)dy.

Now lim
t1→0

∫
M

H(x, y, t1)dy = 1, so the conservation property holds.

If (3.8) holds, the Neumann heat kernel on M must coincide with the Dirichlet heat kernel

H, for instance see [8] or [9].

4 The Heat Kernel Operator on Vector Bundles

Let M ⊂ N be an analytical subvariety, where N is a compact Kähler manifold. Now

let E → M be a smooth complex vector bundle with Hermitian metric h, D be its metric

connection and Dt be its formal adjoint. Let L be a smooth vector bundle endomorphism

of E, which we would assume to be symmetric and positive. Moreover, we assume that L is

bounded operator on L2(M,E) and satisfies (Ls1, s2)h ≥ l(s1, s2)h, where l is a constant and

x, y ∈ L2(M,E). Consider the following Schrödinger type operator:

P := Dt ◦D + L. (4.1)
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Then P is a (formally) self-adjoint operator on C∞
0 (M,E). Denote P as its closure in L2(M,E).

We will first consider the issue of self-adjointness of P . Now we define domain of D to be

the set D(D), where

D(D) := {s | s ∈ C1(Mreg, E) ∩ L2(Mreg, E), Ds ∈ L2(Mreg, E ⊗ T ∗M)}. (4.2)

Similarly, we define

D(Dt) := {ω | ω ∈ L2(Mreg, E ⊗ T ∗M) ∩C1(Mreg, E ⊗ T ∗M), Dtω ∈ L2(Mreg, E)}. (4.3)

Now by a theorem of Gaffney (see [4]), if D and Dt are adjoint to each other with respect to

their domains, then the closure of Dt◦D is self-adjoint. Therefore, to prove that P is self-adjoint

we only need to prove that D and Dt are adjoint in their domains.

Proposition 4.1 The closure P in L2(M,E) is self-adjoint.

Proof D and Dt are adjoint if and only if the following statement is true:

(Ds, ω) = (s,Dtω) (4.4)

for all s ∈ D(D) and ω ∈ D(Dt). We claim that if any section s in D(D) can be approximated

by sections in W 1,2
c (Mε) = {s ∈ W 1,2(Mε, E) | s = 0 on ∂Mε}, then (4.4) holds. To see this,

let si ∈ W 1,2
c (Mεi) and si → s in W 1,2(M,E). Then

(Ds, ω) = lim
i→∞

(Dsi, ω) = lim
i→∞

(si, D
tω) = (s,Dtω), (4.5)

where the second equality holds since si satisfies the Dirichlet boundary condition.

To prove this equality we would like to show that the bounded sections are dense in

W 1,2(M,E) first. As suggested in [1], for any s ∈ W 1,2(M,E), define

sn :=
s

( |s|2h
n

+ 1
) 1

2

.

Clearly sn is bounded and |sn|h ≤ n
1

2 . We have

Dsn = − 1

n

( |s|2h
n

+ 1
)− 3

2

Re(h(Ds, s)) ⊗ s+
( |s|2h

n
+ 1

)− 1

2

Ds.

Now using the fact that s ∈ W 1,2(M,E), it is easy to see that Ds ∈ L2(M,T ∗M ⊗ E). So it

remains to show that sn → s in the norm of W 1,2(M,E), as n → ∞. For ‖s− sn‖2L2(M,E), we

have

‖s− sn‖2L2(M,E) =

∫

M

(
1−

( |s|2h
n

+ 1
)− 1

2

)2

|s|2h.

By the Lebesgue dominate convergence theorem, we get lim
n→∞

‖s− sn‖2L2(M,E) = 0. For ‖Ds−
Dsn‖2L2(M,T∗M⊗E), we have

‖Ds−Dsn‖L2(M,T∗M⊗E) ≤
∥∥∥− 1

n

( |s|2h
n

+ 1
)− 3

2

Re(h(Ds, s))
∥∥∥
L2(M,T∗M⊗E)

+
∥∥∥Ds−

( |s|2h
n

+ 1
)− 1

2

Ds
∥∥∥
L2(M,T∗M⊗E)

.
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For the first term, we have
∥∥∥− 1

n

( |s|2h
n

+ 1
)− 3

2

Re(h(Ds, s))⊗ s
∥∥∥
2

L2(M,T∗M⊗E)

=

∫

M

∣∣∣− 1

n

( |s|2h
n

+ 1
)− 3

2

∣∣∣
∫

M

∣∣∣− 1

n

( |s|2h
n

+ 1
)− 3

2

∣∣∣|Re(h(Ds, s))⊗ s|2
h̃

≤
∫

M

1

n2

( |s|2h
n

+ 1
)−3

|Ds|2
h̃
|s|4h.

Here h̃ denotes the metric on T ∗M ⊗ E. Since
( |s|2h

n
+ 1

)−3

|s|4h ≤ n2,

this implies that

1

n2
|Ds|2

h̃
|s|4h

( |sh|2
n

+ 1
)−3

≤ |Ds|2
h̃
.

So we can use the Lebesegue dominate convergence theorem to conclude that
∥∥∥− 1

n

( |s|2h
n

+ 1
)− 3

2

Re(h(Ds, s))⊗ s
∥∥∥
L2(M,T∗M⊗E)

→ 0.

For the second term, we have
∥∥∥Ds−

( |s|2h
n

+ 1
)− 1

2

Ds
∥∥∥
2

L2(M,T∗M⊗E)
=

∫

M

(
1−

( |s|2h
n

+ 1
) 1

2

)2

|Ds|2
h̃
,

and using Lebesgue dominate convergence theorem again, it tends to 0. So we have
∫
M

|Dsn −
Ds|

h̃
→ 0. So the bounded sections are dense in W 1,2(M,E).

From now on, we can assume that s ∈ W 1,2(M,E) is bounded. For any ε > 0, take

s′ = 1
2exp(−ε−2) < ε. Define sε = φεs ∈ W 1,2

c (Mε), where φε is a cut-off function supported

in Mε and φε = 1 on Mε. Then sε ∈ W
1,2
0 (Mε, E) and sε → s in L1,2(M,E), as ε → 0. Now

consider ∫

M

|D(s− sε)|2h̃ =

∫

Mε′,ε

|D(s− sε)|2h̃ +

∫

Tε

|Ds|2
h̃
,

where Mε′,ε = Mε\Mε′ , and Tε′ is the ε′-tubular neighborhood of the singular set. Clearly,∫
Tε′

|Ds|2
h̃
→ 0 as ε′ → 0, and

∫

Mε′,ε

|D(s− sε)|2h̃ =

∫

Mε′,ε

|Ds|2
h̃
− 2

∫

Mε′,ε

(Ds,Dsε)h̃ +

∫

Mε′,ε

|Dsε|2h̃

≤ 2

∫

Mε′,ε

|Ds|2
h̃
+ 2

∫

Mε′,ε

|Dsε|2h̃.

Now it is easy to see that the first term tends to 0, hence we only need to consider the

second term:∫

Mε′,ε

|Dsε|2h̃ =

∫

Mε′,ε

|D(φεs)|2h̃ =

∫

Mε′,ε

(|dφε|s+ φεDs)
h̃

=

∫

Mε′,ε

(dφεs, dφεs)h̃ + 2

∫

Mε′,ε

φεRe(Ds, dφεs)h̃ +

∫

Mε′,ε

φ2
ε|Ds|2

h̃

≤ 2

∫

Mε′,ε

|s|2h|dφε|2 + 2

∫

Mε′,ε

φ2
ε|Ds|2

h̃
.
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The second term tends to 0, so the problem is reduced to prove that the first term also tends

to 0. By the assumption that |s|h is bounded, it suffices to show
∫
Mε′,ε

|dφε|2 → 0.

Now as suggested in [9], we can choose

φε =





(r
ε

)ε

, 2ε′ ≤ r ≤ ε,

(2ε′
ε

)ε(r
ε
− 1

)
, ε ≤ r ≤ 2ε′,

0, 0 ≤ r ≤ ε′,

(4.6)

where r denotes the distance function to the singular set Msing. Clearly,

|dφε|2 ≤





(r
ε

)2ε−2

, 2ε′ ≤ r ≤ ε,

(2ε′
ε

)2ε( 1

(ε′)2

)
, ε ≤ r ≤ 2ε′,

0, 0 ≤ r ≤ ε′.

(4.7)

Since the singular set is at most of real codimension 2, ∂Tr is at most linear in r, for sufficiently

small r. So ∫

Mε′,ε

|dφε|2 ≤ C

∫ ε

2ε′

(r
ε

)2ε−2

rdr + C

∫

ε′
2ε′

(2ε′
ε

)2ε( r

(ε′)2

)
dr

= C
( ε
2
+

22ε−2exp(−ε−2)

ε2ε−1
+

3

2

(exp(−2ε−1)

ε2ε

))
→ 0

as ε → 0. This establishes the self-adjointness of P .

Proposition 4.2 On M , the Schrödinger type operator P satisfies the following inequality:

Re(Ps, s)h ≥ |s|h,ε((−△+ l)|s|h,ε) (4.8)

for any s ∈ C∞
c (M,E), where |s|2h,ε := (|s|2h + ε2)

1

2 .

When ε → 0, we have the inequality between distributions:

Re(Ps, sign s)h ≥ (−△+ l)|s|h (4.9)

for any s ∈ C∞
c (M,E), where

sign s =





s

|s|h
on supp s,

ξ otherwise,

(4.10)

where ξ is an arbitrary measurable section in the sphere bundle of E.

Proof Note that △ = −δd = ∗d ∗ d, where ∗ is the Hodge star operator. For P we have

Re(Ps, s)h = Re(Dt ◦Ds, s)h + (Ls, s)h ≥ Re(Dt ◦Ds, s)h + l(s, s)h. (4.11)

Now we claim that Re(Dt ◦Ds, s)h ≥ −△|s|h,ε, and by this, the first part of the proposition

will be proved. To prove this inequality, we calculate △|s|2h,ε in two different ways. Firstly,

△|s|2h,ε = ∗d ∗ d|s|2h,ε = ∗d ∗ (2|s|h,εd|s|h,ε)
= ∗d(2|s|h,ε ∗ d|s|h,ε) = ∗(2d|s|h,ε ∧ ∗d|s|h,ε + 2|s|h,εd ∗ |s|h,ε)
= 2 ∗ (d|s|h,ε ∧ ∗d|s|h,ε) + 2|s|h,ε ∗ d ∗ |s|h,ε
= 2|d|s|h,ε|2g + 2|s|h,ε△|s|h,ε,



238 L. B. Fang

where g denotes the metric on T ∗M .

On the other hand,

△|s|2h,ε = ∗d ∗ d((s, s)h + ε2)

= ∗d ∗ ((Ds, s) + (s,Ds))

= ∗d((∗Ds, s) + (s, ∗Ds))

= ∗((D ∗Ds, s) + (∗Ds,Ds) + (Ds, ∗Ds) + (s,D ∗Ds))

= −2Re(Dt ◦Ds, s) + 2(Ds,Ds).

Next we prove that |d|s|h,ε|2g ≤ |Ds|2. Now since d|s|2h,ε = 2|s|h,εd|s|h,ε and d|s|2h,ε = 2Re(Ds,Ds),

we have

|d|s|h,ε|2 =
∣∣∣
d|s|2h,ε
2|s|h,ε

∣∣∣
2

=
Re(Ds, s)

|s|2h,ε
≤ |Ds|2|s|2h

|s|2h,ε
≤ |Ds|2.

Combining above together, we prove the first part of the proposition. The second inequality

follows easily from (4.8) by letting ε → 0.

Theorem 4.1 With the notation above, the operators P and −△ determine the heat

operators e−tP and et△. Then the following domination of semigroups holds:

|e−tP s|h ≤ e−tl|et△s|h. (4.12)

Proof Take f1 ∈ C∞(M,E)∩L2(M,E), g ∈ L2(M), λ a positive constant. By [9, Lemma

5.2], for any λ > 0, (λ − △)−1 : L2(M) → W 1,2(M) is a bounded operator. So for λ > 0,

(λ − △)−1g ∈ L2(M). Let ξ be an arbitrary measurable section in the sphere bundle on E.

Define

sign(f1) =





f1

|f1|
, f1 6= 0,

ξ, f1 = 0,
(4.13)

and define f2 = (λ −△)−1g sign(f1). Then f2 ∈ L2(M,E), and it is easy to verify that

|f2|h = (λ−△)−1g (4.14)

and
∫

M

(f1, f2)h =

∫

M

|f1|h|f2|h.

Now by Proposition 4.2, we have

Re(Pf1, f1)h ≥ |f1|h,ε((−△+ l)|f1|h,ε),

so
∫

M

Re
(
Pf1,

f1

|f1|h,ε
|f2|h

)
≥

∫

M

(−△+ l)|f1|h,ε|f2|h =

∫

M

(−△+ l)|f2|h|f1|h,ε. (4.15)

When ε → 0, f1
|f1|h,ε

→ sign|f1|, and sign|f1| = sign|f2|, so f1
|f1|h,ε

|f2| → f2,

∫

M

Re(Pf1, f2)h ≥
∫

M

(−△+ l)|f2|h|f1|h.
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Taking constant µ > max(0,−l), we have
∫

M

Re((P + µ)f1, f2)h ≥
∫

M

(−△+ l + µ)|f2|h|f1|h.

Taking λ = l + µ, then we have
∫

M

(Re(P + µ)f1, f2)h ≥
∫

M

g|f1|h.

Now
∫

M

|(P + µ)f1|h|f2|h ≥
∫

M

Re((P + µ)f1, f2)h.

Putting s = (P + µ)f1, then we get
∫

M

|s|h|f2|h ≥
∫

M

|(P + µ)−1s|hg.

By (4.14) we get
∫

M

|s|h((l + µ−△)−1)g ≥
∫

M

g|(P + µ)−1s|h.

Using the self-adjointness of △, we get
∫

M

(l + µ−△)−1|s|hg ≥
∫

M

|(P + µ)−1s|hg.

Now we get

(l + µ−△)−1|s|h ≥ |(P + µ)−1s|h. (4.16)

Since f1 ∈ C∞(M,E)∩L2(M,E) is dense in L2(M,E), by the continuity of resolvent, we have

|(−△+ l + µ)−1s|h ≥ |(P + µ)−1s|h

for any s ∈ L2(M,E). By a standard result in functional analysis (see [5] or [6, Theorem 2.15]),

the domination of resolvent implies the domination of semigroup, i.e.,

|e−t(−△+l)s|h ≥ |e−tP s|h. (4.17)

Finally, by the Trotter’s product formula (see [12]), we get

|e−tP s|h ≤ e−tlet△|s|h. (4.18)

Corollary 4.1 The heat operator e−tP : L2(M,E) → L2(M,E) is a trace class operator

and its trace class Tr satisfies the following inequality:

Tr(e−tP ) ≤ re−tlTr(et△), (4.19)

where r is the rank of the vector bundle E. If Hp denotes the kernel function of e−tP , then the

following inequalities holds:

Hp(x, x, t) ≤ re−tl(Ĥ(0, t) +Bt), (4.20)

Tr(e−tP ) ≤ re−tl(vol(M)(Ĥ(0, t) +Bt), (4.21)

where B is a constant chosen as in Proposition 2.2.



240 L. B. Fang

Proof By [7], (4.12) implies that for the pointwise operator norm ‖Hp(x, y, t)‖op, the

inequality ‖Hp(x, x, t)‖op ≤ e−tlH(x, y, t) holds. This implies that for the pointwise traces we

have Hp(x, x, t) ≤ re−tlH(x, x, t). Now e−tP is of trace class as well as et△, and its trace class

must satisfy (4.19). Inequalities (4.20)–(4.21) follow from the construction of H and Corollary

2.1.
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